电动汽车电池供应链投资指南GuidetoInvestingintheEVBatterySupplyChain电动汽车电池供应链投资指南目录1.执行摘要32.引言53.市场概况94.上游:原材料提取和加工20原材料提取21初级和二次再生原材料加工275.中游:电芯组件制造和29电芯制造业电芯组件制造30电芯制造396.下游:模组和电池组生产及电池管理系统42模组和电池组生产43电池管理系统447.二次利用与回收468.转型时期的政策和公共财政54附录59词汇表62本指南是与以下机构合作制作的:我们还要感谢以下组织对编写本指南的支持:BatteryAssociates、清洁发展基金(CleanGrowthFund)、ElbowBeachCapital、ElysiaBatteryIntelligence、InnovateUKKTN、国民西敏寺银行集团(NatWest)、PlugLifeConsulting、ViridisCapital2GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINContents1.ExecutiveSummary32.Introduction53.MarketOverview94.Upstream:RawMaterialExtraction&Processing20Rawmaterialextraction21Primary&secondaryrawmaterialprocessing275.Midstream:CellComponentManufacturing&Cell29ManufacturingCellcomponentmanufacturing30Cellmanufacturing396.Downstream:ModuleandPackProduction&BatteryManagementSystems42Moduleandpackproduction43Batterymanagementsystems447.SecondUse&Recycling468.PolicyandPublicFinancefortheTransition54Appendix59Glossary62Thisguidewasproducedinpartnershipwith:Wewouldalsoliketothankthefollowingorganisationsfortheirsupportinproducingthisguide:BatteryAssociates,CleanGrowthFund,ElbowBeachCapital,ElysiaBatteryIntelligence,InnovateUKKTN,NatWest,PlugLifeConsulting,ViridisCapital2电动汽车电池供应链投资指南执行摘要最早到2025年,电动汽车(EV)的转型就有望将英国汽车电池市场推升至120亿英镑。不断增长的电池供应链产能为广大投资者(无论是熟悉该行业的投资者还是刚接触该行业的投资者)提供了一个重大机遇。绿色金融研究所(TheGreenFinanceInstitute)的道路运输脱碳联盟编写了本指南,旨在为投资者提供有关电池供应链的信息,以释放英国抓住这一机遇所需的投资。电池是包括运输在内的众多行业脱碳的关键支持技术,大关键充电产业多数轻型客车、货车和一些重型货车都需要电池。包括汽锂磷酸锰铁锂(LFMP)电池车在内的多个行业对电池的需求,正在为企业在整个电池供应链上扩展能力创造一个重大的增长机会,这需要来自镍绿色锂各个金融领域(无论是新的还是现有的)投资者的大量资氢氧化锂金。英国有机会在转型中发挥关键作用,并扩大其现有的焦碳电池制造渠道。快速提高投资者对该行业的了解对于抓住超级工厂蒂斯河谷锂业这一机会至关重要。氢氧化锂远景动力1.9吉瓦时(软包电池)远景动力/日产38吉瓦时(软包电池)英国锂业P66云母到氢氧化物优质和超优质石油焦康沃尔锂公司电池供应链铁锂云母到氢氧化物LEVERTON锂业氢氧化锂和碳酸锂康沃尔锂公司盐水处理/DLE到氢氧化物淡水河谷镍金属上游材料加工中游电芯和包装制造下游回收和原材料开采和提炼零部件制造生活中的第二次生命使用数据$184.1bn$58.4620$48.8bnbn$14.3亿$25.4$16.3$35.6$40.6bn20222030bnbnbn$8.3美$1.9bn$6.2bnbnbn2022203020222030202220302022203020222030全球市场价值3资料来源:2022年电池报告,Volta基金会GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINExecutiveSummaryTheelectricvehicle(EV)transitionhaspotentialtogrowtheautomotivebatterymarkettoGBP12billionintheUKasearlyas2025.[1]Growingbatterysupplychaincapacitypresentsasignificantopportunityforawiderangeofinvestors,boththosefamiliarwith,andthosenewtothesector.TheGreenFinanceInstitute’sCoalitionfortheDecarbonisationofRoadTransporthascreatedthisguidetoprovideinvestorswithinformationonthebatterysupplychaintounlocktheinvestmenttheUKneedstocapturethisopportunity.BatteriesareakeyenablingtechnologyintheKeyRECHARGEINDUSTRIESdecarbonisationofnumeroussectors,includingLithiumLFMPbatteriestransport,andwillbeneededformostlightNickelGREENLITHIUMpassengervehicles,vansandsomeheavygoodsCokeLithiumhydroxidevehicles.Demandforbatteriesinmultiplesectors,GigafactoriesTEESVALLEYLITHIUMincludingautomotive,iscreatingasignificantLithiumhydroxidegrowthopportunityforcompaniesscalingBRITISHLITHIUMcapabilitiesacrossthebatterysupplychain,MicatohydroxideENVISIONAESCrequiringsignificantpoolsofcapitalfrominvestorsCORNISHLITHIUM1.9GWh(Pouch)acrossthefinancialspectrum,newandexisting.ZinnwalditetohydroxideENVISIONAESC/NISSANTheUKhasawindowofopportunitytoplayakeyCORNISHLITHIUM38GWh(Pouch)roleinthetransitionandgrowitscurrentbatteryBrine/DLEtohydroxidemanufacturingpipeline.IncreasinginvestorP66understandingofthesectorquicklyiscriticaltoVALEPremiumandSuperseizethisopportunity.NickelmetalPremiumPetCokeLEVERTONLITHIUMLithiumhydroxideandcarbonateTheBatterySupplyChainMidstreamDownstreamUpstreamComponentIn-lifemanufacturingusagedataRawmaterialMaterialCell&PackRecyclingandminingandrefiningprocessingmanufacturing2ndlife$184.1bn$14.3$58.4$62$25.4$48.8$16.3$35.6$40.6bnbnbnbnbnbnbn$8.3bn$1.9bn20222030$6.2bn20222030bn202220302022203020222030202220303GlobalmarketvalueSource:TheBatteryReport2022,VoltaFoundation电动汽车电池供应链投资指南上游:到2040年,对制造汽车电池所需的关键原材料的需尽管美国和欧盟正在迅速扩大其渠道,但中国目前在大多求预计将增长500%。获得这些材料的供应是一个关键问数电芯组件的生产中占据主导地位,并占据全球电芯制造题,考虑到扩大提取和加工材料能力所需的时间,迫切需的79%。英国拥有一家由远景动力(EnvisionAESC)运营要投资。现有的开采能力相对集中在全球少数几个国家,的超级工厂(不到全球产能的1%),但还需要更多工厂来中国凭借强大的加工能力和海外开采投资控制了大部分供满足预测需求,从而需要大量投资。应。尽管英国不太可能通过本地供应来满足其对电池的全部原材料需求,但有各种各样的投资机会来发展英国有前下游:电池供应链需要能够使用从电池制造商处获得的电途的原材料提取设施管道,其中包括试验新的更快提取技池组装电池模块和包装的公司。这些功能可以由包括汽车术的公司,以及扩展现有的处理能力。监管正在推动整个制造商在内的不同参与者来执行,组装通常在汽车制造厂供应链透明度的提高,以及下游电池制造商对国内提取和附近进行。目前英国拥有一定的组装能力,但需要提高产加工项目的需求。能以满足未来的电动汽车需求。中游:当今电动汽车使用的大多数电池都采用锂离子生命周期结束–二次使用和回收:目前的电动汽车电池(Li-ion)技术,指的是用于制造阳极和阴极等关键部件的平均每年仅退化2.3%,这意味着在电动汽车中使用后,它特定化学品。两家公司在锂离子技术方面的创新,以及使们可以用于其他用途或回收。与许多国家一样,英国尚未用不同化学品的新技术,都需要投资。新技术需要时间才建立工业规模的电池回收利用体系,主要是由于英国缺乏能得到大规模验证,并有望融入现有生产线。存在一些投电池制造商提供原料。然而,近期电动汽车的强劲采用加资机会,可以帮助英国巩固其在化学品方面的强大传统,上立法制定的电池回收目标,预计将创造一个稳定的退役以增加电解质产量,并建立阳极和阴极设施,并通过原产电动汽车电池渠道;最近的一系列公告表明,这是一个增地规则监管推动对当地生产商的需求。寻求具有强大绿色长的领域。资质的电池的汽车制造商将被能够利用英国绿色能源组合的英国生产商所吸引。电芯制造是指组合电芯组件的过政策:全球各国政府继续致力于交通电气化并实现净零目程,通常在超级工厂完成。它被认为是电池价值链中最重标,从而刺激电动汽车的普及和对汽车电池的需求。主要要的一步,预计到2030年将占电池行业价值创造的40%。市场为吸引部分供应链而提供的广泛政策支持,说明了该行业的战略重要性及其在能源安全方面的作用;美国的《通货膨胀削减法案》(IRA)和欧盟的《绿色协议》都已经刺激了大量的私人投资。尽管英国已经为汽车行业提供了广泛的支持,但它尚未以类似的更广泛的战略做出回应。4GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINUpstream:DemandforkeyrawmaterialsneededChinacurrentlydominatestheproductionofmosttomanufactureautomotivebatteriesisexpectedcellcomponents,andhas79%ofglobalcelltogrowbyasmuchas500%by2040[2].Obtainingmanufacturing[5],thoughtheUSandEUarerapidlysupplyofthesematerialsisakeyconcernandgrowingtheirpipelines.TheUKhasonegigafactorygiventhetimetakentoscalecapabilitiesto(<1%ofglobalcapacity)operatedbyEnvisionAESC,extractandprocessmaterials,investmentisbutmoreareneededtomeettheforecasturgentlyrequired.Existingextractioncapabilitiesdemand,requiringsignificantinvestment.arerelativelyconcentratedinafewcountriesglobally,withChinacontrollingmuchofthesupplyDownstream:Abatterysupplychainneedsduetoextensivecapabilitiesinprocessingandcompaniesabletoassemblethebatterymoduleinvestmentinoverseasextraction.AlthoughtheUKandpackusingcellsacquiredfromcellisunlikelytosatisfytheentiretyofitsrawmaterialmanufacturers.Thesecapabilitiescanbedemandforbatteriesfromlocalsupply,thereareperformedbydifferentactors,includingavarietyofinvestmentopportunitiestogrowtheautomakers,withassemblyoftenoccurringinUK’spromisingpipelineofrawmaterialextractioncloseproximitytovehiclemanufacture.Currentlyfacilities,whichincludescompaniesexperimentingtheUKhassomeassemblycapabilitiesbutneedswithnewfasterextractiontechnologies,andtogrowcapacitytomeetfutureEVdemand[6].expandingpre-existingprocessingcapabilities.RegulationisdrivingincreasedtransparencyEndoflife–seconduseandrecycling:CurrentEVacrossthesupplychainanddemandforbatteriesdegradeanaverageofjust2.3%peryear,domesticextractionandprocessingprojectsfromwhichmeansthatafteruseinanEV,theycanbatterymanufacturersdownstream.eitherbeusedinanotherapplicationorrecycled[7].Likemanycountries,theUKisyettobuildbatteryMidstream:Mostcellsusedtodayforelectricrecyclingatindustrialscale,primarilyduetolackofvehiclesuselithium-ion(Li-ion)technology,UK-basedbatterymanufacturerstoprovidereferringtothespecificchemicalsusedtofeedstock[8].However,strongrecentEVadoptionmanufacturethekeycomponentssuchasthecombinedwithlegislativebatteryrecyclingtargetsanodeandcathode.InvestmentisneededinbothisexpectedtocreateasteadypipelineofretiredcompaniesinnovatinginLi-iontechnologies,asEVbatteries;aspateofrecentannouncementswellasnewtechnologieswhichusedifferentindicatesthisisagrowthsector.chemicals.NewtechnologiestaketimetobeprovenatscaleandareexpectedtofitintoPolicy:Governmentsgloballycontinuetocommitexistingproductionlines.Severalinvestmenttoelectrifytransportandmeetnetzerotargets,opportunitiesexisttohelptheUKbuildonitsstimulatingEVuptakeanddemandforautomotivestrongheritageinchemicalstoincreasebatteries.Extensivepolicysupportinmajormarketselectrolyteproduction,andestablishanodeandtoattractsomeofthesupplychainspeakstothecathodefacilities,withregulationgoverningrulesstrategicimportanceofthesectoranditsroleinoforigindrivingdemandforlocalproducers[3].energysecurity;theInflationReductionAct(IRA)inAutomakerslookingforbatterieswithstronggreentheUS,andtheEUGreenDealhavebothalreadycredentialswillbeattractedtoUK-basedstimulatedhugeamountsofprivateinvestment.producersabletotakeadvantageoftheUK’sThoughtheUKalreadyoffersextensivesupportforgreenenergymix.Cellmanufacturingreferstothetheautomotivesector,itisyettorespondwithaprocessofcombiningthecellcomponents,similarbroaderstrategy.typicallydoneinagigafactory.Itisconsideredthemostimportantstepinthebatteryvaluechain,expectedtoaccountforupto40%ofbatteryindustryvaluecreationby2030[4].4电动汽车电池供应链投资指南2.引言2022年,全球锂离子(Li-ion)电池市场规模将达到780亿英镑。到2030年,预计将快速增长,预计2030年的市场价值将从2250亿英镑到高达3280亿英镑。5GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN2.IntroductionIn2022,thegloballithium-ion(Li-ion)batterymarketsizewassizedatGBP78billion.[9]By2030,itisexpectedtogrowrapidly,withestimatesforthemarketvaluein2030rangingfromGBP225billion[10]toashighasGBP328billion.[11]5电动汽车电池供应链投资指南引言全球向电气化,特别是电动汽车(EV)的转型以实现交通运输行业脱碳,正在创造巨大的投资机会,以满足快速增长的电池需求。据估计,到2030年,仅英国电池供应链就需要200亿英镑电池组中的模块数量取决于电芯的形状和尺寸。电池组由的投资,以扩大产能以满足需求。尽管汽车行业有许多模块和电池构成的方式称为电池组的格式,它可以显著影老牌企业,但所需的资金为新投资者进入该行业提供了响电池的特性和性能。图1说明了电池、模组和电池组之机会。英国拥有欧洲第二大电动汽车市场、逐步淘汰内间的区别。第5节和第6节将对此进行更详细的讨论。燃机(ICE)汽车的雄心勃勃的计划以及强大的汽车行业,因此有机会在这一转型中发挥关键作用。在内部,所有电池都至少由三个组件组成:阴极、阳极以及允许离子在阳极和阴极之间通过的电解质。第5节1:什么是电动汽车电池?更详细地讨论了电芯组件。第6节更详细地讨论了电池格式。有关锂离子电池电芯、模块和电池组生产工艺的电池是电动汽车动力系统的关键组成部分,是将动力从汽更多信息,请参阅亚琛工业大学出版的指南。车电池传输到车轴(即驱动车辆车轮)的机制。电源由电池组提供。电池组通常由多个模块组成,这些模块本身由许多电池组成——电池的基本单元。图1:锂离子电池锂离子电池模块电池组的实际使用一辆电动汽车由数千个锂离子电池电芯供电多个模块组成锂离子电池一个电池组盖帽隔膜阳极阴极电解质外壳6GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINIntroductionTheglobalshifttoelectrificationandspecificallyelectricvehicles(EVs)todecarbonisethetransportsectoriscreatingahugeinvestmentopportunitytomeettherapidincreaseindemandforbatteries.AnestimatedGBP20billioninvestmentisneededaremadeupofnumerouscells-thebasicunitinintheUKbatterysupplychainaloneby2030toabattery.Thenumberofmodulesinabatteryscaleproductioncapacitytomeetdemand[12].packdependsontheshapeandsizeofthecells.WhiletherearemanyestablishedplayersintheThewayabatterypackisconstructedofmodulesautomotivesector,thisneededcapitalprovidesandcellsisknownasitsformat,whichcananopportunityfornewinvestorstomoveintothesignificantlyimpactabattery’spropertiesandsector.TheUKhasawindowofopportunitytoplayperformance.Figure1illustratesthedifferenceakeyroleinthistransition,withthesecondlargestbetweenacell,moduleandbatterypack.ThisisEVmarketinEurope,ambitiousplanstophaseoutdiscussedinmoredetailinSections5and6.internalcombustionengine(ICE)vehiclesandastrongautomotivesector.Internally,allcellsaremadeofatleastthreecomponents-thenegativeanode,thepositive1:WhatisanEVbattery?cathode,andanelectrolytethatallowsionstopassbetweentheanodeandcathode.CellBatteriesformakeypartoftheEVpowertrain,componentsarediscussedinmoredetailinwhichisthemechanismthattransmitsthedriveSection5.Batteryformatisdiscussedinmorefromthebatteryofavehicletoitsaxle(i.e.drivesdetailinSection6.Furtherinformationonthethewheelsofavehicle).ThepowerisprovidedbyproductionprocessesofLi-ionbatterycells,abatterypack.Batterypacksaretypicallymodulesandpackscanbefoundinguidescomposedofmultiplemodules,whichthemselvespublishedbyRWTHAachenUniversity.Figure1:Li-ionbatteryAnelectricvehicleispoweredbythousandsofLi-ionbatterycellsLi-ionbatteryModuleofLi-ionPracticaluseofabatteriesbatterypackCapSeparatorsMultiplemodulesmakeupaAnodebatterypackCathodeElectrolytesolutionCasing6电动汽车电池供应链投资指南2:电动汽车电池如何为电机提供动力?3:电动汽车电池电芯由什么制成,电芯的化学成分是什么?电池中的化学反应包括带正电的离子(缺乏电子的原子)通过电解质从阳极流向阴极,在此过程中释放电子电动汽车电池电芯内的每个组件均由经过深加工的原材以产生电流。料制成的不同化学品组合制成。材料的具体组合将根据电芯中使用的不同化学物质而变化。有关电芯化学的更直流电(DC)离开电池,然后必须转换为交流电(AC),然多信息,请参阅第5节。后才能进入电机。为了给电池充电,会发生相反的情况——电子流入电池,离子从阴极流回阳极,产生电势特定电池的化学性质是指用于制造阳极、阴极和电解质能,电池随后可以放电。图2演示了此过程。充电循环会的材料的特定组合,这些材料将产生化学反应以产生电降低系统中的组件性能,因此随着时间的推移,电池会势能。除了电芯和电池组的格式外,电芯的化学性质也失去性能。是决定其特性和性能的关键因素。图2:电芯如何工作隔膜防止阴极和阳极之间的接触电解质帮助离子运动的介质阴极阳极作为锂离子的来源,决定了电池的容量和储存和释放来自阴极的锂离子,平均电压使电流通过外部电路7GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN2:HowdoEVbatteriesworktopowerthe3:WhatareEVbatterycellsmadeof,andmotor?whatiscellchemistry?ChemicalreactionsinabatteryinvolvetheflowofThecomponentswithinanEVbatterycellareeachpositivelychargedions(atomswithadeficitofmadeofadifferentcombinationofchemicalsmadeelectrons)movingfromtheanodetothecathodefromhighlyprocessedrawmaterials.Thespecificthroughtheelectrolyte,releasingelectronsalongthecombinationofmaterialswillvarydependingonthewaytocreateanelectriccurrent.chemistrybeingusedinthecell.Forfurtherinformationoncellchemistries,seeSection5.Directcurrent(DC)leavesthebatterywhichthenhastobeconvertedtoalternatingcurrent(AC)beforeitThechemistryofaparticularcellreferstothespecificcanenterthemotor.Torechargeabattery,thecombinationofmaterialsusedtocreatetheanode,oppositehappens–electronsflowintothebattery,cathodeandelectrolytethatwillcreatethechemicalandionsflowbackfromthecathodetotheanode,reactiontogenerateelectricpotentialenergy.Alongcreatingelectricpotentialenergythatthecellcanwithcellandpackformat,acell’schemistryisakeylaterdischarge.Figure2demonstratesthisprocess.factorindeterminingitspropertiesandperformance.Chargecyclingdegradescomponentsinthesystemsoovertimethebatterylosesperformance.Figure2:HowACellWorksSeparatorPreventscontactbetweencathodeandanodeElectrolyteAnodeThemediumStoresandreleaseslithiumionsfromwhichhelpsthecathode,allowingthepassofthemovementcurrentsthroughanexternalcircuitofionsCathodeAsthesourceoflithiumions,determinesthecapacityandtheaveragevoltageofabattery7电动汽车电池供应链投资指南4:什么是电池供应链?每个部分都描述了全球和英国市场、当前的关键技术、新兴技术创新、商业创新和投资者机会,相关说明性案电池供应链是指将原材料转化为电动汽车动力设备的相例研究可在附录中找到。互关联的流程网络。供应链可分为四个主要部分:上游、中游、下游和生命周期结束。本指南仅关注电池的供应链,不涵盖汽车生产本身的许多进一步流程,以及电池与汽车的集成和组装,尽管电池制每个部分都可以分解为不同的步骤,如图3所示。该指南造和汽车制造之间存在重叠。的结构反映了汽车电池供应链,每个阶段都有一个章节。图3:电池供应链上游材料加工中游电池和电池组下游回收和第二次原材料开采和提炼零部件制造制造生命周期生命内的使用数据$184.1bn$58.4620$48.8bnbn$14.3亿$25.4$16.3$35.6$40.6bnbnbnbn$8.3美$1.9bn$6.2bnbnbn202220302022203020222030202220302022203020222030市场价值资料来源:2022年电池报告,Volta基金会8GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN4:WhatistheBatterySupplyChain?globalandUKmarket,currentkeytechnologies,emergingtechnologicalinnovations,businessThebatterysupplychainreferstotheinterconnectedinnovationsandopportunitiesforinvestors,withnetworkofprocessesthatworktotransformrawrelevantillustrativecasestudieswhichcanbefoundmaterialsintothedevicesusedtopowerEVs.TheintheAppendix.supplychaincanbedividedintofourmainparts:upstream,midstream,downstreamandendoflife.Thisguidefocusesonlyonthesupplychainforbatteries,anddoesnotcoverthemanyfurtherEachpartcanbebrokendownintovarioussteps,asprocessesfortheproductionofavehicleitself,andillustratedinFigure3.ThestructureoftheGuidetheintegrationandassemblyofthebatterieswiththereflectstheautomotivebatterysupplychain,withavehicle,thoughthereisoverlapbetweenbatterysectiononeachstage.Eachsectiondescribesthemanufacturingandvehiclemanufacturing.Figure3:TheBatterySupplyChainUpstreamMaterialMidstreamCell&PackDownstreamRecyclingandprocessingmanufacturing2ndlifeRawmaterialComponentIn-lifeminingandrefiningmanufacturingusagedata$184.1bn$14.3$58.4$62$25.4$48.8$16.3$35.6$40.6bnbnbnbnbnbnbn$8.3bn$1.9bn20222030$6.2bn20222030bn20222030202220302022203020222030GlobalmarketvalueSource:TheBatteryReport2022,VoltaFoundation8电动汽车电池供应链投资指南三、市场概况9GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN3.MarketOverview9电动汽车电池供应链投资指南市场概况1.汽车电池需求的政治背景是什么?2.汽车制造商如何应对政府的淘汰日期?电池需求的主要驱动因素之一是脱碳以实现气候目标的必要除了政府对逐步淘汰内燃机进行监管干预外,汽车制造商性。电池与众多行业的脱碳途径息息相关。公路运输占全球还制定了自己的时间表-这不仅是为了遵守政策法规或温室气体(GHG)排放量的四分之一,这意味着许多政府已经政府的激励措施,也是为了占领市场份额并保持竞争优势采取措施鼓励向绿色运输转变。对于轻型客车、货车和一些的机会。标致雪铁龙集团和大众汽车等一些公司已宣布将重型货车(HGV),这些绿色替代方案将由电池供电(一些特结束对内燃机的投资,而捷豹路虎、福特、沃尔沃、通用定的重型货车应用预计将使用氢和电子燃料)。这刺激了对汽车和本田等其他公司则宣布在未来几年内逐步停止内燃汽车电池的需求,预计到2030年汽车电池需求将增长七倍,机汽车的生产(见图4)。许多公司正在设定自愿的电动届时汽车行业将占电池总需求的80%以上。汽车销售目标,无论是总销量方面还是销售份额方面,都超出了监管要求和政府的目标。包括英国在内的一些国家在英国,政府承诺从2030年开始停止销售新的汽油和柴油正在规定到2030年之前需要实现零排放的车辆比例。汽车和货车,到2035年停止销售混合动力汽车和货车。依随着这些目标日期的临近,汽车制造商越来越多地寻求垂赖内燃机的26吨以下的重型货车将在2035年之前逐步淘直整合战略,通过参与合资企业或进行战略性上游投资来汰,而那些更重的车辆将在2040年之前被淘汰。这一背景确保电池供应。例如,丰田、通用汽车、现代和福特仅在在全世界得到呼应;在第26届联合国气候变化大会美国就分别投资25亿美元、66亿美元、55亿美元和114亿(COP26)上,100多个国家政府、城市和州承诺到2035年美元用于电动汽车和电池制造基地。其他公司,例如特斯在包括欧洲在内的某些主要市场停止销售内燃机车辆,预拉,也在寻求开发自己的内部电池制造能力。计到2040年在全球范围内停止销售内燃机车辆。除了电动汽车普及的目标之外,主要市场的政府还计划吸汽车制造商还采取措施,通过与矿业公司合作、签署承购引一些电动汽车和电池的供应链。全球对电池的需求引发协议或投资采矿业务,确保更广泛的供应链,特别是关键原材料的安全:福特最近与淡水河谷和华友合作,在印度了一场争夺当地产能的“军备竞赛”。迄今为止,中国一直尼西亚建设一座具备加工能力的加工厂,每年生产120吨在电池市场占据主导地位,但许多因素正在推动全球电池镍;Stellantis向德国锂生产商Vulcan投资5500万美市场地域的多元化。其中包括能源和技术安全、本地化推元;特斯拉还与一些矿业公司签署了协议,比如供应锂的动以及电池生产与现有汽车生产的协同定位,以及整个供Albemarle和供应镍的proonyResources。有关电池原材应链中的许多利基机会,这些因素提供了各国正在寻求利料的更多信息,请参阅第4节。用的经济机会。亚洲、欧洲和美国的政策制定者正在采取越来越多的保护主义措施来促进电池生产。这些内容在第8节中列出。10GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINMarketOverview1.Whatisthepoliticalcontextforthe2.Howareautomakersrespondingtodemandforautomotivebatteries?Governments’phaseoutdates?OneofthekeydriversofdemandforbatteriesistheAlongsidegovernmentregulatoryinterventionsforICEimperativeofdecarbonisingtomeetclimatetargets[13].phaseouts,automakersarealsosettingouttheirownBatteriesarerelevanttodecarbonisationpathwaysintimetables–notonlyasawaytocomplywithpolicynumerousindustries.Roadtransportisresponsibleforaregulationsorgovernmentincentives,butasanquarterofglobalgreenhousegas(GHG)emissions[14],opportunitytocapturemarketshareandmaintainameaningmanygovernmentshavetakenstepstocompetitiveedge.Some,suchasPSAGroupandencouragetheshifttowardsgreentransport.ForlightVolkswagen,haveannouncedtheywillendICEpassengervehicles,vansandsomeHeavyGoodsinvestment,andotherssuchasJaguarLandRover,Vehicles(HGVs),thesegreenalternativeswillbeFord,Volvo,GeneralMotorsandHonda,havepoweredbybatteries(withsomespecificheavierannouncedICEvehicleproductionphaseoutsoverapplicationsexpectedtousehydrogenande-fuels).thecomingyears(seeFigure4).ManyaresettingThishascatalyseddemandforautomotivebatteries,voluntaryEVsalestargets,eitherintermsoftotalsaleswhichisexpectedtoincreaseseven-foldby2030[15],byvolumesorsalesshareswhichexceedbothwhichdatetheautomotivesectorwillaccountforoverregulatoryrequirementsandgovernmentambitions80%oftotalbatterydemand[16].[17].Somecountries,includingtheUK,aremandatingtheproportionofvehicleswhichneedtobezeroIntheUK,thegovernmenthascommittedtoendtheemissionintheyearsleadingupto2030.saleofnewpetrolanddieselcarsandvansfrom2030,andhybridcarsandvansby2035.HGVsunderAsthesetargetdatesapproach,automakersare26tonneswhichrelyonICEaretobephasedoutbyincreasinglyseekingverticalintegrationstrategiesto2035,andthoseheavierby2040.Thiscontextissecurebatterysupplybyengaginginjointventuresorechoedworldwide;atCOP26,over100nationalmakingstrategicupstreaminvestments.Forexample,governments,cities,andstatescommittedtoendtheToyota,GM,HyundaiandFordareinvestingUSD2.5saleofICEvehiclesby2035incertainleadingmarketsbillion,USD6.6billion,USD5.5billionandUSD11.4billion,includingEurope,andtheworldwideendtothesalerespectively,inEVandbatterymanufacturingsitesinofICEvehiclesisexpectedby2040.theUSalone[18].Others,suchasTesla,arealsolookingtodeveloptheirownbatterymanufacturingBeyondtargetsforEVadoption,governmentsincapabilitiesin-house[19].majormarketsarealsoaimingtoattractsomeofthesupplychainforEVsandbatteries.ThedemandforAutomakersarealsotakingstepstosecurethewiderbatteriesgloballyhastriggeredan‘armsrace’forsupplychain,especiallykeyrawmaterials,throughlocalproductioncapacity.Chinahasbeendominantinpartneringwithminingcompanies,signingofftakethebatterymarkettodate,butmanyfactorsaredrivingagreementsorinvestinginminingoperations:FordadiversificationofthebatterymarketgeographyrecentlypartneredwithValeandHuayoutobuildaglobally.TheseincludeenergyandtechnologicalprocessingplantinIndonesiawithcapacitytosecurity,thedriveforlocalisationandco-locatingprocess120ktofnickelperyear[20];StellantisinvestedbatteryproductionwithexistingautomotiveUSD55mintheGermanlithiumproducerVulcan[21];production,andthemanynichesofopportunityandTeslasignedagreementswithminingacrossthesupplychain,whichofferaneconomiccompaniessuchasAlbemarle,forlithium,andPronyopportunitycountriesarelookingtoexploit.PolicyResources,fornickel[22].FormoreinformationonthemakersacrossAsia,Europe,andtheUSAareintroducingrawmaterialsforbatteries,seeSection4.increasinglyprotectionistmeasurestopromotebatteryproduction.ThesearesetoutinSection8.10电动汽车电池供应链投资指南图4:汽车制造商逐步淘汰内燃机汽车的目标经彭博新能源财经许可转载。2020202520302035204020452050净零目标ICE逐步淘汰结束ICE投资图5显示了锂离子电池(目前电动汽车中使用的主要电池类型)生产的现有和未来资产的分布情况。虽然亚洲已具备成熟的产能,但随着各国寻求利用电池供应链的机遇,欧洲和美国的产能正在显著增长。图5:锂离子电池制造资产图经彭博新能源财经许可转载。完全投入使用正在建设中已公布11GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFigure4:Automakers’targetsforthephaseoutofICEvehiclesReproducedwithpermissionfromBloombergNEF.2020202520302035204020452050Net-zeroTargetsICEphaseoutEndICEinvestmentFigure5showsthespreadofexistingandfutureassetsforLi-ionbattery(currentlythedominantbatterytypeusedinEVs)production.WhilethereisestablishedcapacityinAsia,significantgrowthisoccurringacrossEuropeandtheUSAascountriesseektocapitaliseontheopportunitiesofthebatterysupplychain.Figure5:Li-ionbatterymanufacturingassetmapReproducedwithpermissionfromBloombergNEF.FullycommissionedUnderconstructionAnnounced11电动汽车电池供应链投资指南3.全球电池制造业的地理分布是怎样的?提取能力所占比例不断增加;占据阳极、阴极、隔膜和电解质全球市场的85%,这些市场合计占电芯成本的70%到亚洲85%;全球有多达75%的超级工厂正在筹建中,其中226家将在本十年末投入运营。很快,中国的电池制造能力预计将亚洲引领着全球电池供应链,是十家最大规模公司的总部超过国内需求,这意味着中国电池制造商正在加速计划增所在地,包括宁德时代(CATL)(市场份额32.6%)、LG加对欧洲市场的出口,这可能导致西方汽车制造商被迫降新能源(20.3%)、松下(12.2%)和比亚迪低电动汽车的成本。尽管如此,如上所述,许多因素显示(8.8%)。中国公司占电动汽车电池市场的56%,其次是中国迄今为止的主导地位并没有阻碍其他地区的增长。韩国(26%)和日本(10%)。图6显示了按地区划分的供应链不同部分的份额。截至2022年,中国占全球关键原材料加工能力的大部分,图6:全球电动汽车电池供应链地域分布矿业材料加工电芯组件电池芯电动汽车100%75%50%25%0%锂镍钴铬锂镍钴铬阴极阳极电池电动汽车日本生产生产中国欧洲美国韩国刚果澳大利亚印度尼西亚俄罗斯其他民主共和国欧洲例如,欧洲目前拥有11家电池工厂,但预计到2030年将再建26家:波兰、匈牙利和瑞典目前是欧洲最大的电池生产欧洲占全球电动汽车产量的四分之一以上,但迄今为止国,并可能在未来十年与德国、西班牙和英国一起继续发在电池供应链中发挥的作用较小。然而,这种情况可能挥重要作用,如图7所示。会改变,因为分析师预测,根据当前的投资率,欧洲市场份额,特别是在电池产能方面将大幅增长——这在很大程度上是由立法驱动的。12GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN3.Whatdoesthegeographyofglobalgrowingproportionofextractioncapacity;upto85%batterymanufacturinglooklike?oftheglobalmarketforanodes,cathodes,separatorsandelectrolyteswhichtogetheraccountforbetweenAsia70%and85%ofacell’scost[24];andupto75%oftheglobalpipelineforgigafactories,with226duetobeAsialeadstheglobalbatterysupplychain,hometooperationalbytheendofthedecade[25].Soontheheadquartersofthetenlargestcompanies,ChinesebatterymanufacturingcapacityisexpectedincludingCATL(32.6%marketshare),LGEnergytoexceeddomesticdemand,meaningChineseSolution(20.3%),Panasonic(12.2%)andBYD(8.8%).batterymanufacturersareacceleratingplanstogrowChinesecompaniesaccountfor56%oftheEVbatteryexportsintoEuropeanmarkets[26]whichcouldleadtomarket,followedbyKorea(26%)andJapan(10%)[23].WesternautomakersbeingforcedtoreducethecostFigure6showstheshareofdifferentpartsoftheoftheirEVs[27].Thatsaid,assetoutabove,manysupplychainbyregion.factorsmeanthatChinesedominancetodateisnotprohibitinggrowthelsewhere.Asof2022,ChinaaccountsforthemajorityofglobalprocessingcapacityforkeyrawmaterialsandaFigure6:GeographicaldistributionoftheglobalEVbatterysupplychainMiningMaterialCellBatteryEVsprocessingcomponentscells100%75%50%25%0%LiNiCoGrLiNiCoGrCathodeAnodeBatteryEVproductionproductionChinaEuropeUnitedStatesJapanKoreaDRCAustraliaIndonesiaRussiaOtherEuropeForexample,Europecurrentlyhas11batteryplantsbutisexpectedtobuild26moreby2030:Poland,HungaryEuropeisresponsibleforoveraquarterofglobalEVandSwedenarecurrentlythelargestEuropeanproduction,buttodatehasplayedasmallerroleinbatteryproducersandarelikelytocontinuetoplayathebatterysupplychain[28].However,thiscouldsignificantroleoverthenextdecadealongwithchangeasanalystspredictEuropeanmarketshare,Germany,SpainandtheUK,asshowninFigure7[30].particularlyaroundcellproductioncapacity,issettogrowsignificantlybasedoncurrentratesofinvestment–driveninlargepartbylegislation[29].12电动汽车电池供应链投资指南图7:欧洲电动汽车电池供应链的当前和预测地理分布2021年20262031020406080100120140160180瑞典英国吉瓦时匈牙利法国德国西班牙波兰美国4.英国汽车行业现状如何?美国电池产能目前仅占全球市场的7%,但投资正在加英国拥有完善的汽车行业,在英国经济中发挥着重要作用。速,2022年美国将宣布新建12座超级工厂,每年将为美该行业目前拥有约78万名员工,拥有2500多家汽车相关公国增加343吉瓦时(GWh)的产能管道(相比之下,2022司,年营业额达670亿英镑。英国的生产以大众市场和一系年美国活跃产能为每年70吉瓦时)。在美国政府于2022列国际企业的高档汽车制造为主导,包括捷豹路虎(其全球年通过具有里程碑意义的通胀削减法案(IRA)后,这种加总部位于考文垂)、丰田、日产、宝马等。此外,英国还拥速预计将持续下去。有亚历山大·丹尼斯(AlexanderDennis)、Wrightbus和利兰(Leyland)等众多商用和汽车制造商,以及阿斯顿·马丁IRA已经加大了对北美市场的电池投资。在2022年8月至(AstonMartin)、劳斯莱斯(RollsRoyce)和迈凯伦2023年3月期间,主要的电动汽车和电池制造商宣布在北(McLaren)等专业豪华和高性能汽车制造商。美电动汽车供应链中累计投资至少520亿美元,其中50%用于电池制造,约20%用于电池组件和电动汽车。有关IRA英国制造的大多数车型都是内燃机汽车或混合动力汽车,但的进一步讨论,请参阅第8节。也有少数例外,例如日产Leaf和伦敦出租车公司的电动黑色出租车。在2022年汽车行业产生的224亿英镑出口额中,6%是电动汽车。吉瓦时是电站发电量的标准衡量标准。13GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFigure7:CurrentandpredictedgeographicaldistributionoftheEVbatterysupplychaininEurope2021Year20262031020406080100120140160180GWhHungarySwedenFranceGermanySpainPolandUKUS4.WhatisthestateoftheUK’sautomotivesector?TheUShasonly7%ofbatteryproductioncapacitytoday[31]butinvestmentisaccelerating,with12newTheUKhasawell-establishedautomotivesectorgigafactoriesannouncedintheUSin2022[32],addingwhichplaysanimportantroleintheUKeconomy.The343gigawatthours(GWh)peryearofcapacitytosectorcurrentlyemploysaround780,000people,withtheUSpipeline(bycomparison,in2022activeUSmorethan2,500automotive-specificcompaniesandcapacitywas70GWhperyea)[33].ThisaccelerationisgeneratingGBP67billioninturnoverannually[35].expectedtocontinueaftertheUSgovernmentProductionintheUKisledbymassmarketandpassedthelandmarkInflationReductionActin2022premiumcarmanufacturingbyarangeof(IRA).internationallyownedbusinesses,includingJaguarLandRover(whoseglobalheadquartersarebasedinTheIRAhasalreadyboostedbatteryinvestmentsinCoventry),Toyota,Nissan,BMWandothers.Inaddition,theNorthAmericanmarket.BetweenAugust2022theUKishometoabroadarrayofcommercialandandMarch2023,majorEVandbatterymakersvehiclemanufacturerssuchasAlexanderDennis,announcedcumulativepost-IRAinvestmentsofatWrightbusandLeyland,aswellasspecialistluxuryandleastUSD52billioninNorthAmericanEVsupplyperformanceautomakerssuchasAstonMartin,Rollschains–ofwhich50%isforbatterymanufacturing,RoyceandMcLaren.andabout20%eachforbatterycomponentsandEVs[34].ForfurtherdiscussionoftheIRA,seesection8.MostofthemodelsmanufacturedintheUKareICEvehiclesorhybridvehicles,withafewexceptionssuchastheNissanLeafandtheLondonTaxiCompany’selectricblackcab[36].OftheGBP22.4billioninexportsgeneratedbytheautomotiveindustryin2022,6%wereEVs[37].Agigawatthouristhestandardmeasurementofthepoweroutputofelectricpowerstations.13电动汽车电池供应链投资指南英国五家最大的汽车生产商(年产量超过10万辆)有关电动汽车或电池生产的最新已知更新如下:•捷豹路虎:拥有全电动、插电式混合动力车和轻度混合动力汽车产品组合,并在其全球重新构想战略中表示,到2025年,捷豹品牌将全部实现电动化。该战略的一个关键部分是在伯明翰附近的海姆斯霍尔(HamsHall)新建电池组组装中心,预计每年将使用9亿个电池电芯。2023年5月,有公告称该公司可能考虑在萨默塞特郡的一个地点建造一座耗资数十亿英镑的超级工厂,尽管这一消息尚未得到证实。此前,该公司宣布其第一款英国制造的电动汽车将是一辆价值10万英镑的捷豹四门“豪华旅行车”,产于西米德兰兹郡的索利哈尔市。•日产:目前通过与远景动力合作供应电池,并在英国生产其领先的电动汽车产品日产Leaf。远景动力集团已在日产桑德兰工厂设立了一座超级工厂,并计划扩大产能。•宝马:2023年3月,该公司宣布计划在其生产电动迷你车的牛津工厂投资高达6亿英镑,此前英国政府为其提供了7500万英镑的财政支持。•Stellantis(沃克斯豪尔):母公司Stellantis目前正在开发欧洲电池供应。2023年5月,该公司警告称,由于欧洲的进口关税,它正在考虑关闭其生产电动货车的埃尔斯米尔港工厂。•丰田:在英国,丰田专注于生产电池需求较小的混合动力车。2023年1月,该公司宣布在土耳其设立第一家欧洲电池组装厂。2023年6月,该公司公布了一款充电一次可行驶600英里的电动汽车的计划,目标是到2026年每年销售150万辆。5.如今英国汽车电池行业的主要公司有哪些?这两类公司在英国汽车电池行业都发挥着重要作用。表1显示了直接在英国供应链中运营或正在致力于开发下一如前所述,英国汽车电池供应链涵盖原材料采购、电池生代电池新技术的各种公司。英国供应链中涉及的公司的产、电池组组装和回收。这包括为下一代电池开发新技术更全面的列表,可从英国研究与创新的跨部门电池系统的公司,以及那些致力于开发当前电池生产能力的公司,景观地图获得。例如汽车制造商。许多新技术公司都是本土大学衍生出来的,还有一些是总部位于英国、但为外资所有的大众市场汽车制造商。14GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINThelatestknownupdatesfromthefivelargestautomotiveproducersintheUK(thoseproducingmorethan100,000unitsperyear)regardingEVorbatteryproductionare:•JaguarLand-Rover:hasaportfoliooffullyelectric,plug-inhybridsandmildhybridcarsandhasstatedintheirglobalReimaginestrategythattheJaguarbrandwillbeallelectricby2025.AkeypartofthestrategyisthenewbatterypackassemblycentreatHamsHallnearBirmingham,whichisexpectedtouse900millionbatterycellsinproductioneachyear.InMay2023,therewereannouncementssuggestingthatthecompanymaylooktobuildamulti-billionpoundgigafactoryatasiteinSomerset,thoughthisisyettobeconfirmed[38].Thisisfollowingthecompany’searlierannouncementthatitsfirstUK-madeelectriccarwouldbeaGBP100,000Jaguarfour-door“grandtourer”builtinSolihullintheWestMidlands[39].•Nissan:currentlymanufacturingitsleadingEVproduct,theNissanLeaf,intheUKthroughapartnershipwithEnvisionAESCtosupplybatteries.EnvisionalreadyhaveagigafactorycollocatedatNissan’sSunderlandfactory,andplanstoexpandcapacity[40].•BMW:InMarch2023,thecompanyannouncedplanstoinvestuptoGBP600millioninitsOxfordplantwhereitmanufacturesitselectricMini,followingfinancialsupportfromUKgovernmentforGBP75million[41].•Stellantis(Vauxhall):parentcompanyStellantisiscurrentlydevelopingEuropeanbatterysupply.InMay2023,thecompanywarnedthatitwasconsideringclosingitsEllesmerePortfactorywhereitmanufactureselectricvansduetoEuropeanimporttariffs[42].•Toyota:intheUK,Toyotaisfocusedonproducinghybridswithsmallerbatteryrequirements.InJanuary2023thecompanythecompanyannouncedtheirfirstEuropeanbatteryassemblyplantinTurkey[43].InJune2023,thecompanyunveiledplansforanEVthatcando600milesonasinglechargeandtargetstosell1.5millionEVsayearby2026.5.WhoarethemaincompaniesinvolvedinautomakersbasedintheUKbutforeignowned.BoththeUKautomotivebatterysectortoday?typesofcompanyplayanimportantroleintheUKautomotivebatterysector.Table1showsavarietyofAshighlightedpreviously,theUKautomotivebatterycompanieswhichareeitherdirectlyoperatinginthesupplychainspanssourcingofrawmaterials,toUKsupplychain,orareworkingtodevelopnewproductionofcells,assemblyofpacksandrecycling.technologyfornextgenerationbatteries.AmoreThisincludescompaniesdevelopingnewcomprehensivelistofthecompaniesinvolvedinthetechnologiesforthenextgenerationofbatteries,asUKsupplychain,isavailablefromUKResearchandwellasthoseworkingtodevelopcurrentbatteryInnovation’sCross-SectorBatterySystemsproductioncapacitysuchasautomakers.ManyofLandscapeMap.thenewtechnologycompaniesarehome-grownuniversityspinouts,whilesomearemassmarket14电动汽车电池供应链投资指南表1:汽车电池领域的英国公司零部件制造电芯和电池组制生命周期内回收和原材料开采和提炼材料加工造的使用数据第二次生命•康沃尔锂业有限•绿色锂业•Echion科技有限公•AMTE电力公司•Brill电力有限公司•Zenobe有限公公司精炼有限公司司•Nyobolt有限公Eatron司.•Technologies有限•英国锂业有限公司•蒂斯河谷锂•Nyobolt有限公司司•Powervault•菲利普斯66业有限公司•Addionics有限公公司•有限公司.•Avid科技有限公•Breathe电池科技有•Acceleron有限有限公司•三菱化学司司英国有限公司限公司公司.•北方锂业有限公•Nexeon有限公司•远景动力•SparkEV科技有限公司•Ilika有限公司•Hyperdrive创新•Circulor•Faradion有限公司司•Everledger有限•InobatAuto有限公司Dukosi有限公司•公司.(英国)有限公•Hyperbat有限公司司电动汽车制造:•VeoliaUK有限公司.•Anaphite有限公司•Williams•TevvaMotors有限公•Advanced司Engineering有限•亚历山大丹尼斯有公司限公司•DeltaCosworth有限公司上表中省略的英国汽车电池行业中一些最大和最重要的公过去值得注意的例子包括日产(Nissan)与远景动力合作,司是大众市场汽车制造商,这些汽车制造商虽然是外资企在桑德兰建造一座超级工厂,为日产Leaf生产电池,该工业,但通常是通过战略投资或合作伙伴关系在电动汽车生厂于2013年开业;福特(Ford)向其哈雷伍德(Halewood)工产或电池研发(R&D),仍然在英国电池行业发挥重要作厂投资2.3亿英镑,生产电动机;Stellantis向其埃尔斯米用。根据汽车制造商和贸易商协会(SMMT)的数据,自尔工厂投资1亿英镑,生产电动货车。这些项目为当地创2011年以来,汽车制造商已在电动汽车生产和电池研发方造了就业机会、税收收入,并常常为英国带来新的专业知面投资了108亿英镑。识。例如,远景动力计划在桑德兰的超级工厂需要4.5亿英镑的初始投资,到建成时,预计还需要至少13.5亿英镑6、目前英国电池供应链状况如何?的投资,并为日产及其当地供应商创造6000多个就业岗位。英国的电池供应链在上游拥有强大的开发项目,在下游有然而,英国完全有能力抓住重要的市场机遇——不仅在一系列已宣布的项目,但截至目前,中游部分的产能相对价值数十亿英镑的超级工厂和电池生产领域,而且在整较少,如图8所示。个供应链中各种规模的广泛业务中。15GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINTable1:UKcompaniesintheautomotivebatterysectorRawmaterialMaterialsComponentCell&PackIn-LifeUsageDataRecycling&mining&processingmanufacturingManufacturing2ndLiferefining•CornishLithium•GreenLithium•Echion•AMTEPowerplc.•BrillPowerLtd•ZenobeLtd.Plc.RefiningLtd.TechnologiesLtd.•NyoboltLtd.•Eatron•Powervault•AvidTechnology•BritishLithiumLtd.•TeesValley•NyoboltLtd.TechnologiesLtdLtd.•Philips66Ltd.LithiumLtd.•AddionicsLtd.Ltd.•BreatheBattery•AcceleronLtd.•NorthernLithium•NexeonLtd•EnvisionAESCLtd.•Circulor•Mitsubishi•Ilikaplc.•HyperdriveTechnologiesLtd•EverledgerLtd.Ltd.ChemicalUKLtd.•FaradionLtd.•SparkEV•VeoliaUKLtd.•InobatAuto(UK)InnovationsLtd.•HyperbatLtdTechnologyLtdLtd•Williams•DukosiLtd•AnaphiteLtd.AdvancedEVManufacturing:EngineeringLtd•TevvaMotorsLtd.•DeltaCosworth•AlexanderDennisLtdLtdSomeofthelargestandmostimportantcompaniesgigafactoryforproducingcellsforitsNissanLeafinintheUKautomotivebatterysectorwhichareSunderlandwhichopenedin2013[45],Ford’sGBP230omittedfromthetableabovearethemassmarketmillioninvestmentintoitsHalewoodplanttobuildautomakers,whichalthoughforeignowned,stillplayelectricmotors[46],andStellantis’GBP100millionanimportantpartintheUKbatterysector,ofteninvestmentinitsEllesmereplanttobuildelectricvansthroughstrategicinvestmentorpartnershipsinEV[47].Theseprojectsgeneratelocalemployment,taxproductionorbatteryresearchanddevelopmentrevenue,andoftenbringnewexpertisetotheUK.For(R&D).AccordingtotheSocietyofMotorexample,EnvisionAESC'splannedgigafactoryinManufacturersandTraders(SMMT),automakershaveSunderlandhasrequiredaninitialinvestmentofGBPinvestedGBP10.8billioninEVproductionandbattery450million,andbythetimeithasfinishedisexpectedR&Dsince2011[44].NotablepastexamplesincludetorequireatleastanotherGBP1.35billionandcreateNissan,whichpartneredwithEnvisionAESCtobuildaover6,000jobsatNissananditslocalsuppliers[48].6.WhatisthestateoftheUKbatterysupplyHowever,therearesignificantmarketopportunitieschainatpresent?thattheUKiswellplacedtocapture–notjustinmulti-billionpoundgigafactoriesandbatteryTheUK’sbatterysupplychainhasastrongpipelineofproduction,butalsoinawiderangeofbusinessesofdevelopingprojectsintheupstream,arangeofvarioussizesacrosstheentiresupplychain.announcedprojectsinthedownstream,butasofyetrelativelylittlecurrentproductioncapacityinthemidstreamportionasshowninFigure8[49].15电动汽车电池供应链投资指南图8:英国电池现状尽管英国有一些上游和下游生产,但它缺乏阴极或阳极生产商。关键充电产业锂磷酸锰铁锂(LFMP)电池镍绿色锂业氢氧化锂焦超级工厂蒂斯河谷锂业氢氧化锂远景动力1.9吉瓦时(软包电池)远景动力/日产38吉瓦时(软包电池)英国锂业P66云母到氢氧化物优质和超优质石油焦康沃尔锂公司LEVERTON锂业铁锂云母到氢氧化物氢氧化锂和碳酸锂康沃尔锂公司盐水处理/DLE到氢氧化物淡水河谷镍金属资料来源:基准锂预测、基准镍预测、基准合成石墨预测、基准超级工厂评估可能的很可能极有可能运行中200,00035,000150,00030,00025,000产量(吨)100,00020,000电芯产量(GWh)15,00050,00010,0005,00000混合锂锂化工精炼镍焦阳极阴极电芯16GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFigure8:TheUKBatterySceneAlthoughtheUKhassomeupstreamanddownstreamproduction,itlacksanycathodeoranodeproducers.KeyRECHARGEINDUSTRIESLithiumLFMPbatteriesNickelCokeGREENLITHIUMGigafactoriesLithiumhydroxideTEESVALLEYLITHIUMLithiumhydroxideENVISIONAESC1.9GWh(Pouch)ENVISIONAESC/NISSAN38GWh(Pouch)BRITISHLITHIUMP66MicatohydroxidePremiumandSuperCORNISHLITHIUMPremiumPetCokeZinnwalditetohydroxideLEVERTONLITHIUMCORNISHLITHIUMLithiumhydroxideandcarbonateBrine/DLEtohydroxideVALENickelmetalSource:BenchmarkLithiumForecast,BenchmarkNickelForecast,BenchmarkSyntheticGraphiteForecast,BenchmarkGigafactoryAssessmentPossibleProbableHighlyProbableOperating200,00035,000150,00030,000Production(tonnes)25,000Cellproduction(GWh)100,00020,00015,00050,00010,0005,00000MixedLithiumRefinedCokeAnodeCathodeCelllithiumchemicalnickelSource:BenchmarkLithiumForecast,BenchmarkNickelForecast,BenchmarkSyntheticGraphiteForecast,BenchmarkLithiumIonBatteryDatabase16电动汽车电池供应链投资指南7.目前英国电池供应链状况如何?(续)目前,英国拥有一家超级工厂,由远景动力在桑德兰运营,年产能为1.9吉瓦时。该公司计划将其桑德兰业务初上游步扩大至12吉瓦时的产能。目前,英国在电池供应链的上游产能有限,生产和出口最近的公告表明,捷豹路虎可能会考虑在萨默塞特郡的英国和欧洲汽车电池生产所需的一些关键原材料和化学一个地点建造一座耗资数十亿英镑的超级工厂,尽管这品。目前,高针状焦在亨伯的菲利普斯66工厂生产,电一消息尚未得到证实。其他潜在项目包括西米德兰兹联解质溶液在比林厄姆的三菱化学工厂生产,镍在威尔士合管理局计划,在投资到位的情况下,将考文垂机场作的一个工厂生产。有各种各样的项目正在筹备中,这些为首选的超级工厂所在地,而英国初创公司AMTEPower项目显示出帮助满足一些日益增长的原材料需求的潜正在寻求在邓迪的一家超级工厂(小型超级工厂)生产汽力,其中包括几个用于提取和精炼锂的工厂,以及其他车电池的能力。寻求生产石墨的工厂。例如,康沃尔锂业正计划在康沃尔郡建造一座锂提炼厂,将在提赛德建造两座锂精炼厂(提赛德锂和绿色锂),而TokiaCarbon的目标是到2030年拥有足够用于60万辆电动汽车的石墨产能。中游下游英国尚未建立电池组件(阳极和阴极)生产设施,被一些除了电池制造商之外,电池供应链还需要能够使用从电芯人称为“缺失的中间部分”。此前,庄信万丰的试点工厂在制造商处购买的电池组装电池模块和电池组的公司。英国英国生产阳极活性材料,但该公司于2022年退出电池行拥有一定的电池组装能力,但如果要满足需求预测,就需业,该工厂和专利被EVMetals以5000万英镑收购。根据要增加产能。欧洲原产地规则的要求,这提供了一个机会,因为欧洲公司需要从有限的合格来源中获取电池材料。当地的阴极和二次利用与回收阳极生产设施也将为上游化学品生产商提供主要客户。回收是一个新领域,与许多国家一样,英国尚未建立工业如果要满足电动汽车的预测需求,英国将需要扩大其大规规模的电池回收,主要是因为英国没有中游电池制造商提模电芯制造能力(即超级工厂的数量),使其超出当前的供原料,这对回收工厂来说是一个特别的挑战,因为回收项目储备。到2030年,英国预计每年需要100吉瓦时的产工厂需要最低水平的废物来处理,以实现经济上的可行能,大致相当于5个超级工厂。性。然而,近年来电动汽车的强劲采用,加上电池的立法回收目标,预计将形成一个稳定的退役电动汽车电池回收渠道。最近的公告,包括威立雅计划在英国开设一家新的电动汽车电池回收工厂,是一个有希望的迹象,表明这可能是一个增长领域。一个强大的英国回收行业也将吸引电池制造商在英国建造超级工厂,特别是那些有兴趣使用回收材料而不是使用新开采的原材料生产电动汽车电池的制造商。17GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN7.WhatisthestateoftheUKbatterysupplyCurrentlytheUKhasonegigafactory,operatedbychainatpresent?(Continued)EnvisionAESCinSunderland,whichproduces1.9GWh.ThecompanyplanstoexpanditsSunderlandUpstreamoperationsinitiallyto12GWhcapacity[55].TheUKcurrentlyhaslimitedupstreamcapacityinRecentannouncementssuggestthatJaguarLand-thebatterysupplychain,producingandexportingRovermaylooktobuildamulti-billionpoundsomeofthedemandforkeyrawmaterialsandgigafactoryatasiteinSomerset,thoughthisisyettochemicalsneededinboththeUKandEuropeforbeconfirmed[56].Otherpotentialprojectsincludeautomotivebatteryproduction.Currently,highplansbytheWestMidlandsCombinedAuthoritytoneedlecokeisproducedinthePhilips66plantinuseCoventryAirportasapreferredgigafactorysiteHumber,electrolytesolutionatMitsubishishouldinvestmentbesecured[57],andAMTEPower,aChemicalplantinBillingham,andnickelatasiteinUKbasedstartup,islookingtodevelopitscapabilitytoWales.Therearevarietyofprojectsinthepipelinemanufactureautomotivecellsinamegafactory(awhichshowpotentialtohelpmeetsomeofthesmallgigafactory)inDundee[58].increasingdemandforrawmaterials,includingseveralplantsforextractingandrefininglithium,Downstreamandotherslookingtoproducegraphite.Forexample,CornishLithiumisplanningtobuildaAswellascellmanufacturers,abatterysupplychainlithiumextractionplantinCornwall,twolithiumneedscompaniesthatareabletoassembletherefiningplantsaretobebuiltinTeeside,(TeesidebatterymoduleandpackusingcellsacquiredfromLithiumandGreenLithium),andTokiaCarboncellmanufacturers.TheUKhassomebatteryaimstohavesufficientgraphitecapacityforassemblycapabilitiesbutwillneedtogrowcapacityif600,000EVsby2030[50].itistomeetdemandforecasts[59].MidstreamSecondUseandRecyclingTheUKisyettoestablishcellcomponent(anodeandRecyclingisanewsector,andlikemanycountries,cathode)productionfacilities,characterisedbysometheUKisyettobuildbatteryrecyclingatindustrialas‘themissingmiddle’[51].PreviouslyJohnsonscale,primarilybecausetherearenoUK-basedMatthey’spilotplantproducedcathodeactivemidstreambatterymanufacturerstoprovidefeedstock,materialintheUK,howeverthecompanyexitedtheaparticularchallengeforrecyclingplantswhichneedbatteryindustryin2022andtheplantandpatentsminimumlevelsofwastematerialtoprocesstobewereboughtbyEVMetalsforGBP50million.Thiseconomicallyviable[60].However,strongEVadoptioninpresentsanopportunityinlightofEuropeanRuleofrecentyears,combinedwithlegislativerecyclingtargetsOrigin[52]requirements,becausecompaniesinforbatteries,isexpectedtocreateasteadypipelineofEuropewillneedtoobtaincellmaterialsfromaretiredEVbatteriestorecycle.Recentannouncements,limitedpoolofqualifyingsources[53].LocalcathodeincludingVeolia’splantoopenanewEVbatteryandanodeproductionfacilitieswouldalsoproviderecyclingplantintheUK,areapromisingsignthatthiskeycustomersforchemicalproducersinthecouldbeagrowthsector.AstrongUKrecyclingindustryUpstream.wouldalsoattractbatterymanufacturerstobuildgigafactoriesintheUK,particularlythoseinterestedTheUKwillneedtogrowitslargescalecellinusingrecycledmaterialstoproduceEVbatteriesmanufacturingcapacity(i.e.numberofratherthanusingnewlyminedrawmaterials.gigafactories)beyondthecurrentpipelineofprojectsifitistomeettheforecastdemandforEVs.By2030,theUKisexpectedtoneed100GWhofproductioncapacityperyear,roughlyequatingtofivegigafactories[54].17电动汽车电池供应链投资指南8.在拥有电池供应链的竞争力方面,英国与其他国家相比如何?英国被认为拥有许多优势,使其成为扩大电池供应链主要挑战是:的有吸引力的地点。这些优势包括:•提供与竞争国家同等的政策支持;随着其他国家•现有汽车行业和学术机构的专业知识,提供发展供应链并推出更多激励措施来吸引电池制造了新思想、创新和技能人才的稳定来源商,英国也需要进行政策干预,以提高竞争力。•能源成本,特别是工业能源成本•全球最大且增长最快的电动汽车市场之一,•规划和并网过程缓慢并得到了从2030年开始禁止销售内燃机汽车的市场领导承诺的支持。有关更多信息,请参阅然而,总体前景包括一些积极因素。在彭博新能源财第3节经(BNEF)的2022年电池供应链排名中,英国在30个国家的“工业、创新和基础设施”排名中位居第8位,并•相互关联的支持和拨款系统,以提供研发和扩大支且近年来也产生了非常强劲的早期投资水平。持。主要项目包括法拉第电池挑战赛、先进推进中心、汽车转型基金和英国电池产业化中心——更多英国的初创企业数量不断增加,在早期股权投资方面详情请参见第8节也处于强势地位。2022年,英国电动汽车电池生态系统的企业价值为欧洲第二高,为12亿美元,仅次于瑞•成熟的汽车供应链,拥有超过180家生产电动汽车典的40亿美元(其中大部分来自Northvolt)。从零部件的公司,其中包括电机开发商和生产商2021年到2022年,对英国生态系统的投资也几乎翻了一番,显示出比许多顶级投资生态系统更强的弹性。•新电池技术的高质量学术研究•电池供应链中有强大的初创企业渠道•一个很大程度上脱碳的电网意味着绿色能源被用于制造业•化学品和汽车劳动力中熟练劳动力的可用性电力电子、机器和驱动器(PEMD)“电动汽车由电动机驱动,需要电力电子设备和驱动器才能运行。这些通常被称为PEMD,并与电池一起构成电动汽车的动力传动系统。英国在许多最先进的PEMD技术方面处于世界领先地位,例如碳化硅(SiC)或无稀土电机。这些技术以及英国在制造和规模化方面的创新能力将对英国电动汽车制造的增长至关重要。”VennChesterton,创新英国知识转移网络(KTN)18GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN8.HowdoestheUKsitamongstothernationsintermsofitscompetitivenesstohostabatterysupplychain?TheUKisrecognisedashavinganumberofThekeychallengesare:strengthswhichmakeitanattractivelocationtoscaleupthebatterysupplychain.Theseinclude:•policysupportequaltocompetingcountries[69];asothercountriesgrowtheirsupplychains•theexpertiseoftheexistingautomotiveandintroducemoreincentivestoattractindustryandacademicinstitutions,providingbatterymanufacturers,UKpolicyinterventionasteadysourceofnewideas,innovationandwillalsobeneedtobecompetitive.skilledtalent[61]•energycosts,particularlyindustrialenergy•oneofthelargestandfastestgrowingEVcosts[70]marketsglobally[62],supportedbyamarketleadingcommitenttobanthesaleofICE•slowplanningandgridconnectionprocessesvehicles,beginningin2030.FormoreinformationseeSection3[71]•aninterconnectedsupportandgrantsystemTheoutlookoverallhoweverincludesseveraltoprovideR&Dandscaleupsupport.Keypositives.TheUKranked8thoutof30countriesforprogrammesincludetheFaradayBattery‘industry,innovationandinfrastructure’onBNEF’sChallenge,theAdvancedPropulsionCentre,the2022batterysupplychainranking[72]andhasalsoAutomotiveTransformationFundandtheUKgeneratedverystronglevelsofearlystageBatteryIndustrialisationCentre-seeSection8investmentinrecentyears[73].formoredetailsTheUKhasagrowingnumberofstart-upsanda•anestablishedautomotivesupplychain[63]strongpositionintermsofearlystageequitywithover180companiesproducinginvestment.In2022,theUKEVBatteryecosystemcomponentsforEVsincludingelectricmachinehadthesecondhighestenterprisevalueinEuropedevelopersandproducers[64]atUSD1.2billion,secondtoSwedenatUSD4billion(mostofwhichcamefromNorthvolt).Investment•highqualityacademicresearchintonewintheUKecosystemalsonearlydoubledfrombatterytechnologies[65]2021to2022,showingstrongerresiliencethanmanyofthetopfundedecosystems[74].•astrongpipelineofstartupbusinessesinthebatterysupplychain[66]•alargelydecarbonisedgridmeaninggreenenergyisusedinmanufacturing[67]•skilledlabouravailabilityinboththechemicalsandautomotiveworkforce[68]PowerElectronics,MachinesandDrives(PEMD)“EVsarepropelledbyelectricmotors,whichrequirepowerelectronicsanddrivestooperate.TogetherthesearecommonlyreferredtoasPEMDandwithbatteriesmakeupanEV’sdrivetrain.TheUKisworldleadinginmanyofthemostadvancedPEMDtechnologiessuchassiliconcarbide(SiC)orrareearthfreemotors.ThesetechnologiesandtheUK’sabilitytoinnovateintheirmanufacturingandscaleupwillbefundamentaltothegrowthofEVmanufacturingintheUK.”VennChesterton,InnovateUKKnowledgeTransferNetwork(KTN)18电动汽车电池供应链投资指南电动汽车电池供应链投资指南9.汽车电池市场与储能等其他电池市场有何关系?英国目前对锂离子电池的需求主要来自私家车和便携式消此外,随着汽车电池技术的发展,那些对电动汽车不那么费设备。然而,英国计划逐步淘汰内燃机汽车,这意味着有吸引力的化学物质可以以更低的成本部署在电网上的固到2030年,预计电池总需求的84%将来自汽车行业(80%定应用中。英国已有约4吉瓦的储能设施投入运行,其中用于轻型车辆,4%用于公共汽车和卡车),其余16%来自25%由电池提供。消费电子产品、微出行设备和固定存储。微出行这些行业将继续产生大量需求,为未来的英国电池供应链提供潜在的替代市场,并且也可能受益于汽车行业需求带预计微出行将成为电动汽车市场中越来越重要的一部分,来的研发和制造进步。迄今为止,汽车需求的规模已经对全球两轮和三轮汽车保有量预计将从2022年的2.9亿增加到电池行业产生了巨大的利好-电池组价格已从2010年的2040年的8亿。较低的能源需求意味着微出行交通车辆的电平均1100美元/千瓦时暴跌至2021年的132美元/千瓦时。池组比乘用车小得多。然而,这些电池使用相似的化学成分,为英国电池供应链中的锂离子电池组件制造商提供了储能进一步的采购选择。由于新的车辆到电网(V2G)技术的应用,汽车电池具有在重型货车和航空航天电动汽车中进行能量存储的潜力,同时也具有在固定存储应用中的"第二次生命",因此汽车电池正日益被视为一重型货车、航空和海运预计将成为交通运输中脱碳和电气种资产,为当今新型汽车电池的投资者创造了潜在的剩余化难度更大的子行业。然而,正在取得进展,新兴电池技价值。V2G和固定存储应用(例如电网级存储)将成为英术可能有机会,尽管数量低于汽车和货车。国电力系统脱碳和调节可再生能源发电季节性变化的关键。对于储能电池来说,成本和循环寿命(电池在失去性能之前可以完成的充电和放电循环次数)是比能量密度(衡量电池所含能量与其重量或体积的比例)更重要的指标,这使得磷酸铁锂(LFP)和钠离子(Na-ion)电池等低成本化学电池变得合适(有关化学成分的详细信息,请参阅第5节)。汽车电池也可以在其“第二生命”中用于固定存储(见第7节),为今天的新汽车电池投资者创造潜在的剩余价值。1919GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN9.Howdoestheautomotivebatterymarketrelatetootherbatterymarkets,suchasenergystorage?CurrentdemandforLi-ionbatteriesintheUKcomesFurthermore,asautomotivebatterytechnologyprimarilyfromprivatecarsandportableconsumerevolves,thosechemistriesthatmaybecomelessdevices[75].However,theUK’splannedphase-outofattractiveforEVscanbedeployedatalowercostforICEvehicleswillmeanthatby2030,84%oftotalstationaryapplicationsonthegrid[80].TheUKalreadybatterydemandisexpectedtocomefromthehasaround4GWofenergystorageinoperation,25%automotivesector(80%forlightdutyvehiclesand4%ofwhichisprovidedbybatteries[81].forbusesandtrucks)[76]withtheremaining16%tocomefromconsumerelectronics,micromobilityandMicromobilitystationarystorage[77].MicromobilityisprojectedtomakeupanincreasinglyThesesectorswillcontinuetogeneratesignificantimportantpartoftheEVmarketwiththeglobalfleetdemand,offerpotentialalternativemarketsfortheoftwo-andthree-wheelvehiclesexpectedtofutureUKbatterysupplychain,andalsolikelybenefitincreasefrom290min2022to800min2040[82].fromtheR&DandmanufacturingadvancementsLowerenergyrequirementsmeanmicromobilitythatwillariseduetodemandfromtheautomotivevehicleshavemuchsmallerbatterypacksthansector[78].Thescaleofautomotivedemandtodatepassengercars.However,thebatteriesusesimilarhasalreadybeenhugelybeneficialtothebatterychemistries,presentingfurtherofftakeoptionsforindustry-batterypackpriceshaveplummetedfrommanufacturersofLi-ioncellcomponentsintheUKanaverageofUSD1,100/kWhin2010toUSD132/kWhinbatterysupplychain[83].2021[79].HGV’s&AerospaceEnergyStorageHGV’s,aviation,andmaritimeareexpectedtobeAutomotivebatteriesareincreasinglybeingseenasmoredifficultsub-sectorsoftransportationtoanassetduetotheirpotentialtobeusedforenergydecarboniseandelectrify.However,progressisbeingstoragebothwhilsttheyareinanEVduetonewmadeandtherearelikelytobeopportunitiesforvehicle-to-grid(V2G)technologies,andtheir'secondemergingbatterytechnologies,albeitinlowerlife'instationarystorageapplications,creatingvolumesthanforcarsandvans.potentialresidualvalueforinvestorsinnewautomotivebatteriestoday.BothV2Gandstationarystorageapplications,suchasgrid-sclaestorage,willbekeytodecarbonisingtheUKelectricitysystemandregulatingseasonalvariationsinrenewablegeneration.Costandcyclelife(thenumberofchargeanddischargecyclesthatabatterycancompletebeforelosingperformance)aremoreimportantmetricsthanenergydensity(themeasureofhowmuchenergyabatterycontainsinproportiontoitsweightorvolume)forenergystoragebatteries,makinglower-costchemistriessuchaslithiumironphosphate(LFP)andsodium-ion(Na-ion)batteriessuitable(seesection5fordetailsonchemistries).Automotivebatteriescanalsobeusedforstationarystorageintheir“second-life”(seesection7),creatingpotentialresidualvalueforinvestorsinnewautomotivebatteriestoday.19电动汽车电池供应链投资指南电动汽车电池供应链投资指南4.上游:原材料提取和加工预计对汽车电池的需求将带动对关键原材料需求的相应增长。预计到2040年,这些材料的需求将增长500%。获得必要原材料的供应是不断增长的电池供应链的一个关键问题。20GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN4.Upstream:RawmaterialextractionandprocessingThedemandforautomotivebatteriesisexpectedtocreateacorrespondingincreaseindemandforkeyrawmaterialswithdemandforthesematerialsforecasttogrowbyasmuchas500%by2040.Obtainingsupplyofthenecessaryrawmaterialsisakeyconcernforgrowingbatterysupplychains.20电动汽车电池供应链投资指南原材料提取1.为什么原材料对电动汽车电池生产很重要?2.在英国投资原材料提取有哪些机会?目前获取原材料的方式主要有两种:尽管英国不太可能通过本地供应来满足其对电池的全部主要原材料需求,但英国仍存在一些投资机会:1.主要原材料:直接来自土壤,并通过多种方法提取。目前,初级原材料占全球供应的绝大部分。•本地开采项目可以为英国企业提供更可靠的关键原材料来源,这些企业在环境、社会和治理方面(ESG)2.二次原料:通过各种方法从废弃产品中回收。尽管资质比外国来源更强;目前只占了很小的供应量,但在向循环经济转型的过程中,在监管和旧电池原材料可回收性提高的推•英国公司正在开发的技术可为全球采矿业提供商业动下,供应分配可能会转向二次来源。化服务,以帮助他们提高提取能力或降低其运营中的碳足迹;尽管目前的估计表明,地球中有足够的原材料储备来满足•前体材料的精炼和制造;未来的长期需求,但如果采矿业要跟上电池制造业的投资,就需要对生产设施进行投资。据报道,全球对超级工厂的•开发使用下一代化学品技术,减少对当前高需求原投资速度是上游投资的三到四倍,而提取项目从发现到首材料的依赖。例如,Faradion是一家总部位于英国次生产平均需要16年。现在正在出台新的法规,要求电池的公司,正在开发使用钠代替锂的技术。有关钠离制造商从可回收来源中采购更多原材料,例如,欧盟最近子电池的更多信息,请参阅第5节。批准的电池市场法规对回收来源的电池原材料出台了最低和不断提高的门槛。由于监管(例如2015年《现代奴隶制法案》)和越来越注重合乎道德的采购的消费者,企业发展透明供应链的压力越来本节将重点关注初级原材料的提取,第7节将讨论二次或回越大,因此对英国提取的原材料的需求可能会很高。因其绿收原材料。色能源结构,英国还可以拥有更大的可持续性。英国公司正在探索更环保的提取来源,这为希望生产具有强大绿色资质和更低碳足迹的电动汽车电池的汽车制造商提供了机会。有关英国在该领域的机会的示例,请参阅附录。21GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINRawmaterialextraction1.WhyarerawmaterialsimportanttoEV2.Whataretheopportunitiesforbatteryproduction?investmentinrawmaterialextractionintheUK?Therearetwomainwaystosourcerawmaterialstoday:AlthoughtheUKisunlikelytosatisfytheentiretyofitskeyrawmaterialdemandforbatteriesfromlocal1.Primaryrawmaterials:Sourceddirectlyfromthesupply,therearesomeUK-basedinvestmentearth,andextractedinavarietyofmethods[84].opportunities:Currently,primaryrawmaterialsaccountforthevastmajorityofglobalsupply[85].•LocalextractionprojectswhichcouldprovideamorereliablesourceofkeyrawmaterialforUK2.Secondaryrawmaterials:RecoveredfromwastebusinessesthatalsohavestrongerEnvironmental,productsthroughvariousmethods.AlthoughthisSocial,andGovernance(ESGcredentialsthancurrentlyaccountsforaminimalamountofforeignsources;supply,intheshifttoacirculareconomythedistributionofsupplyislikelytoshifttowards•TechnologiesbeingdevelopedbyUKcompaniessecondarysources,drivenbyregulationandthatcouldbecommercialisedfortheglobalimprovedrecoverabilityofrawmaterialsfromminingindustrytohelpthemimproveextractionolderbatteries[86].capabilitiesorlowerthecarbonfootprintsoftheiroperations;Althoughcurrentestimatessuggestthattherearesufficientrawmaterialreservesintheearthtomeet•Refiningandmanufactureofprecursormaterials;long-termfuturedemand,investmentinproductionfacilitiesisneedediftheminingindustryistokeepup•Developingtechnologiesusingnextgenerationwithinvestmentinbatterymanufacturing.Globalchemistrieswhichreducerelianceoncurrentinvestmentingigafactoriesisreportedlythreetofourhigh-demandrawmaterials.Forexample,timesthepaceofinvestmentupstream[87],andFaradionisaUK-basedcompanydevelopingextractionprojectstake16yearsonaveragefromtechnologywhichusessodiuminsteadoflithiumdiscoverytofirstproduction[88].Newregulationsare[90].FormoreinformationonNa-ionbatteries,seenowbeingintroducedtorequirebatterySection5.manufacturestosourcemorerawmaterialsfromrecycledsources[89],forexample,theEU’srecentlyThereislikelytobehighdemandforrawmaterialapprovedbatterymarketregulationshasintroducedextractedintheUKbecauseoftheincreasingminimumandincreasingthresholdsforbatteryrawpressureoncompaniestodeveloptransparentmaterialsfromrecycledsources.supplychains,bothfromregulation–suchastheModernSlaveryAct2015-andfromconsumersThissectionwillfocusonprimaryrawmaterialincreasinglyfocusedonethicalpurchasing.TheUKextraction,withsecondaryorrecycledrawmaterialscanalsoboastgreatersustainabilityduetoitsgreenbeingaddressedinsection7.energymix[91].UKcompanies,whichareexploringmoreenvironmentallyfriendlysourcesofextraction,presentanopportunityforautomakerslookingtoproduceanEVbatterywithstronggreencredentialsandlowercarbonfootprint.ForexamplesofUKopportunitiesinthisarea,seetheAppendix.21电动汽车电池供应链投资指南3.电池生产的关键原材料有哪些?上述其他原材料(锰、硅、磷酸盐等)要么储量更为丰富,要么有多种最终用途,要么有更发达的供应链,因此本指南电池所需的常见原材料包括阴极中的锂、锰、钴、镍、磷酸不予讨论。盐和铁,阳极中的石墨和硅,集流器中的铜或铝,以及电池组保护壳中的钢或铝。最近,钠也开始被用作锂的替代品。4.不同电池化学成分中使用的原材料的生产电池最重要的原材料(锂、镍、钴和石墨)用于电池芯,配比是怎样的?这些将是指南中涵盖的唯一材料。它们是最重要的,因为它们在阴极和阳极中占很大比例(它们合计占电池原材料的一图9根据化学成分显示了当今电动汽车中使用的一些最常见电半以上),并且是根据它们的化学性质专门选择的。池类型的内部原材料成分比较。这些关键材料的可用性和可持续性可能会影响未来化学市场份额的发展。不同化学品的这意味着它们往往更难用其他材料替代,并且供应链往往较技术发展也可能影响原材料需求-例如,由于硅在性能上的小且欠发达,这意味着它们面临更高的全球供应链中断风险。优势,在阳极中使用硅的趋势不断增长,并且非锂基化学品(例如钠离子)的潜力也不断增长。有关这些类型电池的市场份额和采用率的更多详细信息,请参阅第5节。图9:电池原材料构成100%金属成分质量%0%NMC(111)NMC(622)电池化学成分镍、钴、铝磷酸铁锂钴锂镍锰钴氧化物(811)石墨锂镍锰铝铁磷酸盐22GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN3.WhatarethekeyrawmaterialsforOtherrawmaterialsmentionedabove(manganese,batteryproduction?silicon[93],phosphate[94]etc.)eithertendtobemoreabundant,havemultipleendusesorhavemoreCommonrawmaterialsrequiredforbatteriesincludedevelopedsupplychains,andthereforewillnotbelithium,manganese,cobalt,nickel,phosphateanddiscussedinthisGuide.ironinthecathode,graphiteandsiliconintheanode,copperoraluminiuminthecurrentcollectors,and4.Whatisthebalanceofrawmaterialssteeloraluminiumintheprotectivecasingoftheusedindifferentbatterychemistries?batterypack.Recently,sodiumhasalsostartedtobeusedasanalternativetolithium.Figure9showsacomparisonoftheinternalrawmaterialcompositionforsomeofthemostcommonThemostimportantrawmaterials(lithium,nickel,typesofbatteriesusedinEVstoday,accordingtotheircobaltandgraphite)forproducingbatteriesarechemistry[95].Availabilityandsustainabilityoftheseusedinthebatterycell,andthesewillbetheonlykeymaterialsarelikelytoinfluencedevelopmentofmaterialscoveredintheGuide.Thesearethemostfuturechemistrymarketshare.Technologicalimportantbecausetheymakeupsignificantdevelopmentsindifferentchemistriescouldalsoproportionsofthecathodeandanode(whichaffectrawmaterialdemand-forexample,thereisacombinedaccountformorethanhalfofacell’srawgrowingtrendofusingsiliconinanodesduetomaterial)andarespecificallyselectedfortheirbenefitsofferedinperformance,andalsogrowingchemicalproperties.potentialfornon-lithiumbasedchemistries,suchasNa-ion.ForfurtherdetailonthemarketshareandThismeanstheytendtobehardertosubstitutewithadoptionratesofthesetypesofbattery,seesection5.othermaterials,andoftenhavesmallerandlessdevelopedsupplychains,whichmeanstheysufferfromhigherriskofglobalsupplychaindisruption[92].Figure9:RawMaterialsCompositionofBatteries100%MetalComposition%Mass0%NMC(622)BatteryChemistryNCALFPNMC(111)NMC(811)AluminiumIronPhosphateGraphiteLithiumCobaltNickelManganese22电动汽车电池供应链投资指南5.关键原材料的主要来源有哪些?概述由于原材料矿藏的性质以及开办采矿作业所需的时间长且前期成本高,关键原材料的来源往往严重集中在少数几个地方,这可能导致价格大幅波动,如图10所示。图10:2015-2023年所选电池材料和锂离子电池的价格指数(2017年1月1日=100)600120指数(2015年=100)500100400803006020040100200201620172018201920202021202202015钴镍铜2023碳酸锂锰电池(右)注:数据截至2023年3月。锂离子电池价格(包括电池组和电芯)代表所有行业的全球销量加权平均值。镍价格基于伦敦金属交易所,此处用作全球定价的代理,尽管大多数镍贸易是通过生产商和消费者之间的直接合同进行的。2023年电池价格基于NMC622的成本估算。资料来源:IEA基于标准普尔材料价格数据的分析、BNEF的2022年锂离子电池价格调查以及BNEF的中国锂价格下跌导致电池成本下降。锂尽管人们普遍认为锂储量很充足,但人们也担心,未来某些高品质锂的供应将继续集中在少数几个来源,如果不投资新锂的开采项目,可能会导致短期供应短缺。例如,尽管中国目前的开采能力相对较小,但中国的大量投资正在进入非洲的锂可以从两种来源中提取:盐水或坚硬的岩石。开采项目。盐水提取包括在地壳中钻孔,然后将盐水抽到地表的蒸发池中。这就产生了一种不同矿物质的盐泥混合物,然在可预见的未来,预计锂仍将是电动汽车电池的主要材料,后将其转移到另一个露天蒸发池。锂盐通常位于南美洲的玻利这意味着本地提取项目的需求将会很大,因为它们将使公维亚、阿根廷和智利地区(称为锂三角)。锂辉石则是从岩石司能够加强对其供应链的控制并减少对海外资源的依赖。矿床中获得的,通常是露天矿,主要位于澳大利亚。目前,锂供应高度集中,前五名供应商约占全球产量的一半。23GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN5.Whatarethemainsourcesofkeyrawmaterials?OverviewDuetothenatureofrawmaterialdepositsandthelongtimeandhighupfrontcostrequiredtosetupminingoperations,thesourcesofkeyrawmaterialstendtobeheavilyconcentratedinafewlocationswhichcanleadtolargefluctuationsinprice,asshowninFigure10.Figure10:PriceofselectedbatterymaterialsandLi-ionbatteries,2015-2023600120Index(1Jan2017=100)500100Index(2015=100)4008030060200401002002016201720182019202020212022020152023LithiumcarbonateCobaltNickelCopperManganeseBattery(right)Notes:DatauntilMarch2023.Li-ionbatteryprices(includingthepackandcell)representtheglobalvolume-weightedaverageacrossallsectors.NickelpricesarebasedontheLondonMetalExchange,usedhereasaproxyforglobalpricing,althoughmostnickeltradetakesplacethroughdirectcontractsbetweenproducersandconsumers.The2023batterypricevalueisbasedoncostestimatesforNMC622.Source:IEAanalysisbasedonmaterialpricedatabyS&P,2022Li-ionBatteryPriceSurveybyBNEFandBatteryCostsDropasLitiumPricesinChinaFallbyBNEF.LithiumLiLithiumisextractedfromtwosources,Althoughtherearebelievedtobesufficientlithiumreserves,thereisaconcernthatcertainfuturesupplybrineorhardrock.Brineextractionofhighqualitylithiumwillcontinuetobeconcentratedinafewsourceswhichcouldleadtoinvolvesdrillingdownthroughthecrustshorttermsupplyshortagesifinvestmentisnotmadeintonewextractionprojects.Forexample,andpumpingthebrineuptothesurfaceintoalthoughChinacurrentlyhasrelativelylittleextractioncapacity,largeamountsofChineseinvestmentareevaporationpools.ThiscreatesasaltymudmixtureofgoingintoAfricanextractionprojects[97].differentmineralswhicharethenmovedtoanotherLithiumisexpectedtoremainthedominantmaterialinEVbatteriesfortheforeseeablefuture,whichopen-airevaporationpool.LithiumbrinesaretypicallymeanslocalextractionprojectswillbeinhighdemandastheywillenablecompaniestoincreaselocatedinareasofBolivia,ArgentinaandChileincontrolovertheirsupplychainsandreducerelianceonoverseassources[98].SouthAmerica(knownasthelithiumtriangle).Lithiumspodumeneontheotherhand,isobtainedfromrockdeposits,typicallyopen-pitmines,primarilylocatedinAustralia.Currently,lithiumsupplyishighlyconcentrated,withthetop-fivesuppliersaccountingforapproximatelyhalfofglobalproduction[96].23电动汽车电池供应链投资指南镍石墨镍石墨镍主要存在于两种类型的矿床中——硫化物和红土矿。硫化石墨是主要的阳极材料,可以以天然(片状)形式存在或生物矿床主要分布在俄罗斯、加拿大和澳大利亚。尽管供应量产,也可以由两种主要原料来源合成,一种是来自炼油厂的比红土低得多(并且受到俄罗斯入侵乌克兰的影响),但这石油焦,另一种是煤炭生产的副产品沥青焦。合成焦产品需往往更理想,因为它比红土更容易加工且能源消耗更少,红要经过一个被称为“石墨化”的能源密集型过程,才能用于电土主要产于印度尼西亚、菲律宾和新喀里多尼亚。池。天然石墨开采出来后,会被磨成球形石墨,然后才能用于阳极。镍生产的集中度不如锂,九家公司供应着全球一半的镍产量,如果利益相关者实现其计划的采矿和精炼潜力,镍的预测范阳极生产商倾向于使用合成石墨和天然石墨的混合物,因为围将从轻微供应不足到潜在的供应过剩。然而,由于质量要它们具有不同的品质——前者更安全,寿命更长,生产能耗求和矿山地理分布有限,公司仍可能难以获得足够的量。低55%,而后者容量更高。天然石墨的原料更常见,因此成本也更低。最近,西方阳极生产商更喜欢天然石墨,因为其成高镍含量电池因其高能量密度而一直受欢迎。有关能量密度本更低且碳足迹更低。近期供应过剩的预测表明,这种趋势和英国正在开发的下一代电池技术的更多信息(这些技术提可能会持续下去。供了高镍电池的替代品),请参阅第5节。钴钴这两个生产来源均由中国主导:目前,中国占天然石墨开采量的64%,以及合成石墨的三分之二以上。预计到2030年,只有来自6个国家的9家公司能够在中国以外生产这两种形式的材料。随着非洲、北美和欧洲正在开发天然石墨开采项目,目前土钴主要作为铜或镍开采的副产品开采,这可能导致供应和价耳其的天然石墨储量占全球估计储量的四分之一以上,石墨格波动。超过70%的钴是由中国在刚果民主共和国拥有的矿山开采有可能实现多样化。美国的一些公司也在寻求利用当地生产的。生产的针状焦开发合成生产能力。这些因素加上对供应链透明度日益增长的需求,导致使用钴在可预见的未来,石墨很可能仍然是阳极生产的主要材料。的电池化学材料的受欢迎程度下降。24GraphiteNickelGraphiteisthedominantanodematerialandcanbefoundinnaturalNickelisfoundprimarilyintwoCtypesofdeposit–sulfideandNi(flake)formorproducedlaterite.SulfidedepositsaremainlylocatedinRussia,Canadasyntheticallyfromtwomainsourcesoffeedstock,eitherpetroleumcokefromoilrefineriesorpitchandAustralia.Despitebeingincokewhichisaby-productofcoalproduction.Syntheticcokeproductsneedtogothroughanmuchlowersupply(andbeingaffectedbyRussia’senergyintensiveprocesscalled‘graphitisation’inordertobeusedinbatteries.OncenaturalgraphiteinvasionofUkraine)thistendstobemoredesirableismined,itisgroundintosphericalgraphitebeforeitcanbeusedinananode.sinceitismoreeasilyprocessedandlessenergyAnodeproducerstendtouseablendofsyntheticintensivethanlaterite,whichismainlyfoundinandnaturalgraphitebecausetheyhavedifferentqualities–theformerissafer,hasgreaterlongevityIndonesia,PhilippinesandNewCaledonia[99].andis55%lessenergyintensivetoproducewhereasthelatterhashighercapacity[106].TheNickelproductionislessconcentratedthanlithiumfeedstockfornaturalgraphiteismorecommonandwithninecompaniessupplyinghalfofglobalnickelthereforealsolowercost.Recently,Westernanodeproduction,andforecastsrangefromslightproducershavepreferrednaturalgraphitebecauseundersupplytopotentialoversupplyofnickelifofitslowercostandcarbonfootprint.Forecaststakeholdersachievetheirplannedminingandsupplysurplusinthenear-termsuggeststhistrendrefiningpotential[100].However,companiescouldstillislikelytocontinue[107].havedifficultyacquiringsufficientquantitiesbecauseofqualityrequirements[101]andthelimitedBothsourcesofproductionaredominatedbygeographicdistributionofmines.China:itcurrentlyaccountsfor64%ofnaturalgraphitemining,andovertwothirdsofsyntheticBatterieswithhighnickelcontenthavecontinuedtographite.Justninecompaniesacrosssixcountriesgrowinpopularitybecauseoftheirhighenergyareforecastedtoproduceeitherformofthedensity.FormoreinformationonenergydensityandmaterialoutsideofChinaby2030[108].next-generationbatterytechnologiesbeingdevelopedintheUK,whichprovidealternativestohigh-nickelbatteries,seesection5.CobaltCoCobaltispredominantlyminedThereissomepotentialforthistodiversify,withnaturalgraphiteminingprojectsbeingdevelopedinasaby-productofcopperorAfrica,NorthAmerica,andEurope,andoveraquarterofestimatedglobalreservescurrentlyheldnickelminingwhichcanleadtoinTurkey.SomefirmsintheUSarealsolookingtodevelopsyntheticproductioncapacityusinglocallyvolatilityinsupplyandprice[102].producedneedlecoke[109].Over70%ofcobaltisproducedGraphiteislikelytoremainthedominantmaterialinanodeproductionforthefromChineseownedminesintheDemocraticforeseeablefuture.RepublicofCongo(DRC).Thesefactorscombinedwiththegrowingneedforsupplychaintransparencyhaveledtoadecreaseinpopularityofbatterychemistrieswhichusecobalt[105].电动汽车电池供应链投资指南6.英国的原材料开采能力如何?7.关键原材料的提取方面正在发生哪些创新?英国目前没有关键电池原材料的开采能力,但确实有一系列旨在开发锂产能的项目。英国政府已在其《关键矿产战略》正在开发的新技术有助于提供关键原材料供应的新来源,中制定了计划,利用该国采矿业的遗产和研发能力来支持国并且以更可持续和更低成本的方式实现。例如,直接锂提内开采能力的增长。然而,目前对锂的需求预测意味着英国取(DLE)和直接锂产品(DLP)都显示出使行业能够更迅可能总是需要额外的外国供应来源。速地应对不断飙升的锂需求的潜力,并提供了关键优势,包括缩短生产时间和降低水等资源的使用量。规划产能:迄今为止,只有吸附式DLE已在阿根廷和中国进行商业规模使•康沃尔锂业正在康沃尔郡探索锂提取,计划利用直用,但在这些国家之外,也有许多公司正在测试各种DLE方接锂提取来生产氢氧化锂,尽管这种资源和技术尚法,包括英国的康沃尔锂业。该公司创建了欧洲的第一家此未在商业规模上得到验证。该公司已在七轮融资中类工厂,其目标是证明可以从地热水中生产锂,同时对周围总共筹集了1470万英镑的资金,最近一次是在2022生态系统的影响最小。从规模上看,与传统锂资源相比,该年9月,其中包括政府汽车转型基金(ATF)提供的200创新有可能实现更高的回收率,同时降低运营成本和碳足万英镑赠款,用于在雷德鲁斯附近建设其地热锂回迹。收试点工厂。该轮融资由总部位于马耳他的可再生技术企业投资者TechMet参与。•英国锂公司一直在研究和开发从康沃尔花岗岩中提取碳酸锂。2022年,它从ATF获得了200万英镑赠款,用于项目的下一阶段。•WeardaleLithium正在寻求利用地热能从达勒姆郡Weardale的地下富锂盐水中可持续地提取锂。它最近获得了ATF的资助,用于试验其提取技术的有效性。25GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN6.WhataretheUKcapacitiesinraw7.Whatinnovationsarehappeninginmaterialextraction?extractionofkeyrawmaterials?TheUKcurrentlyhasnoextractioncapacityforkeyNewtechnologiesarebeingdevelopedthatarebatteryrawmaterials,butitdoeshaveapipelineofhelpingtoprovidenewsourcesofkeyrawmaterialprojectslookingtodeveloplithiumcapabilities.TheUKsupply,anddosoinawaywhichismoresustainablegovernmenthassetoutplansinitsCriticalMineralsandlowercost.Forexample,directlithiumextractionStrategytocapitaliseonthecountry’sheritageand(DLE)anddirectlithiumtoproduct(DLP)bothshowR&Dcapabilitiesinmining[110]tosupportgrowthofpotentialinenablingtheindustrytorespondmoredomesticextractioncapacity[111].However,currentswiftlytosoaringlithiumdemand,offeringkeyforecastdemandforlithiummeanstheUKisalwaysbenefitsincludingshorterproductiontimesandlowerlikelytoneedadditionalforeignsourcesofsupply.usageofresourcessuchaswater.Plannedcapacity:TodateonlyadsorptionDLEhasbeenusedonacommercialscaleinArgentinaandChina,butoutside•CornishLithiumareexploringlithiumextractioninofthesecountriesthereareanumberofcompaniesCornwall,withplanstousedirectlithiumextractiontestingvariousDLEapproaches,includingCornishtoproducelithiumhydroxide,thoughtheresourceLithiumintheUK[115].ThecompanyhascreatedaplantandtechnologyhaveyettobeprovenatawhichisthefirstofitskindinEurope,withitsgoalcommercialscale.IthasraisedatotalofGBP14.7beingtodemonstratethatlithiumcanbeproducedmillioninfundingoversevenrounds,mostrecentlyfromgeothermalwaterswithminimalimpactontheinSeptember2022whichincludedaGBP2millionsurroundingecosystems.Atscale,theinnovationhasgrantfromthegovernment’sAutomotivepotentialtoachievehigherrecoverylevelswithlowerTransformationFund(ATF)forconstructionofitsoperatingcostsandcarbonfootprintthantraditionalgeothermallithiumrecoverypilotplantneartosourcesoflithium.Redruth.TheroundwasparticipatedinbyTechMet,acorporateinvestorinrenewabletechnologiesbasedinMalta[112].•BritishLithiumhasbeenresearchinganddevelopingtheextractionoflithiumcarbonatefromCornishgranite.In2022,itreceivedGBP2milliongrantfromtheATFtoprogresstothenextstageoftheproject[113].•WeardaleLithiumisseekingtoextractsustainablelithiumfromundergroundlithium-enrichedbrineinWeardale,CountyDurhamusinggeothermalenergy.ItrecentlyreceivedagrantfromtheATFtotrialtheeffectivenessofitsextractiontechnologies[114].25电动汽车电池供应链投资指南电池供应链、ESG问题和电池护照有各种举措有助于解决投资者对其投资的生命周期环境和社会影响的担忧。电池护照使用实体电池的数字孪生体来全球电池需求的增长凸显了整个电池供应链的环境和社跟踪其组件以确保透明度,这对于证明电池供应链投资的会风险,包括温室气体(GHG)排放、污染和人权问题。可持续性至关重要。公司也在创新新的供应链管理工具,为了确保可持续和循环行业的增长,需要提高透明度,以帮助电池供应链中的参与者制定战略来理解、管理和改以确保投资能够流向保持透明和可持续做法的公司。善供应链可持续性(有关英国在该领域的机会的示例,请参阅附录。)由于所需的能源密集型原材料,电动汽车中的一部分温室气体排放(估计为60%)来自电池的制造。减少嵌入式全球电池联盟(GBA)是一个由140多个成员组成的集体,排放提供了一个重要的机会,但如果没有更多有关所用涵盖了从矿工到回收商的整个电池价值链,他们正在开电池和材料来源的数据,实现这一目标可能会很困难。发电池护照。在2023年1月于达沃斯举行的世界经济论坛年会上,GBA推出了一项概念验证,展示电池护照如何帮除了排放之外,整个电池供应链还面临着重大的社会和助投资者更可靠地跟踪排放量,并确保以对社会负责的环境挑战。原材料的提取和精炼以及细胞制造可能会产方式生产电池。电池护照将提供有关负责任和可持续实生严重的环境影响,例如土地退化、生物多样性丧失、践相关指标的可信信息,从而形成“质量印章”,捕获电池危险废物的产生或土地和水污染。原材料开采作业还存在整个生命周期中负责任的采购、管理、回收和使用的在违反劳动法、童工和强迫劳动以及侵犯土著权利的风经过验证的记录。险。在下游,不专业或非法的电池处置可能会造成严重的有毒污染。26GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINBatterysupplychains,ESGconcerns,andbatteryTherearevariousinitiativeswhicharehelpingtopassportsaddressinvestorconcernsaboutthelifecycleenvironmentalandsocialimpactoftheirThegrowthindemandforbatteriesgloballyhasinvestments.Batterypassports,whichusedigitalhighlightedtheenvironmentalandsocialriskstwinsofphysicalbatteriescankeeptrackoftheiracrossthebatterysupplychain,includingcomponentstoensuretransparency,willbegreenhouse-gas(GHG)emissions,pollutionandessentialfordemonstratingthesustainabilityofhumanrightsissues.Toensuregrowthofainvestmentsinthebatterysupplychain.Companiessustainableandcircularindustry,thereisaneedforarealsoinnovatingnewsupplychainmanagementgreatertransparencytoensurethatinvestmenttoolstohelpplayersinthebatterysupplychaincanbechannelledintocompanieswhichmaintaindevelopstrategiestounderstand,manage,andtransparentandsustainablepractices.improvesupplychainsustainability(forexamplesofUKopportunitiesinthisarea,seetheAppendix.)AproportionofembeddedGHGemissions(estimatedat60%)inEVscomesfromtheTheGlobalBatteryAlliance(GBA),isacollectiveofmanufactureofbatteriesduetotheenergy-140+members,spanningtheentirebatteryvalueintensiverawmaterialsrequired.Reducingchainfromminerstorecyclers,whoaredevelopingembeddedemissionspresentsasignificantbatterypassports.AttheWorldEconomicForum’sopportunity,howeveritcanbechallengingtodoAnnualMeetinginDavosinJanuary2023,theGBAthiswithoutmoredataaroundtheprovenanceoflaunchedaproofofconcepttoshowhowbatterybatteriesandmaterialsused.passportscanhelpinvestorstrackemissionsmorereliablyandensurethatbatteriesareproducedinaBeyondemissions,therearesignificantsocialandsociallyresponsiblemanner.TheBatteryPassportenvironmentalchallengesacrossthebatterysupplywillprovidetrustedinformationonindicatorsrelatedchain.Theextractionandrefiningofrawmaterials,toresponsibleandsustainablepractices,resultingaswellascellmanufacture,canhavesevereina‘qualityseal’capturingauthenticatedrecordsofenvironmentaleffects,suchaslanddegradation,theresponsiblesourcing,management,recyclingbiodiversityloss,creationofhazardouswaste,oranduseofabatteryacrossitsfulllifecycle.landandwatercontamination.Rawmaterialextractionoperationsalsoriskviolationsoflabourlaws,childandforcedlabour,andcontraventionofindigenousrights.Downstream,unprofessionalorillegalbatterydisposalcancauseseveretoxicpollution.26电动汽车电池供应链投资指南初级和二级再生原材料加工1.什么是原材料加工?提取后,需要对原材料进行加工,以生产可用于电池电芯制例如,一家高质量、可持续的针状焦炭精炼厂可以选择在钢造的高纯度化学品和前体。通常,精炼是由采矿公司在提取铁行业以及电池行业进行采购。有关英国在该领域的机会的的同时一起完成的(例如英国的英国锂业公司正在寻求开发示例,请参阅附录。提取和精炼锂的业务),而在其他情况下,原材料会出口到第三方进行加工。3.全球初级原材料加工能力如何?2.对投资者而言,英国在原材料加工领域目前,原材料加工在地理上比提取更加集中,目前电池材料有哪些机会?的大部分加工都在中国。五家主要公司占据全球产能的四分之三,许多较大的公司正在着手产能扩张和收购,以获取市将原材料转化为电池制造所需化学品的各个步骤都增加了价场份额并提高市场竞争优势。值,并为英国公司参与全球电池供应链提供了潜在机会。以英国在化工行业的专业知识为基础,可以为发展当地炼油能中国在全球镍精炼产能中所占的份额约为35%,在锂和钴的精力提供机会。其驱动因素之一是监管。拟议的《关键原材料炼产能中占50-70%。它还加工了世界上100%的球形石墨和法案》明确规定,欧洲需要满足其自身对加工矿物需求的最69%的合成石墨。中国企业通过在澳大利亚、智利、刚果民主低百分比。共和国和印度尼西亚等国的海外资产进行大量投资来支持其在加工能力方面的主导地位,这使其在获取未加工原材料方未来,当地炼油项目可能被视为可行的绿色投资,为吸引该面具有显著优势。例如,60%未加工的澳大利亚锂辉石出口到行业的投资者提供了一个充满希望的机会,因为它们具有强中国进行加工,75%的刚果钴也出口到中国。大的收入确定性和对其产品的高需求。然而,这种可能性取决于绿色分类法的定义是否扩大到涵盖整个供应链。欧盟和各国政府正在采取监管措施,以减轻对中国加工材料的依英国对阴极混合器施加了越来越多的ESG义务,对运输供应赖。与中国相比,欧洲和美国目前的原材料加工能力有限,链施加了压力,要求其遵守更环保的标准,从而强调了这一不过随着欧盟《关键原材料法》和美国《通货膨胀削减法理念。对于使用更可持续的工艺加工材料的公司来说,有可案》的出台,这种情况预计会发生变化,这两项法案对从某能实现差异化——特别是如果在当地进行,因为运输会大大些地区采购加工矿物的最低门槛要求都越来越高。这正在推增加这些资产的碳足迹。其他行业对绿色产品的需求也在增动美国和欧洲投资,以确保在本地和海外的精炼能力-例长,这意味着当地材料加工公司可以有多种承购选择如,特斯拉正在寻求在德克萨斯州建立一座锂精炼厂,通用汽车已在澳大利亚投资镍和钴业务。–ii欧盟分类法正在考虑纳入更广泛的供应链活动。这种涵盖全面价值链支持活动的扩展可能会在未来的框架中认可像GreenLithium这样的公司,因为它们在蒂赛德的炼油业务预计将比全球类似流程减少80%的碳足迹。27GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINPrimary&secondaryrawmaterialprocessing1.Whatisrawmaterialprocessing?Afterextraction,rawmaterialsneedtobeprocessedneedlecokecouldhaveoptionsforofftakeinthesteeltocreatehigh-puritychemicalsandprecursorsthatindustry,aswellasbatteries.ForexamplesofUKcanbeusedforbatterycellmanufacture.Oftenopportunitiesinthisarea,seetheAppendix.refiningisdonebytheminingcompanytogetherwiththeextraction(forinstanceBritishLithiumintheUKis3.Whatareglobalcapacitiesforprimarylookingtodevelopoperationsbothtoextractandrawmaterialprocessing?refinelithium)whereasinothercasestherawmaterialisexportedtothirdpartiestobeprocessed.Rawmaterialprocessingiscurrentlyevenmoregeographicallyconcentratedthanextraction,withthe2.WhatopportunitiesarethereintheUKformajorityofprocessingforbatterymaterialscurrentlyinvestorsinrawmaterialprocessing?residinginChina.Fivemajorcompaniesareresponsibleforthree-quartersofglobalproductionThevariousstepsinvolvedintransformingrawcapacityandmanylargercompaniesareembarkingmaterialsintothechemicalsneededforbatteryoncapacityexpansionandacquisitionsinordertomanufactureeachaddvalueandpresentapotentialgainshareanddrivecompetitiveedgeinthemarketopportunityforcompaniesintheUKtoparticipatein[117].theglobalbatterysupplychain.BuildingontheUK’sexpertisewithinthechemicalsindustrycouldprovideChina’sshareofglobalrefiningcapacityisaroundanopportunitytodeveloplocalrefiningcapabilities.35%fornickeland50-70%forlithiumandcobalt[118].ItOnedriverforthisisregulation;theproposedCriticalalsoprocesses100%oftheworld’ssphericalgraphiteRawMaterialsAct,specifiesthatEuropewillneedtoand69%ofsyntheticgraphite[119].Chinesecompaniesmeetaminimumpercentageofitsowndemandforsupporttheirprocessingcapacitydominancebyprocessedminerals[116].makingsubstantialinvestmentsinoverseasassetsinAustralia,Chile,theDRCandIndonesia,givingitaLocalrefiningprojectscould,infuture,beviewedassignificantadvantageinsecuringunprocessedrawviablegreeninvestments,presentingapromisingmaterials.Forexample,60%unprocessedAustralianopportunityforinvestorsdrawntothissectorduetolithiumspodumeneisexportedforprocessingtotheirpotentialforstrongrevenuecertaintyandtheChina[120],asis75%ofCongolesecobalt[121].highdemandfortheirproducts.Thispossibility,however,iscontingentupongreentaxonomyGovernmentsareregulatingtoeaserelianceondefinitionsbeingbroadenedtoencompasstheentireprocessedmaterialsfromChina.BothEuropeandthesupplychain.iiThisideaisunderscoredbytheUScurrentlyhavelimitedrawmaterialprocessingmountingESGobligationsplacedoncathodemixerscapabilitiescomparedtoChina[122],thoughthisisintheEUandUK,whichputpressureonthetransportexpectedtochangefollowingintroductionofthesupplychaintoabidebygreenerstandards.CriticalRawMaterialsActintheEUandIRAintheUS,Differentiationispossibleforcompaniesprocessingbothofwhichrequireincreasinglyhighminimummaterialusingmoresustainableprocesses-thresholdsforprocessedmineralstobesourcedfromparticularlyifdonelocally,sincetransportsignificantlycertainterritories[123].ThisisdrivingAmericanandraisesthecarbonfootprintoftheseassets.DemandforEuropeaninvestmenttosecurerefiningcapacitybothgreenproductsisalsogrowinginotherindustries,locallyandoverseas–forexample,TeslaislookingtowhichmeansthatlocalmaterialprocessingbuildalithiumrefineryinTexas[124],andGMhascompaniescouldhaveavarietyofoptionsforofftakeinvestedinnickelandcobaltoperationsinAustralia–forexample,arefinerofhighqualityandsustainable[125].iiTheEUTaxonomyisconsideringinclusionofbroadersupplychainactivities.Thisextensiontocovercomprehensivevaluechain-enablingactivitiescouldpotentiallyrecognisecompanieslikeGreenLithiuminfutureframeworks,giventhattheirrefiningoperationatTeesideisprojectedtodeliveran80%lowercarbonfootprintthansimilarprocessesglobally.27电动汽车电池供应链投资指南4.英国目前的原材料加工能力如何?这座耗资6亿英镑的精炼厂将从2025年起生产约50吨电池级氢氧化锂,足以满足约100万辆电动汽车的需求。该项目得到了英国拥有一些原材料加工能力,包括镍和焦炭精炼,并且正大宗商品贸易商托克(Trafigura)的支持,该公司将帮助为在筹备锂加工。这些提供了向欧洲等更广泛市场出口的机该工厂采购原料。会。•Leverton锂业长期以来一直在该国生产锂化学品,尽当前产能:管其许多产品并非面向电池市场。今年年初,该公司与欧洲化学品生产商Helm联手,将“优质锂化学品”的产能扩大至每年2万吨。•镍:英国也有着悠久的镍精炼传统,其历史可以追溯到•绿色锂业计划在提赛德生产电池级氢氧化锂,其碳排放量不到亚洲精炼厂的50%。它还计划在煅烧过程中使1902年的南威尔士。如今,淡水河谷的克莱达契精炼厂拥有4用氢气代替天然气,并使用碳捕获技术以进一步减少万吨电池级产能,是欧洲最大的镍精炼厂之一。它每年生产排放。预计该工厂将于2025年左右投入使用。约4万吨镍产品,为全球30多个国家的约280家客户供应。•焦炭:位于亨伯的菲利普斯66炼油厂是英国唯一的炼焦5.原材料加工有哪些最新的创新?厂,也是欧洲最大的特种阳极焦生产商,并计划扩大产能。目前,该公司年产量为70万吨,其中大部分出口到中国进行新的加工技术正在提高原材料加工路线的灵活性,这可以产石墨化,然后再用于电池生产。越来越多的石墨生产商正在生新的供应来源,以满足不断增长的原材料需求。例如,正开发内部石墨化能力,以试图在石墨供应链中获取更多价值在探索多种技术,来增加镍加工方法的数量,以从低品质红并减少对中国的依赖。土资源中生产适用于锂离子电池的镍。其他公司正在探索通过回收使用过的锂离子电池来精炼关键原材料的方法(这将计划产能:在第7节中讨论。)•2022年底,英国在提赛德的第一座锂精炼厂宣布投产。蒂斯河谷锂业目前正在完成工程和设计工作,准备在2023年开始建设。图11:英国目前的原材料加工管道,包括当前和未来的产能开采锂(LCE)锂化学品(LCE)精炼镍焦2030年预测产量(吨)运营中极有可能很可能可能的资料来源:基准材料28GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN4.WhataretheUKcapacitiesinrawconstructionin2023.TheGBP600millonrefinerymaterialprocessingatpresent?willproducearound50tonnesofbattery-gradelithiumhydroxidefrom2025,enoughforaroundTheUKhassomerawmaterialprocessingonemillionEVs.Theprojectisbackedbycapabilitiesincludingnickelandcokerefining,andcommoditytraderTrafigura,whowillhelpsourcehaslithiumprocessinginthepipeline.Thesepresentfeedstockfortheplant.opportunitiestoexporttowidermarketssuchasEurope.•LevertonLithiumhaslongproducedlithiumchemicalsinthecountry,thoughmanyofitsCurrentCapacity:productsarenotdestinedforthebatterymarket.Atthestartoftheyear,thecompanyjoinedforces•Nickel:TheUKalsohasalong-standingtraditionofwithEuropeanchemicalproducerHelmtoexpandnickelrefining,datingbackto1902inSouthWales.itsproductioncapacityto20,000tonnesayearofToday,with40kilotonnebatterygradecapacity,“high-qualitylithiumchemicals”[131].theVale’sClydachrefineryisoneofthelargestnickelrefineriesinEurope.Itproducesaround•GreenLithiumhasplanstoproducebattery-grade40,000metrictonsofnickelproductsperyearandlithiumhydroxideinTeessidewithlessthan50%ofsuppliesaround280clientsinover30countriesthecarbonemissionsseeninrefineriesinAsia.Itacrosstheworld[126].alsoplanstousehydrogeninsteadofnaturalgasinthecalcinationstepanddeploycarboncapture•Coke:ThePhilips66refineryinHumberistheonlytofurtherreduceemissions.ItexpectstocokingrefineryintheUKandthelargestproducercommissiontheplantaround2025[132].ofspecialtyanodecokesinEurope,withplanstoexpandcapacity[127].Currentlyitproduces700,0005.Whatarethelatestinnovationsinrawtonnesperyear[128]whichismostlyexportedtomaterialprocessing?Chinaforgraphitisationbeforeitisusedinbatteryproduction[129].Increasingly,graphiteproducersareNewprocessingtechnologiesareincreasingthedevelopingin-housegraphitisationcapabilitiestoflexibilityofrawmaterialprocessingroutes,whichattempttocapturemorevalueinthegraphitecouldproducenewsourcesofsupplyinresponsetosupplychainandreducerelianceonChina[130].growingdemandforrawmaterials.Forexample,severaltechniquesarebeingexploredtoincreasethePlannedCapacity:numberofwaysofprocessingnickeltoproducenickelsuitableforuseinLi-ionbatteriesfromlower•Announcementsweremadetowardstheendofgradelateriteresources[133].Othercompaniesare2022fortheUK’sfirstlithiumrefineryinTeesside.exploringwaystorefinekeyrawmaterialsbyTeesValleyLithiumiscurrentlycompletingrecyclingusedLi-ionbatteries(thiswillbediscussedengineeringanddesignworktobereadytostartinSection7.)Figure11:ThecurrentUKrawmaterialprocessingpipeline,includingcurrentandfuturecapacityMinedlithium(LCE)Lithiumchemicals(LCE)RefinednickelCoke020,00040,00060,00080,000100,000120,000140,000160,000180,000200,0002030forecastproduction(tonnes)Source:BenchmarkMaterialsOperatingHighlyProbableProbablePossible28电动汽车电池供应链投资指南5.中游:电芯组件制造和电芯制造业为了满足不断增长的电池需求,到2030年,需要9300吉瓦时的年产能。根据彭博新能源财经的数据,2022年全球锂离子电池产能达到1163吉瓦时。29GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN5.Midstream:CellandcellcomponentmanufacturingTomeetrisingdemandforbatteries,9,300GWhofannualproductioncapacityisrequiredby2030.AccordingtodatafromBloombergNEF,theglobalcapacityofLi-ionbatteryproductionreached1,163GWhin2022.29电动汽车电池供应链投资指南电芯组件制造1.什么是电芯以及它们是如何制造的?电芯组件制造是指组成电池芯的不同组件的生产。最简单的电芯约占普通电池组成本的77%,这意味着电动汽车转型的电芯是由一个阴极(正极)、一个阳极(负极)、电解质溶成功在很大程度上取决于电池的价格,并且可以通过降低液、一个隔膜和电池外壳(或套)组成的。用于这些不同组电芯组件的成本、大批量生产和工艺改进来实现。通过不件的材料类型各不相同,并且在阳极、阴极和电解质中使用同的组件查看电芯,图12说明了成本份额是如何分配的。不同的材料会产生不同的电池化学成分(即铅酸电池或锂离子电池)。图12:电芯组件和电芯生产的成本比例100%5%隔膜9%80%外壳/套19%60%9%40%10%生产72%20%15%17%电芯0%阳极44%资料来源:亚琛大学其他(电芯组件)电芯组件其他(电芯)阴极电解质原材料2.英国投资者有哪些机会?英国拥有两家氢氧化锂和碳酸盐生产商,为现有阴极制造商供货。由于本地化对于阴极制造商来说很重要,因为像运输阴极制造拥有丰富的知识产权(IP),而且能源密集型。因氢氧化锂这样的材料可能很困难,因此英国对这些生产商来此,阴极生产设施通常位于能够获得低成本、低碳电力、说是一个有吸引力的地点。靠近前体材料来源且与客户有良好运输联系的地区。30GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINCellcomponentmanufacturing1.Whatisacellandhowaretheymanufactured?CellcomponentmanufacturingreferstotheThecellaccountforabout77%ofthecostofanproductionofthedifferentcomponentsthatmakeupaveragebatterypack[134],meaningthesuccessofacell.Initssimplestform,acellismadeupofonetheEVtransitionislargelydeterminedbythepricecathode(positive),oneanode(negative),anofthecellandcanberealisedbyreducingthecostelectrolytesolution,aseparatorandthecellhousingofthecellcomponents,highvolumeproduction(orcasing).Thetypesofmaterialsusedfortheseandprocessimprovements.Lookingatthecellbyitsdifferentcomponentsvaries,andusingdifferentdifferentcomponents,Figure12illustrateshowthematerialsintheanode,cathodeandelectrolyteshareofthecostissplit.resultsindifferentcellchemistries(i.e.leadacidbatteriesorLi-ionbatteries).Figure12:Shareofcostofcellcomponentsandcellproduction100%5%9%80%19%60%9%40%10%72%20%15%17%Cell0%Anode44%Other(Cellcomponents)Other(Cell)CellcomponentsCathodeSeparatorElectrolyteHousing/casingMaterialsProductionSource:AachenUniversity2.WhatopportunitiesarethereforUKinvestors?CathodemanufacturingisrichinintellectualpropertyTheUKiswellplacedwithtwolithiumhydroxideand(IP)andisveryenergyintensive.Forthisreason,carbonateproducerswhosupplytoexistingcathodecathodemanufacturingfacilitiesareoftenlocatedinmanufacturers.Sincelocalisationisimportanttoareaswithaccesstolow-cost,low-carbonelectricity,cathodemanufacturers,becauseitcanbedifficulttonearsourcesofpre-cursormaterialswithgoodtransportmaterialslikelithiumhydroxide,theUKisantransportlinkstocustomers.attractivelocationtotheseproducers.30电动汽车电池供应链投资指南英国是欧洲重要的高级针状焦生产国,针状焦是生产用于锂3.当今销售的电动汽车电池使用的离子电池阳极的合成石墨的关键材料。目前,英国生产的大主要化学物质是什么?部分针状焦都被运往中国进行石墨化。然而,阳极制造商有机会在英国设立工厂,以从较低的运输成本、关税和研究网大多数现有的商用电动汽车电池都基于锂离子化学,它目络中受益。前提供了能量密度、寿命、多功能性和经济性的最佳组合,使其成为衡量所有潜在替代品的基准。锂离子是一个总称,涵盖各种不同的化学配方,它们都使用锂离子在阳极和阴极之间转移电荷。目前,锂离子电池的两种主要配方占据着市场份额——镍基电池和磷酸铁(Fe)基电池(LFP,磷酸铁锂电池电池)。每种配方还有几种不同的品种,每种材料的含量各不相同,并相应命名-例如,NMC(镍锰钴)811是一种镍基锂离子电池,含有80%的镍、10%的锰和10%的钴。随着对更长续航里程的电动汽车电池的需求持续增加,高镍阴极化学品出现了强劲增长;到2022年,他们占据了60%的市场份额。除了更高的能量密度外,它们还可以在寒冷气候下提供更快的充电速度和更好的性能。目前90%的磷酸铁锂电池在中国生产,但由于生命周期更长、制造成本更低且不依赖镍和钴等昂贵原材料,它们在全球越来越受欢迎,到2022年达到30%的市场份额。图13显示了按化学成分划分的市场份额。英国拥有电解质生产供应商-三菱化学集团,它是欧洲最大由于这些不同的特性,汽车制造商已经开始对不同的车型使用的两家供应商之一。随着电动汽车市场的扩大,对电解质解不同的化学物质,对于高端车型更喜欢使用高镍化学物质,而决方案的需求不断增长,英国有机会利用其在化学品领域的对于价格较低的大众市场车型则更喜欢使用磷酸铁锂。展望未强大传统,大幅提高电解质产能。此外,高度特定的电解质来,随着化学成分的不断多样化,这一趋势预计将持续下去,添加剂还具有知识产权(IP)和材料制造收入,这些添加剂尽管可回收性(目前对磷酸铁锂电池来说是一个挑战)等其他仅占电解质质量的百分之几,但会影响制造电芯所需的时间因素也可能发挥作用。有关回收的更多信息,请参阅第7节。以及电池芯在最终应用中的寿命。英国强大的研究基础对想要开发最先进固体电解质的供应商具有吸引力,这种电解质将在固态电池等未来技术中发挥重要作用(见第5节)。这些机会需要早期投资者的投资,也需要后期投资者的投资,因为这个市场既有成熟的参与者,比如三菱化学集团,也有初创企业,比如阴极和阳极制造商。31GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINTheUKisasignificantEuropeanproducerofhigh3.Whatarethemainchemistriesusedforgradeneedlecoke,akeymaterialintheproductionEVbatteriesincarssoldtoday?ofsyntheticgraphiteusedinLi-ionbatteryanodes.MostneedlecokeproducedintheUKiscurrentlyMostexistingcommercialEVbatteriesarebasedonbeingsenttoChinaforgraphitisation.However,thereLi-ionchemistry,whichcurrentlyoffersthebestisanopportunityforanodemanufacturerstosetupcombinationofenergydensity,longevity,versatilityintheUKtobenefitfromlowertransportcosts,tariffsandaffordability,makingitthebenchmarkagainstandaccesstoresearchnetworks.whichallpotentialalternativesaremeasured.Li-ionisanumbrellaterm,encompassingavarietyofdifferentchemistryformulationswhichalluselithiumionstotransferchargebetweentheanodeandthecathode.TwomainformulationsofLi-ionbatterydominatemarketsharetoday–thosewhicharenickel-based,andthosewhichareiron(Fe)phosphatebased(LFPbatteries).Therearealsoseveraldifferentvarietiesofeachformulationthatcontaindifferentamountsofeachmaterialandarenamedaccordingly–forexample,NMC811isanickel-basedLi-ionbatterywhichcontains80%nickel,10%manganeseand10%cobalt.TheUKhasanelectrolyteproductionsupplier,HighnickelcathodechemistrieshaveseenrobustMitsubishiChemicalGroup,oneofthetwobiggestgrowthasdemandforlongerrangeEVbatteriesplayersinEurope.Withdemandforelectrolytecontinuestoincrease;in2022theyhelda60%marketsolutionsgrowingastheEVmarketexpands,thereisshare[136].Alongwithhigherenergydensity,theyalsoanopportunityfortheUKtobuildonitsstrongofferfasterchargingandbetterperformanceinheritageinchemicalstosignificantlyincreasecolderclimates.Currently90%ofLFPbatteriesareelectrolytecapacity.InadditionthereisbothproducedinChina[137],howevertheyaregrowinginintellectualproperty(IP)andmaterialmanufacturingpopularityglobally,reaching30%marketsharein2022revenuetobefoundinthehighlyspecifiedelectrolyteduetolongerlifecycle,lowercosttomanufactureandadditiveswhichmakeupjustafewpercentofthenotrelyingonexpensiverawmaterialssuchasnickelelectrolytebymass,butwhichimpactsonthetimeitandcobalt[138].Figure13showsthemarketshareovertakestomakeacell,andthelifeofthecellinitsendtime,bychemistry[139].application.TheUK'sstrongresearchbaseisattractivetosupplierswhowanttodevelopstateofDuetothesedifferentproperties,automakersaretheartsolidelectrolytes[135],whichwillplayanalreadybeginningtousedifferentchemistriesforimportantroleinfuturetechnologiessuchassoliddifferentvehiclemodels,preferringhighnickelstatebatteries(seesection5).chemistriesforpremiummodelsandLFPforlowerpriced,massmarketmodels[140].GoingforwardsthisTheseopportunitiesrequireinvestmentfrombothtrendisexpectedtocontinueaschemistriescontinueearlyandlatestageinvestorsasthemarketismadetodiversify,thoughotherfactorssuchasrecyclabilityupofbothwellestablishedplayers,inthecaseof(whichiscurrentlyachallengeforLFPbatteries)couldMitsubishiChemicalGroup,andstartups,inthecasealsoplayarole.Formoreinformationonrecycling,ofcathodeandanodemanufacturers.seeSection7.31电动汽车电池供应链投资指南图13:2018-2022年按化学成分划分的电动轻型汽车电池容量100%80%60%40%20%0%20192020202120222018低镍高镍其他磷酸铁锂注:其他包括上一代锂离子电池、锰酸锂(LMO)和钴酸锂(LCO)。LMO被用于第一代日产Leaf电池组,现在也用于一些消费电子产品。LCO是索尼于1982年商业化的第一种锂离子化学物质,目前主要用于消费电子和电动工具行业。资料来源:法拉第研究所(2020年1月)高能电池技术近年来,钠离子选项不断涌现,这是目前唯一商业上可行的不含锂的化学品。这种电池化学具有双重优势,一是依赖比锂离子电池成本更低的材料,从而使电池更便宜,二是完全避免了对某些关键矿物质的需求。钠离子电池是一项非常新的技术,只占市场的一小部分,并且仅在中国进行商业规模生产。然而,由于Faradion等公司正在推动这项技术的新创新,英国有机会发展钠离子生产。除了竞相开发新的化学物质外,制造商也在竞相通过设计新的电池格式来释放电池的性能。例如,直到最近,由于电池密度有限,许多汽车制造商都在努力将磷酸铁锂电池集成到他们的车辆中——安装一个足够大的电池对于许多汽车制造商来说是不可行的。然而,比亚迪的刀片电池格式比圆柱形电池大得多,与圆柱形磷酸铁锂电池相比,能量密度提高了50%,彻底改变了磷酸铁锂电池在电动汽车中的使用。32GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFigure13:Electriclight-dutyvehiclebatterycapacitybychemistry,2018-2022100%80%60%40%20%0%20192020202120222018Low-nickelHigh-nickelLFPOtherNote:OtherincludespreviousgenerationLi-ionbatteries,lithiummanganeseoxide(LMO)andlithiumcobaltoxide(LCO).LMOwasusedinthe1stgenerationNissanLeafbatterypack,andnowsomeconsumerelectronics.LCOwasthefirstLi-ionchemistrytobecommercialisedbySonyin1982,mostlynowusedinconsumerelectronicsandpowertoolsindustry.Source:FaradayInstitution(2020,January)High-EnergyBatteryTechnologiesInrecentyears,Na-ionoptionshavebeenemerging,currentlytheonlycommerciallyviablechemistrythatdoesnotcontainlithium.ThisbatterychemistryhasthedualadvantageofrelyingonlowercostmaterialsthanLi-ion,leadingtocheaperbatteries,andofcompletelyavoidingtheneedforsomecriticalminerals.Na-ionbatteriesareaverynewtechnology,representingatinyfractionofthemarketandareonlybeingproducedonacommercialscaleinChina[141].However,thereareopportunitiestodevelopNa-ionproductionintheUKduetocompaniessuchasFaradionwhicharedrivingnewinnovationsinthistechnology[142].Aswellasracingtodevelopnewchemistries,manufacturersarealsoracingtounlockcellcapabilitythroughdesigningnewcellformats.Forexample,untilrecently,manyautomakerswerestrugglingtointegrateLFPbatteriesintotheirvehiclesduetotheirlimitedbatterydensity–fittingalargeenoughbatterywasnotfeasibleformanyautomakers.However,BYD’sbladecellformat,whichisconsiderablylargerthanacylindricalcell,increasedtheenergydensityby50%comparedtoacylindricalLFPcell,revolutionisingtheuseofLFPbatteriesinEVs[143].32电动汽车电池供应链投资指南4.电芯组件是如何制造的?阴极阳极电池中的正极称为阴极。最初,对于锂离子电池,钴酸锂被电池中的负极称为阳极。阳极活性材料通常由石墨制成。较用作正极活性材料(定义如下)。它仍然用于某些应用,例高能量密度的电池倾向于将硅(氧化硅)混合到阳极中以增如便携式电子产品,但出于安全考虑,不用于车辆。近年加能量密度。虽然硅具有非常高的存储容量,但它在充电和来,许多替代材料系统被开发和使用,例如NMC和LFP。大多放电时会急剧膨胀和收缩,因此在电芯寿命受到不利影响之数锂电池可以被描述为锂金属氧化物阴极。前只能承受少量硅。锂金属氧化物以固体粉末形式生产。粉末用作电池阴极的适与阴极一样,阳极也是通过将活性材料混合成浆料、涂布、用性取决于其化学和物相组成、微观结构、形态、粒径以及干燥和压延来制造的。污染程度和类型,这使得质量控制成为制造过程中最关键的方面之一(这也是阳极制造和电池组装的情况)。这些因素原材料石墨对于电动汽车的转型仍然非常重要(特别是因为会影响电池的电化学特性,包括生命周期和能量密度,从而按质量计算,它占电池所用原材料的45%)。影响电动汽车的续航里程。这些粉末被称为“阴极活性材料”(CAM),首先与粘合剂、溶剂电解质和导电添加剂(例如炭黑或碳纳米管)混合成浆料,制成电池的阴极组件。将该浆料涂覆到铝箔上,然后在热空气环境电解质是一种液体溶液,允许以锂离子形式的电荷在阴极和阳极之间通过。它通常包括溶解在有机溶剂中的锂盐和少量中干燥。然后将所得的涂层箔在辊之间压制(压延)以增加专用添加剂,用于多种目的,包括延长电池寿命。密度并消除表面凹凸不平,称为阴极电极。隔膜隔膜是确保电动汽车电池安全的关键部件。隔膜是一种薄薄的多孔膜,可将阴极和阳极分开,同时允许锂离子通过它传输。隔膜的主要功能是防止电极相互接触,否则可能导致短路或故障。33GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN4.Howarecellcomponentsmanufactured?CathodeAnodeThepositiveelectrodeinabatteryisreferredtoastheThenegativeelectrodeinabatteryisreferredtoascathode.Originally,forLi-ionbatteries,lithiumcobalttheanode.Theanodeactivematerialistypicallyoxidewasusedasthecathodeactivematerialmadefromgraphite.Higherenergydensitycellstend(definedbelow).Itisstillusedinsomeapplicationstoblendsilicon(siliconoxide)intotheanodetosuchasportableelectronicsbutisnotusedforincreaseenergydensity.Whilstsilicongivesveryhighvehiclesduetosafetyconcerns.Inrecentyears,storagecapacity,itexpandsandcontractsmanyalternativematerialsystemshavebeendramaticallyasitchargesanddischarges,soonlydevelopedandused,suchasNMCandLFP.MostLi-smallquantitiescanbetoleratedbeforethelifeoftheionbatteriescanbedescribedaslithiummetaloxidecellisadverselyaffected.cathodes.Aswiththecathode,theanodeelectrodeisLithiummetaloxidesareproducedassolidpowders.manufacturedbymixingtheactivematerialintoaThesuitabilityofthepowdertobeusedasacathodeslurry,coating,dryingandcalendaring.inabatterydependsonitschemicalandphasecomposition,microstructure,morphology,particlesizeTherawmaterialgraphiteremainsheavilyimportantanddegreeandtypeofcontaminations,makingtotheEVtransition(particularlyasitmakesup45%,qualitycontroloneofthemostcrucialaspectsofbymass,oftherawmaterialsusedinabatterycell).manufacturing(thisisalsothecaseforanodemanufacturingandcellassembly).ThesefactorsElectrolyteaffecttheelectrochemicalcharacteristicsofthebattery,includinglifecycleandenergydensity,whichTheelectrolyteisaliquidsolutionthatallowsaninfluencestherangeofEVs.electricalcharge,intheformoflithiumions,topassbetweenthecathodeandtheanode.ItgenerallyThesepowdersarereferredtoas“CathodeActivecompriseslithiumsaltsdissolvedinorganicsolventsMaterials”(CAM),andaremadeintothecathodewithsmallquantitiesofspecialistadditivesforacomponentofthecellbyfirstbeingmixedintoavarietyofpurposesincludingextendingcelllifetime.slurrytogetherwithbinders(adhesives),solventsandelectricallyconductiveadditivessuchascarbonSeparatorblackorcarbonnanotubes.Thisslurryiscoatedontoanaluminiumfoilthendriedinahotairenvironment.TheseparatorisacriticalcomponentforensuringtheTheresultingcoatedfoilisthenpressedbetweensafetyofanEVbattery.Theseparatorisathinporousrollers(calendering)toincreasedensityandremovemembranethatseparatesthecathodeandanode,surfaceasperities,andisknownasthecathodewhileallowingLi-iontransportthroughit.Theelectrode.separator’sprimaryfunctionistopreventtheelectrodesfromtouchingeachother,whichcouldresultinashortcircuitorfailure.33电动汽车电池供应链投资指南外壳图14:不同类型的电池为了制造电池,阳极、隔膜和阴极的交替层被包装在一起并软包电池密封在一个外壳中。电极可切割成薄片并堆叠在一起,或围绕心轴缠绕在一起以形成圆柱体或细长圆柱体。堆叠的电极可以密封到一个金属箔袋中以创建“软包电池”,或放置在一个矩形铝罐中以创建“方形电池”。圆柱形缠绕的电极可以放入一个(通常是钢)罐中,以形成“圆柱形电池”,或者可以将细长圆柱形绕组放入矩形棱柱形电池外壳中。方形和圆柱形电池具有刚性外壳,而软包电池则没有,因此在最终应用中需要结构支撑。图14说明了不同类型的电池芯。除了形状外,方形和圆柱形电池在尺寸、连接方式和功率上也不同。方形电池通常比圆柱形电池大得多,因此每个电池可以容纳更多的能量(一个方形电池可以包含比圆柱形电池多20到100倍的能量)。因此,要获得相同的能量,需要的方形电池比圆柱形电池少。因此,使用前者对焊接的电气连接需求较少,这可以降低生产成本和潜在缺陷的数量。然而,更小的圆柱形电池有利于在更复杂的空间中有效地充满电池。因此,圆柱形电池被认为更适合e级方程式赛车和性能车等高方形电池性能车辆。对于乘用车来说,总的趋势是电芯尺寸变得更大(对于所有格式),以减少所需的电气连接数量,并降低电池管理系统的复杂性。圆柱形电池34GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINHousing/casingFigure14:DifferenttypesofcellsTocreatethecell,alternatelayersofanode,separatorPouchCellandcathodearepackedtogetherandsealedintoacasing.TheelectrodesmaybecutintosheetsandPrismaticCellstackedontopofeachother,orwoundtogetheraroundamandreltoformacylinderorelongatedCylindricalCellcylinder.Stackedelectrodesmaybesealedintoametalisedfoilpouchtocreatea“pouchcell”,orplacedinarectangularaluminiumcantocreatea“prismaticcell”.Cylindricallywoundelectrodescanbeplacedintoa(usuallysteel)cantocreate“cylindricalcell”,orelongatedcylindricalwindingscanbeplacedintoarectangularprismaticcellcasing.Prismaticandcylindricalcellshaverigidcasings,whereaspouchcellsdonot–andthereforerequirestructuralsupportintheirendapplication.Figure14illustratesthedifferenttypesofcells.Otherthanshape,prismaticandcylindricalcellsdifferinsize,connectionandpower.Prismaticcellsaretypicallymuchlargerthancylindricalcellsandthereforeholdmoreenergypercell(aprismaticcellcancontain20to100timesmoreenergythanacylindricalcell).Duetothis,fewerprismaticcellsthancylindricalcellsarerequiredtoachievethesameamountofenergy.Therefore,usingtheformerrequiresfewerelectricalconnectionsthatneedtobewelded,whichcanreducethecostofproductionandthenumberofpotentialdefects.However,smallercylindricalcellsallowformorecomplexspacestobeeffectivelyfilledwithbatteries.Forthisreason,cylindricalcellsaredeemedmoresuitableforhighperformancevehiclessuchasFormula-Ecarsandperformancecars.Forpassengercars,thegeneraltrendisforcellsizestogetbigger(forallformats)toreducethenumberofelectricalconnectionsrequiredandreducethecomplexityofthebatterymanagementsystem.34电动汽车电池供应链投资指南5.全球电芯组件在哪里生产?尽管努力增加阴极产量,但预计世界其他地区同期的产量增长速度将达到这一速度的一半。图15显示了按国家/地阴极制造目前由中国主导。中国制造商生产了全球阴极供应区划分的阴极产量份额。量的78%。该数据还预计,到2030年,中国在市场上的主导地位将增至87%。由于地缘政治原因和原产地规则要求,中国在阴极生产方面的主导地位可能会出现问题,这正在推动英国和欧洲建立自己的阴极供应。图15:按国家/地区划分的阴极供应100%10,00090%9,00080%8,00070%7,00060%6,000供应比例50%5,000全球阴极产量(ktpa)40%4,00030%3,00020%2,00010%1,0000%020132014201520162017201820192020202120222023202420252026202720282029203020312023中国韩国日本亚洲其他地区北美欧洲总计资料来源:基准阴极预测1GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN5.WherearecellcomponentsproducedDespiteeffortstoincreasecathodeproduction,theglobally?restoftheworldisforecastedtogrowproductionathalfthisrateinthesameperiod[144].Figure15showsCathodemanufacturingiscurrentlydominatedbytheshareofcathodeproductionbycountry.China.Chinesemanufacturersproduced78%ofglobalcathodesupply.ThedataalsoprojectsChina’sChinesedominanceincathodeproductioncouldbedominanceinthemarkettoincreaseto87%throughproblematicforgeopoliticalreasonsandrulesofto2030.originrequirements,whicharedrivingtheUKandEuropetoestablishtheirownsupplyofcathodes.Figure15:CathodeSupplybyCountry/Region100%10,00090%9,00080%8,00070%7,00060%6,00050%5,00040%4,00030%3,00020%2,00010%1,00000%20132014201520162017201820192020202120222023202420252026202720282029203020312023ProportionofsupplyGlobalcathodeproduction(ktpa)ChinaSouthKoreaJapanRestofAsiaNorthAmericaEuropeTotalSource:BenchmarkCathodeForecast35电动汽车电池供应链投资指南对于美国和北美,阴极生产预计将难以满足需求。到2035图16显示了这些地区未来产量和需求的差异,其中黄色条形为预期产能和黑线表示预期需求。年,产量将分别占欧洲和北美需求的22%和23%。图16:区域阴极容量阴极缺口分析-欧洲阴极缺口分析-北美阴极产能阴极产能202220222023202320242024202520252026202620272027202820282029202920302030203120312032203220322032203320332034203420352035中国在阳极生产方面也占主导地位,占全球阳极产量的图17显示了按地区划分的当前和计划的阳极产能。91%,而欧洲的缺口最大。据预测,到2031年,欧洲的阳极供应量将占需求量的3.9%,这意味着任何寻求进入该市2022年,全球电池电解质市场价值为76亿美元,预计到场的新公司都将有大量的客户需求。北美也有类似的增长2027年将增长到168亿美元。2021年,亚洲市场占据主导地需求,因为阳极供应只占国内需求的3.4%。位,欧洲紧随其后。2022年,全球电池隔板市场价值为53亿美元,预计将达到114亿美元。再次,亚洲占据市场主导地位,欧洲位居第二。图17:按地区划分的阳极产量‘000吨3,000现存2,500建设中2,0001,500计划1,0005000中国日本韩国亚洲(其他)北美欧洲其他2GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFortheUSandNorthAmerica,cathodeproductionisdemandinEuropeandNorthAmerica,respectivelyprojectedtostruggletokeepupwithdemand.By[145].Figure16showsthedifferenceinfuture2035,productionwillmakeup22%and23%ofproductionanddemandintheseregions,wherethebarsinyellowareexpectedproductioncapacityandFigure16:RegionalCathodeCapacitytheblacklinedepictsexpecteddemand.Cathodegapanalysis-NorthAmericaCathodegapanalysis-EuropeCathodeCapacity-77%CathodeCapacity-78%202220222023202320242024202520252026202620272027202820282029202920302030203120312032203220322032203320332034203420352035Chinaisalsodominantinanodeproduction-itisFigure17illustratescurrentandplannedanoderesponsiblefor91%ofglobalanodeproduction[146],productioncapacitiesbyregion.whereEuropehasthelargestshortfall.ItisforecastedthatEurope’sanodesupplywillmakeup3.9%ofwhatTheglobalbatteryelectrolytemarketwasworthUSDisdemandedin2031,meaningtherewillbesignificant7.6billionin2022andisprojectedtogrowtoUSD16.8customerdemandforofftakesofanynewbillionin2027.ThemarketwasdominatedbyAsiaincompaniesseekingtoexpandintothismarket[147].2021,withEuropecomingsecond[149].TheglobalNorthAmericahasasimilargrowthneed,asanodebatteryseparatormarketwasvaluedatUSD5.3supplywillonlymakeup3.4%ofdomesticdemand[148].billionin2022,andisforecastedtoreachUSD11.4billion.Again,themarketwasdominatedbyAsia,withEuropecomingsecond[150].Figure17:Anodeproductionbyregion‘000tonnes3,000Existing2,500Inconstruction2,0001,500Planned1,00050002021202220232024202520262027202820292030ChinaJapanSouthKoreaAsia(other)NorthAmericaEuropeOther36电动汽车电池供应链投资指南6.英国生产电芯组件的能力有多大?新的创新不是引起担忧,而是可以被视为进一步发展电动汽车电池市场的机会。在英国,目前没有阴极或阳极生产设施。鉴于未来十年欧洲的电极产量预计将大大低于欧洲大陆的需求,“运营超级工厂的高资本和运营成本意味着设备和设英国可能无法依赖欧洲的供应。从中国这个唯一没有施投资总是倾向于生产线的逐步演变,而不是彻底的电极生产赤字的国家采购也面临着地缘政治、供应和革命。大型电池制造商总是需要在昂贵的设备上投入监管风险。大量资金,因此他们的目标是随着时间的推移只改变一小部分资产,以逐步改善,而不是完全高风险的剥英国/欧盟自由贸易协定要求,到2027年,英国和欧盟离和重大改变。”之间销售的所有汽车都必须使用来自英国或欧盟的阴极活性材料,否则需支付车辆价格10%的关税。因此,JeffPratt,UKBIC董事总经理如果英国和/或欧盟想要生产和交易电动汽车,就必须建立CAM制造能力。此外,新的阴极化学物质要在商业规模上得到验证需要相当长的时间,而且随着生产线能够进行修改以适应类似的化学因此,英国有机会通过回收报废电池来扩大国内电极物质,开发通常是增量的。例如,在未来十年内,最有可能生产。先进推进中心预测,英国可回收和再利用的电取代锂离子电芯的技术,如磷酸锰铁锂(LMFP)或钠离子,有池容量可能会增加八倍,从2030年的28,164吨增加到望在现有的锂离子生产线上投入使用,所需的适应性很小或2040年的235,508吨。这可以提供足够的CAM来供应60很低。下面将讨论一些未来的电芯组件技术。GWh的新电池(大约600,000辆电动汽车-到2040年将占英国电动汽车制造能力的三分之一以上)。绿色技术集团AltiliumMetals正在规划一座回收设施,其中包括一座能够生产30,000吨CAM的阴极制造厂。锂硫:这项技术在重量、成本和能量密度7.不断发展的电动汽车电池化学成(是现有技术的两倍)方面具有潜在的优分如何影响投资者?势。OXLiD是一家研发规模的公司,与诺丁全球道路运输电气化的推动催生了大量的研究项目,以开发新的电芯组件技术和不断发展的电芯组件技术,汉大学合作,正在探索这项技术。在范围尤其是CAM。这种持续的趋势让投资者感到担忧,因为随着新开发成果的公布,现有技术可能变得多余,从和重量考虑因素比成本更重要的地方(例而导致资产搁浅。然而,电芯组件材料(例如CAM)的高价值性质使得生产工厂可能在需要再投资之前完全如高空伪卫星和无人机),可能会开发初贬值。锂始市场。电芯也可能适用于重型车辆,短硫程航空工业,以及潜在的固定能量存储。由于其使用的化学成分与目前的锂离子电-+池相似,制造准备还处于早期阶段。3GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN6.WhatistheUK’scapacitytoproducecellbeforereinvestmentisrequired.Ratherthancausingcomponents?concern,newinnovationscanbeviewedasopportunitiestofurtherdeveloptheEVbatteryIntheUK,therearecurrentlynocathodeoranodemarket.productionfacilities[151].GiventhatEurope’sproductionofelectrodesisprojectedtobesignificantlylower“Thehighcapitalandoperatingcostofthanwhatthecontinentdemandsinthenextrunninggigafactoriesmeansthatequipmentdecade,theUKmaynotbeabletodependonEuropeandfacilityinvestmentalwaystendstowardsforitssupply.SourcingfromChina,theonlycountrygradualevolutionoflines,ratherthantotalwithoutadeficitofelectrodeproduction,alsocarriesrevolution.Largescalebatterymanufacturersgeopolitical,supplyandregulatoryrisks.willalwaysneedtoinvestlargesumsininherentlyexpensiveequipment,thereforeTheUK/EUfreetradeagreementrequiresthatby2027theywillaimtoonlychangeasmallpercentageallcarssoldbetweentheUKandEUmustuseofassetsovertimetogiveagradualcathodeactivematerialssourcedfromtheUKorEU,improvement,ratherthanafullhighriskorpaya10%tariffonthepriceofthevehicle[152].strip-outandstepchange.”Therefore,theUKand/orEUwillhavetobuildCAMmanufacturingcapacityiftheywanttoproduceandJeffPratt,ManagingDirector,UKBICtradeEVs.ThereisthereforeanopportunityfortheUKtoexpandInaddition,ittakesconsiderabletimefornewdomesticelectrodeproductionthroughrecyclingendcathodechemistriestobeprovenatcommercialoflifebatteries.TheAdvancedPropulsionCentrescale,anddevelopmentsaretypicallyincrementalpredictsthatUKbatterycapacityavailableforwithproductionlinesabletobeamendedtosuitrecyclingandreuseintheUKcouldincreaseeightsimilarchemistries.Forexample,thetechnologieswithfoldfrom28,164tonnesin2030to235,508tonnesinthehighestpotentialtodisplaceLi-ioncellsoverthe2040[153].ThiscouldsupplyenoughCAMtosupply60nextdecade,suchaslithiummanganeseironGWhofnewbatteries(roughly600,000EVs–phosphate(LMFP)orNa-ion,areexpectedtobeableaccountingformorethanathirdofEVmanufacturingtodrop-intoexistingLi-ionproductionlineswithcapacityby2040intheUK)[154].AltiliumMetals,agreenminimalorlowlevelsofadaptationrequired[156].Sometechnologygroup,areplanningarecyclingfacilityfuturecellcomponenttechnologiesarediscussedthatwillincludeacathodemanufacturingplantbelow.capableofproducing30,000tonnesofCAM[155].Lithium-sulphur:thistechnologyhas7.HowdoesevolvingEVbatterypotentialadvantagesaroundweight,chemistriesimpactinvestors?costandenergydensity(doubletheTheglobaldrivetowardstheelectrificationofroadtransporthasledtoaplethoraofresearchLithiumenergydensityofcurrenttechnologiesprogrammestodevelopnewcellcomponentSulphurtechnologiesandevolvingcellcomponent[157].)OXLiDareanR&Dscalecompanytechnologies,especiallyCAM.Thiscontinuingtrendhasmadeinvestorsapprehensivebecauseoftheriskwho,incollaborationwithNottinghamthatcurrenttechnologiescouldbecomeredundantasnewdevelopmentsareannounced,leadingtoUniversity,areexploringthistechnologystrandedassets.However,thehighvaluenatureofcellcomponentmaterials(suchasCAM)issuchthat-[158].Initialmarketsarelikelytodevelopproductionplantsarelikelytobefullydepreciated+whererangeandweightconsiderationsaremoreimportantthancost(e.g.high-altitudepseudosatellitesanddrones).Cellsmayalsobesuitableforheavydutyvehicles,theshort-rangeaviationindustry,andpotentiallystationaryenergystorage.GivenitsuseofasimilarchemistrytocurrentLi-ionbatteries,manufacturingreadinessisatanearlystage.37电动汽车电池供应链投资指南钠离子电池阳极固体电解质(固态电池):讨论最多的新技钠离子电池:这是一项新兴技术,术之一是用固体电解质代替液体电解质,固其工作原理与锂离子电池非常相似,固体电解质体电解质也可以作为阳极和阴极之间的分离但用锂代替钠作为电荷载体。器。这可以解锁在阴极和阳极使用不同类型这些电池已经超越了研究阶段,目前有近30家钠离子电阴极的活性材料,这可以在安全性,性能和成本池制造厂正在运营、计划或正在建设中,几乎全部在中方面带来额外的好处。当阳极活性材料被删国。钠离子部署的主要不确定性是开发工业规模供应链除并用金属锂代替时(有时称为无阳极电所需的时间。然而,由于与锂离子技术相似,这些电池芯),目前已知的好处就会出现。固态电池很可能能够适应现有的生产线。钠离子电池(尤其是那的主要优点是提高了能量密度(在材料水平些不使用镍的电池)的主要优点是它们不需要使用昂贵的原材料,尤其是锂、铜和钴。这些电池也可以在完全上比目前的锂离子电池高2-2.5倍,在电放电后运输和储存,这使得它们比锂离子电池更安全,芯水平上比目前的锂离子电池高30-40%)。更容易储存。然而,它们的能量密度较低,这可能使它70%的现有锂离子电池设备可以重新用于固们更适用于续航里程较短的城市车辆或固定存储。态电池制造,限制了投资于当前技术的搁浅资产风险。无钴阴极:随着时间的推移,NMC的醋酸乙酯电解液:北京理工大学已经开发出一种电解质,通过将比通常钴化学成分逐渐减少了锰和钴的含量,更多的锂盐溶解在90%乙酸乙酯和10%氟乙烯碳酸酯组成的溶剂中制成,这但增加了镍的含量。NMC811阴极由减种电解质可以使标准的NMC811电池在低至零下40摄氏度(目前限制在零少量的钴(80%的镍,10%的锰和10%的下20摄氏度)的温度下运行。研究人员表示,这项技术是可扩展的,但面镍钴)组成,这是有益的,因为钴稀缺、临的挑战是降低成本和进一步降低最低温度。昂贵且容易引发道德采矿问题。出于这些原因,NMC化学的长期行业目标是继续减少钴的使用,并有可能在未来生产出NMC9XX电芯。硅主导阳极:一些公司已经开始尝试聚芳酰胺隔膜聚芳酰胺隔膜:Microvast与通用汽车合作开发了一种硅主导阳极,而不是目前在一些阳极聚芳酰胺隔膜,能够抵抗300摄氏度以上的高温,为硅中使用的少量二氧化硅。好处包括更未来的电动汽车电池带来更高的安全性。该公司于2023高的存储容量,但局限性包括充电和年4月开设了一家工厂(价值5亿美元),用于生产这放电时的膨胀和收缩会导致阳极破裂项专利技术。和性能不良的风险。SilaNanotechnologies等公司进行的重大研究已经进入了稳定硅阳极以减少膨胀和防止开裂的领域。4GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINSolidelectrolyte(solidstatebatteries):Sodium-ionbatteries:aoneofthemostdiscussednewtechnologiesinvolvesreplacingtheAnodeNa-ionBatterynascenttechnologywhichliquidelectrolytewithasolidone,whichworksverysimilarlytoLi-ionwouldalsoactasaseparatorbetweenSolidElectrolytetheanodeandcathode.Thiscouldbatteries,butsubstitutesunlocktheuseofdifferenttypesofactiveCathodematerialsinthecathodeandanode,lithiumforsodiumasachargewhichcouldhaveaddedbenefitsinsafety,performanceandcost.Thecurrentbenefitsknowncarrier.Thesebatterieshaveadvancedbeyondthetodayarisewhentheanodeactivematerialisdeletedandreplacedwithmetalliclithiumresearchstagewithnearly30Na-ionbattery(sometimesreferredtoasananode-lesscell).Themainbenefitofsolidstatebatteriesisimprovedmanufacturingplantscurrentlyoperating,plannedorenergydensity(2to2.5timeshigherthancurrentLi-ionbatteriesatthematerialleveland30-40%benefitunderconstruction,almostallinChina.Themainatthecelllevel[159].)70%ofexistingLi-ionbatteryequipmentcanbere-usedforsolidstatebatteriesuncertaintiesaroundthedeploymentofNa-ionisthemanufacture,limitingthestrandedassetriskofinvestingincurrenttechnology[160].timerequiredtodevelopanindustrialscalesupplychain.However,duetothesimilaritywithLi-iontechnology,itislikelythatthesebatterieswillbeabletofitintoexistingproductionlines.ThekeybenefitofNa-ionbatteries,particularlythosethatdonotusenickel,arethattheydonotrequireuseofexpensiverawmaterials–notablylithium,copperandcobalt.Itisalsopossibletoshipandstorethesebatterieswhentheyarefullydischarged,makingthemsafertohandleandeasiertostorethanLi-ionbatteries.Howevertheyhavealowerenergydensity,whichislikelytomakethemmorerelevantforurbanvehiclesCobaltfreecathodes:Overtime,withlowerrange,orforstationarystorage.CotheNMCchemistryhasevolvedtoreducetheamountofmanganeseNiandcobaltbuttoincreasetheEthylacetateelectrolyte:theBeijingInstituteofTechnologyhasamountofnickel.TheNMC811developedanelectrolyte,madefromdissolvingalargerthancathode,iscomposedofausualamountoflithiumsaltsinasolventmadeof90%ethylreducedamountofcobalt(80%nickel,10%acetateand10%fluoroethylenecarbonate,whichallowsastandardNMC811batterytoruninmanganese,and10%cobalt)whichisbeneficialastemperaturesaslowasnegative40degreesCelsius(currentlylimitedtonegative20degreesCelsius).Thecobaltisscarce,expensive,andopentoethicalresearcherssaythatthistechnologyisscalablebutthechallengesarereducingthecostandfurtherminingconcerns.Forthesereasons,thelongtermreducingtheminimumtemperature[162].industryaimfortheNMCchemistryistocontinuetoreducetheuseofcobaltwiththepotentialforanNMC9XXcellinthefuture.14Silicondominantanodes:somePolyaramidPolyaramidseparator:companieshavebeguntoSeparatorMicrovast,incollaborationSiSiliconexperimentwithsilicondominantanodesincontrasttothesmalltracesofsilicacurrentlyusedinsomeanodes.BenefitsincludewithGeneralMotors,hashigherstoragecapacity,butlimitationsincludethedevelopedapolyaramidriskofcracksintheanode,andpoorperformance,separatorwhichiscausedbyswellingandshrinkingwhenchargingandcapableofresistingdischarging.Significantresearch,suchasbySilatemperaturesinexcessof300degreesCelsius,Nanotechnologies,hasgoneintostabilizingsiliconunlockinggreatersafetyinfutureEVbatteries.Theanodestoreduceswellingandpreventcracking[161].companyopenedaplant(worthUSD500million),inApril2023,toproducethispatentedtechnology.38电动汽车电池供应链投资指南电芯制造1.什么是电芯制造?3.什么是超级工厂?电芯制造是指将不同的电芯组件(如本节前面介绍的)组“超级工厂”一词是由埃隆·马斯克创造的,指的是每年合在一起以形成能够存储和释放电力的电池芯的过程。电能够生产数GWh电池芯容量的工厂。超级工厂需要大量的能芯制造被认为是电池价值链中最有价值的部分,因为预计源来驱动;选择建造超级工厂的地点的重点是获得不间断的到2030年,电池制造将占电池行业价值创造的40%。到2030清洁能源。瑞典NorthvoltEtt工厂是大众汽车集团年,电池芯市场预计将以每年20%的速度增长,全球市场达(VolkswagenGroup)旗下的合资企业,估计需要大约到3600亿美元。电芯制造是一个昂贵且复杂的多步骤过程,2TWh的电力,相当于瑞典年用电量的2%。技术工人和附近需要许多不同的机器。为了使这一过程在经济上可行,电的研究型大学开发他们的技术也是选址的重要因素。芯通常在超级工厂生产。2.英国为投资者提供了哪些机会?通过利用规模经济,超级工厂可以显着降低电池生产成本。由于电池占电动汽车总成本的30%至40%,节省电池生产成英国电芯制造市场由多家旨在大规模生产的初创公司组成,本可以降低电动汽车的价格,有助于让所有人都能负担得包括AMTEPower、Acutronics和AGM电池。英国在设计高性起转型,从而使超级工厂成为发展电动汽车行业的关键资能电池方面也处于领先地位,例如由WilliamsAdvanced产。Engineering和UnipartManufacturing合资的Hyperbat生产的电池。其中一些公司已获得政府支持(通过先进推进中心迄今为止,超级工厂融资面临的挑战是高资本支出要求的不(APC)由政府资助的1000万英镑研发计划),暗示了它们匹配,以及技术和收入不确定性等高风险。超级工厂需要大的潜力和其中的投资机会。量的前期建设投资。为了通过项目融资获得资金,项目需要未来收入的证明,并保证公司可以采购所需的投入材料。反英国市场还包括一家更成熟的制造商远景动力(Envision过来,汽车制造商需要知道在下订单之前可以以合适的价格AESC),该公司正在扩大其在英国的产能。除此之外,最近生产足够数量的电芯。对于新的电池初创企业来说,这可能有报道称,拥有捷豹路虎的塔塔集团与英国政府即将达成协会造成先有鸡还是先有蛋的情况,即获得资金依赖于获得客议,在萨默塞特建造一座耗资数十亿英镑的超级工厂。户,而获得客户则依赖于拥有规模化的生产设施。许多电池生产公司也是初创企业,信用记录或可支配资金有限,无法融资。5GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINCellmanufacturing1.Whatiscellmanufacturing?3.Whatisagigafactory?CellmanufacturingreferstotheprocessofThetermgigafactorywascoinedbyElonMuskandcombiningthedifferentcellcomponents(asreferstothefactoriescapableofproducingintroducedearlierinthissection)togethertoformmultipleGWhperyearofbatterycellcapacity.abatterycellwhichiscapableofstoringandGigafactoriesrequirehighamountsofenergytodischargingelectricalpower.Cellmanufacturingispower;thefocusforchoosingthelocationtobuildconsideredthemostvaluablepartofthebatteryagigafactoryisaccesstouninterruptedcleanvaluechainasitisestimatedtoaccountforuptoenergy.TheNorthvoltEttplantinSweden,aventure40%ofbatteryindustryvaluecreationby2030.TheinvolvingtheVolkswagenGroup,isestimatedtomarketforbatterycellsisexpectedtogrowby20%requireapproximately2TWh,equivalentto2%ofayearuntil2030,reachingUSD360billiongloballySweden’sannualelectricityconsumption[166].Skilled[163].Cellmanufacturingisanexpensiveandworkersandnearbyresearchuniversitiestocomplexmulti-stepprocess,requiringmanydeveloptheirtechnologiesarealsoimportantdifferentmachines.Tomakethisprocessfactorsforlocationselection.economicallyviable,cellsaretypicallyproducedingigafactories.Throughleveragingeconomiesofscale,gigafactoriescansignificantlyreducethecostof2.WhatopportunitiesarethereintheUKbatteryproduction.Sincebatteriesaccountfor30forinvestors?to40%ofthetotalcostofEVs,savingsonthecostofbatteryproductioncanreducethepriceofEVs,TheUKcellmanufacturingmarketismadeupofhelpingtomakethetransitionaffordableforall,severalstartupcompaniesaimingforlargescaletherebymakinggigafactoriesacriticalassetinproduction,includingAMTEPower,Acutronics,anddevelopingtheEVsector.AGMbatteries.TheUKisalsoaleaderindesigninghighperformancebatteries,suchasthoseTodate,thechallengewithfinancinggigafactoriesproducedbyHyperbat,whichisajointventureisthemismatchofhighcapexrequirements,withbetweenWilliamsAdvancedEngineeringandhighriskssuchastechnologyandrevenueUnipartManufacturing.Someofthesecompaniesuncertainty.Gigafactoriesrequiresignificanthavebeenawardedgovernmentsupportupfrontinvestmentforconstruction.Tosecurethisfundingthroughprojectfinancing,aproject(throughAdvancedPropulsionCentre's(APC)GBPrequiresproofoffuturerevenue,andassurances10millionR&Dprojectedfundedbythegovernmentthecompanycansourcetheinputmaterials[164]),alludingtotheirpotentialandtheinvestmentrequired.Inturn,automakersneedtoknowcellsopportunitiesthatliewithin.canbeproducedinsufficientquantities,attherightprice,beforeplacingorders.ForanewbatteryTheUKmarketalsoincludesamorewell-startup,thiscancreateachickenandeggestablishedmanufacturerinEnvisionAESC,whichissituationwherebyaccessingcapitalisreliantonexpandingitsUKcapacity.Inadditiontothis,theresecuringacustomer,butsecuringacustomerishavebeenrecentreportsthatadealbetweenTatareliantonhavingscaledproductionfacilities.AGroup,whichownsJaguarLandRover,andtheUKnumberofbatteryproductioncompaniesarealsogovernmenttobuildamulti-billionpoundstartupswithlimitedcredithistoryordisposablegigafactoryinSomersetisimminent[165].capitaltofacilitatefinancing.39电动汽车电池供应链投资指南可以采用三种模型来应对这些挑战以扩大电池制造规模:1.成为一家大公司,利用其他产品流的收入为超级工厂3.从初创公司开始,在产品开发走向商业化的过程中分提供资金,直到它们准备好出售电芯(LG、松下等)阶段筹集投资——这不可避免地意味着频繁且呈指数级增长的融资轮次,所有这些都在公司客户之前进行。2.充分利用国家的大力支持(CATL、比亚迪、EVE等)这可以发挥作用(例如NorthVolt),但难度要大得多,特别是在金融和政治动荡的环境中。4.全球电芯在哪里生产?据彭博新能源财经(BloombergNEF)的数据显示,截至2022年底,全球锂离子电池产能电池产量达到1,163GWh,为了满足不断增长的电池需求,估计需要约9,300GWh的占2030年预计需求9,300GWh的12.5%。下表2显示了各国电电池供应。池产能。表2:按国家划分的电池产能资料来源:VisualCapitalist(2023年1月)电池制造能力,按国家/地区划分。排名国家2022年电池芯制造能力(GWh)893占全球产能的百分比1中国7377%2波兰706%3美国386%4匈牙利313%5德国163%6瑞典151%7韩国121%8日本61%9法国31%印度70.2%10其他1%1,163总计100%资料来源:VisualCapitalist(2022年2月)映射:电动汽车电池制造能力,按地区划分6GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINTherearethreemodelstoaddressthesechallengetoscalebatterymanufacturing:1.Bealargecorporateanduserevenuesfrom3.Growfromastartupraisinginvestmentinotherproductstreamstobankrollgigafactoriesstagesasyoudevelopyourproducttowardsuntiltheyarereadytosellcells(LG,Panasonic,commercialisation-thisinevitablymeansetc.)frequentandexponentiallyincreasingroundsoffundraising,allinadvanceoffirmcustomers.2.Capitaliseonsignificantstatesupport(CATL,Thiscanwork(egNorthVolt)butismuchBYD,EVE,etc.)harder,especiallyinfinanciallyandpoliticallyvolatileenvironments.4.Wherearecellsmanufacturedglobally?batteryproductionreached1,163GWhasoftheendof2022[168],whichis12.5%oftheestimatedTomeetrisingdemandforbatteries,itis9,300GWhrequiredby2030.Table2belowestimatedthataround9,300GWhofbatteryshowsbatteryproductioncapacitybycountry.supplyisrequired[167].AccordingtodatafromBloombergNEF,theglobalcapacityofLi-ionSource:VisualCapitalist(2023,January)BatteryManufacturingCapacity,byCountry.Table2:BatteryproductioncapacitybycountryRankCountry2022BatteryCellManufacturingCapacity(GWh)%ofglobalcapacity1China89377%2Poland736%3706%4UnitedStates383%5Hungary313%6Germany161%7Sweden151%8121%9SouthKorea61%Japan30.2%10France71%India1,163Other100%TotalSource:VisualCapitalist(2022,February)Mapped:EVBatteryManufacturingCapacity,byRegion40电动汽车电池供应链投资指南电动汽车电池的预计增长导致全球正在建设300多家超级工6.电芯制造领域正在发生哪些创新?厂,即处于建设或规划阶段的超级工厂。中国继续占据主导地位,占全球在建设施的75%。然而,北美和欧洲正在寻求电芯创新的最大驱动力是通过继续增加电芯尺寸、提高能缩小差距,并宣布了几项规划设施。在这些地区,汽车制造量密度并生产更便宜、更轻的电池组来改变电芯格式。这商和电池公司之间的合资企业一直是电池产量增长的主要推些非化学相关的收益将需要新的设备、工艺和更严格的质动力。事实上,北美23座超级工厂中有14座由汽车制造商全量控制,代表着巨大的投资机会。资或合资拥有。5.英国的电芯生产能力有多大?目前,英国桑德兰拥有一家远景动力旗下的超级工厂,为日产聆风(NissanLeaf)供应电池,产能为1.7GWh。然而,为了满足电动汽车电池的需求,到2040年,英国预计将需要10个超级工厂,每个工厂平均每年生产20GWh(即总产能200GWh)。认识到这一需求,远景动力和英国政界人士已指定投资10亿英镑,以在十年中期将桑德兰工厂的产能提高到11GWh,目前该工厂正在建设中。到2030年,另外18亿英镑投资可能会使超级工厂的产能达到38GWh。英国电池制造初创公司Britishvolt原计划在英国建造一座超级工厂,预计产能为38GWh,耗资38亿英镑,但因未能达到建设里程碑以获取资金而于2023年1月申请管理。作为一家初创公司,Britishvolt遵循最难的模式来扩大规模生产电芯,但这并不意味着其他公司(无论是初创公司还是成熟的电芯制造商/企业)无法在英国实现大规模生产。最近有报道进一步证明了这一点,报道称,捷豹路虎和英国政府正在达成协议,在萨默塞特建立一座耗资数十亿英镑的超级工厂,如前所述,这可能会显着提高英国的电芯制造能力。7GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINTheprojectedgrowthinEVbatterieshasledto6.Whatinnovationsarehappeningincellover300gigafactoriesintheglobalpipeline,i.e.manufacturing?gigafactoriesthatareeitherintheconstructionorplanningstage.Chinacontinuestodominate,withThebiggestdriverofinnovationincellsisto75%ofallfacilitiesintheglobalpipeline[169].changethecellformatsbycontinuingtoincreaseHowever,NorthAmericaandEuropearelookingtotheirdimensions,increasingtheirenergydensityclosethegap,withseveralannouncementsofandresultingincheaperandlighterbatterypacks.plannedfacilities.Intheseregions,jointventuresThesenon-chemistryrelatedgainswillrequirebetweenautomakersandbatterycompaniesnewequipment,processesandtighterqualityhavebeenmajordriversofgrowthinbatterycontrol,representinglargeinvestmentproduction.Infact,14ofthe23gigafactoriesintheopportunities.NorthAmericanpipelinearewhollyorjointlyownedbyautomakers.5.WhatistheUK’scapacitytoproducecells?CurrentlytheUKhasonegigafactoryinSunderland,ownedbyEnvisionAESC,whichissupplyingbatteriesfortheNissanLeafandhasacapacityof1.7GWh.However,tokeepupwithdemandforEVbatteriestheUKwillrequireanestimated10gigafactoriesby2040,witheachoneproducinganaverageof20GWhannually(i.e.200GWhtotalcapacity)[170].Recognisingthisdemand,EnvisionAESCandUKpoliticianshaveearmarkedGBP1billioninvestmenttoincreasecapacityoftheSunderlandplantto11GWhbymid-decadewhichisnowunderconstruction.AfurtherGBP1.8billioncouldtakethegigafactoryto38GWhby2030.Britishvolt,aUKbatterymanufacturerstartup,hadplanstobuildaUKgigafactory,expectedtoproduce38GWhandcostGBP3.8billion[171],butfiledforadministrationinJanuary2023afterfailingtoreachconstructionmilestonestoaccessfunding.Beingastartupcompany,Britishvoltfollowedthehardestmodeltoscaletolargecellproduction,butthisdoesnotmeanthatothercompanies(whetherstartupsorwellestablishedcellmanufacturers/corporates)cannotachievelargescaleproductionintheUK.ThisisfurtherbackedbyrecentreportsthatJaguarLandRoverandtheUKgovernmentareworkingonadealtoestablishamulti-billionpoundgigafactoryinSomerset,asmentionedpreviously,whichcouldsignificantlyincreasetheUK’scellmanufacturingcapacity.41电动汽车电池供应链投资指南6.下游:模块和电池组生产及电池管理系统电动汽车电池模块和电池组全球市场目前价值55亿美元,预计到2030年将增长到293亿美元。42GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN6.Downstream:ModuleandPackProduction&BatteryManagementSystemsTheEVbatterymoduleandpackglobalmarketiscurrentlyworthUSD5.5billionandisprojectedtogrowtoUSD29.3billionin2030.[172]42电动汽车电池供应链投资指南模块和电池组生产1.什么是电池模块和电池组?4.模块和电池组在哪里生产?为电动汽车提供动力需要大量的能量,这只能通过将许多电电池模块和电池组有时由制造电池芯的同一家公司生产。例芯组合成一个模块,并将多个模块组合成电池组来实现。因如,全球最大的电池芯生产商宁德时代(CATL)也生产电池此,与电芯或电芯组件的生产相比,电池和电池组的生产需模块和电池组。然而,汽车制造商通常会购买电芯并自行生要不同的机械和专业知识。产电池模块和电池组,因为运输电池电芯比运输电池模块和电池组更容易。因此,很大一部分电池模块和电池组生产位于电动汽车产量较高的国家,例如中国。有一些公司,例如2.英国为投资者提供了哪些机会?HyperDriveInnovation(总部位于英国,归Turntide所有),主要专注于电池模块和电池组生产。这些公司通常会瞄准那些缺乏能力或潜力制造自己的电池组的小批量汽车制电池模块和电池组组装通常由汽车制造商进行。这给了英造商。随着时间的推移,汽车制造商可能会发展出生产自己国一个机会,因为它生产的车辆已占欧盟所有车辆的约10%。的电池模块和电池组的能力,并将电动汽车生产设施与电芯因此,电池模块和电池组生产商有动力在英国采购零部件,制造设施并置,这可能会减少对主要专注于电池模块和电从而帮助市场发展。这种能力和知识产权大部分属于英国池组生产的独立公司的需求。广泛的高性能汽车行业,为未来开发更高性能的系统提供了空间。5.电池模块和电池组正在发生哪些创新?3.模块和电池组是如何生产的?电池模块和电池组的一项关键技术创新是宁德时代的下一代电芯到电池组(cell-to-pack)电池。该设计旨在消除对电生产电池模块的机械组装过程通常涉及绝缘和张紧、电接触池模块的需求,并将电芯直接连接到电池组。宁德时代声称,以及电路板和外壳盖的安装。电池组生产是将多个模块组合这项新技术将通过体积提高功率,从而以更轻的重量和更小在一起的过程,涉及电气和热集成、密封以及充电和快充。的电池实现更高的续航里程。该电池组技术已于2020年在中电池组有不同的形状,以适应不同的电动汽车车型。为了降国量产,并应用于现代、起亚、捷尼赛思等量产车型。比亚低成本,电池组设计的趋势越来越多地使用更少、更大的模迪的刀片电池组是cell-to-pack设计的另一个例子。块,而在未来,电池到车辆的组装方法将有助于降低车辆的成本和重量。大多数汽车公司都在寻求未来创新电芯到整车(cell-to-vehicle)解决方案,随着电动汽车销量的增加,为单一车型定制的电芯设计在经济上可能变得可行。9GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINModuleandPackProduction1.Whatisabatterymoduleandpack?4.Wherearemodulesandpacksproduced?PoweringEVsrequireslargeamountsofenergy,whichBatterymodulesandpacksaresometimesproducedcanonlybeachievedbycombiningmanycellsbythesamecompaniesthatmanufacturebatterytogetherintoamodule,andmultiplemodulesintocells.Forexample,CATL,thelargestbatterycellbatterypacks.Therefore,batteryandpackproductionproducerintheworld,alsoproducesmodulesandrequiresdifferentmachineryandexpertisecomparedpacks.However,automakerswilltypicallypurchasetocellorcellcomponentproduction.cellsandproducebatterymodulesandpacksthemselvesasitiseasiertotransportbatterycellsthan2.WhatopportunitiesarethereintheUKforitistotransportbatterymodulesandpacks.Asaresult,investors?asignificantproportionofmoduleandpackproductionisbasedincountrieswithhighEVproduction,suchasBatterymoduleandpackassemblyisoftenChina.Therearesomecompanies,suchasperformedbyautomakers.ThisgivestheUKanHyperDriveInnovation(basedintheUKandownedopportunityasitalreadyproducesapproximately10%byTurntide),whichfocusprimarilyonmoduleandofallvehiclesintheEU.Therefore,batterymoduleandpackproduction.ThesecompanieswillusuallytargetpackproducershaveanincentivetosourcelowervolumeautomakerswholackthecapabilityorcomponentsintheUK,therebyhelpingthemarkettocapacitytobuildtheirownbatterypacks.Overtime,develop.MuchofthiscapabilityandintellectualautomakersmaydevelopthecapabilitytoproducepropertylieswithintheUK’sextensivehigh-theirownmodulesandpacks,andcollocateEVperformanceautomotivesector,offeringthescopetoproductionfacilitieswithcellmanufacturingfacilities,develophigherperformingsystemsinthefuture[173].whichcouldpotentiallyreducethedemandforstandalonecompaniesfocusedprimarilyonbatterymoduleandpackproduction.3.Howaremodulesandpacksproduced?5.Whatinnovationsarehappeninginbatterymodulesandpacks?ThemechanicalassemblyprocessofproducingthebatterymoduletypicallyinvolvesinsulationandAkeytechnologicalinnovationforbatterymodulestensioning,electricalcontacting,andmountingoftheandpacksisCATL’snextgenerationcell-to-packcircuitboardandhousingcover.Packproductionisbattery.Thisdesignproposestoremovetheneedfortheprocessofcombiningseveralmodulestogether,batterymodulesandhavethecellsdirectlyconnectedwhichinvolveselectricalandthermalintegration,tothepack.CATLclaimsthatthisnewtechnologywillsealing,andchargingandflashing.ThebatterypackimprovepowerbyvolumeresultinginahigherrangecomesindifferentshapestofitdifferentEVmodels.withalowerweightandsmallersizebattery.ThisIncreasingly,toreducecost,thetrendistowardspackbatterypacktechnologyhasbeenmassproducedindesignsusingfewer,largermodules–andintheChinasince2020andisusedinproductionmodelslikefuture,acell-to-vehicleassemblymethodwillbeHyundai,Kia,andGenesis[174].BYD’sbladepackisdesirabletoreducecostandweightofthevehicle.anotherexampleofacell-to-packdesign[175].Mostcarcompaniesarelookingtoinnovatecell-to-vehiclesolutionsinthefuture,andasEVsalesvolumesincrease,itcouldbecomefinanciallyviabletohavecelldesignswhicharebespoketoasinglemodelofvehicle.43电动汽车电池供应链投资指南电池管理系统1.什么是电池管理系统?锂离子电池在运行期间必须进行管理。如果它们过度充电、•控制电池冷却和/或加热系统过度放电、短路或过热,它们会更快降解,或者在极端情况下,可能会进入“热失控”状态,从而导致火灾。由于电池组•保留和传达诊断信息通常包含许多并联和串联的电池,因此需要电池管理系统来单独管理每个电芯或电芯组,以实现最佳和安全的运行。这•保留“护照”数据,以便查询其材料成分、制造历史、意味着任何并联电芯块的温度和电压在任何时候都必须是已使用历史和当前健康状况——特别是用于再利用、再知的,并起作用。制造或回收目的电池管理系统(BMS)一词是指通过控制和保护电池组的运行方式来管理电池组的电子系统。BMS提供的监督通常包括:2.英国的投资者有哪些机会?•提供电池保护,包括:BMS生产主要有两个机会,即硬件机会和算法/设计IP机会。硬件通常是低压微处理器和定制集成电路(ASIC),这与车•电气保护-确保电池组和电池组内部的连接保持辆中的任何其他电子设备没有什么不同。这些产品的制造可其电气绝缘(如果没有,则断开电池组),并确保以很容易地商品化和外包。BMS及其上运行的算法的IP设计电芯的电压和电流保持在安全性和耐用性的限度内有更大的机会。如果BMS可以帮助延长电池寿命或提高电池性能,那么它就有价值。•热保护-监控电芯温度,根据需要加热或冷却电池组,并在电芯面临热失控风险时采取安全措施因此,一个巨大的挑战是如何保护和捍卫该知识产权(很难•控制充电过程以获得尽可能快的充电而不影响耐用性证明另一家公司已将“你的”算法嵌入到他们的BMS中)。大型汽车制造商将保留BMS设计和算法。较小的汽车制造商会寻•“平衡”电芯,尤其是在充电过程中,以确保电池组中求以合理的价格购买可靠的BMS系统,但市场上很少有经过ISO26262认证且高质量的系统。然而,有几家英国初创公司较强的电芯和较弱的电芯都得到最佳利用正在设计高质量的BMS并寻求扩大规模生产。这些公司包括•估算电池剩余电量(充电状态)并向车辆控制系统Dukosi、Eatron和BrillPower,它们已经获得了Barclays、报告LegalandGeneral、IPGroup和NMCVentures的投资。•监控电池随时间的老化情况(健康状况)10GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINBatteryManagementSystems1.Whatisabatterymanagementsystem?Li-ionbatterycellsmustbemanagedduring•Controllingthebatterycoolingand/orheatingoperation.Iftheyareovercharged,overdischarged,systemsshortcircuitedorallowedtooverheatthentheywilldegrademorequickly,orinextremecases,maygo•Retainingandcommunicatingdiagnosticinto“thermalrunaway”whichmaycauseafire.Sinceinformationabatterypackgenerallycomprisesmanybatteriesinparallelandinseries,abatterymanagementsystem•Retaining“passport”datatoallowtheirmaterialsisrequiredtomanageeachcellorclusterofcellscontent,manufacturinghistory,usagehistory,andindividuallyforoptimumandsafeoperation.Thiscurrentstateofhealthtobeinterrogated–meansthatthetemperatureandvoltageofanyespeciallyforre-use,remanufacturingorrecyclingparallelblockofcellsmustbeknownandacteduponpurposesatalltimes.2.WhatopportunitiesarethereforThetermBatteryManagementSystem(BMS)referstoinvestorsintheUK?theelectronicsystemwhichmanagesabatterypack,bycontrollingandprotectingthewayinwhichitTherearetwomainopportunitiesinBMSproduction,operates.TheoversightthataBMSprovidestypicallynamelythehardwareopportuntiyandthealgorithm/includes:designIPopportunity.Thehardwareisgenerallylowvoltagemicroprocessorsandcustomapplication•Providingbatteryprotection,whichincludes:specificintegratedcircuits(ASIC),whichisnotdiffrerenttoanyotherelectronicdeviceinavehicle.•Electricalprotection-ensuringtheconnectionsManufactureofthesecanbeeasilycommoditisedtothebatterypackandwithinthebatterypackandoutsourced.Thereisagreateropportunityintheretaintheirelectricalinsulation(andIPdesignoftheBMSandthealgorithmsthatrunonit.disconnectingthepackiftheydonot),andIftheBMScanhelptomakethebatterylivelongerorensuringthevoltageandcurrentofthecellsisperformbetterthenthereisvaluetobehad.maintainedwithinlimitsforsafetyanddurabilityAbigchallengethereforeishowtoprotectand•Thermalprotection–monitoringthecelldefendthatIP(itcanbehardtoproveanothertemperatures,heatingorcoolingthepackifcompanyhasembedded"your"algorithmintotheirrequiredandtakingsafetymeasuresifthecellsBMS).BigautomakerswillkeepBMSdesignandareatriskofthermalrunawayalgorithmsin-house.SmallerautomakerswouldseektobuyreliableBMSsystemsatasensibleprice,but•ControllingthechargingprocesstogetthefastesttherearefewonthemarketwhichareISO26262possiblechargingwithoutimpactingdurabilitycertifiedandofhighquality.However,thereareseveralUKbasedstartupcompaniesthatare•“Balancing”thecells,especiallyduringcharging,todesigninghighqualityBMSandlookingtoscaleuptoensurethatstrongercellsandweakercellsinthelargeproduction.ThesecompaniesincludeDukosi,packareallutilizedtobesteffectEatronandBrillPower,whohavealreadysecuredinvestmentfromBarclays,LegalandGeneral,IPGroup•EstimatingandreportingtheamountofenergyandNMCventures[176].remaininginthebattery(StateofCharge)tothevehiclecontrolsystem•Monitoringhowthebatteryisageingovertime(StateofHealth)44电动汽车电池供应链投资指南3.全球和英国的电池管理系统市场是什么样4.电池管理系统有哪些最新创新?的?BMS架构在不断发展。随着BMS变得越来越普遍,许多半导2022年全球BMS市场规模为185亿美元,预计到2032年将达到体制造商已经拥有定制的BMS芯片,这使得BMS系统的构建551亿美元,2023年至2032年复合年增长率为19.5%。BMS市比以前更快、更便宜。BMS的价值越来越体现在算法而不场受到电动汽车和高功率应用(例如电网规模储能和电动飞是硬件平台上。有关创新的更多示例,请参阅“附录”。机)需求增长的推动。与电池一样,亚太地区的市场份额是全球最高且增长最快的,这归因于该地区对电动汽车和可再生能源解决方案的需求增加。北美的BMS市场份额也很大,并且由于可再生能源的采用不断增加以及对储能解决方案的需求而不断增长,其中特斯拉是主要参与者。11GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN3.Whatdoesthebatterymanagement4.Whatarethelatestinnovationsinsystemmarketlooklike,globallyandinbatterymanagementsystems?theUK?BMSarchitecturesarecontinuouslyevolving.AsBMSTheglobalBMSmarketsizewasvaluedatUSD18.5becomesmoreprevalent,manysemiconductorbillionin2022andisforecastedtoreachUSD55.1manufacturersalreadyhavecustomBMSchips,billionby2032,representinga19.5%CAGRbetweenwhichmakestheconstructionofaBMSsystemfar2023and2032[177].TheBMSmarketisbeingdrivenbyfasterandcheaperthanitusedtobe.IncreasinglyanincreaseindemandforEVsandhigh-powerthevalueintheBMSisinthealgorithmsratherthanapplicationssuchasgrid-scaleenergystorageandthehardwareplatform.See'Appendix'forfurtherelectricalaircraft.Aswithbatteries,theAsiaPacificexamplesofinnovations.region’smarketshareisthehighestandfastestgrowingglobally,attributabletotheregion’sincreaseindemandforEVsandrenewableenergysolutions.NorthAmerica’sBMSmarketshareisalsosignificantandisgrowingasaresultofincreasingadoptionofrenewableenergysources,andtheneedforenergystoragesolutions,withTeslaamajorplayer.45电动汽车电池供应链投资指南7.二次利用及回收如果动员足够的投资来扩展技术和流程,那么最早到2030年,电池的再利用和回收就可以在全球范围内产生约340亿美元的额外收入。46GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN7.SecondUse&RecyclingThereuseandrecyclingofbatteriescouldgenerateadditionalrevenueofapproximatelyUSD34billion[178]globallybyasearlyas2030ifenoughinvestmentismobilisedtoallowtechnologiesandprocessestoscale.46电动汽车电池供应链投资指南二次利用与回收1.电池在电动汽车中使用后会发生什么变化?这些优势既可以降低项目原材料供应的风险,又可以降低电动汽车的生命周期排放。未来几年电动汽车的强劲普及将产生大量的制造电池废料以2.英国EOL流程的投资者机会在哪里?及电动汽车中已完成首次使用寿命的电池。在第一辆电动汽车的使用寿命终止(EOL)时,英国的绝大多数电池都会被英国是欧洲最大的电动汽车市场之一,这意味着大量电池预收集并送往欧盟进行回收利用。考虑到从汽车电池中提取价计将可供二次使用或回收。到2040年,每年将有约140万个值的潜在方法有很多,扩大处理废旧电动汽车电池的能力提EOL电动汽车电池组进入市场。新的回收行业存在巨大的机遇,出了挑战,但同时也是一个重大机遇。因为许多欧洲电池和汽车制造商将寻找当地回收商作为原材料来源,并为其EOL电池提供承购。最近批准的欧盟电池法规目前,在电池首次用于车辆后,可以通过三种潜在途径从电将促进该行业的发展,该法规旨在增加本地电池制造,并规池中获取额外价值:定电动汽车电池中回收材料的最低限度和不断提高的门槛。1.再制造-翻新用过的电池组,例如在将电池用于扩大EOL流程运营规模为早期和后期投资者提供了机会。这些同一辆或另一辆电动汽车之前更换或升级一些电项目需要尽快启动,通过规划、许可、工厂建设和工艺开发池组件。的建立过程取得进展,并在原料和收入开始增长时做好准备。2.重新利用-将电池重新用于不同于其原始生产用途的第二次用途。3.回收-分解电池以回收其有价值的原材料。电池在3.EOL流程面临哪些挑战?制造过程中也会因不符合电动汽车的质量要求而被报废,这为回收技术公司与超级工厂合作创造了机会。总而言之,到2040年,这些可以帮助将制造电池所需的原上述所有三种途径都提出了一些技术和操作挑战。例如,由材料的主要供应需求减少多达12%,并且还有助于在供应链于电池体积和重量相当大,拆卸和运输电池需要大量成本。内创建循环经济,从而有助于减少浪费并最大限度地减少此外,,市场上不同的电池在其电池组配方和化学成分方面能源消耗;回收工厂生产的原材料产生的温室气体排放量各不相同,这可能会导致处理它们的复杂性和增加的成本。估计比开采材料低23%。另4一7种途径:“更换”也很重要,在需要时更换电池模块和电池组的组件以延长使用寿命。这对于调整原始组件的设计以使其可替换具有重要意义。GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINSecondUse&Recycling1.WhathappenstoabatteryafteritisusedTheseadvantagesbothmitigatetherisksofrawinanEV?materialsupplyforprojects,andcanresultinlowerlifecycleemissionsforEVs.ThestronguptakeofEVsoverthecomingyearswillproducelargeamountsofbothmanufacturing2.Wherearetheopportunitiesforinvestorsbatterywaste,andbatteriesthathavecompletedainEOLprocessesintheUK?firstlifeinanEV.Attheendoflife(EOL)intheirfirstEV,thevastmajorityofbatteriesintheUKarecollectedTheUKhasoneofthelargestEVmarketsinEurope,andsenttotheEUforrecycling[179].ScalingwhichmeansthatlargeamountsofbatteriesarecapabilitiestoprocessusedEVbatteriespresentsexpectedtobeavailableforsecond-useorrecycling.challenges,butalsoasignificantopportunity,givenBy2040therewillbeapproximately1.4millionEOLEVthemanypotentialwaystoextractvaluefrombatterypacksenteringthemarketeveryyear[182].automotivebatteries.ThereisahugeopportunityforanewrecyclingindustrytoemergeasmanyEuropeanbatteryandTherearecurrentlythreepotentialpathwaystovehicleautomakerswillbelookingforlocalrecyclersextractadditionalvaluefromabatteryafteritsfirstbothtoasasourceofrawmaterial,andtoprovideuseinavehicle:offtakefortheirEOLbatteries.ThisindustrywillbecatalysedbytherecentlyapprovedEUbattery1.Remanufacture-Refurbishingusedbatteryregulationswhichseekstoincreaselocalbatterypacks,forexamplebyreplacingorupgradingmanufacturingandmandateminimumandsomeofthebatterycomponentsbeforetheincreasingthresholdsofrecycledmaterialinEVbatteryisthenusedinthesameoranotherEV.batteries.2.Repurpose-RepurposingthebatteryinasecondScalingupEOLprocessoperationspresentsanusethatisdifferentfromitsoriginalproductionopportunityforbothearlyandlatestageinvestors.purpose.Theseprojectsneedtostartassoonaspossible,toprogressthroughtheestablishmentprocessesof3.Recycle-Breakingthebatterydowntorecoveritsplanning,permitting,plantconstructionandprocessvaluablerawmaterials.Batteriesarealsodevelopment,tobereadywhenfeedstocksandscrappedduringthethemanufacturingprocessrevenuesstarttogrow.forfailingtomeetqualityrequirementsforEVs,whichcreatesanopportunityforrecycling3.WhatarethechallengeswithEOLtechnologycompaniestoworkalongsideprocesses?gigafactories.AllthreepathwaysabovepresentsomeTakentogether,thesecouldhelpreducetheprimarytechnologicalandoperationalchallenges.Forsupplyrequirementforrawmaterialsneededtoexample,removingandtransportingbatteriesmakebatteriesbyupto12%by2040[180],andalsorequiressignificantcostduetotheirconsiderablebulkhelpcreatecirculareconomieswithinthesupplyandweight[183].Additionally,thedifferentbatteriesinchainthatcouldhelpreducewasteandminimisethemarketvaryintermsoftheirpackformulationandenergyconsumption;rawmaterialproducedfromchemistry,whichcancausecomplexity–andaddedrecyclingplantsproduceanestimated23%lowerGHGemissionsthanminedmaterial[181].47Anotherpathway:'Replace'isalsoimportantwherebycomponentsofthecellmoduleandpackarereplacedwhenneededtoextendoperatinglife.Thishasimplicationsforadaptingthedesignoftheoriginalcomponentstobereplaceable.电动汽车电池供应链投资指南这些成本的重要性在很大程度上取决于再制造和重新利用的5.电池什么时候适合二次使用?电池是否可以比新电池的成本(持续下降)更便宜,从而推动消费者需求。汽车制造商需要电池能够在一次充电中提供一定的行驶里程,并提供足够的电力以能够以一定的速度驱动车辆。因此,大还存在有关二次电池责任的问题,特别是与电池安全有关的多数新电动汽车电池保证其原始容量和功率SOH的70%或80%;问题。在英国,处理EOL电池的责任包含在2009年废电池和数据表明,当今大多数电动汽车需要十多年才能达到这一水蓄电池法规中。然而,这已经过时了,因为它不涉及锂离子平。各国也在努力实现这一标准化-2022年,联合国欧洲经技术,并且对于哪些方对重新利用的电池安全问题承担责任济委员会(UNECE)更新了法规,旨在制定电动汽车电池耐用存在监管不确定性。电池健康证书等创新可以帮助跟踪电池性标准。这些规定要求在8年或10万英里的行驶里程后,剩余安全并为消费者提供信心。容量至少为70%。目前欧洲将于2027年采用耐用性标准(英国尚未确认,仍在考虑实施方案)。4.什么是电池退化?为什么它很重要?低于电动汽车所需SOH的电池可能仍适用于要求较低的其他应用,这为再制造或重新利用创造了机会。例如,在固定存储随着时间的推移,电池的物理性能会下降,从而降低性能并应用中,容量不足可以通过更大容量的电芯来补偿。不同的最终使其不适合在电动汽车中使用。电池当前能够支持的容应用可能需要更高的容量而不是功率,反之亦然,这意味着量或功率比例称为其健康状态(SOH)。一种类型的SOH可能比另一种更重要;电网频率平衡等应用需要高功率但容量较小,而太阳能光伏存储需要的容量多于功低于一定的SOH,电池有更快退化和变得不安全的风险-此率(两者均在下面讨论)。时它们将达到其使用寿命,可能只适合回收。电池何时达到这一点可能很难预测,因为这取决于应用和使用,然而最近6.确定电池健康状态的挑战和创新是什的数据表明,对于当今制造的大多数电动汽车电池来说,可么?能不会长达20年。随着新电池容量的不断提高,剩余使用寿命也将不断增加。对于当前一代的电池,更多有关性能和老预测电池何时达到特定的SOH存在挑战,因为单个电池在不同化的数据将增加确定电池何时适合二次使用以及何时应回收的使用方式/不同的条件下会出现不同的退化。的信心。使用快速充电器、暴露于较高或较低的温度、以较高的速度使用车辆,甚至长时间保持电池充满电等因素都可能导致电池更快退化。14GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINcosts–toprocessthem.Theimportanceofthese5.Whenisabatterysuitableforasecond-costswilldependlargelyonwhetherremanufacturedlife?andrepurposedbatteriescanbecheaperthanthecostofnewbatteries(whichcontinuetofall)todriveAutomakersneedthebatteriestobeabletodeliveraconsumerdemand[184].certainrangeinasinglechargeandenoughpowertobecapableofdrivingthevehiclecertainspeeds.AsTherearealsoquestionsregardingliabilityforsuch,mostnewEVbatteriesarewarrantedto70%orsecond-lifebatteries,especiallyinrelationtobattery80%oftheiroriginalcapacityandpowerSOH;datasafety.IntheUK,theresponsibilityfordealingwithEOLsuggestsmostEVstodaywouldtakemorethantenbatteriesiscoveredunderWasteBatteriesandyearstoreachthislevel[188].CountriesarealsoworkingAccumulatorsRegulations2009[185].However,thisistostandardisethis-in2022,theUnitedNationsoutofdatesinceitdoesnotrefertoLi-ionEconomicCommissionforEurope(UNECE)updatedtechnologiesandthereisregulatoryuncertaintyregulationswiththeaimofdevelopingabatteryaboutwhichpartiesbearresponsibilityfordurabilitystandardforEVs.Thesemandatearepurposedbatterysafetyissues[186].Innovationslikeminimumof70%capacityremainingafter8years,orBatteryHealthCertificatescouldhelptrackbattery100,000milesinrange.Thedurabilitystandardsaresafetyandprovideconfidenceforconsumers.currentlytobeadoptedinEuropein2027(itisyettobeconfirmedintheUKwhichisstillconsidering4.Whatisbatterydegradationandwhyisoptionsforimplementation)[189].itimportant?BatterieswithlessthantheSOHrequiredforanEVBatteriesphysicallydegradeovertime,whichreducesmaystillbesuitableforotherapplicationswhichhaveperformanceandeventuallymakesthemunsuitablelowerdemands,whichcreatestheopportunityforforuseinanEV.Thecurrentproportionofcapacityorremanufacturingorrepurposing.Forexample,inpowerabatteryisabletosupportisknownasitsstatestationarystorageapplications,lackofcapacitycanofhealth(SOH).becompensatedforwithahighervolumeofcells.DifferentapplicationsmayrequireahighercapacityBelowacertainSOH,batteriesareatriskofdegradingratherthanpower,orviceversa,whichmeansthatmorequicklyandbecomingunsafe-atwhichpointonetypeofSOHmaybemoreimportantthanthetheywillhavereachedtheendoftheirusefullifeandother;applicationslikefrequencybalancingonthemayonlybesuitableforrecycling.Exactlywhengridrequirehighpowerbutlesscapacity,whereasbatterieswillreachthispointcanbedifficulttosolarPVstorageneedscapacitymorethanpowerpredict,asitdependsonapplicationanduse,(bothdiscussedbelow).howeverthereisrecentdatawhichsuggeststhatitmaynotbeforupto20yearsformostEVbatteries6.Whatarethechallengesandmanufacturedtoday[187].Asthecapacityofnewinnovationsindeterminingbatterybatteriescontinuestoimprove,remainingusefullifestateofhealth?willalsocontinuetoincrease.Forthecurrentgenerationofbatteries,moredataaboutTherearechallengeswithpredictingwhenabatteryperformanceandageingwillincreaseconfidenceinwillreachacertainSOHbecauseindividualbatteriesdeterminingwhenabatteryissuitableforasecond-willdegradedifferentlyastheyareusedlifeapplication,andwhenitshouldberecycled.differently/underdifferentconditions.Factorssuchasuseofrapidchargers,exposuretohigherorlowertemperatures,usingthevehicleathigherspeeds,orevenkeepingthebatteryfullychargedforextendedperiodsoftimecanallcausebatteriestodegradefaster.48电动汽车电池供应链投资指南汽车制造商通常会使用BMS监控电池的SOH。尽管传统上这些这些技术包括:数据仅在汽车制造商有权访问车辆时收集,例如在保养车辆时。许多汽车制造商现在通过汽车上的手机链接收集遥测数1.放电模型-开发用于将SOH测试时间从几小时缩短至据。这意味着汽车制造商能够更密切地监控电池的健康状况,几分钟。如有必要甚至可以要求客户将车辆送去维修。这些数据还可以改进未来电池的设计。2.数字孪生-一种电池模型,可以通过模拟运行来预测汽车制造商基本上不愿意与第三方共享SOH数据,这意味着电池可能对什么敏感以及汽车的最终状况是什么,通重新利用和翻新公司通常被迫接受他们购买的电池可能无法常使用机器学习。这些模型还可以输入驾驶和充电行使用的风险,或者在收到电池后寻找测量电池性能的方法。为等实时数据,使公司能够构建SOH的图像,并预测其在缺乏汽车制造商数据的情况下,各公司正在创新确定电芯可能如何退化。数字孪生也是电池护照的关键推动因状况的新方法。素,因为它们可以实现供应链跟踪。有关电池护照的更多信息,请参阅第26页。有关英国在该领域的机会的示例,请参阅附录。15GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINAutomakerswilltypicallymonitortheSOHofabatteryThesetechnologiesinclude:usingtheBMS.Althoughtraditionallythisdatawasonlygatheredwhentheautomakerhadaccessto1.Dischargemodels-developedtoreduceSOHtestthevehicle,forexamplewhenitwasserviced.Manytimefromhourstominutes.automakersarenowcollectingtelemetrydataviamobilephonelinksfromcars.Thismeansautomakers2.Digitaltwin-amodelofabatterythatcanberunareabletomonitorthehealthofthebatterymorethroughsimulationstopredictwhatthebatteryclosely,andifnecessaryevenrequestthatthemightbesensitivetoandwhatitsendofcarcustomerbringthevehicleinforrepair.Thedataalsoconditionwillbe,oftenusingmachinelearning.enablesimproveddesignoffuturebatteries.Thesemodelscanalsobefedreal-timedatasuchasdrivingandchargingbehaviourtoenableAutomakershavelargelybeenunwillingtoshareSOHcompaniestobuildapictureoftheSOH,anddatawiththirdparties[190],whichmeansrepurposingpredicthowitmightdegrade.Digitaltwinsarealsoandrefurbishingcompaniesareoftenforcedtoakeyenablerforbatterypassportsbecausetheyaccepttheriskthatabatterytheyareacquiringenablesupplychaintracking.Formoreinformationmightbeunusable,orfindwaystomeasuretheonbatterypassports,seepage26.batteryperformanceoncetheyreceiveit.Intheabsenceofdatafromautomakers,companiesareForexamplesofUKopportunitiesinthisarea,seetheinnovatingnewwaysofdeterminingtheconditionofAppendix.cells.49电动汽车电池供应链投资指南重新调整用途回收1.汽车电池还有哪些二次用途?2.目前主要使用的电池回收技术有哪些?二次使用汽车电池有几个成熟的用例:回收工厂通常会使用下面详述的两种不同方法中的一种,尽管公司正在尝试混合方法,将两种方法结合起来,以最大限•能源供应商和电网运营商-能源存储系统可以使能源度地提高材料回收率。供应商和电网运营商利用电网稳定和电力套利的机会,通过在有过剩的供应时存储可再生能源,以供在稀缺1.火法冶金:熔炼电池以产生熔渣与贵重金属合金的时期使用。混合废料。然后该合金需要进一步加工以将材料回收为可用的形式。该方法可用于回收不同化学类型的电•拥有分布式能源的家庭和个人-消费者可以储存来池,但仅回收某些原材料(钴和镍,但不回收锰或自电网和家庭能源系统的能源,比如屋顶太阳能。锂),回收率一般不高于50%,并且是能源密集型的。•能源社区-华威制造集团正在华威大学开展一个项目,2.湿法冶金:通过拆卸或粉碎进行机械加工。然后以“黑块”的形式收集阳极和阴极材料,然后使用强酸从将电动汽车电池重新用作离网社区的小型电池能源存分离的材料中浸出活性材料。这可以使产率高达99%,储系统。但它更耗时,使用更多的水,并且没有电解质回收。有关英国在该领域的机会的示例,请参阅附录。16GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINRe-purposeRecycle1.Whatsecond-usescanautomotive2.Whatarethemainbatteryrecyclingbatterieshave?technologiesusedtoday?Thereareseveralwell-establishedusecasesforRecyclingplantswillgenerallyuseoneoftwodifferentsecond-useautomotivebatteries:approachesdetailedbelow,thoughcompaniesareexperimentingwithhybridapproacheswhichinvolve•EnergySuppliers&GridOperators-Energyacombinationofthetwoinanefforttomaximisestoragesystemscanenableenergysuppliersandmaterialrecoveryrates[191].gridoperatorstotakeadvantageofgridstabilisingandpower-arbitrageopportunitiesbystoring1.Pyrometallurgical:smeltingthebatterytocreaterenewablepowerwhenthereisexcesssupplyforamixedwasteproductofslagalongsideanalloyuseduringperiodsofscarcity.ofthevaluablemetals.Thealloythenneedsfurtherprocessingtorecoverthematerialsina•Homes&IndividualswithDistributedEnergyusableform.ThismethodcanbeusedtorecycleResources-Consumerscanstoreenergyfrombatteriesofvaryingchemistrytypes,butitonlythegridandtheirhomeenergysystems,suchasrecoverscertainrawmaterials(cobaltandnickelroof-topsolar.butnotmanganeseorlithium),therecoveryratesaregenerallynohigherthan50%[192],anditis•EnergyCommunities-WarwickManufacturingenergyintensive[193].GrouparerunningaprojectattheUniversityofWarwicktorepurposeEVbatteriesassmallbattery2.Hydrometallurgical:mechanicalprocessingenergystoragesystemsforoff-gridcommunities.throughdismantlingorshredding.TheanodeandcathodematerialsarethencollectedintheformForexamplesofUKopportunitiesinthisarea,seetheof“BlackMass”,andactivematerialsarethenAppendix.leachedfromtheseparatedmaterialusingstrongacids.Thiscanresultinyieldofupto99%[194][195],howeveritismoretime-intensive,usesmorewater,andthereisnoelectrolyterecovery.50电动汽车电池供应链投资指南通常在回收过程中可回收的最有价值的矿物是在阴极中发例如,高镍电池的返利要高得多,因为它们含有有价值的镍和现的矿物,包括锂、钴、锰和镍,如图20所示。因此,电钴,而LFP电池通常是回收的成本负担,因为它们含有低价值池的化学性质会极大地影响其回收利用的经济可行性。的材料,如磷和铁。图19:比较新电芯和EOL电芯的价值明细EOL电池的价值新电池的成本正极活性物质阴极活性物质石墨负极集流体负极集流体石墨碳+粘合剂正极集流体正极集流体隔膜电解质3.电池回收的主要创新是什么?这样做使他们能够通过使用超级工厂的废料来避免EOL电池的缺乏,也意味着他们可以为客户提供碳足迹较低的化学品。正在进行研究以优化当前流程,并创新提取原材料的新技英国的Ecoshred最近获得了182万英镑的赠款资金,用于开发术。劳动力通常占回收工厂成本的23%,有些公司希望通技术以优化从超级工厂废料中回收材料。过机器人技术实现部分流程的自动化。其他公司正在努力提高这些流程的能力。例如,美国的RedwoodMaterials正在建造一座湿法冶金厂,能够处理开采和回收的材料。17GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINThemostvaluablemineralsthataretypicallynickelbatteriesyieldmuchhigherrebatesbecauserecoverableinrecyclingarethosefoundinthetheycontainvaluablenickelandcobalt,whereLFPcathode[196],includinglithium,cobalt,manganesebatteriesareoftenacostburdentorecycle,sinceandnickelasseeninFigure20.Thechemistryofthetheyinsteadcontainlowervaluematerialssuchasbatterycanthereforegreatlyaffectwhetheritisphosphorusandiron..economicallyviabletorecycle.Forexample,high-Figure19:ComparingtheBreakdowninValueofNewandEOLCellsCostofNewCellsValueinEOLCells11%5%13%43%14%2%43%79%3%3%19%PositiveactivematerialCathodeactivematerialGraphiteNegativecurrentcollectorNegativecurrentcollectorGraphiteCarbon+bindersPositivecurrentcollectorPositivecurrentcollectorSeparatorElectolyte3.Whatarethemaininnovationsinbatteryrecycling?Researchisongoingtooptimisecurrentprocesses,asbothminedandrecycledmaterials.DoingsoenableswellasinnovatenewtechnologiestoextractrawthemtocircumventthelackofEOLbatteriesbymaterials.Labourtypicallyaccountsfor23%ofainsteadusinggigafactoryscrap,andalsomeansrecyclingplant’scosts,andtherearecompaniestheycanoffercustomerschemicalswithalowerlookingtoautomatepartsoftheprocessthroughcarbonfootprint.EcoshredintheUKhaverecentlyrobotics[197].OthercompaniesareworkingtoimprovereceivedGBP1.82millioningrantfundingtodevelopthecapabilitiesoftheseprocesses.Forexample,technologytooptimisetherecoveryofmaterialsfromRedwoodMaterialsintheUSiscreatingagigafactorywasteproducts[198].hydrometallurgicalplantthatwillbeabletoprocess51电动汽车电池供应链投资指南一种新兴的替代回收技术是“直接阴极回收”,与当前的回收目前,由于很少有EOL电动汽车可供回收,电池回收往往发路线相比,它可以提高效率,因为它不涉及将电池分解成原生在电池制造附近,其商业案例在很大程度上基于制造废物始元素。相反,组件被分离,同时保留其结构,然后可以恢作的份为额原)料,。因因为此中,国中拥国有在大全多球数回电收芯能生力产中商占,据而主且导产地生位的(加80%复其初始性能和电化学容量。目的是阴极可以直接重新用于工废料数量也最多。最近,全球最大的电池生产商宁德时代制造新电池。它还提供了从其他组件中回收更多的潜在好处,例如在当前工艺中通常丢失的隔膜。能够从电池中提取更多投目资前的27锂.9离亿子英电镑池在回中收国能南力方增广加东省到建四设倍一以座上工,厂几,乎这是将中使国其目的价值将增加回收电池的经济可行性,特别是那些含有较少前回收能力的两倍。图20显示了截至2021年各地区的回收能有价值的原材料的电池。力。由于能够获得电芯制造过程中的废料和材料买家以及政府的4.全球电池再制造、再利用和回收市场如何?大力支持,韩国是锂离子电池回收领域的领导者之一。最近,政府投资250亿英镑支持一项为期四年的锂离子电池技术开在全球范围内,回收、再利用和重新利用电动汽车电池目前发项目,以开发支持电池回收和再利用的基础设施。是一个相对较新的市场,但预计将大幅增长。目前运营的大多数电池回收公司都是独立回收商,但汽车制造商、电池制欧洲和美国的电池制造商较少,因此材料和回收商也较少,造商、矿工和加工商开始进入市场。监管正在刺激增长,包但增加制造并规定电动汽车电池中回收材料阈值的立法(美括中国政府在过去几年发布了一系列指令来激励电池再利用,国的IRA和最近批准的欧盟电池指令)正在推动变革。不断而最近批准的欧盟电池材料回收法规可能会为EOL电池创造增长的回收能力预计将加剧全球电池制造商之间因废弃材料一个更有价值的市场。供应有限而展开的竞争,许多公司希望建立合作伙伴关系以获得回收材料。图20:全球回收能力(单位:吨)全球80%以上的电池回收能力位于中国德国1,500澳大利亚3,000比利时7,000美国韩国20,00024,000中国230,700资料来源:彭博新能源财经18GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINAnemergingalternativerecyclingtechnologyisAtpresent,withfewEOLEVstorecycle,battery"directcathoderecycling”whichcoulddeliverrecyclingtendstohappenclosetobatteryimprovedefficiencycomparedtocurrentrecyclingmanufacturing,anditsbusinesscaseisheavilybasedroutesasitdoesnotinvolvebreakingthebatteryonmanufacturingwasteasfeedstock.Asaresult,downintoitsrawelements.Instead,componentsareChinadominatesglobalrecyclingcapacity(80%separatedwhileretainingtheirstructure,whichcanshare[200])becauseithoststhemajorityofbatterycellthenberestoredwiththeirinitialpropertiesandproducers,whichalsogeneratethelargestquantityofelectrochemicalcapacity.Theintentionisthattheprocessscrap[201].Recently,CATL,theworld’slargestcathodecanthenbedirectlyreusedforthebatteryproducer,madeaninvestmentofGBP2.79manufactureofnewbatteries.ItalsooffersthebilliontobuildafacilityinGuangdong,southernChina,potentialbenefitofrecoveringmorefromtheotherwhichwouldmorethanquadrupleitscurrentLi-ioncomponents,suchastheseparatorswhicharebatteryrecyclingcapacity,andalmostdoubleChina’stypicallylostusingcurrentprocesses.Beingabletocurrentrecyclingcapacity[202].Figure20illustratesextractmorevaluefromthebatterieswillincreasetherecyclingcapacitiesbyregionasof2021.economicviabilityofrecyclingbatteries,especiallythosewhichcontainlessvaluablerawmaterials.SouthKoreaisoneofleadersintherecyclingofLi-ionbatteriesduetoaccesstoscrapfromthecell4.Whatdoesthemarketlooklikeformanufacturingprocessandbuyersofmaterials[203]batteryremanufacturing,repurposingandstronggovernmentsupport.Recently,theandrecyclingglobally?governmentinvestedGBP25billiontosupportafouryearLi-ionbatterytechnologydevelopmentprojectGlobally,recycling,re-usingandrepurposingEVtodevelopinfrastructuretosupportrecyclingandreusebatteriesiscurrentlyarelativelynewmarketbutisofbatteries[204].expectedtogrowsignificantly.MostbatteryrecyclingcompaniesoperatingtodayareindependentEuropeandtheUShostfewerbatterymanufacturersrecyclers,butautomakers,batterymanufacturers,andthereforehaslessmaterialandfewerrecyclers,minersandprocessorsarestartingtoenterthehoweverthelegislationtoincreasemanufacturingmarket.Regulationisspurringgrowth,includingtheandtomandatethresholdsofrecycledmaterialinEVChinesegovernmentissuingaseriesofdirectivesbatteries(theIRAintheUS,andtherecentlyapprovedoverthelastfewyearstoincentivisebatteryreuseEUBatteryDirective[205])isdrivingchange.Growing[199],andtherecentlyapprovedEUregulationsforrecyclingcapabilitiesisexpectedtointensifyrecyclingofbatterymaterialsislikelytocreateacompetitiongloballyfortheconstrainedsupplyofmorevaluablemarketforEOLbatteries.scrapamongstbatterymanufacturers,withmanycompanieslookingtoformpartnershipstosecurerecycledmaterial.Figure20:GlobalRecyclingCapacity,InTonsMorethan80%oftheworld’sbattery-recyclingcapacityislocatedinChinaGermany1,500Australia3,000Belgium7,000U.S.20,000SouthKorea24,000China230,700Source:BloombergNEF52电动汽车电池供应链投资指南例如,北美领先的电子废料回收商嘉能可最近与锂离子电鉴于机会不断增加,最近有许多公司宣布启动大规模回收项池回收商Li-Cycle建立了合作伙伴关系。该公司计划通过目,如果这些项目得以实现,将大大提高英国的回收能力。可转换债券投资2亿美元,向Li-Cycle提供电池回收原料,大多数运营商正在规划专门从事电池再利用和回收的设施,并建立电池材料的承购协议。嘉能可最近还宣布计划在意以确保收入的多样性。大利建造欧洲最大的电池回收工厂,预计到2027年竣工。5.英国目前处理EOL电池的能力有多大?•威立雅(Veolia)是一家废弃物管理公司,于2022年宣布,计划在英国开设一家新的电动汽车电池回收工厂,能够生产“黑块”。对于再制造和再利用,英国的多家公司已经在设计系统,•Gigamine打算在英国建立一个回收设施。2022年初,将电动汽车电池重新利用以用于各种二次使用应用,到该公司宣布进行种子轮融资,由早期基金7percent2030年,退役的电动汽车电池预计将提供其他行业电池需Ventures领投,包括FormulaE创始人在内的一批天使求的很大一部分。目前最大的公司包括ConnectedEnergy、投资者参与其中。Zenobe、Powervault和Acceleron。不过,汽车制造商也在推出二次利用举措–例如,捷豹路虎宣布与全球能源•Recyclus计划在西米德兰兹郡建立湿法冶金回收厂,领导者Pramac合作,开发一种便携式零排放储能装置,由目标是到2027年回收41,500吨。二次使用的捷豹I-PACE电池供电。•Altilium已从英国政府先进推进中心获得300万英镑在回收方面,英国目前没有足够的原料进行工业规模的回赠款,并从法拉第电池挑战赛获得632,000英镑,用收,因此大多数电池都出口到欧洲回收设施。随着EOL车于在蒂赛德建立电池回收工厂,据称,到2030年,该辆数量的增加,英国电池回收工厂将更容易建立强大的商工厂将能够生产足够的原材料,为英国20%的新电动业案例。如果在英国开设更多的超级工厂来提供制造废料,汽车提供动力。也会对英国的工厂有所帮助。英国的另一个机会是粉碎能力,因为欧洲上线的粉碎设施数量不断增加,使得“黑块”•EMR与政府、学术界和宾利、捷豹路虎和宝马等汽车贸易不断增长。制造商组成联盟,寻求开发新的回收技术。该项目已获得APC440万英镑的资助,旨在建立英国第一个商业规模的电动汽车电池组回收设施。•法拉第研究所ReLIB项目正在寻找有效分离电池芯中材料的新方法,而华威制造集团拥有一个高度活跃的电池回收小组。19GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINForexample,Glencore,theleadingrecyclerofInlightofthegrowingopportunitytherehavebeenaelectronicwasteinNorthAmerica,hasrecentlynumberofrecentannouncementsofcompaniesestablishedapartnershipwithLi-Cycle,aLi-ionlaunchinglargescalerecyclingprojectswhich,ifbatteryrecycler.ItissettoinvestUSD200millionviarealised,woulddramaticallyincreasetheUK’sconvertibledebt,andwillsupplyLi-Cyclewithbatteryrecyclingcapacity.Mostoperatorsareplanningrecyclingfeedstockandestablishofftakeagreementsfacilitiesthatspecialiseinboththereuseandforbatterymaterials.Glencorealsorecentlyrecyclingofbatteriestoensurediversityofincome.announcedplanstobuildEurope’slargestbatteryrecyclingplantinItaly,readyby2027[206].•Veolia,awastemanagementcompany,announcedin2022itsplanstoopenanewEV5.WhatarethecurrentUKcapacitiesforbatteryrecyclingplantcapableofproducingBlackdealingwithEOLbatteries?MassintheUK.Forremanufactureandrepurposing,various•GigamineintendstoestablisharecyclingfacilityincompaniesintheUKarealreadydesigningsystemstheUK.Inearly2022,itannouncedaseedroundforrepurposingEVbatteriesforavarietyofsecond-ledbyearly-stagefund7percentVentureswithuseapplications,andby2030retiredEVbatteriesareparticipationfromagroupofangelinvestorsexpectedtoprovideasignificantproportionoftheincludingthefounderofFormulaE.batterydemandfromothersectors[207].ThelargestcompaniescurrentlyincludeConnectedEnergy,•RecyclusislookingtoestablishaZenobe,PowervaultandAcceleron.However,hydrometallurgicalrecyclingplantintheWestautomakersarealsolaunchingsecond-useinitiativesMidlands,withaimstorecycle41,500tonsby2027.–forexample,JaguarLandRoverannouncedapartnershipwithPramac,aglobalenergyleader,to•AltiliumhasreceivedGBP3millioningrantdevelopaportablezero-emissionenergystorageunitfundingfromtheUKgovernment’sAdvancedpoweredbysecond-lifeJaguarI-PACEbatteries[208].PropulsionCentre,andGBP632,000fromFaradayBatteryCompetitiontosetupabatteryrecyclingForrecycling,theUKcurrentlyhasinsufficientplantinTeessidewhichitclaimswillbeabletofeedstockforrecyclingatindustrialscale,somostproduceenoughrawmaterialstopower20%ofbatteriesareexportedtoEuropeanrecyclingfacilities.newEVsproducedintheUKby2030.AsthevolumesofEOLvehiclesincrease,itwillbeeasierforUKbatteryrecyclingplantstomakeastrong•EMRisinaconsortiumwithgovernment,businesscase[209].UKplantswouldalsobehelpedifacademiaandautomakersincludingBentley,moregigafactoriesopenedintheUKtoprovideJaguarLand-RoverandBMWlookingtodevelopmanufacturingscrap.AnadditionalUKopportunityisnewrecyclingtechnologies.Theprojecthasshreddingcapabilities,asthegrowingnumberofreceivedGBP4.4millionfundingfromAPC,withtheshreddingfacilitiescomingonlineinEuropeisaimoftheestablishingtheUK'sfirstcommercial-enablingagrowingtradeinBlackMass[210].scalerecyclingfacilityforEVbatterypacks.•TheFaradayInstitutionReLIBprojectislookingatnovelwaystoefficientlyseparatethematerialsinbatterycells,andWarwickManufacturingGrouphasahighlyactivebatteryrecyclinggroup.53电动汽车电池供应链投资指南8.转型时期的政策和公共财政54GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN8.Policyandpublicfinanceforthetransition54电动汽车电池供应链投资指南转型时期的政策和公共财政1.全球电动汽车和电池制造的政策方向是什么?正如引言中所述,全球各国政府继续致力于交通电气化并2022年8月至2023年3月期间,主要的电动汽车和电池制造实现净零目标,刺激电动汽车的普及并增加对汽车电池的商宣布在北美电动汽车供应链上累计IRA后投资至少520亿需求。为了支持向零排放汽车的过渡,主要市场的政府也美元,其中50%用于电池制造,电池组件和电动汽车各占约在努力解决更广泛的电动汽车供应链问题,为汽车电池制20%。一些电池制造商已宣布打算将生产基地迁至美国,以造和供应链引入政策支持。这些政策已经刺激了大量的私利用所提供的激励措施。人投资,但也标志着全球竞争、国家支持和保护主义到达了一个新水平,这说明了该行业的战略重要性。一些关键欧盟干预措施总结如下。美国2023年初,欧盟发布了欧盟“绿色协议产业计划”,以回应IRA。该计划有与净零相关项目进展相关的四个关键支柱:2022年8月,美国推出了具有里程碑意义的《通胀削减法更快地批准生产设施(对超级工厂尤其重要)、财政支持、案》(IRA),旨在刺激国内对绿色技术的投资。该法案增强技能和开放贸易。它还推出了《净零工业法案》和通过赠款、贷款和税收抵免的方式向公共和私营实体提供《关键原材料法案》。这些法案设定了到2030年欧盟近90%3690亿美元的补贴,以激励当地对清洁技术的投资,包括的年度电池需求将由欧盟电池制造商满足的目标,并引入电动汽车、电动汽车电池和电池原材料的生产。这些补贴了规则,以实现电池供应链中提取、加工和回收的最低和涵盖了电池供应链的各个环节,从原材料开采到整车销售,不断提高的门槛。欧盟还推出了碳边界调整机制(CBAM),并且在每个阶段都增加了在美国进行生产的要求。它还为该机制将从2023年起对进口商品(例如欧盟以外生产的金电池原材料设定了最低门槛,这些原材料必须来自与美国属)中的碳排放征收进口税。签订自由贸易协定的国家,并且该门槛将随着时间的推移而提高。总的来说,为国内电池制造商提供的各种补贴估英国计能够覆盖电池制造总价格的三分之一。IRA刺激了大量投资并加剧了全球竞争。英国已经为汽车行业提供了广泛的支持,包括为研究、创新和扩展新兴技术提供多方面的资助。然而,英国尚未采取类似于欧盟“绿色协议”或美国《通胀削减法案》的更广泛战略来应对。预计会对这些政策做出回应,许多人认为这是非常必要的,以表明英国在全球竞争中的地位。21GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINPolicyandpublicfinanceforthetransition1.WhatisthepolicydirectionforEVsandbatterymanufacturingglobally?Asstatedintheintroduction,governmentsgloballyannouncedcumulativepost-IRAinvestmentsofatcontinuetocommittoelectrifytransportandmeetleastUSD52billioninNorthAmericanEVsupplynetzerotargets,stimulatingEVuptakeandincreasingchains–ofwhich50%isforbatterymanufacturing,thedemandforautomotivebatteries.Tosupporttheandabout20%eachforbatterycomponentsandEVtransitiontozeroemissionvehicles,governmentsin[212].SomebatterymanufacturershaveannouncedmajormarketsarealsoworkingtoaddressthewidertheirintenttomovemanufacturingsitestotheUStoEVsupplychain,introducingpolicysupportfortakeadvantageoftheincentivesoffered[213].automotivebatterymanufacturingandthesupplychains.ThepolicieshavealreadystimulatedhugeEUamountsofprivateinvestment,butalsosignalanewlevelofglobalcompetition,statesupportandInearly2023,theEUissueditsresponsetotheIRAwithprotectionismwhichspeakstothestrategicitsEUGreenDealIndustrialPlan[214].Theplanhasfourimportanceofthissector.Somekeyinterventionsarekeypillarsrelatedtoprogressonnetzero-relatedsummarisedbelow.projects:fasterpermittingforproductionfacilities(particularlyimportantforgigafactories),financialUSsupport,enhancedskills,andopentrade.ItalsointroducedtheNetZeroIndustryActandCriticalRawInAugust2022,theUSintroduceditslandmarkMaterialsAct.Thesesetambitionsfornearly90%ofInflationReductionAct(IRA),withtheaimofspurringtheEU’sannualbatterydemandtobemetbyEUdomesticinvestmentingreentechnology.TheActbatterymanufacturersby2030,andalsointroduceddevotedUSD369billioninsubsidiesthroughgrants,rulestoachieveminimumandincreasingthresholdsloansandtaxcreditstopublicandprivateentitiestoforextraction,processingandrecyclinginthebatteryincentiviselocalinvestmentincleantechnologies,supplychain.TheEUalsointroduceditsCarbonincludingproductionforEVs,EVbatteriesandbatteryBorderAdjustmentMechanism(CBAM)whichfromrawmaterials.Thesubsidiescoverthevarious2023willlevyanimporttaxonemissionsembeddedelementsofthebatterysupplychainfromrawinimportedgoods,suchasmetalsproducedoutsidematerialextractiontocompletedvehiclesaleand,attheEU.eachstage,addsrequirementsforproductiontotakeplaceintheUS.ItalsosetsaminimumthresholdforUKtherawmaterialsinabatterythatneedtocomefromcountrieswithwhichtheUShasafreetradeTheUKalreadyofferedextensivesupportfortheagreement,withthethresholdsettoincreaseoverautomotivesector,includingamulti-facetedgranttime.Intotal,thevarioussubsidiesonofferforlandscapeforresearch,innovation,andscalingdomesticbatterymanufacturersareestimatedtobeemergingtechnologies.However,theUKhasnotyetabletocoveruptoathirdofthetotalbatteryrespondedwithabroaderstrategysimilartotheEU’smanufacturingprice[211].GreenDealortheIRAintheUS.Aresponsetothesepoliciesisexpectedandmanyarguemuchneeded,TheIRAhasspurredsignificantinvestmentandtosignaltheUK’spositionintheglobalcompetition.increasedglobalcompetition.BetweenAugust2022TheChancellorhassaidhewillrespondbytheandMarch2023,majorEVandbatterymakers55电动汽车电池供应链投资指南财政大臣表示,他将在秋季声明中做出回应,工业界希望英国电池供应链企业可以获得哪些支持?出台一个完整的“产业战略”。尽管英国政府尚未宣布旗舰政策,但已采取干预措施支持电池供应链。其中包括更有多个组织为整个供应链的公司提供支持。这些组织共同构成新的关键矿产战略,旨在建立一个有弹性和可持续的关键了一个为处于不同发展阶段的公司提供支持的网络,如图21所矿产供应链,以支持英国的绿色产业和能源转型——其中示。电池材料是其中的核心部分。此外,据信捷豹路虎和塔塔正在与英国政府进行谈判,以获得财政支持,从而协助建设英国超级工厂。2.英国电池支持生态系统发展规模工业研究InvestmentandValue规模战略基于战略研究创新新完善产品,为市产品场做好准备建设科学超级大国扩大高科技业务开放访问随着超级工厂能汽车转型基金力扩大22GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINAutumnStatement[215],andindustryhopeforafull2.WhatsupportisavailableforcompaniesIndustrialStrategy.AlthoughtheUKGovernmentinthebatterysupplychainintheUK?hasnotannouncedaflagshippolicy,ithastakeninterventionstosupportthebatterysupplychain.ThereareseveralorganisationswhichoffersupporttoThisincludestheupdatedCriticalMineralsStrategy,companiesacrossthesupplychain.Togetherthesedesignedtobuildaresilientandsustainablecriticalorganisationsformasupportnetworkforcompaniesmineralssupplychaintosupportgreenindustriesatvariousstagesoftheirdevelopment,asshowninandtheenergytransitionintheUK–withmaterialsFigure21.forbatteriesformingacentralpartofthis.Additionally,JaguarLand-RoverandTataarebelievedtobeintalkswithUKgovernmenttosecurefinancialsupporttoassistwithbuildingaUK-basedgigafactory.Figure21:TheUKBatterySupportEcosystemScaleIndustrialResearchDevelopScaleStrategicInvestmentandValueInnovatenewRefineproductsproductsbasedontobereadyforstrategicresearchmarketBuildingaScienceScalinghigh-techOpenaccessAutomotiveSuperpowerbusinessesscaleupwithTransformationFundGigafactorycapability56电动汽车电池供应链投资指南法拉第电池挑战赛(FBC)先进推进中心(APC)认识到对电池供应链的需求,英国政府于2017年设立了法先进推进中心(APC)由英国政府和汽车行业于2013年成立,拉第电池挑战赛(FBC)。作为英国研究与创新(UKRI)旨在帮助组织开发尖端技术、建立供应链并投资向绿色交通一部分,FBC由InnovateUK提供,在2017年至2025年期运输过渡所需的设施。APC为处于不同阶段的企业提供支持。间投资5.41亿英镑,旨在支持英国世界级的电池科学、技术开发和制造规模扩大能力。FBC计划分为三个要素:•对于处于早期阶段的公司,APC提供了技术开发者加速器计划,该计划加速了100个低碳运输技术业务,其中•法拉第研究所投资2亿英镑,由27所英国大学的500名约40%以电池为重点。研究人员组成,从事应用启发的电池研究。它是一家从事电化学储能研究、技能开发、市场分析和早期商•对于那些进行中后期创新的企业,APC举办研发竞赛,业化的独立机构。它还充当协作研究社区,连接英国企业可以通过竞赛吸引30万至2000万英镑的赠款资金各地的大学团体。用于技术开发和产业化项目。APC的研发计划已为以电池为重点的项目提供了超过1.4亿英镑的资助。•合作研究和开发项目侧重于中等技术准备水平,由UKRI旗下的InnovateUK运营。除了赠款资金外,•对于希望扩大规模的公司,APC与英国商业贸易部和InnovateUK还提供以企业为中心的干预措施,包括协InnovateUK一起运营汽车转型基金(ATF)。ATF是一作研究和开发、技能和计划,帮助通过投资者准备计项长期计划,旨在帮助英国建立世界上最全面、最引划和跨部门电池系统创新网络(由知识转移网络(KTN)人注目的电动汽车供应链。ATF旨在通过向建设超级工提供)将企业与投资者联系起来。厂和相关供应链的公司提供大量资本支出补助来支持大规模工业化。公司可以吸引数十万英镑的赠款来开•耗资1.3亿英镑的英国电池工业化中心(UKBIC)是英国展经济规模扩大的可行性项目,并获得大量赠款支持的国家电池制造开发设施,帮助公司扩大电池技术规模来投资英国的生产能力。并使其商业化,以及提高电池制造工人的技能。这一开放准入设施仍然是欧洲唯一的此类设施,它使公司能够降低风险并增强投资者或客户对新技术的信心,而无需支付通常阻碍成功进展的进入壁垒的巨额资本成本。它提供了在实验室或原型规模上已被证明有前途的电池技术与成功的大规模生产之间缺失的联系。23GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINFaradayBatteryChallenge(FBC)AdvancedPropulsionCentre(APC)Inrecognitionoftheneedforabatterysupplychain,TheAdvancedPropulsionCentre(APC)wassetupbyUKgovernmentestablishedtheFaradayBatterytheUKgovernmentandtheautomotiveindustryinChallenge(FBC)in2017.DeliveredbyInnovateUKas2013toenableorganisationstodevelopcutting-edgepartofUKResearchandinnovation(UKRI),theFBCtechnologies,buildsupplychainsandinvestinthethroughaGBP541millioninvestmentbetween2017facilitiesrequiredtotransitiontogreentransport.and2025,aimstosupportaworld-classscientific,TheAPCofferssupporttocompaniesatdifferenttechnologydevelopmentandmanufacturingscale-stages.upcapabilityforbatteriesintheUK.TheFBCprogrammeissplitintothreeelements:•Forcompaniesatanearlierstage,theAPCoffersaTechnologyDeveloperAcceleratorProgramme,•TheFaradayInstitution,aGBP200millionwhichaccelerated100low-carbontransportinvestmentcomprisedof500researcherstechnologybusinesses,approximately40%ofundertakingapplication-inspiredbatteryresearchwhicharebatteryfocussed.across27UKuniversities.Itisanindependentinstituteforelectrochemicalenergystorage•Forthoseundertakingmid-to-latestageresearch,skillsdevelopment,marketanalysisandinnovation,theAPChasR&Dcompetitions,throughearly-stagecommercialisation.ItalsoactsasawhichcompaniescanattractbetweenGBPcollaborativeresearchcommunity,connecting300,000andGBP20milliongrantfundingtowardsuniversitygroupsacrosstheUK.technologydevelopmentandindustrialisationprojects.TheAPC’sR&Dprogrammehasprovided•CollaborativeresearchanddevelopmentoverGBP140millioningrantstobatteryfocussedprogrammesfocusedonmid-technologyprojects.readinesslevelsandrunbyInnovateUK,partofUKRI.Alongwithgrantfunding,InnovateUKprovides•Forcompanieslookingtoscale,theAPC,alongsidebusiness-focusedinterventionsincludingtheDepartmentforBusinessandTradeandcollaborativeresearchanddevelopment,skills,andInnovateUK,operatestheAutomotiveprogrammeshelpingtoconnectbusinesseswithTransformationFund(ATF).TheATFisalong-terminvestorsthroughtheirInvestorReadinessprogrammedesignedtoenabletheUKtobuildtheProgramme,andTheCross-SectorBatterySystemsworld’smostcomprehensiveandcompellingInnovationNetwork,deliveredbytheKTN,theelectrifiedvehiclesupplychain.TheATFisdesignedKnowledgeTransferNetwork.tosupportlarge-scaleindustrialisationthroughlargecapexgrantstocompaniesbuilding•The£130mUKBatteryIndustrialisationCentregigafactoriesandassociatedsupplychains.(UKBIC)istheUK’snationalbatterymanufacturingCompaniescanattractgrantsofafewhundreddevelopmentfacility,whichhelpscompaniestothousandpoundstoundertakeeconomicscale-scaleandcommercialisebatterytechnologies,andupfeasibilityprojects,throughtosignificantgranttoupskillworkersinbatterymanufacturing.StillthesupporttoinvestinproductioncapabilitiesintheonlyoneofitskindinEurope,theopenaccessUK.facilityallowscompaniestoreduceriskandincreaseinvestororcustomerconfidenceinnewtechnologieswithoutthemassivecapitalcostofentrybarriersthatoftenhinderssuccessfulprogress.Itprovidesthemissinglinkbetweenbatterytechnologywhichhasprovedpromisingatlaboratoryorprototypescale,andsuccessfulmassproduction[216].57电动汽车电池供应链投资指南InnovateUK和大学4.电池供应链需要投资者提供什么?InnovateUK是UKRI的一部分,提供各种其他支持机制。为了在竞争激烈的全球环境中确保电池供应,需要一定速度电池行业的公司可以申请SMART补助金,该补助金为能够和规模的资本,以实现制造能力的增长,从而满足不断增长“对英国经济产生重大影响”的创新提供高达2500万英镑的的需求。正如本指南所述,所需投资的规模和广度为广大投资金。最近,作为其关键矿产战略的一部分,英国政府还资者(包括已经熟悉该行业的投资者和刚接触该行业的投资宣布了1500万英镑的InnovateUK研发计划,重点关注创者)提供了巨大的机会。尽管电池供应链中已有成熟的参与建弹性稀土元素供应链。者,并且全球范围内竞争激烈,但该行业具有如此重要的战略意义,以至于世界各国政府正在制定新政策来吸引供应链英国大学也提供支持,例如华威大学旗下的华威制造集团。的各个方面。该供应链是多样化的,正如本指南所述,这意这包括能源创新中心、高价值制造业弹投公司(由Catapult味着英国该行业的投资者有各种机会。网络建立,由InnovateUK资助)以及位于考文垂的国家电池扩大设施。这些共同提供了一系列技术开发和电芯制造专家支持。3.还可以采取哪些措施将融资引入电池供应链?尽管赠款范围广泛,但寻求扩大规模的英国公司报告称,在某些发展阶段获得融资面临着挑战。所有新公司或新产品在发展过程中都可能面临“死亡之谷”。这是指规模扩张过程中融资可用性的缺口,其中的风险和所需资本与现有投资者的胃口不匹配。公司的扩张历程中会经历多个低谷。当公司寻求通过可行性研究、技术评估以及早期试点和制造来扩大规模时,就会出现早期的低谷。这些往往占据风险投资和更广泛的股权投资之间的空间。后来的低谷进一步扩大了现有业务。随着公司从早期现金流转向稳定收入,这往往更加关注债务。GFI开发了电池投资设施,旨在降低私营部门金融家的特定投资风险,并帮助释放公司成功所需的资本规模。欲了解更多信息,请访问greenfinanceinstitute.co.uk24GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINInnovateUKanduniversities4.Whatdoesthebatterysupplychainneedfrominvestors?InnovateUK,partofUKRI,offersvariousothersupportmechanisms[217].CompaniesinthebatterysectorcanTosecurebatterysupplyinacompetitiveglobalapplyforSMARTGrants,whichprovideuptoGBP25environment,capitalisneededatpaceandscaletomillionforinnovationsthatcan‘significantlyimpactenablethegrowthinmanufacturingcapacitytheUKeconomy'[218].Recently,aspartofitscriticalneededtomeetgrowingdemand.AsthisGuidehasmineralsstrategy,theUKGovernmentalsosetout,thesizeandbreadthoftheinvestmentannouncedGBP15millionInnovateUKR&Drequiredpresentsanenormousopportunityforaprogrammetofocusoncreatingaresilientsupplywiderangeofinvestors,boththosealreadyfamiliarchainofrareearthelements[219].with,andthosenewtothesector.Whilethereareestablishedplayers,andmuchcompetitiongloballyThereisalsosupportthroughUKuniversitiessuchaswithinthebatterysupplychain,thesectorisofsuchWarwickManufacturingGroup,partoftheUniversitystrategicimportancethatgovernmentsaroundtheofWarwick.ThisincludestheEnergyInnovationworldaredevelopingnewpoliciestoattractaspectsCentre[220],theHighValueManufacturingCatapultofthesupplychain.Thissupplychainisdiverse,and(establishedbytheCatapultnetwork,fundedbyasthisGuidehassetout,thismeansthereareInnovateUK),andthenationalbatteryscale-upvariousopportunitiesforinvestorswithinthissectorinfacilityinCoventry.TogethertheseprovidearangeoftheUK.technologydevelopmentandcellmanufacturespecialistsupport.3.Whatmorecanbedonetocrowdfinanceintothebatterysupplychain?Despitetheextensivegrantlandscape,UKcompanieslookingtoscaleupreportchallengesaccessingfinanceatcertainstagesofdevelopment.Allnewcompaniesorproductscanface‘ValleysofDeath’intheirevolution.Thisreferstothegapinfinanceavailabilityinthescaleupjourney,wheretherisksandcapitalrequireddonotmatchavailableinvestorappetite.Therearemultiplevalleysinacompany’sscaleupjourney.Earliervalleysoccurwhencompaniesareseekingtoscalewithfeasibilitystudies,technologicalassessments,andearly-stagepilotingandmanufacturing.Thesetendtooccupythespacebetweenventurecapitalandwiderequityinvestment.Latervalleysscaleuptheirexistingoperationsfurther.Thistendstobemoredebtfocusedascompaniesmovefromearlycashflowstowardsstablerevenue.TheGFIhasdevelopedaBatteryInvestmentFacility,whichaimstode-riskspecificinvestmentsforprivatesectorfinanciersandhelptounlockthescaleofcapitalrequiredforcompaniestosucceed.Formoreinformation,seegreenfinanceinstitute.co.uk58电动汽车电池供应链投资指南9.附录:案例研究59GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN9.Appendix:CaseStudies59电动汽车电池供应链投资指南案例研究原材料提取的支持技术:Fortescue收购Williams网络基础设施——使电网运营商能够转向可再生电力,例如AdvancedEngineering他们的100MWCapenhurst项目是第一个拥有无功功率服务商业合同的项目,也是欧洲直接连接到输电网络的最大电池。2022年,WAETechnologies(原名WilliamsAdvanced再利用——他们使用二次电池来创建临时电源,作为当地Engineering,威廉姆斯F1车队的子公司)被福特斯库金属柴油发电机的清洁能源替代品。这些电池被排列成组,通集团(FortescueMetalsGroup)以1.64亿英镑收购。常可以提供足够的电力来为五辆汽车充电。Fortescue计划利用该子公司开发配备全电动动力系统和大型电池的重型采矿车辆,全电动动力系统和大型电池都将其成功的关键是公司筹集资金的能力。Zenobe成立于2017年,在英国国内生产,并且已经宣布至少有一个英国生产基地。此后已通过可转换债务和股权融资筹集了约3.7亿英镑,其中包括来自私人投资者、管理层和纽约私募股权公司Tiger原材料加工:绿锂InfrastructurePartners的5000万英镑。该公司已筹集了2021年:获得汽车转型基金拨款,支持围绕其建设和运营大约10亿英镑的债务,最近的是2.35亿英镑的长期项目债务融资,以及由NatWest组建的五家银行集团提供的4亿英镑债型锂精炼厂计划的开发活动。务手风琴。该公司将利用这笔资金在苏格兰开发接下来的两2022年:获得160万英镑种子轮资金,通过原材料实验室测个电网规模的电池项目存储资产,这些资产将通过存储海上试工作分析、规划和环境范围界定以及基线调查和地面调查,风力发电机的能量为国家电网提供稳定服务。将项目带入下一阶段的开发。电池健康状况:Elysia电池管理系统:Dukosi作为William’sAdvancedEngineering的一部分,Elysia的Dukosi是一家位于苏格兰的电池管理初创公司,开发了一种软件使用电池数字孪生和远程信息处理数据来跟踪电池状况,使用近场通信技术的BMS芯片组。利用单个天线,该设计能为汽车制造商、车队运营商和电池资产融资者提供信息(例够直接监控和处理电池各个电芯的数据,并将这些数据无线如何时可能出现安全问题),从而为决策提供信息。例如,传输到中央BMS。这项技术使供应商能够重新设计电动汽车可以自动标记存在无法满足某些耐久性目标风险的电池,并中的电池,消除目前所需的95%以上的电缆,从而实现更轻、为每辆车提供具体建议。这可以帮助资产所有者保留电池的最终能量密度更高的电池组。剩余价值。EOL电池应用:Zenobe在某些情况下,公司正在整合多种业务模式,以产生替代和多元化的收入来源。例如,英国的Zenobe提供多种不同的赠送服务:车队管理——他们为车队运营商提供电网连接、充电基础设施设计和电池维修/更换的支持。26GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINCaseStudiesSupportingtechnolgiesforrawmaterialextraction:Networkinfrastructure–EnablinggridoperatorstoWilliamsAdvancedEngineeringtakeoverbymovetorenewableelectricity,forexampletheirFortescue100MWCapenhurstprojectisthefirsttohaveacommercialcontractforreactivepowerservicesandIn2022,WAETechnologies(formerlynamedWilliamsisthelargestbatterydirectlyconnectedtotheAdvancedEngineering,aspinoffoftheWilliamsF1transmissionnetworkinEurope.team)wasacquiredbyFortescueMetalsGroupforGBP164million.FortescueplanstousethesubsidiaryRe-use–Theyusesecond-lifebatteriestocreatetodevelopheavydutyminingvehicleswithfullytemporarypowersourceswhichrunasacleanelectricpowertrainsandlargebatteries,bothtobeenergyalternativetolocaldieselgenerators.TheseproduceddomesticallyintheUKwithatleastoneUKarearrangedintobanks,whichcantypicallyprovideproductionsitealreadyannounced[221].enoughpowertochargefivecars.Rawmaterialprocessing:GreenLithiumKeytoitssuccessisthecompany’sabilitytoraise2021:ReceivedagrantfromtheAutomotivefinance.Zenobewasfoundedin2017andhassinceTransformationFundtosupportdevelopmentactivityraisedanestimatedGBP370million[222]inconvertiblearounditsplantobuildandoperatealarge-scaledebtandequityfunding,includingGBP50millionlithiumrefinery.fromprivateinvestors,managementandNYCbasedprivateequityhouseTigerInfrastructurePartners.The2022:SecuredGBP1.6millioninSeedroundfundingtocompanyhasraisedcircaGBP1billionofdebt,mosttaketheprojecttothenextstageofdevelopmentrecentlyaGBP235millionlong-termprojectdebtthroughrawmateriallaboratorytest-workanalysis,facilitywithanaccordionofGBP400millionprovidedplanningandenvironmentalscopingandbaselinebyaconglomerateoffivebanks,structuredbysurveysandgroundinvestigation.NatWest.Thecompanywillusethefundingtodevelopitsnexttwogrid-scale,batteryprojectBatterymanagementsystems:DukosistorageassetsinScotlandwhichwillprovidestabilityDukosi,abatterymanagementstartupbasedinservicestotheNationalGridbystoringenergyfromScotland,hasdevelopedaBMSchipsetwhichusesoff-shorewindgenerators[223].nearfieldcommunicationtechnology.Withasingleantenna,thedesignisabletomonitorandprocessBatteryhealth:ElysiadatadirectlyontheindividualcellsofthebatteryandPartofWilliam’sAdvancedEngineering,Elysia’swirelesslycommunicatethisdatatothecentralBMS.softwareusesabatterydigitaltwinandtelematicsThistechnologyenablessupplierstore-architectdatatotrackbatteryconditiontoprovidebatteriesinEVs,removingover95%ofthecablesautomakers,fleetoperatorsandbatteryassetcurrentlyrequired,resultinginlighterand,ultimately,financierswithinformation,suchaswhentheremightmoreenergydensebatterypacks.besafetyissues,toinformdecision-making.Forexample,batteriesatriskofnotmeetingcertainEOLbatteryapplications:Zenobedurabilitytargetscanbeautomaticallyflagged,withInsomecases,companiesareintegratingmultiplespecificrecommendationsforeachvehicle.Thiscanbusinessmodelstogeneratealternativeandhelpassetownerspreservetheresidualvalueoftheirdiversifiedrevenuestreams.Forexample,Zenobeinbatteries.theUKisprovidingseveraldifferentcomplimentaryservices:Fleetmanagement–Theyprovidefleetoperatorswithsupportobtaininggridconnections,charginginfrastructuredesignandbatteryrepair/replacement.60电动汽车电池供应链投资指南新回收技术(直接回收):ReLib供应链管理和生命周期评估:Infyos英国的ReLiB正在利用超声波分层技术以低能耗和低酸消Infyos平台使公司能够了解整个供应链中的材料和供应商,耗的方式完全回收活性材料,从而开发出一种经济的LFP评估和报告影响以及包括人权问题在内的一系列风险,并帮电池回收方法。助构建内部工具来掌握公司净零目标和客户要求,以及遵守碳和电池立法。27GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINNewrecyclingtechnologies(directrecycling):Supplychainmanagement&lifecyleassessment:ReLibInfyosReLiBintheUKareusingultrasonicdelaminationtoTheInfyosplatformallowscompaniestogainvisibilityenablecompleterecoveryofactivematerialswithintomaterialsandsuppliersacrossthesupplychain,lowenergyandacidconsumptiontodevelopanassessandreportimpactandarangeofriskseconomicmethodofrecyclingLFPbatteries.includinghumanrightsconcerns,andhelpbuildinternaltoolstostayontopofcompanynet-zerogoalsandcustomerrequirementsandcomplywithcarbonandbatterylegislation.61电动汽车电池供应链投资指南定义/解释电池芯中的负极词汇表包含一个或一系列电池的装置,可储存可转换为电能的能量术语指电池单元内所含材料的具体化学性质阳极保护电芯免受超出限制的操作条件的影响,无论是预期应用施加的负载、用户电池的滥用还是不合适的充电方式电池化学电池安全电池芯中的正极通过化学能的直接转换提供电能来源的电化学装置阴极指特定电芯所使用的原材料电芯电池在失去性能之前可以完成的充电和放电循环次数组成循环寿命封闭在刚性圆柱体中的电池圆柱形电池含有离子的介质,通过这些离子的运动而导电,但不导电电子电解质能量密度能量密度:衡量电池所含能量与其重量或体积的比例。该测量通常以每千克瓦时(Wh/kg)或每升瓦时(Wh/l)表示格式(组)配方(化学)电池组的物理结构超级工厂化学物质的混合物,设计用于特定目的吉瓦时/年(GWh/yr)62一家生产大量电动汽车电池的大型工厂每年生产的吉瓦时(1GWh=1,000MWh)量GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINGlossaryDefinition/ExplanationTermThenegativeelectrodeinabatterycellAnodeBatteryAdevicecontaininganelectriccelloraseriesofelectriccellsstoringenergythatcanbeconvertedintoelectricalpowerBatterychemistryBatterysafetyReferstothespecificchemistryofthematerialscontainedwithinthebatterycellsCathodeCellProtectingthecellfromoutoflimitsoperatingconditions,eitherfromtheCompositionloadsimposedbytheintendedapplicationorabusebytheuserorfromCyclelifeunsuitablechargingregimesCylindricalcellElectrolyteThepositiveelectrodeinabatterycellEnergydensityTheelectrochemicalunitthatprovidesasourceofelectricalenergybyFormat(pack)directconversionofchemicalenergyFormulation(chemistry)GigafactoryReferstotherawmaterialsusedinaparticularcellGigawatt-hours/year(GWh/yr)Thenumberofchargeanddischargecyclesthatabatterycan62completebeforelosingperformanceAcellenclosedinarigidcylindercanAmediumcontainingionsthatiselectricallyconductingthroughthemovementofthoseions,butnotconductingelectronsEnergydensity:Themeasureofhowmuchenergyabatterycontainsinproportiontoitsweightorvolume.ThismeasurementistypicallypresentedinWatt-hoursperkilogram(Wh/kg)orWatts-hoursperlitre(Wh/l)ThephysicalstructureofabatterypackMixturesofchemicalsubstances,designedtobeusedforaparticularpurposeAlargefactorythatmakesverylargenumbersofbatteriesforelectricvehiclesTheamountofGigawatt-hours(1GWh=1,000MWh)producedperyear电动汽车电池供应链投资指南定义/解释利用水化学从矿石、精矿以及回收或残留材料中回收金属。术语一种采用磷酸铁锂作为阴极材料、金属背衬石墨碳电极作为阳极的锂离子电池湿法冶金磷酸铁锂(LFP)一种利用锂离子可逆还原来储存能量的可充电电池一组电池芯锂离子(Li-ion)阴极的一种模块围框内的一组电池模块锂镍锰钴氧化物(NMC)软电池设计,其中大部分电池组件封装在镀铝塑料薄膜中组将车辆发动机/电池的驱动力传输至车轴的机制软包电池其化学成分被封装在棱柱形刚性外壳中的电池动力系统对矿物、冶金矿石和精矿进行热处理,使材料发生物理和化学变化,从而回收有方形电池价值的金属。火法冶金放置在电池阳极和阴极之间的渗透膜隔膜采用固态技术,使用固体电极和固体电解质,而不是液体或聚合物凝胶电解质固体状态年累计产能超过5GWh,并有资格为中国以外的一家以上跨国原始设备制造商/一级制造商电动汽车生产商供货技术就绪水平(TRL)一种在项目采购阶段评估技术成熟度的方法温度性能指电池在不同温度条件下的性能电压两点之间的电势差63GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINTermDefinition/ExplanationHydrometallurgyUseofaqueouschemistryfortherecoveryofmetalsfromores,concentrates,andrecycledorresidualmaterials.Lithiumironphosphate(LFP)Atypeoflithium-ionbatteryusinglithiumironphosphateasthecathodematerial,andagraphiticcarbonelectrodewithametallicbackingastheanodeLithium-ion(Li-ion)AtypeofrechargeablebatterywhichusesthereversiblereductionoflithiumionstostoreenergyModuleAgroupingofbatterycellsLithium-Nickel-Manganese-AtypeofcathodeCobalt-Oxide(NMC)PackAsetofbatterymoduleswithinasurroundingenclosurePouchcellAsoftbatterydesignwheremostofthecellcomponentsareenclosedPowertraininanaluminum-coatedplasticfilmThemechanismthattransmitsthedrivefromtheengine/batteryofavehicletoitsaxlePrismaticcellAcellwhosechemistryisenclosedinaprismaticrigidcasingPyrometallurgyThermaltreatmentofmineralsandmetallurgicaloresandconcentratestobringaboutphysicalandchemicaltransformationsinthematerialstoenablerecoveryofvaluablemetals.SeparatorApermeablemembraneplacedbetweenabattery'sanodeandSolidstatecathodeTier1manufacturersDeployssolid-statetechnologyusingsolidelectrodesandasolidelectrolyte,insteadoftheliquidorpolymergelelectrolytesWithmorethan5GWhofannualcumulativeproductioncapacitywhoarealsoqualifiedtosupplymorethanonemultinationalOEM/EVproduceroutsideofChinaTechnologyreadinesslevelAmethodforestimatingthematurityoftechnologiesduringthe(TRL)acquisitionphaseofaprogramTemperatureperformanceReferringtotheperformanceofabatteryunderdifferenttemperatureconditionsVoltageThedifferenceinelectricpotentialbetweentwopoints63GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINBibliography1APCUK(2021,September)StrategicUKopportunitiesin16APCUK(2022,October)2025andBeyond:Promisingbatterycellpassengercarelectrification(summaryreport).innovationsfortheUKautomotivesector.https://apcuk.co.uk/app/uploads/2021/09/APC-Passenger-https://www.apcuk.co.uk/wp-car-electrification-report-online-v1.pdfcontent/uploads/2022/10/Battery-2025-Insight-Report...pdf2WorldBankGroup(2023,May)MineralsforClimateAction:The17IEA(2023,April)GlobalEVOutlook2023.MineralIntensityoftheCleanEnergyTransition.https://iea.blob.core.windows.net/assets/dacf14d2-eabc-https://pubdocs.worldbank.org/en/961711588875536384/Miner498a-8263-9f97fd5dc327/GEVO2023.pdfals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf18IEA(2023,April)GlobalEVOutlook2023.https://iea.blob.core.windows.net/assets/dacf14d2-eabc-3BenchmarkMinerals(2022,November)Themissingmiddle:UK’s498a-8263-9f97fd5dc327/GEVO2023.pdffirstlithiumrefineryhighlightsneedfordomesticbatterymaterials.https://source.benchmarkminerals.com/article/the-19CleanTechnica(2022,March)CanTeslaMeet2022GoalsForIn-missing-middle-uks-first-lithium-refinery-highlights-need-HouseBatteryProduction?for-domestic-battery-materialshttps://cleantechnica.com/2022/03/19/can-tesla-meet-2022-goals-for-in-house-battery-production/4McKinsey&Company(2022,January)Capturingthebatteryvalue-chainopportunity.20MiningTechnology(2023,March)FordpartnerswithValeandhttps://www.mckinsey.com/industries/electric-power-and-Huayouon$4.5bnnickelplantinIndonesia.natural-gas/our-insights/capturing-the-battery-value-https://www.mining-technology.com/news/ford-vale-nickel-chain-opportunityindonesia/#:~:text=Ford%20partners%20with%20Vale%20and,further%20processed%20into%20nickel%20sulphate.5VisualCapitalist(2022,February)Mapped:EVBatteryManufacturingCapacity,byRegion.21AutomotiveNewsEurope(2022,June)Stellantistakes$52https://www.visualcapitalist.com/sp/mapped-ev-battery-millionstakeinsustainablelithiumminerVulcanEnergy.manufacturing-capacity-by-region/https://europe.autonews.com/automakers/stellantis-takes-52-million-stake-sustainable-lithium-miner-vulcan-energy6APCUK(2019,July)HyperdriveopensUK’slargestindependentbatterymanufacturingfacility.22LithiumInvestingNews(2023,May)WheredoesTeslagetitshttps://www.apcuk.co.uk/hyperdrive-opens-uks-largest-lithium?https://investingnews.com/where-does-tesla-get-independent-battery-manufacturing-facility/lithium/7GEOTAB(2019,December)Whatcan6,000electricvehiclestell23Oilprice.com(2022,October)ChinaIsDominatingTheGlobalusaboutEVbatteryhealth?ElectricVehicleBatteryMarket.https://www.geotab.com/uk/blog/ev-battery-health/https://oilprice.com/Energy/Energy-General/China-Is-Dominating-The-Global-Electric-Vehicle-Battery-Market.html8WarwickUniversity(2020,September)AutomotiveLithiumionBatteryRecyclingintheUK.24Bloomberg(2021,December)HowChina'sCarBatterieshttps://warwick.ac.uk/fac/sci/wmg/business/transportelec/22ConqueredtheWorld.350m_wmg_battery_recycling_report_v7.pdfhttps://www.bloomberg.com/opinion/articles/2021-12-02/how-china-s-car-batteries-conquered-the-world9VoltaFoundation(2023,January)TheBatteryReport2022.https://report.volta.foundation/annual-battery-25BenchmarkMinerals(2022,May)Globalgigafactorypipelinereport/public/Battery_Report_2022.pdf?utm_medium=emailhits300;ChinadominatesbuttheWestgatherspace.&_hsmi=253710816&_hsenc=p2ANqtz-https://source.benchmarkminerals.com/article/global-87PN5ZTojDBDyKxuImdY38QbQuGkCSMzIKtHTCxQFYj0lzo2m1Fy3gigafactory-pipeline-hits-300-china-maintains-lead-but-l8a7Lu3_7ryHG7R3fjUbu0r0ogQIl-west-gathers-pacez0pyP68VQ&utm_content=253710816&utm_source=hs_automation26BenchmarkMinerals(2023,January)Whattoexpectforthelithiumionbatterymarketin2023.10PrecedenceResearch(2022,April)Lithium-ionBatteryMarket.https://source.benchmarkminerals.com/article/what-to-https://www.precedenceresearch.com/lithium-ion-battery-expect-for-the-lithium-ion-battey-market-in-2023market27TheTelegraph(2023,April)Electriccarpricewarloomsas11PrecedenceResearch(2022,April)Lithium-ionBatteryMarketRenaultplotsreductions.https://www.precedenceresearch.com/lithium-ion-battery-https://www.telegraph.co.uk/business/2023/04/18/electric-marketcar-price-war-looms-as-renault-plots-reductions/12BenchmarkMinerals(2023,April)UKstrategyneedstoalignwith28IEA(2022,July)GlobalSupplyChainsofEVBatteries.batteryambitions.https://iea.blob.core.windows.net/assets/4eb8c252-76b1-https://source.benchmarkminerals.com/article/uk-strategy-4710-8f5e-needs-to-align-with-battery-ambitions867e751c8dda/GlobalSupplyChainsofEVBatteries.pdf13IEA(2023,April)GlobalEVOutlook2023.29BenchmarkMinerals(2023,March)Europeneedsto“stepup”itshttps://iea.blob.core.windows.net/assets/dacf14d2-eabc-gametocompeteinglobalbatteryindustryŠefčovičsays498a-8263-9f97fd5dc327/GEVO2023.pdfEuropeneedsto“stepup”itsgametocompeteinglobalbatteryindustryŠefčovičsaysBenchmarkSource14UNEnvironmentProgramme(2022)EmissionsGapReport2022(https://source.benchmarkminerals.com/article/https://www.unep.org/resources/emissions-gap-report-2022europe-needs-to-step-up-its-game-to-compete-in-global-battery-industry-sefcovic-says)15McKinsey&Company(2023,January)Battery2030:Resilient,sustainable,andcircular.30BenchmarkMinerals(2022,December)Hungarysettobehttps://www.mckinsey.com/industries/automotive-and-Europe’sleadingtier1batteryproducerthisdecade.assembly/our-insights/battery-2030-resilient-sustainable-https://source.benchmarkminerals.com/article/hungary-set-and-circularto-be-europes-leading-tier-1-battery-producer-this-decade6431IEA(2022,July)GlobalSupplyChainsofEVBatteries.https://iea.blob.core.windows.net/assets/4eb8c252-76b1-4710-8f5e-867e751c8dda/GlobalSupplyChainsofEVBatteries.pdfGUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN32BenchmarkMinerals(2023,January)Whattoexpectforthe49BenchmarkMinerals(2022,November)Themissingmiddle:UK’slithiumionbatterymarketin2023.firstlithiumrefineryhighlightsneedfordomesticbatteryhttps://source.benchmarkminerals.com/article/what-to-materials.https://source.benchmarkminerals.com/article/the-expect-for-the-lithium-ion-battey-market-in-2023missing-middle-uks-first-lithium-refinery-highlights-need-for-domestic-battery-materials33Bloomberg(2022,June)Bnef’s2022ElectricVehicleOutlook.https://www.bloomberg.com/professional/blog/webinar/bnef50NikkeiAsia(2022,April)MitsubishiChemicaltoboostEVbatterys-2022-electric-vehicle-outlook/materialoutputoverseas.https://asia.nikkei.com/Business/Automobiles/Mitsubishi-34IEA(2023,April)GlobalEVOutlook2023.Chemical-to-boost-EV-battery-material-output-overseashttps://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf51BenchmarkMinerals(2022,November)Themissingmiddle:UK’sfirstlithiumrefineryhighlightsneedfordomesticbattery35SMMT(2023,March)RacetoZero:PoweringUpBritain’sEVmaterials.https://source.benchmarkminerals.com/article/the-SupplyChain.https://www.smmt.co.uk/wp-missing-middle-uks-first-lithium-refinery-highlights-need-content/uploads/sites/2/SMMT-Race-to-Zero-report.pdffor-domestic-battery-materials36SMMT(2023,January)UKcarproductiondownbutelectric52TheFaradayInstitute(2021,March)FaradayBriefing.Brexitandvehicleoutputsurgestonewrecord.Batteries:RulesofOrigin.https://faraday.ac.uk/wp-https://www.smmt.co.uk/2023/01/uk-car-production-down-content/uploads/2021/03/Brexit-TCA-Rules-of-Origin-for-but-electric-vehicle-output-surges-to-new-record/Batteries-press-briefing-FINAL-5March-2021.pdf37SMMT(2023,January)UKcarproductiondownbutelectric53BenchmarkMinerals(2022,November)Themissingmiddle:UK’svehicleoutputsurgestonewrecord.firstlithiumrefineryhighlightsneedfordomesticbatteryhttps://www.smmt.co.uk/2023/01/uk-car-production-down-materials.https://source.benchmarkminerals.com/article/the-but-electric-vehicle-output-surges-to-new-record/missing-middle-uks-first-lithium-refinery-highlights-need-for-domestic-battery-materials38EnergyLiveNews(2023,May)IstheUKclosetofinalisingdealforJLREVbatterygigafactory?54TheFaradayInstitution(2022,June)UKElectricVehicleandhttps://www.energylivenews.com/2023/05/22/is-the-uk-BatteryProductionPotentialto2040.close-to-finalising-deal-for-jlr-ev-battery-gigafactory/https://www.faraday.ac.uk/ev-economics-study-2022/39TheGuardian(2023,April)JaguarLandRovertorampupEV55SESEngineeringServices(2022,December)Constructionbeginsproductionwith£15bninvestment.onEnvisionAESC’ssecondUKGigafactory.https://www.ses-https://www.theguardian.com/business/2023/apr/19/electric-ltd.co.uk/news-article/envision-aesc-second-uk-gigafactory/car-jaguar-land-rover-ev-production-investment56EnergyLiveNews(2023,May)IstheUKclosetofinalisingdealfor40Electrive(2022,December)UK:EnvisionAESClaysfoundationsJLREVbatterygigafactory?forSunderlandgigafactory.https://www.energylivenews.com/2023/05/22/is-the-uk-https://www.electrive.com/2022/12/12/uk-envision-aesc-lays-close-to-finalising-deal-for-jlr-ev-battery-gigafactory/foundation-for-sunderland-gigafactory/57CoventryLive(2023,January)HugeCoventrygigafactoryplan41BBCNews(2023,March)BMWinvestsinOxfordplantasitplansNOTindoubtafterfirmgoesnotadministration.moreelectricMinis.https://www.bbc.co.uk/news/business-https://www.coventrytelegraph.net/news/coventry-64902153news/huge-coventry-gigafactory-plan-doubt-2599968742Reuters(2023,May)StellantistellsUKtochangeBrexitdealor58AMTEPower(batterymanufacturer)Manufacturingcellseecarplantsclose.https://www.reuters.com/business/autos-productionintheUK.https://amtepower.com/manufacturing/transportation/stellantis-says-uk-needs-change-brexit-deal-bbc-2023-05-16/59AdvancedPropulsionCentre(2019,July)HyperdriveopensUK'slargestindependentbatterymanufacturingfacility.43Electrive.com(2023,January)Toyotatomanufacturehybridshttps://www.apcuk.co.uk/hyperdrive-opens-uks-largest-andbatteriesinTurkey.independent-battery-manufacturing-facility/#:~:text=HYVEhttps://www.electrive.com/2023/01/30/toyota-to-%2C%20the%20UK's%20largest%20independent,of%20lithiummanufacture-hybrids-and-batteries-in-turkey/%2Dion%20battery%20technology.44SMMT(2023,March)RacetoZero:PoweringUpBritain’sEV60WarwickUniversity(2020,September)AutomotiveLithiumionSupplyChain.https://www.smmt.co.uk/wp-BatteryRecyclingintheUK.content/uploads/sites/2/SMMT-Race-to-Zero-report.pdfhttps://warwick.ac.uk/fac/sci/wmg/business/transportelec/22350m_wmg_battery_recycling_report_v7.pdf45EnergyDigital(2021,July)NissanandEnvisionAESCunveilSunderlandgigafactory.https://energydigital.com/61GovernmentOfficeforScience(2022,October)Rapidrenewable-energy/nissan-and-envision-aesc-unveil-TechnologyAssessment:NovelBatteries.sunderland-gigafactoryhttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1146051/Summary_Re46Fleetworld(2021)FordtransformsHalewoodintomajorEVplantport_-_Novel_Batteries.pdfunder£230minvestment.https://fleetworld.co.uk/ford-transforms-halewood-into-major-ev-plant-under-230m-62IEA(2023,April)GlobalEVOutlook2023.investment/https://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf47FinancialTimes(2021,July)Stellantistoinvest£100minelectricvanproductionatEllesmerePort.63UKRI–Faradaybatterychallenge.https://www.ukri.org/what-https://www.ft.com/content/5af0951f-e8e0-4659-bdca-we-offer/browse-our-areas-of-investment-and-f72380fb881bsupport/faraday-battery-challenge/48Electrive.com(2022,December)UK:EnvisionAESClays64SMMT(2023,March)RacetoZero:PoweringUpBritain’sEVfoundationsforSunderlandgigafactory.SupplyChain.https://www.smmt.co.uk/wp-https://www.electrive.com/2022/12/12/uk-envision-aesc-lays-content/uploads/sites/2/SMMT-Race-to-Zero-report.pdffoundation-for-sunderland-gigafactory/65GovernmentOfficeforScience(2022,October)RapidTechnologyAssessment:NovelBatteries.https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1146051/Summary_Report_-_Novel_Batteries.pdf65GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN66Dealroom(2023,April)UKElectricVehicleBatterystartups&82TheFaradayInstitution(2023,February)TheMicromobilityscaleups.RevolutionGathersMomentum.https://app.dealroom.co/lists/32634/list/f/company_rounds/https://www.faraday.ac.uk/wp-anyof_SPINOUT/landscapes/anyof_8496content/uploads/2023/02/Faraday_Insights_16_FINAL.pdf67OurWorldinData(2022)Carbonintensityofelectricity,2022.83TheFaradayInstitution(2023,February)TheMicromobilityhttps://ourworldindata.org/grapher/carbon-intensity-RevolutionGathersMomentum.electricityhttps://www.faraday.ac.uk/wp-content/uploads/2023/02/Faraday_Insights_16_FINAL.pdf68SMMT(2023,March)RacetoZero:PoweringUpBritain’sEVSupplyChain.https://www.smmt.co.uk/wp-84Investopedia(2023,January)RawMaterials:Definition,content/uploads/sites/2/SMMT-Race-to-Zero-report.pdfAccounting,andDirectvs.Indirect.https://www.investopedia.com/terms/r/rawmaterials.asp69BenchmarkMinerals(2022August)WhatdoestheUSInflationReductionActmeanfortheEVbatterysupplychain?85IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergyhttps://source.benchmarkminerals.com/article/what-does-Transitions.https://iea.blob.core.windows.net/assets/ffd2a83b-the-us-inflation-reduction-act-mean-for-the-ev-battery-8c30-4e9d-980a-supply-chain52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf70Ofgem(2021,July)ResearchintoGBelectricitypricesforEnergyIntensiveIndustries.86IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergyhttps://www.ofgem.gov.uk/sites/default/files/2021-07/FinalTransitions.https://iea.blob.core.windows.net/assets/ffd2a83b-report-ResearchintoGBelectricitypricesforEnergyIntensive8c30-4e9d-980a-Industries.pdf52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf71EnergyLiveNews(2023,May)OctopusEnergyoutlinesplantospeedupgridconnections.87BenchmarkMinerals(2023,March)Mininginvestmentneedstohttps:/www.energylivenews.com/2023/05/03/octopus-catchupgigafactoryarmsrace,Benchmarkdelegateswarn.energy-outlines-plan-to-speed-up-grid-connections/https://source.benchmarkminerals.com/article/mining-investment-needs-to-catch-up-with-gigafactory-arms-72BloombergNEF(2022,November)China’sBatterySupplyChainrace-benchmark-delegates-warnTopsBNEFRankingforThirdConsecutiveTime,withCanadaaCloseSecond.https://about.bnef.com/blog/chinas-battery-88IEA(2022,October)Globalaverageleadtimesfromdiscoverysupply-chain-tops-bnef-ranking-for-third-consecutive-time-toproduction2010-2019.https://www.iea.org/data-and-with-canada-a-close-second/statistics/charts/global-average-lead-times-from-discovery-to-production-2010-201973Dealroom.co(2023,January)ElectricVehicleBatteryTechintheUK2022.https://dealroom.co/reports/electric-vehicle-battery-89StenaRecycling(sustainablewastemanagementcompany)tech-in-the-ukEUBatteryRegulationmakenewdemandsonindustry.https://www.stenarecycling.com/news-insights/insights-74Dealroom.co(2023,January)ElectricVehicleBatteryTechintheinspiration/guides-articles/eu-battery-regulations-make-UK2022.https://dealroom.co/reports/electric-vehicle-battery-new-demands-on-industry/tech-in-the-uk90Faradion(Sodium-ioncellmanufacturer)75APCUK(2022,October)2025andBeyond:Promisingbatterycellhttps://faradion.co.uk/innovationsfortheUKautomotivesector.https://www.apcuk.co.uk/wp-91CurrentNews(2021,July)UKrankedsixthintheworldforsolarcontent/uploads/2022/10/Battery-2025-Insight-Report...pdfandwindgeneration.https://www.current-news.co.uk/uk-ranked-sixth-in-the-world-for-solar-and-wind-generation76APCUK(2022,October)2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector.92UKCriticalMineralsIntelligenceCentre(2023,April)Potentialforhttps://www.apcuk.co.uk/wp-CriticalRawMaterialProspectivityintheUK.content/uploads/2022/10/Battery-2025-Insight-Report...pdfhttps://ukcmic.org/reports/ukcmic-potential-for-critical-raw-material-prospectivity-in-the-uk-cr23024.pdf77TheFaradayInstitution(2022,June)UKelectricvehicleandbatteryproductionpotentialto2040.93BenchmarkMinerals(2023,March)Whatroledosiliconanodehttps://www.faraday.ac.uk/wp-materialsplayinlithiumionbatteries?content/uploads/2022/06/2040-Gigafactory-https://source.benchmarkminerals.com/video/watch/analystReport_2022_Final_spreads.pdf-insights-what-role-do-silicon-anode-materials-play-in-lithium-ion-batteries78APCUK(2022,October)2025andBeyond:PromisingbatterycellinnovationsfortheUKautomotivesector.94FirstPhosphate(2023March)InvestorPresentationhttps://www.apcuk.co.uk/wp-PhosphatefortheLFPBatteryIndustry.https://content/uploads/2022/10/Battery-2025-Insight-Report...pdfsource.benchmarkminerals.com/79BloombergNEF(2021,November)BatteryPackPricesFalltoan95SyrahResources(2023)BatteryAnodeMarket.Averageof$132/kWh,ButRisingCommodityPricesStarttoBite.https://www.syrahresources.com.au/about/battery-anode-https://about.bnef.com/blog/battery-pack-prices-fall-to-an-marketaverage-of-132-kwh-but-rising-commodity-prices-start-to-bite/#_ftnref196BenchmarkMinerals(2023,April)Whatmostmajormininghouseshavegotwrongaboutlithium.80IEA(2020,September)Innovationinbatteriesandelectricityhttps://source.benchmarkminerals.com/article/opinion-what-most-major-mining-houses-have-got-wrong-about-lithiumstorage.(https://iea.blob.core.windows.net/assets/77b25f20-397e-4c2f-8538-741734f6c5c3/97BenchmarkMinerals(2023,April)ChinasettodominateAfricanlithiumproductionthisdecade.battery_study/en.pdf)p30https:/source.benchmarkminerals.com/article/china-set-to-dominate-african-lithium-production-this-decade81BakerMcKenzie(2022,January)BatteryStorage-aglobalenableroftheEnergyTransition.https://www.bakermckenzie.com/en/-/media/files/insight/publications/2022/01/battery-storage-a-global-enabler-of-the-energy-transition.pdf66GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN98APCUK(2023,March)Q42022Automotiveindustrydemand112BusinessGreen(2022,September)Batteryandlithiumminingforecast.https://www.apcuk.co.uk/wp-projectsshare£25mfundingboosttoscaleupUKEVsupplycontent/uploads/2023/03/Q4-2022-Automotive-industry-chain.demand-forecast-report.pdfhttps://www.businessgreen.com/news/4056089/battery-lithium-mining-projects-share-gbp25m-uk-funding-scale-99IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergyev-supply-chain-net-zero-commodities-hubTransitions.https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-113BritishLithium(2022,September)BritishLithiumwins£2min52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitigovernmentfunding.https://britishlithium.co.uk/british-ons.pdflithium-wins-2m-in-government-funding/100McKinsey&Company(2023,January)Battery2030:Resilient,114WeardaleLithium(naturalresourcesexplorationandsustainable,andcircular.developmentcompany).https://weardalelithium.co/https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-115McKinsey&Company(2022,April)Lithiummissing:Hownewand-circularproductiontechnologiescouldfueltheglobalEVrevolution.https://www.mckinsey.com/industries/metals-and-101BenchmarkMinerals(2023,March)InvestmentinIndonesianmining/our-insights/lithium-mining-how-new-production-nickeldiversifiesfromChinaasfordjoin$4.5billionproject.technologies-could-fuel-the-global-ev-revolutionhttps://source.benchmarkminerals.com/article/investment-in-indonesian-nickel-diversifies-from-china-as-ford-joins-4-116EuropeanCommission(2023,March)CriticalRawMaterials:5-billion-projectensuringsecureandsustainablesupplychainsforEU’sgreenanddigitalfuture.102McKinsey&Company(2023,January)Battery2030:Resilient,https://ec.europa.eu/commission/presscorner/detail/en/ip_2sustainable,andcircular.3_1661https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/battery-2030-resilient-sustainable-117SupplyChainBrain(2019,June)Theseminingsuperpowersand-circularsupplytheworld’slithium.Nowtheywanttomakebatteries,too.https://www.supplychainbrain.com/articles/29802-these-103BenchmarkMinerals(2022,October)China’slithiumionbatterymining-superpowers-supply-the-worlds-lithium-now-they-supplychaindominancewant-to-make-batteries-toohttps://source.benchmarkminerals.com/article/infographic-chinas-lithium-ion-battery-supply-chain-dominance118IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergyTransition(ExecutiveSummary)104BenchmarkMinerals(2022,November)DRCneedstoimprovehttps://www.iea.org/reports/the-role-of-critical-minerals-in-“ESG”ofcobalttobecomekeytoclimatecrisis.clean-energy-transitions/executive-summaryhttps://source.benchmarkminerals.com/article/drc-needs-to-improve-esg-of-cobalt-to-become-key-to-climate-crisis119BenchmarkMinerals(2022,October)UStargetslithium,graphiteandnickelwith$2.8billionDOEgrantstotakeon105S&PGlobalMarketIntelligence(2022,August)Battery-makersChina.https://source.benchmarkminerals.com/article/us-slashcobaltintensityinthefaceofacceleratingdemand.targets-lithium-graphite-and-nickel-with-2-8-billion-doe-https://www.spglobal.com/marketintelligence/en/news-grants-to-take-on-chinainsights/latest-news-headlines/battery-makers-slash-cobalt-intensity-in-the-face-of-accelerating-demand-71813202120BenchmarkMinerals(2022,October)China’slithiumionbatterysupplychaindominance.106BenchmarkMinerals(2023,April)Graphite:Understandingthehttps://source.benchmarkminerals.com/article/infographic-currentlandscapeofgraphiteproduction,andforecastedchinas-lithium-ion-battery-supply-chain-dominancechallengesandopportunities.https://source.benchmarkminerals.com/video/watch/graphit121BenchmarkMinerals(2022,November)DRCneedstoimprovee-understanding-the-current-landscape-of-graphite-“ESG”ofcobalttobecomekeytoclimatecrisis.DRCneedstoproduction-and-forecasted-challenges-and-opportunitiesimprove“ESG”ofcobalttobecomekeytoclimatecrisisBenchmarkSource(benchmarkminerals.com)107BenchmarkMinerals(2023,February)Couldflakegraphitebottleneckspushautomakerssynthetic?122IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergyhttps://source.benchmarkminerals.com/article/could-flake-Transitions.https://iea.blob.core.windows.net/assets/ffd2a83b-graphite-bottlenecks-push-automakers-to-synthetic8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransiti108BenchmarkMinerals(2023,May)SwedenisonlyEUmembersetons.pdftoproducesphericalgraphiteby2030.https://source.benchmarkminerals.com/article/sweden-is-123IEA(2023,April)GlobalEVOutlook2023.only-eu-member-set-to-produce-spherical-graphite-by-2030https://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf109BenchmarkMinerals(2023,May)SwedenisonlyEUmembersettoproducesphericalgraphiteby2030.124BenchmarkMinerals(2023,May)WhyElonMuskisrightabouthttps://source.benchmarkminerals.com/article/could-flake-lithiumrefiningbeingabottleneckOPINION:WhyElonMuskisgraphite-bottlenecks-push-automakers-to-syntheticrightaboutlithiumrefiningbeingabottleneckBenchmarkSource(benchmarkminerals.com)110DepartmentforBusiness&Trade(Governmentdepartment)Mineralextractionandrefining.125DetroitFreePress(2022,October)GMinvestsinnickelcobalthttps://www.great.gov.uk/international/content/investment/seoperationinAustralia.ctors/mineral-extraction-and-refining/https://eu.freep.com/story/money/cars/general-motors/2022/10/11/gm-investments-69-million-to-secure-ev-111DepartmentforBusiness,Energy&IndustrialStrategy(2023,battery-materials/69556191007/March)ResiliencefortheFuture:TheUK’sCriticalMineralsStrategy.https://www.gov.uk/government/publications/uk-126APCUK(2021,September)StrategicUKopportunitiesincritical-mineral-strategy/resilience-for-the-future-the-uks-passengercarelectrification(summaryreport).critical-minerals-strategyhttps://apcuk.co.uk/app/uploads/2021/09/APC-Passenger-car-electrification-report-online-v1.pdf67GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN127BenchmarkMinerals(2023,January)Whattoexpectfor144BenchmarkMinerals(2022,September)China’sstrongholdgripgraphitein2023?oncathodessettonear90%by2030.https://source.benchmarkminerals.com/article/what-to-https://source.benchmarkminerals.com/article/chinas-expect-for-graphite-in-2023stronghold-grip-on-cathodes-set-to-near-90-by-2030128TheChemicalEngineer(2020,June)Partnershiptodevelop145BenchmarkMinerals(2023,March)TheloomingUSandEuropelarge-scaledecarbonisationprojectintheHumber.cathodeshortage.https://www.thechemicalengineer.com/news/partnership-to-https://source.benchmarkminerals.com/article/the-looming-develop-large-scale-decarbonisation-project-in-the-humber/us-and-europe-cathode-shortage129Phillips66(petroleumrefineriescompany)HumberRefinery.146BenchmarkMinerals(2022,October)China’slithiumionbatteryhttps://www.phillips66.com/refining/humber-refinery/supplychaindominance.https://source.benchmarkminerals.com/article/infographic-130BenchmarkMinerals(2023,May)Cokepriceandthestateofchinas-lithium-ion-battery-supply-chain-dominancethesyntheticgraphitemarket.https://source.benchmarkminerals.com/video/watch/analyst147BenchmarkMinerals(2023,January)Europefacescathodeand-insights-coke-prices-and-the-state-of-the-synthetic-anodeshortageindrivetoEVs.graphite-markethttps://source.benchmarkminerals.com/article/europe-faces-cathode-and-anode-shortage-in-drive-to-evs131ChemAnalyst(2022,February)LevertonLithiumandHELMAGFormsJVtoExpandLithiumProductioninEurope.148BenchmarkMinerals(2022,November)CanNorthAmericahttps://www.chemanalyst.com/NewsAndDeals/DealsDetails/lebuildabatterysupplychain?verton-lithium-and-helm-ag-forms-jv-to-expand-lithium-https://source.benchmarkminerals.com/article/can-north-production-in-europe-1166america-build-a-battery-supply-chain132TheGuardian(2022,November)UK’sfirstlithiumrefinerytobe149MarketsandMarkets(2022,December)BatteryElectrolytebuildinboostforelectriccarindustry.MarketbyBatteryType.https://www.theguardian.com/business/2022/nov/07/uk-https://www.marketsandmarkets.com/Market-lithium-refinery-electric-car-industry-green-lithium-pd-Reports/battery-electrolyte-market-78609093.htmlports-teesport150MarketsandMarkets(2023,January)BatterySeparatorMarket133S&PGlobalMarketIntelligence(2020,June)Battery-GradebyBatteryType.NickelSupplyWillSufferAsMajorNickelDiscoveriesSlump.(https://www.marketsandmarkets.com/Market-https://www.spglobal.com/marketintelligence/en/news-Reports/battery-separators-market-194866297.htmlinsights/blog/battery-grade-nickel-supply-will-suffer-as-major-nickel-discoveries-slump151BenchmarkMinerals(2022,November)Themissingmiddle:UK’sfirstlithiumrefineryhighlightsneedfordomesticbattery134VisualCapitalist(2022,February)BreakingDowntheCostofanmaterials.https://source.benchmarkminerals.com/article/the-EVBatteryCell.https://www.visualcapitalist.com/breaking-missing-middle-uks-first-lithium-refinery-highlights-need-down-the-cost-of-an-ev-battery-cell/for-domestic-battery-materials135APCUK(2021,September)StrategicUKopportunitiesin152APCUK(2022,March)Automotiveindustrydemandforecast.passengercarelectrification(summaryreport).http://www.apcuk.co.uk/wp-https://apcuk.co.uk/app/uploads/2021/09/APC-Passenger-content/uploads/2022/03/APC_xEV_Demand_Q42021.pdfcar-electrification-report-online-v1.pdf153APCUK(2022,March)UK’sbiggestopportunityfrombattery136IEA(2023,April)GlobalEVOutlook2023.wasteistofeeditscathodemanufacturingindustry.https://iea.blob.core.windows.net/assets/dacf14d2-eabc-https://www.apcuk.co.uk/uk-battery-waste-recycling/498a-8263-9f97fd5dc327/GEVO2023.pdf154TheFaradayInstitution(2022,June)UKElectricVehicleand137InsideEVS(2022,June)Report:‘TheWestNeedstoBuildLFPBatteryProductionPotentialto2040.BatteryCapacity’.https://insideevs.com/news/559579/west-https://www.faraday.ac.uk/wp-needs-lfp-battery-capacity/content/uploads/2022/06/2040-Gigafactory-Report_2022_Final_spreads.pdf138BenchmarkMinerals(2023,February)TheriseofLFPbatteriesoutsideofChina.155GreenCarCongress(2023,March)AltiliumMetalstoacceleratehttps://source.benchmarkminerals.com/article/the-rise-of-developmentofUK’slargestEVbatteryrecyclingfacilitylfp-batteries-outside-of-chinafollowingsuccessfulscale-upofproprietarytechnology.https://www.greencarcongress.com/2023/03/20230317-139IEA(2023,April)GlobalEVOutlook2023.altilium.htmlhttps://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf156TheFaradayInstitution(2021,May)Sodium-ionBatteries:InexpensiveandSustainableEnergyStorage.140NotaTeslaApp(2021,August)Tesla’sLFP(iron)batterieshttps://www.faraday.ac.uk/wp-compared.Whichoneshouldyoubuy?content/uploads/2021/06/Faraday_Insights_11_FINAL.pdfhttps://www.notateslaapp.com/news/563/tesla-s-lfp-iron-batteries-compared157BatteriesNews(2022,November)Lithium-SulfurBattery,theSoaringNext-GenBattery.https://batteriesnews.com/lithium-141IEA(2023,April)GlobalEVOutlook2023.sulfur-battery-soaring-next-gen-battery/https://iea.blob.core.windows.net/assets/dacf14d2-eabc-498a-8263-9f97fd5dc327/GEVO2023.pdf158UniversityofNottingham(2023,March)Nextgenerationbatteryresearchstrengthenedwith£5mfunding.142Faridion(Sodium-ioncellmanufacturer.https://faradion.co.uk/https://www.nottingham.ac.uk/news/next-generation-battery-research-strengthened-with-5m-funding143Medium(2022,November)BYD’sBladeBatteryHasChanged159FlashBattery(2022,March)Solid-StateBatteries:TheNewTheEVGame.https://medium.com/predict/byds-blade-FrontierofElectrification?battery-has-changed-the-ev-game-ff3cf5d1d4c7https://www.flashbattery.tech/en/how-solid-state-batteries-work/68GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN160Ilika(2023,February)BUS100–CollaborativeProjectBetween175Medium(2020,October)TheNext-GenerationBatteryPackIlikaandUKBICComestoanEndwithPositiveFindings.Design:fromtheBYDBladeCelltoModule-FreeBatteryPack.https://www.ilika.com/latest-news/bus100-collaborative-https://medium.com/batterybits/the-next-generation-project-between-ilika-and-ukbic-comes-to-an-end-with-battery-pack-design-from-the-byd-blade-cell-to-module-positive-findingsfree-battery-pack-2b507d4746d1161MewburnEllis(2020,June)Increasingbatterycapacity:goingSi176Tracxn(2023,April)TopBatteryManagementSystemStartups.high.https://www.mewburn.com/news-insights/increasing-https://tracxn.com/d/trending-themes/Startups-in-Battery-battery-capacity-going-si-highManagement-System162IEEESpectrum(2023,May)NewElectrolyteCanHelpEVBatteries177GlobeNewswire(2023,March)BatteryManagementSystemWithstandtheCold.https://spectrum.ieee.org/electric-vehicle-MarketSizeGrowingat19.5%CAGR,SettoReachUSD55.1Billionrangeby2032.https://www.globenewswire.com/en/news-release/2023/03/02/2619437/0/en/Battery-Management-163McKinsey&Company(2022,January)CapturingthebatterySystem-Market-Size-Growing-at-19-5-CAGR-Set-to-Reach-Uvalue-chainopportunity.SD-55-1-Billion-By-2032.htmlhttps://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/capturing-the-battery-value-178VoltaFoundation(2023,January)TheBatteryReport2022.chain-opportunityhttps://report.volta.foundation/annual-battery-report/public/Battery_Report_2022.pdf?utm_medium=email164AMTEPower(2021,June)AMTEPowerleads£10mAPC-funded&_hsmi=253710816&_hsenc=p2ANqtz-highpowerandhighenergyLi-ionbatterycellR&D87PN5ZTojDBDyKxuImdY38QbQuGkCSMzIKtHTCxQFYj0lzo2m1Fy3project..l8a7Lu3_7ryHG7R3fjUbu0r0ogQIl-https://amtepower.com/amte-power-leads-10m-apc-z0pyP68VQ&utm_content=253710816&utm_source=hs_autofunded-high-power-and-high-energy-li-ion-battery-mationcell-rd-project/179TheUniversityofWarwick(2020,September)Automotive165TheGuardian(2023,May)JLRownertopickUKforelectriccarLithiumionBatteryRecyclingintheUK(reportsummary).batteryfactory,sayreports.https://warwick.ac.uk/fac/sci/wmg/business/transportelec/22https://www.theguardian.com/business/2023/may/24/jlr-350m_wmg_battery_recycling_report_v7.pdfowner-uk-electric-car-battery-factory-tata-somerset180IEA(2021,May)TheRoleofCriticalMineralsinCleanEnergy166Beck&Pollitzer(industrialinstallationandmachinerelocationTransitions.https://iea.blob.core.windows.net/assets/ffd2a83b-company)Whatittakestocreateagigafactory.https://beck-8c30-4e9d-980a-pollitzer.com/benelux/what-it-takes-to-create-a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitigigafactory/#:~:text=The%20amount%20of%20electricity%20reqons.pdfuired,of%20Sweden's%20annual%20electricity%20consumption.181IOPScience(2015,January)Life-cycleimplicationsandsupply167VisualCapitalist(2022,February)Mapped:EVBatterychainlogisticsofelectricvehiclesManufacturingCapacity,byRegion.https://iopscience.iop.org/article/10.1088/1748-https://www.visualcapitalist.com/sp/mapped-ev-battery-9326/10/1/014011/pdfmanufacturing-capacity-by-region/182TheUniversityofWarwick(WMG)Automotivebatteryrecycling:168VisualCapitalist(2023,January)VisualisingChina’sDominanceAnopportunitytheUKcan’taffordtomiss.inBatteryManufacturing(2022–2027P).https://warwick.ac.uk/fac/sci/wmg/people/wmginsight/autohttps://www.visualcapitalist.com/chinas-dominance-in-motive-battery-recycling/battery-manufacturing/183HivePower(2022,February)IsRepurposingEVBatteriesforGrid169BenchmarkMinerals(2022,May)GlobalgigafactorypipelineStorageaSustainablePlan?hits300;ChinadominatesbuttheWestgatherspace.https://www.hivepower.tech/blog/is-recycling-ev-batteries-https://source.benchmarkminerals.com/article/global-for-grid-energy-storage-a-sustainable-plangigafactory-pipeline-hits-300-china-maintains-lead-but-west-gathers-pace184OurWorldinData(2021,June)Thepriceofbatterieshasdeclinedby97%inthelastthreedecades.170TheFaradayInstitute(2022,July)TheGigafactoryBoom:thehttps://ourworldindata.org/battery-price-declineDemandforBatteryManufacturingintheUK.https://www.faraday.ac.uk/wp-185GovernmentWebsite(Legislation.gov.uk)TheWasteandcontent/uploads/2022/07/Faraday_Insights_2_update_July_AccumulatorsRegulation2009.2022_FINAL.pdfhttps://www.legislation.gov.uk/uksi/2009/890/contents/made171Reuters(2022,November)UKbatterystartupBritishvoltsecures186TheFaradayInstitution(2020,September)Theimportanceofshort-termfunding.https://www.reuters.com/business/uk-coherentregulatoryandpolicystrategiesfortherecyclingofEVbattery-startup-britishvolt-secures-short-term-funding-batteries.https://faraday.ac.uk/wp-2022-11-02/content/uploads/2020/09/Faraday_Insights_9_FINAL.pdf172MarketsandMarkets(2023,January)CelltoPackBatteryMarket187EVBOX(2022,August)Howlongdoelectriccarbatterieslast?byForm.https://www.marketsandmarkets.com/Market-https://blog.evbox.com/uk-en/ev-battery-longevityReports/cell-to-pack-battery-market-249749128.html188GEOTAB(2019,December)Whatcan6,000electricvehiclestell173APCUK(2021,September)StrategicUKopportunitiesinusaboutEVbatteryhealth?passengercarelectrification(summaryreport).https://www.geotab.com/uk/blog/ev-battery-health/https://www.apcuk.co.uk/wp-content/uploads/2021/09/APC-Passenger-car-electrification-report-online-v1.pdf189BVRLA(2023,May)BatteryHealth:SuperchargeYourKnowledgehttps://www.bvrla.co.uk/resource/battery-health-16-may-174GreenCarReports(2022,June)CATLdetailsnext-gencell-to-2023.htmlpackbatterytechwith“disruptive”water-coolingdesign.https://www.greencarreports.com/news/1136313_catl-details-190Reuters(2023,March)Insurerspresscarmakersformorehelpnext-gen-cell-to-pack-battery-tech-with-disruptive-water-withEVbatteries.https://www.reuters.com/business/autos-cooling-designtransportation/insurers-press-carmakers-more-help-with-ev-batteries-2023-03-20/69GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAIN191ScienceDirect(2021,April)HydrometallurgicalrecyclingofEV207McKinsey&Company(2019,April)Second-lifeEVbatteries:Thelithium-ionbatteries.newestvaluepoolinenergystorage.https://www.sciencedirect.com/science/article/pii/S0956053Xhttps://www.mckinsey.com/industries/automotive-and-21001082assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage192Duesenfeld(batteryrecyclingcompany)Comparisonofdifferentmethodsforrecyclinglithium-ionbatteries.208JaguarLandRover(2022,March)JaguarLandRovergivesDuesenfeldsecondlifetoI-Pacebatteries.https://www.duesenfeld.com/comparison_recycling.htmlhttps://media.jaguarlandrover.com/news/2022/03/jaguar-land-rover-gives-second-life-i-pace-batteries193TheUniversityofWarwick(2020,September)AutomotiveLithiumionBatteryRecyclingintheUK(reportsummary).209TheUniversityofWarwick(2020,September)Automotivehttps://warwick.ac.uk/fac/sci/wmg/business/transportelec/22LithiumionBatteryRecyclingintheUK(reportsummary).350m_wmg_battery_recycling_report_v7.pdfhttps://warwick.ac.uk/fac/sci/wmg/business/transportelec/22350m_wmg_battery_recycling_report_v7.pdf194NationalLibraryofMedicine(2020,December)TheCurrentProcessfortheRecyclingofSpentLithiumIonBatteries.210TheUniversityofWarwick(2020,September)Automotivehttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7744654/LithiumionBatteryRecyclingintheUK(reportsummary).https://warwick.ac.uk/fac/sci/wmg/business/transportelec/22195UnionofConcernedScientists(2022,July)AreEVBatteries350m_wmg_battery_recycling_report_v7.pdfRecyclable?https://blog.ucsusa.org/jessica-dunn/are-ev-batteries-recyclable/211ChargedElectricVehiclesMagazine(2023,February)ThisprovisionoftheIRAcoulddelivermuchbiggerresultsthanthe196CleanTechnica(2023,February)GuidingPrinciplesforEVEVtaxcreditshttps://chargedevs.com/newswire/this-BatteryRecyclingPolicy.provision-of-the-ira-could-deliver-much-bigger-results-https://cleantechnica.com/2023/02/28/guiding-principles-than-the-ev-tax-credits/for-ev-battery-recycling-policy/212IEA(2023,April)GlobalEVOutlook2023.197CisionPRNewswire(2022,June)Poshraises$3.8mseedroundhttps://iea.blob.core.windows.net/assets/dacf14d2-eabc-toautomateEVbatteryrecycling.498a-8263-9f97fd5dc327/GEVO2023.pdfhttps://www.prnewswire.com/news-releases/posh-raises-3-8m-seed-round-to-automate-ev-battery-recycling-213EnergyPost(2023,March)U.S.IRAsubsidiesputtwothirdsof301573426.htmlEurope’sbatteryproductionpipelineatrisk.https://energypost.eu/analysis-u-s-ira-subsidies-put-two-198UKRI(GatewaytoResearch)Recoveringbatterygradethirds-of-europes-battery-production-pipeline-at-risk/materialsfromupgradedblackmasstoenableremanufacturingofautomotivebatteryproductsintheUK.214EuropeanCommission(2023,February)theGreenDealhttps://gtr.ukri.org/projects?ref=10043366IndustrialPlan:puttingEurope’snet-zeroindustryinthelead.https://ec.europa.eu/commission/presscorner/detail/en/ip_2199Electrive(2022,January)Batteryreuse&recyclingexpandto3_510scaleinChina.https://www.electrive.com/2022/01/29/battery-reuse-recycling-expands-to-scale-in-china/215Independent(2023,March)UK’sgreenindustrialstrategydelayeduntilautumn,Chancellorsays200BloombergUK(2022,September)TheNextBigBatteryMaterialhttps://www.independent.co.uk/climate-SqueezeIsOldBatteries.change/news/chancellor-government-uk-government-https://www.bloomberg.com/news/articles/2022-09-01/the-budget-climate-b2310254.htmlnext-big-battery-material-squeeze-is-old-batteries216InnovateUK(KTN)UKBatteryIndustrialisationCentreSMECredit201BenchmarkMinerals(2022,September)BatteryproductionRound1.https://iuk.ktn-uk.org/opportunities/uk-battery-scraptobemainsourceofrecyclablematerialthisdecade.industrialisation-centre-sme-credit-round-1/https://source.benchmarkminerals.com/article/battery-production-scrap-to-be-main-source-of-recyclable-217UKRI(InnovateUK)Generalguidancematerial-this-decadehttps://www.ukri.org/councils/innovate-uk/guidance-for-applicants/general-guidance/categories-of-research-and-202BenchmarkMinerals(2023,January)CATLtoquadrupledevelopment/recyclingcapacitywith$3.5billioninvestment.https://source.benchmarkminerals.com/article/catl-to-218UKRI(InnovateUK)InnovateUKsmartgrants:Jan2023quadruple-recycling-capacity-with-3-5-billion-investmenthttps://www.ukri.org/opportunity/innovate-uk-smart-grants-jan-2023/203FinancialTimes(2022,September)BatteryrecyclingcompaniesinSouthKoreaplotoverseasexpansion219UKRI(2023,March)Fundingtostrengthenthesupplyofcriticalhttps://www.ft.com/content/a042ded4-f197-4723-8570-minerals.https://www.ukri.org/news/funding-to-strengthen-aa00b513736athe-supply-of-critical-minerals/204AlfredHKnight(2023,January)BatteryRecyclingInSouthKorea220TheUniversityofWarwick(WMG)EnergyInnovationCentre.–CircularEconomy.https://www.ahkgroup.com/battery-https://warwick.ac.uk/fac/sci/wmg/about/facilities/energyinnrecycling-south-korea/ovationcentre/205EuropeanCommission(2022,December)GreenDeal:EU221FMG(2022,January)AcquisitionofUK-basedWilliamsagreesnewslawonmoresustainableandcircularbatteriestoAdvancedEngineering.supportEU’senergytransitionandcompetitiveindustry.https://www.fmgl.com.au/docs/default-https://ec.europa.eu/commission/presscorner/detail/en/ip_2source/announcements/acquisition-of-ek-based-williams-2_7588advance-engineering.pdf?sfvrsn=88f4bec1_6206FinancialTimes(2023,May)GlencoreplansEurope’sbiggest222CBIInsights(marketintelligencecompany)Zenobe.electriccarbatteryrecyclingplant.https://www.cbinsights.com/company/battery-energy-https://www.ft.com/content/ab593cac-5f7e-4b70-904d-storage-solutions/financials94cc0251aaeb223SolarPowerPortal(2023,February)ZenobeSecures£235milliontodeveloptwobatteryenergystorageprojectsinScotland.https://www.solarpowerportal.co.uk/news/954670电动汽车电池供应链投资指南电动汽车电池供应链投资指南免责声明本指南仅供您参考。本指南中的任何内容均不得解释为绿色金融研究所有限公司(“GFI”)的法律、税务、投资、财务或任何其他建议。本指南并不构成且无意构成GFI或任何第三方在本英国或任何其他司法管辖区中采取任何特定行动方案(包括但不限于达成任何财务安排)的邀请、招揽、推荐、认可。用户不应依赖它来做出(或不做出)任何性质的决策(包括财务或投资决策)。本指南中包含的信息具有一般性,不涉及任何特定个人或实体的情况。本指南中包含的某些信息来自或基于GFI认为准确且完整的来源。本指南不是且无意成为本文所述事项的全面或完整的陈述或反映。尽管已采取合理措施检查本指南中所含信息的准确性,但GFI无法保证本指南中所含信息的准确性或完整性,也不承担任何责任。本指南中提出的任何意见可能不正确,并且可能随时更改。在阅读和访问本指南时,您独自承担责任,在根据此类信息或内容做出任何决定之前,评估与使用此处包含的任何信息相关的优点和风险。GFI对因本指南中包含的意见、错误或遗漏而引起的任何损失或损害(无论是直接、间接、特殊、后果性或其他)不承担任何责任,并在法律允许的最大范围内排除因本指南而产生的所有责任。您不应仅根据本指南中包含的信息做出任何投资或财务决策。如果相关,您应该寻求适当的法律、税务、投资、财务或其他专业建议。GFI不是注册投资顾问,也不受金融行为监管局监管。联系我们greenfinanceinstitute.co.ukinfo@gfi.green30GUIDETOINVESTINGINTHEEVBATTERYSUPPLYCHAINDisclaimerThisGuidehasbeenmadeavailabletoyouforinformationpurposesonly.Nothinginthisguideistobeconstruedaslegal,tax,investment,financialoranyotheradvicebyGreenFinanceInstituteLimited(“GFI”).Thisguidedoesnotconstitute,andisnotintendedtoconstitute,aninvitation,solicitation,recommendation,endorsementbyGFIoranythirdpartytotakeanyparticularcourseofaction(including,butnotlimitedto,enteringintoanyfinancialarrangements)intheUnitedKingdomorinanyotherjurisdiction.Itisnotintendedtoberelieduponbyusersinmaking(orrefrainingfrommaking)decisionsofanynature(includingfinancialorinvestmentdecisions).Theinformationcontainedinthisguideisofageneralnatureanddoesnotaddressthecircumstancesofanyparticularindividualorentity.CertaininformationcontainedinthisguidehasbeenobtainedfromorisbasedonsourcesthatGFIbelievestobeaccurateandcomplete.Thisguideisnot,anddoesnotpurporttobe,acomprehensiveorcompletestatementorreflectionofthematterssetoutherein.Althoughreasonablecarehasbeentakentochecktheaccuracyoftheinformationcontainedinthisguide,GFIcannotguaranteeanddoesnottakeresponsibilityfortheaccuracyorcompletenessoftheinformationcontainedinthisguide.Anyopinionssetoutinthisguidemaybeincorrectandmaychangeatanytime.Inreadingandaccessingthisguide,youaloneassumetheresponsibilityofevaluatingthemeritsandrisksassociatedwiththeuseofanyinformationcontainedhereinbeforemakinganydecisionsonthebasisofsuchinformationorcontent.GFIacceptsnoliabilityforanylossesordamages(whetherdirect,indirect,special,consequentialorotherwise)arisingoutofopinions,errorsoromissionscontainedinthisguide,anditexcludesallliabilityarisingfromthisguidetothefullestextentpermittedbylaw.Youshouldnotbaseanyinvestmentorfinancialdecisionsolelyonthebasisoftheinformationcontainedinthisguide.Whererelevant,youshouldseekappropriatelegal,tax,investment,financialorotherprofessionaladvice.GFIisnotaregisteredinvestmentadviseranditisnotregulatedbytheFinancialConductAuthority.CONTACTUSgreenfinanceinstitute.co.ukinfo@gfi.green