道路运输可持续能源和动力系统的技术选择图(英文版)-ERTRACVIP专享VIP免费

Final Version
A Mapping of Technology Options for
Sustainable Energies and Powertrains
for Road Transport
Towards Electrification and
other Renewable Energy Carriers
Status: Final
Version: 10.2
Date: 19.12.2022
ERTRAC Working Group:
Energy & Environment
www.ertrac.org
Page 2 of 169
Final Version
Contributors
Coordinating authors
Roland Dauphin, Concawe
Simon Edwards, Ricardo
André Jarasse, Renault
Michael Weißner, Volkswagen AG
Contributing authors*
Xavier Aertsens, ERTRAC
Josef Affenzeller, AVL
Patrik Akerman, Siemens
Jens Andersen, NGVA
Jon Andersson, Ricardo
Antoine Aslanides, EDF
Mohamed El Baghdadi, VUB
Lucie Beaumel, EGVIA
Maitane Berecibar, VUB
Isotta Cerri, Toyota Motor Europe
Ivo Cré, POLIS
Stefan Deix, EUCAR
Benoit Engelen, TotalEnergies
Andrea Gerini, NGVA
Thierry Goger, FEHRL
Umberto Guida, UITP
Bernard Jacob, UGE
Tomaž Katrašnik, University of Ljubljana
Martin Kullman, Volkswagen AG
Dorothée Lahaussois, Toyota Motor Europe
Magnus Lindgren, Trafikverket
Brigitte Martin, IFPEN
Marco Mammetti, IDIADA
Joeri van Mierlo, VUB
Stephan Neugebauer, BMW
Gaetano de Paola, IFPEN
Antonio Perez, IDIADA
Marco Pieve, Piaggio
Luis De Prada, EUCAR
Peter Prenninger, AVL
Mats Rosenquist, Volvo
Zissis Samaras, LAT
Christof Schernus, FEV
Isabelle Schnell-Lortet, Volvo
Thorsten Schnorbus, FEV
Hendrik Schroeder, Volkswagen AG
Stanislav Severov, Volkswagen AG
Frank Seyfried, Volkswagen AG
Armin Sue, Volkswagen AG
Denise Tapler, AVL
Christer Thorén, Scania
Thomas Vercammen, ACEM
Marlena Volck, AVL
Verena Wagenhofer, AVL
Carsten Weber, Ford
Colin-Yann Jacquin, Michelin
Marta Yugo, CONCAWE
*Note, the affiliation is given as at the time of contribution.
Disclaimer
This document has been prepared by the community of researchers who are members of ERTRAC, it
presents a broad consensus from a diversity of stakeholders. It does in no way commit or express the
view of the European Commission, nor of any national or local authority, nor single member of ERTRAC.
Some of the work for this document was made under the FUTURE-HORIZON project. The FUTURE-
HORIZON project has received funding from Horizon 2020 research and innovation programme under
grant agreement No 101006598.
www.ertrac.org
Page 3 of 169
Final Version
Summary
With the document here, ERTRAC provides the perspective of the research community over the different
technology options to address the environmental and energy challenges for road transport. As a
technology platform, the work of ERTRAC is focussed and limited to technical aspects. Whilst
acknowledging the high importance of socio-economic aspects for policymaking and market success,
these are out of scope of ERTRAC; therefore, aspects such as costs, investment and user acceptance are
only mentioned as key factors but are not elaborated upon in this document. This document should,
therefore, only be read as a reference, mapping the potential research needs for all the options of road
transport with sustainable energies and powertrains. It is acknowledged that European policies addressing
energy and mobility also investigate and weigh social, economic and political aspects, therefore that
European policies are set as a balance of these various criteria. As a technology platform, ERTRAC is not
involved in EU regulatory processes and only provides a mapping of the efforts taking place in the research
community: it is the role of the policymakers, not of ERTRAC, to assess the technology options and make
decisions in the wider framework of social, economic and political conditions.
Recently, the European Commission has developed its “Fit for 55” policy
1
related to the decarbonisation
of transport in general. As a consequence, the research needs given in this document, specifically related
to road transport, have been identified as being, either completely in line (topic and timing, including the
internal combustion engine (ICE) ban) with that policy, required to be in line (e.g. for the same goal of
decarbonisation, but with possibly different technology and/or timing), or beyond the scope (i.e still related
to improvements in road transport in general, but beyond the scope of the proposed policy). This
categorisation is given as an aid to understanding, both of the policy but also of the industrial
recommendations for European road transport research in relation to sustainable energies and
powertrains within the global, industrial context.
For the last fifteen years, two objectives at the European level have been of importance for the
development of road transport technology: minimizing pollutant emissions and reducing greenhouse gas
(GHG) emissions. The recent progress made in reducing pollutant emissions together with the introduction
of “real driving emissions” (RDE), along with the foreseen new CO2 targets triggered by the European
Green Deal, shift the development efforts towards GHG emissions reduction now more than ever.
This document concludes that a rapid and effective reduction in GHG emissions, as targeted in the
European Green Deal, can be achieved in an optimal way via a simultaneous, ambitious, electrification of
road traffic and the development of renewable fuels. To avoid any loopholes in the efforts, GHG emissions
must be accounted for at each stage of their life-cycle, using the methods of life-cycle assessment (LCA).
This means that not only must GHG emissions be monitored at the tailpipe (tank-to-wheel emissions, TtW)
but also that the emissions related to the production of the energy carriers (well-to-tank emissions, WtT),
the emissions related to the production of the vehicles, their end-of-life and recycling, and the emissions
related to the infrastructures must be monitored. Several extreme scenarios were analysed, as shown in
this document, for which different shares are allocated to electrification, hydrogen and renewable fuels,
yet each scenario could reach net GHG-neutrality in 2050 on a well-to-wheel (WtW) basis. The contributors
have accounted for greenhouse gasses emitted from WtW (emission related to the infrastructure and the
vehicle production were not considered) and assessed the emissions offsetting mechanisms (e.g.
bioenergy carbon capture and storage (BECCS)) that need to be used to reach net GHG-neutrality.
GHG-neutral mobility fosters the development of a solution-oriented choice of technologies and the use of
renewable energies. Electrification is a core element of GHG reduction but is not limited to battery electric
1
See https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-
transition/#:~:text=The%20European%20climate%20law%20makes,EU%20climate%20neutral%20by%202050
FinalVersionAMappingofTechnologyOptionsforSustainableEnergiesandPowertrainsforRoadTransportTowardsElectrificationandotherRenewableEnergyCarriersStatus:FinalVersion:10.2Date:19.12.2022ERTRACWorkingGroup:Energy&Environmentwww.ertrac.orgPage2of169FinalVersionContributorsCoordinatingauthorsRolandDauphin,ConcaweSimonEdwards,RicardoAndréJarasse,RenaultMichaelWeißner,VolkswagenAGContributingauthorsXavierAertsens,ERTRACJosefAffenzeller,AVLPatrikAkerman,SiemensJensAndersen,NGVAJonAndersson,RicardoAntoineAslanides,EDFMohamedElBaghdadi,VUBLucieBeaumel,EGVIAMaitaneBerecibar,VUBIsottaCerri,ToyotaMotorEuropeIvoCré,POLISStefanDeix,EUCARBenoitEngelen,TotalEnergiesAndreaGerini,NGVAThierryGoger,FEHRLUmbertoGuida,UITPBernardJacob,UGETomažKatrašnik,UniversityofLjubljanaMartinKullman,VolkswagenAGDorothéeLahaussois,ToyotaMotorEuropeMagnusLindgren,TrafikverketBrigitteMartin,IFPENMarcoMammetti,IDIADAJoerivanMierlo,VUBStephanNeugebauer,BMWGaetanodePaola,IFPENAntonioPerez,IDIADAMarcoPieve,PiaggioLuisDePrada,EUCARPeterPrenninger,AVLMatsRosenquist,VolvoZissisSamaras,LATChristofSchernus,FEVIsabelleSchnell-Lortet,VolvoThorstenSchnorbus,FEVHendrikSchroeder,VolkswagenAGStanislavSeverov,VolkswagenAGFrankSeyfried,VolkswagenAGArminSue,VolkswagenAGDeniseTapler,AVLChristerThorén,ScaniaThomasVercammen,ACEMMarlenaVolck,AVLVerenaWagenhofer,AVLCarstenWeber,FordColin-YannJacquin,MichelinMartaYugo,CONCAWENote,theaffiliationisgivenasatthetimeofcontribution.DisclaimerThisdocumenthasbeenpreparedbythecommunityofresearcherswhoaremembersofERTRAC,itpresentsabroadconsensusfromadiversityofstakeholders.ItdoesinnowaycommitorexpresstheviewoftheEuropeanCommission,norofanynationalorlocalauthority,norsinglememberofERTRAC.SomeoftheworkforthisdocumentwasmadeundertheFUTURE-HORIZONproject.TheFUTURE-HORIZONprojecthasreceivedfundingfromHorizon2020researchandinnovationprogrammeundergrantagreementNo101006598.www.ertrac.orgPage3of169FinalVersionSummaryWiththedocumenthere,ERTRACprovidestheperspectiveoftheresearchcommunityoverthedifferenttechnologyoptionstoaddresstheenvironmentalandenergychallengesforroadtransport.Asatechnologyplatform,theworkofERTRACisfocussedandlimitedtotechnicalaspects.Whilstacknowledgingthehighimportanceofsocio-economicaspectsforpolicymakingandmarketsuccess,theseareoutofscopeofERTRAC;therefore,aspectssuchascosts,investmentanduseracceptanceareonlymentionedaskeyfactorsbutarenotelaborateduponinthisdocument.Thisdocumentshould,therefore,onlybereadasareference,mappingthepotentialresearchneedsforalltheoptionsofroadtransportwithsustainableenergiesandpowertrains.ItisacknowledgedthatEuropeanpoliciesaddressingenergyandmobilityalsoinvestigateandweighsocial,economicandpoliticalaspects,thereforethatEuropeanpoliciesaresetasabalanceofthesevariouscriteria.Asatechnologyplatform,ERTRACisnotinvolvedinEUregulatoryprocessesandonlyprovidesamappingoftheeffortstakingplaceintheresearchcommunity:itistheroleofthepolicymakers,notofERTRAC,toassessthetechnologyoptionsandmakedecisionsinthewiderframeworkofsocial,economicandpoliticalconditions.Recently,theEuropeanCommissionhasdevelopedits“Fitfor55”policy1relatedtothedecarbonisationoftransportingeneral.Asaconsequence,theresearchneedsgiveninthisdocument,specificallyrelatedtoroadtransport,havebeenidentifiedasbeing,eithercompletelyinline(topicandtiming,includingtheinternalcombustionengine(ICE)ban)withthatpolicy,requiredtobeinline(e.g.forthesamegoalofdecarbonisation,butwithpossiblydifferenttechnologyand/ortiming),orbeyondthescope(i.estillrelatedtoimprovementsinroadtransportingeneral,butbeyondthescopeoftheproposedpolicy).Thiscategorisationisgivenasanaidtounderstanding,bothofthepolicybutalsooftheindustrialrecommendationsforEuropeanroadtransportresearchinrelationtosustainableenergiesandpowertrainswithintheglobal,industrialcontext.Forthelastfifteenyears,twoobjectivesattheEuropeanlevelhavebeenofimportanceforthedevelopmentofroadtransporttechnology:minimizingpollutantemissionsandreducinggreenhousegas(GHG)emissions.Therecentprogressmadeinreducingpollutantemissionstogetherwiththeintroductionof“realdrivingemissions”(RDE),alongwiththeforeseennewCO2targetstriggeredbytheEuropeanGreenDeal,shiftthedevelopmenteffortstowardsGHGemissionsreductionnowmorethanever.ThisdocumentconcludesthatarapidandeffectivereductioninGHGemissions,astargetedintheEuropeanGreenDeal,canbeachievedinanoptimalwayviaasimultaneous,ambitious,electrificationofroadtrafficandthedevelopmentofrenewablefuels.Toavoidanyloopholesintheefforts,GHGemissionsmustbeaccountedforateachstageoftheirlife-cycle,usingthemethodsoflife-cycleassessment(LCA).ThismeansthatnotonlymustGHGemissionsbemonitoredatthetailpipe(tank-to-wheelemissions,TtW)butalsothattheemissionsrelatedtotheproductionoftheenergycarriers(well-to-tankemissions,WtT),theemissionsrelatedtotheproductionofthevehicles,theirend-of-lifeandrecycling,andtheemissionsrelatedtotheinfrastructuresmustbemonitored.Severalextremescenarioswereanalysed,asshowninthisdocument,forwhichdifferentsharesareallocatedtoelectrification,hydrogenandrenewablefuels,yeteachscenariocouldreachnetGHG-neutralityin2050onawell-to-wheel(WtW)basis.ThecontributorshaveaccountedforgreenhousegassesemittedfromWtW(emissionrelatedtotheinfrastructureandthevehicleproductionwerenotconsidered)andassessedtheemissionsoffsettingmechanisms(e.g.bioenergycarboncaptureandstorage(BECCS))thatneedtobeusedtoreachnetGHG-neutrality.GHG-neutralmobilityfostersthedevelopmentofasolution-orientedchoiceoftechnologiesandtheuseofrenewableenergies.ElectrificationisacoreelementofGHGreductionbutisnotlimitedtobatteryelectric1Seehttps://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/#:~:text=The%20European%20climate%20law%20makes,EU%20climate%20neutral%20by%202050www.ertrac.orgPage4of169FinalVersionvehicles.Alsoimportantisatechnicalsupplementtotraditionalpowertrainsystems,i.e.plug-inhybridelectricvehicles,increasingapplicationofrenewablefuels,ortheuseofhydrogenasanenergycarrierandtheintroductionoffuelcellpowertrains.Followingtheaboveconsiderations,whilstrecognisingthatthistechnologydocumentdoesnotgointodetailaboutaspectssuchaseconomic(e.g.investments)andsocietalacceptance,andnotyetgoingintothespecificresearchneeds,somekeymessagesarise,uponwhichsuchneedsshouldbeframed.Insummary,thesemightbeexpressedas:1.ERTRACiscommittedtodevelopanet-GHG-neutralroadtransportsystemandsharesthevisionofEuropebecomingaclimate-neutralcontinentby2050.Toachievethis,allstakeholdersinroadtransporthavetobringsubstantialcontributions:theAutomotiveIndustry,EnergyProviders,TransmissionSystem(orService)Operators(TSO)andDistributionSystem(orService)Operators(DSO),publicandprivate(Charging)Infrastructure,theFuelIndustryandRegulators.2.Developinganet-GHG-neutraltransportby2050representsatremendousamountofwork:itisnothingsimple.NotonlydoesoneneedtocheckthatGHG-neutralityisensuredbutalsotheavailabilityoftheconsideredsolutionsatscale(e.g.theavailabilityofcriticalminerals,theavailabilityofelectricityorofbiomassetc.),thecustomeracceptance(easeofuse,costetc.),thecompatibilitywithbiodiversity,theavailablewatersupplyandlanduse,theinclusionwithinasystem(e.g.dealingwithdailyandseasonalintermittency),themanagementofwasteetc.Inotherwords,oneneedsto“tickalltheboxes”toensurethatthewholesystemisviable.Asallofthese“boxes”couldnotbetickedinthisdocument,theauthorscannotprovidedefinitiveconclusionsregardingthemostsuitableenergyandpowertrainmixforaGHG-neutralroadtransportin2050.ERTRACandwithinthisdocumentisnotanalysingthecosts,returnoninvestmentnoraffordabilityoftheproposedsolutionsbecauseofcompliance,competitionregulation;yetweacknowledgethateconomicfactorswillplayakeyroleintheimplementationofthesolutions.Thus,allconsiderationsmightneedtoberevisedinlightoftheserelevantaspects.However,thisdocumentcan,hopefullyconstituteatechnicalreferenceonpossibilitiestowardstheultimateGHG-neutralitygoal.3.Inthecontextofthisuncertainty,complexityanddifficult-to-predictsystemiceffects,itmightbemorecarefulandwisenottobetonasingle,“silverbullet”technology,soastoreducetherisksofharmfulsocietaleffects.Giventhechallengerepresentedbyreachinganet-GHG-neutraltransport,amulti-technologystrategyispreferable,especiallyduringresearchanddevelopmentandthetransitionperiod,whererealitycansignificantlydeviatefromtheinitialplan.Whendeployinginfrastructure,suchaspublicordynamicrecharginginfrastructure,harmonisationacrossmemberstatesisimportanttoavoidfragmentationofthemarket.4.Toachievenet-GHG-neutralroadtransport(WtW)in2050,drasticchangesareneededinthreeareas:-Energyandenergycarrierproduction(electricity,hydrogenandrenewablefuels);-Vehiclefleetandefficiency,powertrainsandtraffictechnology;-Infrastructure,especiallythecharginginfrastructure,relatedtobothstaticanddynamicchargingThistechnologydocumenthasbeenstructuredalongthesethreemainareas.5.Fromatechnicalperspective,thecompleteandrobustnet-GHG-neutralityofroadtransportcouldbeachievedwithamixofvehicletechnologies,whereelectrificationisthekeyelementforthereductionoftheGHGemissions:-Batteryelectricvehicles(BEV);-Fuelcellelectricvehicles(FCEV);-Advancedhybridpowertrains,includingplug-inhybridelectricvehicles(PHEV),mainlydriveninelectricmode.Onlyonlong-distancetripswilltheyuseahighlyefficientauxiliarydrive,usingnet-GHG-neutralfuels.www.ertrac.orgPage5of169FinalVersion6.Theoverall“clean”energydemand(WtW)decreasesdrasticallywithfleetelectrification.Furthermore,theenergyefficiencymeasuresidentified(vehicleefficiencyimprovements,trafficconditionsoptimisationandtrafficreductiontechnologies)reducetheenergydemandinaverysignificantway.Yet,dependingonthescenarios,consideringtheadditionsduetoroadtransportonly,thetotaldemandforelectricityinEurope,comparedto2019,increasesbybetween20%and160%in2050;inparallel,thedemandforliquidfuelsinroadtransportdecreasesbybetween55%and98%.7.Thelargelynet-GHG-neutralproductionofelectricityisaprerequisitefornet-GHG-neutralroadtransport:cooperationglobally,throughouttheenergyproduction,storageanddistributionsystemisneededtoensurethesupply.8.Hydrogencouldplayakey,three-wayroleintheenergysystemas:-Afinalenergycarrier(e.g.itsdirectuseinafuelcellorinaninternalcombustionengine);-Achemicalintermediate(e.g.asafeedstocktoproducee-fuelsorotherchemicalcompounds,suchasfertilizersfortheagriculturalsector);-Anenergystoragevector(e.g.asseasonalstoragetobalancetheelectricitygrid).9.Tailpipeemissions-free,zero-emissioninurbanareas:allvehiclesinurbanareascanuseemission-freepowertrains,forexamplebydriving100%inelectricalmode,whilstbeinghighlyefficientthroughtheuseofrecuperation.Tofurtherreducetheimpactofroadtransportonairquality,therearespecificpowertrainandnon-powertrainrelatedemissionswhichcontinuetorequireresearch.10.Giventhesignificantchangesintheenergycarriersusedfornewvehiclesandfortheexistingvehicleparc,similarlysignificantchangesintheinfrastructureprovisionwillbeneeded:forexample,charging(atvariousrates,acrossmultiplelocationsandinapossiblevarietyofforms)togetherwithsecuringsupplyplusadaptationsfortheexistingliquidandgaseousfuelssupplynetwork.EnergyCarriersforMobilityEnergycarriersareintermediatesthat“carry”energyfromtheprimaryenergiestotheirfinaluse–roadtransportinthisinstance–followingthreeuniversalsteps:Todayandintheforeseeablefuture,thereisnoidentifiedsingleenergycarrierthathasthebest-in-classpropertiesineachofthesethreesteps.Whencomparedtoeachother,theyeachhavetheirrelativeprosandcons,moreorlessacceptabledependingonthespecifictransportneeds.Thisisthereasonwhytheexpression,“thereisnosilverbullet”issooftenusedwhenconsideringthefutureenergycarriersforroadtransport.Itislikelythatawidevarietyofenergycarrierswillberequiredtofeedroadtransportin2050,groupedintothreecategories:electricity,liquidfuelsandgaseousfuels.www.ertrac.orgPage6of169FinalVersionElectricityprovidedapproximately23%ofthefinalenergyconsumptionintheEUin2017,31%ofwhichwasofrenewableorigin(RES).Therestoftheelectricitywasproducedinnuclearpowerplants(25%)andfromfossilthermalpowerplants(44%).Thesharesofthemainrenewableenergysources(RES)forpowergenerationwerewind(11%),hydropower(10%),biofuels(6%)andsolar(4%).AccordingtoarecentERTRACstudy2,thetransitionofa95%oil-basedroadtransporttoelectrificationwillincreasetheelectricityproductiondemandforroadtransportby20%to160%,dependingontheselectedtechnologicalpathway.Inthecentralscenario(1.5TECH),electricpowercapacitycomesfrom83%RESin2050(12%nuclearand4%naturalgaswithcarboncaptureandstorage(CCS)),anditisstillunclearwhetherRESwillbeabletoincreaseattherequiredpacewithina25-yeartimeframe,whilstprovidingenoughadditionalpowertotheroadtransportsectorandtotheothersectors,whichwouldalsotoswitchtoelectrification.ThisimportantquestionisbeyondthescopeofERTRACandofthisdocument.Traditionaloperationofthepowersystemisbasedonelectricityproductionmeetingelectricitydemandonareal-timebasis.WiththeprogressiveintroductionofRES,powersystemsareevolvinginordertobereadytobalanceahighlyvariablerenewableenergyproductionbyusingdigitalisationtools,upgradingelectricitynetworks,increasingcross-borderconnections,developingstoragecapacities,moredynamicdemandresponseandenergyconversion,andprovidingnewsourcesofflexibilitytocomplementtheflexiblegeneration.Liquidfuelsare,today,mostlyfossil-based;theirrenewableshare,calledbiofuels,ismostlyfromfoodandfeedcrops(alsoknownas‘firstgeneration’),dominatedby62%biodieselwith18%bioethanolinsecondplace,and17%hydrotreatedvegetableoil(HVO)third.Theuseofbiofuelsfromfoodandfeediscappedat7%(onanenergybasis)accordingtotheRenewableEnergyDirective(RED),inordertoavoidcompetitionwiththefoodandfeedindustry.Thistriggersthedevelopmentofnumerousadvancedbiofuels(biomass-to-liquids,cellulosicethanoletc.),usingvarioussustainablefeedstockandprocesses,andhavingtypicalGHGemissionsreductionsofmorethan90%comparedtoafossilbasis.Inaddition,power-to-liquidsfuels(alsocallede-fuels),madefromrenewableelectricityandCO2capturedfromtheairorfromfluegases,areexpectedtodevelop.Whilstbiofuelswillcontinuetobeusedbyallroadtransportmodes,e-fuelscouldbetargetedtowardsthehard-to-abatesectors,suchaslong-distancefreighttransport,astheirrelativehighprice(notdiscussedinthispaper)couldhardlycompetewithdirectelectrification,whenitiseasilyaccessible.Itisanon-goingdebatewithintheresearchcommunitywhetheralloflong-distanceheavy-dutyfreighttransportcould,shouldbeelectrified,usinghigh-capacitybatteries.Activitiesforelectrificationof,forthedevelopmentofzero-emissionofheavy-dutytruckshavebeenstartedandcreaterelatedresearchneeds.2“Well-to-WheelsScenariosfor2050CarbonNeutralRoadTransportintheEU”,Krauseetal.,2022,tobepublishedinthejournal“Fuels”or“TechnicalScenariosfortheDecarbonisationofRoadTransportfromaWelltoWheelsPerspective”,NeugebauerandEdwards,22ndInternationalStuttgartSymposium,March2022.www.ertrac.orgPage7of169FinalVersionConcerninggaseousfuels,whenlookingtothelong-termobjectivein2050,onereferstorenewablegas:bothcompressedandliquifiednaturalgas(CNGandLNG)canbeproducedfromavarietyofrenewable,scalableandverylowcarbonintensityenergysources,suchasorganicwasteandbiomassproducedthroughanaerobicdigestion,thermalgasificationorbydirectlyconvertingcarbondioxide(CO2)intosyntheticmethanebyusinghydrogenproducedfromrenewableelectricity.Withrenewablegasbeingpracticallyidenticalincompositiontonaturalgas,moderatetohighblendlevelsareabletofurtherenhancetheeffectsofusingnaturalgas,whichisalreadyatypeoflower-carbonfuel,providingsubstantialreductions(CNG(EUmix):67.6gCO2eq./MJversus92.1gCO2eq./MJforDiesel,WtTwithcombustionassessments)oftotalGHGemissions.Today,theroadtransportsectorinEUisconsuming2.3bcmofnaturalgas,where17%isrenewable.Concerninghydrogen,todayworldwideitisproducedmainlyfromthethermochemicalconversionofnaturalgas(“grey”hydrogen),whilstapproximately5%isproducedviaelectrolysis(“green”hydrogenwhenusingrenewableelectricity).Severaldemonstrationprojectsareunderwayforhydrogenproductionviasteammethanereforming(SMR)coupledwithCCS(referredtoas“bluehydrogen”).Potentially,bluehydrogenproductionfromnaturalgascanbecoupledwithashareofbiomassfeedstocksthatcouldbringtheoverallhydrogengreenhousegasfootprinttonet-zeroorevennegative.Inascenariowithanincreasingshareoflow-costrenewableelectricity,greenhydrogenproductionviaelectrolysiscouldbeapromisingcontributiontodecarbonization.PowertrainTechnologiesforRoadMobilityNet-GHGneutralityinacomplexroadtransportsystemcanbereachedwithanewmixofpowertraintechnologies,withaclearfocusonelectricalpropulsion.BesideBEVs,whicharethemostenergy-efficienttechnology,alsoPHEVsorElectricVehicles(EVs)incombinationwithfuelcellsareviabletechnologies,dependingonthemarket-relatedandpoliticalboundaryconditions1inthedifferentregionsintheworld.TheICE,aspartofaPHEV,runningonafullyrenewablehydrocarbonorhydrogenfuel,couldbeachoiceforsomeusersinpassengercarapplicationsandcontinueasaprimemoverinsomeheavy-dutyapplications.Thesepowertraintechnologiesmustalsoincludeon-vehicleadaptionstotherefuellingorrechargingrequirementsoftherelevantenergycarrier:forexample,thedynamicchargingofanxEVhasimplicationsforthevehiclepowertrainsystem.Dependingonthevehicletypeandenergycarrier,thepossiblemixofpowertraintechnologiesisshowninthefollowingoverview.www.ertrac.orgPage8of169FinalVersionBatteryElectricVehicles(BEV).Batteryelectricpropulsionofferstwomainadvantages:zeroemissionpropulsion(i.e.notailpipeemissions)plusthelowestoverallenergydemandduetohighefficiencies1.Themainchallengeistheenergyandpowerdensityofthebatteries,plusthechargingtoenabletherequiredtriprangeandtravelconvenience.Batteries.Thebatteryisthecorecomponentofelectricmobilitysinceitdefinesthelimitsofpowerandenergy(range)aswellas,toasignificantdegree,theoverallweightandcostofthevehicle.Thefunctionalrequirementsforthebatteryaredefinedatasystemlevelwithinavehicleapplication.Requirementsforthebatteryarisefromitsoperatingtemperatures,charge/dischargepower,energycapacityand,also,fromitsintegrationintothepowertrainandvehicle(BatteryManagementSystem(BMS),ThermalManagementSystem(TMS),packagingandchassisdesign).Whilstresearchactivitiesarerelatedtonewcelltechnologies,chemistries,materialsetc.,itisimportanttorealize,thatimprovementsatacellleveldonotautomaticallyresultinthesameimprovementatapacklevel,duetoadditionaleffectsinsideabatterypack.Thebreathingand/orswellingofbatterycellsisonlyoneofthewell-knownchallengesforabatterypack.Additionalchallengesarisefrominherentlyincreasedlossesathighcharging/dischargingpowers,duetoheatgenerationinthecell,themoduleandthebatterypackconnectors,contactorsandcables.Improvementsareenvisagedforallmentionedtechnicalaspects,aswellasforsafety,durabilityandrecyclability,allincombinationwithnewdigitalsolutionsforeachstageofthebatterylife(development,design,production,operationandendoflife).Two,main,overarchingelementsoftheBEV,whichneedintenseresearchanddevelopment,aretheBMSandtheTMS.TheBMSdirectlyinfluencesactualdrivingperformancebycontrollingthebatterytofulfilitsprimaryfunctionofsupplyingthedemandedenergyforpropulsionand,incombinationwiththeTMS,maintainfavourableoperatingconditions.TheTMS,incooperationwiththeBMS,isavitaloverarchingtopicforallcomponents,itcontrolsthetemperatureofallsensitivepowertraincomponents.Manydifferenttechnologiesforcharging,e.g.withloworhighpower,directcurrent(DC)oralternatingcurrent(AC),wirelessorplugged,robotized,includingbidirectionallyconnected(V2G)andevendynamic,continuouslywhilstdriving(onElectrifiedRoadSystems(ERS)),arecurrentlyconsideredinresearchanddevelopment.Thechargingtechnologyaffectstherelatedpowertraincomponents,suchastheinverters,battery,BMSandTMS.Forexample,sinceanxEVusinganERSreceivespowerwhilstdriving,theenergybeingusedforpropulsionorrecharging,thevehicle’sbatterycanbesmallerthaninanon-ERSEV.Sinceelectricmotorsarealreadycapableofreachingpeakelectricefficienciesofupto97%athighloads,thefocusofresearchisoncost,weightandsizereduction,whilstretainingefficiencyimprovements.ReducingenergylosseswillalsohaveadirectimpactontherequirementsofthevehicleTMS.Besidesthemotor,otherelectricalhighvoltage(HV)componentsinthepowertrain,especiallythepowerelectronics,needtobeoptimisedtoreduceenergylosses,sincetheoverallpowertrainefficiencydependsontheindividualperformanceandefficiencyofeachcomponentinthesystem.ThisisamajorchallengeduetothecharacteristicsoftheHVcomponentsinvolved(motor,inverter,batteryetc.)dependingonthesuppliedpower.ERTRACproposestofocusresearchonholisticapproacheswithinelectricalpowertrainprojects,toconsiderallelementsofthesystem.Additionally,thedevelopmentandusageofseveraldigitaltechnologies(simulation,digitaltwins,monitoringetc.)iskeytoacceleratethesuccessfuldeploymentoffutureBEVs,fulfillingthedemandedvarietyofpropulsiontasks.FuelCellElectricVehicles(FCEV).Hybridpropulsion,involvingafuelcellasapowerconversionunitforrenewablechemicalenergyvectors,isasolutionfortravellinglongdistancesandofferingzero-tailpipeemissionpropulsion.www.ertrac.orgPage9of169FinalVersionTheFCEVisapossiblepowertrainoptionforheavy-dutyvehicles(trucks,busesetc.)and,incertaincases,alsoforlight-dutyvehicles.Thecurrentchallengesarethecostandthefuellinginfrastructure;additionally,theoperatingboundariesofthefuelcellalsopresentsomechallenges.Plug-InHybridElectricVehicles.TheadvancedICE,asacorecomponentofPHEVsandHEVswhenoperatedwithrenewablefuels,remainsrelevantbeyond2030.DedicatingtheICEtousingdifferent,lowcarbonfuelsandwithinahybridpowertrain,includesvarioustechnicalmeasuresfortheengineitself,aswellasforthepowertrainarchitecture.PHEVsandrangeextendedelectricvehicles(RExEVs)representsuitableICEequippedvehicleconceptsforthoseenteringurbanareaswithaccessrestrictions.PHEVswithrenewable(CO2-neutral)fuelofferbothzerotailpipe-emissionsinelectricmodewithincitylimits(and/orwarrantedbyair-qualityconditions)andlong-distancetravellinginhybrid(electric+ICE)mode.WhilstPHEVsareseenasatransitionaltechnologyforpassengercars,theyareavalidandsustainabletechnologyforheavy-dutyapplications,addressingtheconflictoflong-distancetransportandlocalzeroemissionsatthedestination.HydrogenFuelledInternalCombustionEngines(H2ICE).AviablewayfordecarbonisationistheapplicationofgreenhydrogeninICEs,beingaGHG-neutralfuelfromaWtWperspective.NOxemissionscanbesignificantlyreducedbya(lean)H2-combustionincombinationwithemissionsaftertreatmentsystems.Compressed(C-H2)orliquid(L-H2)hydrogenenablelong-rangeoperationalongwithbriefrefuellingtimes.Thecurrentchallengesare,similarly,economicandinfrastructurerelated.Therecyclingandreuseofmaterialsisrecommendtobeamajorfocusofresearch.Recyclingandreusesolutionswillbeoftremendousimportancetolimitthedepletionofscarcematerials,atleastwhenhighermarketsharesofBEV(e.g.morethan25%)aretobeachieved.ComplimentaryDrivelineAspects.Non-powertrainsub-systemsorcomponents,mainlytyresandbrakes,aswellassomeinfrastructureaspects,e.g.theuseofconductivedynamiccharging(sincethishaswearmainlythroughtheabrasionoftheslidingcontactsurfaces),willcontinuetocontributetoparticleemissions.Thisissuebecomesmorerelevantwiththehigherweightandtorqueofelectricalpowertrains.Accordingly,brakedusthasbecomeanimportanttopictostudy,inordertounderstandbrakeparticlebehaviour:itisnecessarytostartimplementingmeasurementmethodswhichmayleadtofutureteststandardsandbrakecomponentapprovalregulations.TheimpactofTRWP(TyreandRoadWearParticles)isnotyetfullymeasurednorunderstood.EvenifthetyreindustryalreadyconductscrucialscientificworkontyreabrasionthroughtheTIP(TyreIndustryProject),itisstillnecessarytocharacterizemorepreciselyTRWP(composition,quantify,biodegradabilityetc.)andadapttyreconceptstolowertheirimpact.InfrastructuresforRoadMobilityChargingmanagementsystemsandplatformsareimportanttoolstomeetandsteerthedemandsoftheEVmarket.Theyareoneofthemostdecisivefactorstooptimisethegridconnectionstothechargingstations,i.e.byshort-termandlong-termdemandpredictionforchargingandprovision.ItisimportanttogrowtheinfrastructurefasterthantheEVmarket.Thisisachallengesincethetwomarketshaveverydifferentfactorsthatinfluencethedecisionsforimplementation.Thus,inastronglyincreasingEVmarketwithstronglyincreasingpowerdemands,comprehensive,reliableandhighlyscalablechargingsystemsaremandatorytocovertheneedsofthemarketinthefuture.FastchargingisbasedonDC-charging.Differentmodesoftransportandgridsupplywillfosterdifferentsolutions,butefficiencywillbekey.Itisexpectedthatfastchargingwillbeavailableindifferentpowerclasses,including,forexample,lowvoltagedirectcurrentforelectrifiedpoweredtwowheelers(ePTWs).www.ertrac.orgPage10of169FinalVersionThecurrentstandardforchargingstationsrefersto500A,enabling350kWchargingpower.Additionally,thereisanewglobalplugstandardinpreparation.The“MegawattChargingSystem”willenablepowerlevelsofmorethan3MW,inordertoenablelongdistancefreighttransportusecaseswithheavy-dutybatteryelectrictrucks.Accessibilityisanimportantpointforhigh-powercharging.Itcanbeassumedthatconductiveplugchargingislimitedto350kW,andtoachievethispowerrate,cablecoolingisessential.Therefore,inordertofacilitaterechargingandreducerechargingduration,differentinterfacesshouldbeconsidered.Itisalsoimportanttorecognizethatitisdifficulttoimagineolderordisabledpeoplebeingabletohandletheseheavychargingcables,sotheaccessibilityforhighpowerchargingshouldbeimproved.However,fastchargingathighchargingcurrentsincreasesthepowerlosses,thesearebeingaddressedwithrecentdevelopments.Theimpactofhigh-powerchargingontheLCAofBEVsshouldbeinvestigatedmoredeeply.Moreover,thelimitationsoftheelectricgridincitiescouldcreaterestrictionsfortheinstallationofadensenetworkofchargingstations.Thisinteractionshouldbefurtherinvestigated.Today,thenaturalgasinfrastructurerepresentsanimportantassetinEurope:itiscomposedofapproximately200,000kmofhigh-pressurepipelinesforgastransmission,andmorethan2,200,000kmoflow-pressurepipelinesforgasdistribution.Thenaturalgasinfrastructureandvehicletechnologiesarefullycompatiblewithrenewablegas,whentheappropriatepurityiscontrolled,thusofferingawideflexibilityinmanagingtheprogressiveinjectionofmethaneproducedfromdifferentpathways.Anaerobicdigestionprocesses,thermalgasificationandPower-to-Methanepathwaysareallleadingtothesamemolecule,whichcanbebothinjectedintothegridorusedinvehicles.Thecontributionofhydrogen-basedpowertrainstodecarbonisationinallmodesoftransportcanonlyberealisedifanappropriaterefuellinginfrastructureisestablished.Therefore,therapidexpansionofhydrogenrefuellingstationsisneeded.Thus,thehydrogencaneitherbeusedinfuelcellsorincombustionenginesand,inaddition,offersanopportunitytostoreenergyseasonally.Hydrogenblendinginthenaturalgasgridisaninterestingtransitionaloption,providingthatthechallengesrelatedtousingmixturesinagridoriginallydedicatedtonaturalgascanbeovercome.InfrastructuresforliquidfuelsarewelldevelopedinEurope,with120,000servicestationsavailabletoconsumers,refuellingmorethan25millionvehiclesonanaverageday.36,000kmofpipelinesensuretheefficientmovementofcrudeoilandrefinedproductsacrossEurope.Shiftingthissystemtorenewablefuelsisnotexpectedtorequireanymajormodifications.SystemicAspectsGiventheoverallgoalofnet-zeroCO2emissionsroadmobilityby2050,possiblescenariosolutionsforthattimehavebeenconsidered,basedupontheworkingsandfindingsoftheERTRACCO2EvaluationGroup2.Whilstascenario-basedassessmentisusefultoevaluatewhethertheroadtransportsystemcanachieveanet-zeroCO2emissionsstatus,inrealityitislikelythateachindividualuserwillchoosetheirmeansofmobility,asaconsequencetheirownneedsandconstraints,whilstconsideringtheboundariesimposedbytheregulations.Thisindividual,bottom-upoptimisationisnotthesameasthetop-down,systemoptimisation(asillustratedbelow):theremaybesignificantdivergencefortheendresult,theproducts,mobilitymodesandinfrastructureneeds.Assuch,improvedunderstandingoftheindividualcomparedtothesystembehaviourinanet-zerocarbonroadmobilitysituationisneeded.Itisimportanttobetterunderstandhowthesebehaviourswillchangeinthefuture,togetherwithwhatfactorswillinfluencethechange.Further,thedivergencemaybemoreacutealongtheroutetowardsnet-zerocarbonmobilityat2050,whenthepossibleratesofchangeoftherelatedinfrastructureindustries,regulatorylimitsandsocietalbehavioursmaybecomebottlenecks.Questionsariserelatedtohowmuchincentiveswillbeusedtowww.ertrac.orgPage11of169FinalVersionencouragethechange,increasetherateofchange,whilstatthesametimeretainingsocialequality.Alternatively,orperhapsconsequently,therateofchangeisunlikelytobecontinuous,monotonic.Rather,particularlyasaconsequenceoftheallowablecarbonbudget,significantlyincreasedratesofchange,varyingatanysinglepointintimebetweendifferenttypesofroadtransport,arelikelytobenecessaryandexperienced.Assuch,anunderstandingoftheachievableratesofchangeinanysingleparameterrelatedtotheroadmobilitysystemneedstobereached.Whilstthepossiblerisksrelatedwithindividualusecases,usagemodelshavenotbeen(yetpossiblyshouldbe)derived,itwasfoundthatsomeresearchneedsareidentifiedbeyondtheusualERTRACvehicletechnologyrelatedareas.Whatbecomesclearfromthisconsiderationofusecases,usagemodels,isthat,especiallyforindividualmobility,weshouldensurewealwayshaveachoice(withvaryingcosts)evenasthesystemchanges:themobilityneedshavetobemet.Further,thatconnectivity(analogoustoperfectinformationsupplyincommerce),throughdigitalisationand,possiblyrealisedthroughautomation,givestheopportunitytooptimiseboththeindividualmobilityefficiencyandmobilitysystemefficiencyconcurrently(relativetowhatparameterswedeterminemostappropriateinanyincidence,e.g.,energyefficiency).Moreover,thatsuchconnectivitygivesusameanstoinvestigate,topracticeadaptiveandprognosticcontrolwithinthesystem.Asystemsapproachviaconnectivitywillrealise,thusdemandsystemchanges,forexample,modalshiftsandmobilityasaservice.Hence,connected,collectivemobilityshouldcostless(givenanequalbasisforenergyandinvestmentcosts)andservicecostsshouldreduce,utilityfactorsshouldimprove.Onemightconsiderthisamovetowardsrationalmobility,analogoustotheidealoftherationalconsumer.TheERTRACCO2Evaluation1acknowledgedthatthequestion,“Whatisthebestfuel/fleetcombination?”(which,fromasystemperspective,isequivalenttothequestionposedoftenbyindividualusersandinsuchusecases),couldnotbeansweredbythestudy.Specifically,systemoptimisationcannotbebasedonanextremescenarioapproach.Therefore,furtherresearch,innovationanddevelopmentworkwillbeneededtoassessandestablishtheoptimalsolutions,onthebasisofvariouscriteria.Suchcriteriawereidentifiedas:•Energyproductionandstoragecapacity;•LCAtoaccountfortheemissionsandenergyrequiredforinfrastructureandvehicleproduction;626/06/20222050ERTRACScenarios(TopDown)TypeAMeasures:Vehicleefficiencyimprovement:Powertrains:BEV,PHEV,FCEV,(H2-ICEorICEreg.fuels)Usage:Urban,Rural,Highway:El.urbanvsxxEVHighwayTypeBMeasures:ImprovementsintrafficflowTypeCMeasures:Roadtransportreduction(Efficiencyimprovementshavethepotentialtoreduceenergyconsumptionby~35-40%)Howtocreate(flexible)vehicleconceptstheensuremaximumusabilityforseveralusagemodelsResearchonenergyefficiencyeffectsatvehicleandfleetlevelsforconnectedandautonomousvehicles,mobilityasaserviceandmodalshiftsAdaptiveandprognosticcontrolincorporatingon-boardmonitoringforgeofencingandenergyefficientoperationResearchonthetransitionovertime,lookingatresourceneeds&sourcingw.r.tallowableornecessaryratesofchangeResearchNeedsUseCases,Usagemodels(BottomUp)CommuterBEVDeliveryBEV/PHEVLongTrip,onewayBEV/PHEVLongDistanceCommercialVehiclese.g.e.g.e.g.e.g.www.ertrac.orgPage12of169FinalVersion•Investmentsininfrastructureandenergyproductionfacilities;•Costofenergyproductionanddistribution,aswellasvehicletechnologydevelopment;•Landuse,wateruseandotherresourcesneeded;plustheirallocationbetweendifferentsectors;•Differentlocationsforenergyproduction(EUorMENA-Region);•Customeracceptanceofspecificvehicletypesandfuels;•TheacceptanceofCCS.Furthermore,researchneedsfromotheraspectswerederived,forexample:•Determinationofthebalancebetweentechnicalandsocietalmatters,theirallowableratesofchange;•Societalacceptance,givenfuturescenarios,ofothersourcesofdecarbonisedelectricity,energy,suchasnuclearpowercomparedtolongertermissues(e.g.wastemanagement);•Systemsecondordersensitivities,ratesofchangepossible,andtheratesofchangeofthesethatareacceptable;•SocietalTCOaspectsofandsolutionsandpathwaysthereto.OverallRecommendationsforresearchactivitiesAccordingtothewiderangeofchallengesinalltechnicalareasonthewaytoGHG-neutralmobility,manydifferentresearchneedshavetobeaddressedwithinthenextdecade.Anoverviewofthemostimportanttopicslinkedwithatimelineproposalandtechnologyreadinesslevel(TRL)correlationissummarisedinthefollowingtables.Theresearchneedsidentified,eachinrelationtotheGHG-neutralityobjectiveandairqualitytargetscompliance,arecolourcodedinlinewiththefollowingdefinition:•Blue,inlinewithafullbanofinternalcombustionenginesales:-Thiscolourcodecoversresearchneedsrelatedtozero-tailpipeemissionstechnologies,inascenariowhereinternalcombustionengineswouldbebannedfromsalesforallcategoriesofvehicles(includingpassengercars,lightcommercialvehiclesandheavy-dutyvehicles);•Yellow,requiredtoachievetheobjectiveandbysomelegislation(e.g.theRenewableEnergyDirectiveorEuro7)whilstincludingthesaleandcontinueduseofinternalcombustionenginedvehicles:-Thiscolourcodecoverstwocategoriesofresearchneeds:oAfirstcategorycorrespondstodevelopmentsrequiredbysomeexistingpiecesoflegislation.Forinstance,accordingtotheRenewableEnergyDirective(RED),advancedbiofuelsande-fuels(RFNBOs)willneedtobesuppliedby2030,whichrequiresresearchanddevelopmenttoensurethesolutionsareavailable.AnotherexampleisEuro7,whichtriggersresearchanddevelopmentneedsforpassengercars,lightcommercialvehiclesandheavy-dutyvehicles,notwithstandingapartialoffullbanoninternalcombustionengineswhichmighthappenlateron.IndependentofanICE-ban,theseresearchneedsarerequiredatleastduringaperiodoftransition;oAsecondcategorycorrespondstotheachievementofclimategoals.Forinstance,independentofanICE-ban,GHG-neutralfuelsarerequiredtomeetclimategoals(andtheyhelpreachingnetGHG-neutralitysooner),astheyactonthelegacyfleet.InsomescenariosthatdonotincludeafullICE-ban,ICEcouldbeusedinthelongerterm(i.e.post-2050)andstillcomplywiththeclimatetargets.Thesecouldalsorequirethefurtherdevelopmentofadaptedpowertraintechnologies;•White,additionaltopics,beyondtheobjectiveandtargetsabovebutrelatedtothetopicofthisdocument,thesetopicsareoftentransversal:-ThiscolourcodecoversresearchneedsnotdirectlycoveredbytheEUGreenDealnortheFit-for-55Package,relatedornotrelatedtoclimategoals.MoredetaileddescriptionscanbefoundintherelatedChapter6ofthisdocument.www.ertrac.orgPage13of169FinalVersionTable.ResearchneedsforEnergyCarrierswww.ertrac.orgPage14of169FinalVersionTable.ResearchneedsforPowertrainSolutionswww.ertrac.orgPage15of169FinalVersionTable.ResearchneedsforInfrastructurewww.ertrac.orgPage16of169FinalVersionTable.ResearchneedsfromaSystemPerspectivewww.ertrac.orgPage17of169FinalVersionTableofcontentsContributors...........................................................................................................2Disclaimer..............................................................................................................2Summary............................................................................................3EnergyCarriersforMobility....................................................................................5PowertrainTechnologiesforRoadMobility............................................................7InfrastructuresforRoadMobility............................................................................9SystemicAspects..................................................................................................10OverallRecommendationsforresearchactivities.................................................12Tableofcontents............................................................................17ListingofFigures...................................................................................................20ListingofTables....................................................................................................211Introduction.......................................................................221.1RegulatoryAspects......................................................................................221.2UseCasesandFleetScenarios..................................................................241.3KeyMessagesforaClimateNeutralRoadTransportSystemin2050........271.4TheStructureandContentofthisDocument...............................................282Renewableenergycarriersformobility...........................29Introduction...........................................................................................................292.1Electricity.....................................................................................................302.1.1Panelofsolutionsconsideredfortheproductionofdecarbonizedelectricity....312.1.2Energymixscenarios......................................................................................342.1.3Environmentalassessment..............................................................................372.2Liquidfuels..................................................................................................382.2.1Panelofsolutionsconsideredfortheproductionoflow-carbonliquidfuels......382.2.2Liquidfuelsmixscenarios................................................................................542.2.3Environmentalassessment..............................................................................562.3Gaseousfuels..............................................................................................622.3.1Panelofsolutionsconsideredfortheproductionoflow-carbongaseousfuels.632.3.2Gaseousfuelsmixscenarios...........................................................................662.3.3Environmentalassessment..............................................................................66www.ertrac.orgPage18of169FinalVersion3PowertrainOptionsforRoadMobility.............................71Introduction...........................................................................................................71PowertrainTechnologies.......................................................................................713.1BatteryElectricVehicles(BEV)...................................................................723.2Batteries......................................................................................................763.2.1Fundamentals..................................................................................................783.2.2CellTechnology...............................................................................................783.2.3BatteryTechnology..........................................................................................823.2.4Reuse&Recycling..........................................................................................853.2.5Safety..............................................................................................................863.2.6Digitalisation....................................................................................................863.3PowertrainadaptationforusewithElectrifiedRoadSystems......................873.4FuelCellElectricVehicles(FCEV)..............................................................883.4.1FuelCellTrucks..............................................................................................883.4.2FuelCellBuses,Coaches,Minibuses&LDV..................................................893.5Plug-inHybridElectricVehicles&Hybridsusingrenewableenergy….......903.5.1Introduction......................................................................................................903.5.2InternalCombustionEngines(ICE)forhybridapplications..............................913.5.3Pollutantemissions..........................................................................................943.5.4HydrogenFuelledInternalCombustionEngines(H2ICE)................................963.6ComplimentaryDrivelineAspects................................................................973.6.1Reducingtheenergyconsumptionofnon-powertraincomponents..................973.6.2Reducingnon-exhaustemissions....................................................................974Infrastructuressupportingrenewableenergies..............994.1Electricity.....................................................................................................994.1.1Charging..........................................................................................................994.1.2Gridintegration..............................................................................................1094.2Liquidfuels................................................................................................1134.3Gaseousfuels............................................................................................1154.3.1NaturalGasInfrastructure.............................................................................1154.3.2CNGandLNGrefuellinginfrastructure..........................................................1154.3.3Integratingrenewablegas.............................................................................1164.3.4HydrogenInfrastructure.................................................................................1164.4Otherinfrastructureaspectssupportingefficiency.....................................1174.4.1ElectricRoadSystems(ERS)........................................................................1174.4.2Roadconstructionandmaintenancerelevanttofuelefficiency......................117www.ertrac.orgPage19of169FinalVersion4.4.3Alternativefuelsandroadconstructionormaintenance.................................1175Asystemicviewandexpectedimpacts........................1195.1Introduction................................................................................................1195.2NetZeroGHGRoadMobilityScenariosfor2050......................................1195.3UseCases.................................................................................................1205.4Results.......................................................................................................1225.5OtherAspects............................................................................................1256Researchrecommendations...........................................127Introduction.........................................................................................................1276.1Recommendationsforenergycarriersforroadtransport..........................1286.1.1Electricity.......................................................................................................1286.1.2Liquidfuels....................................................................................................1286.1.3Gaseousfuels...............................................................................................1376.2RecommendationsforPowertrains............................................................1386.2.1RecommendationsforBEV...........................................................................1386.2.2RecommendationsforBatteries.....................................................................1416.2.3RecommendationsforvehiclesusingElectricRoadSystems........................1436.2.4RecommendationsforFuelCells..................................................................1446.2.5RecommendationsforFuelCellsforCommercialVehicles............................1456.2.6RecommendationsforPHEVandalternativefuels........................................1466.2.7RecommendationsforICEpollutantemissions..............................................1476.2.8RecommendationsforH2ICE........................................................................1486.2.9RecommendationsforComplimentaryDrivelineAspects...............................1496.3RecommendationsforInfrastructure..........................................................1526.3.1Recommendationsforroads..........................................................................1526.3.2Recommendationsfortheenergysupplyinfrastructure.................................1546.4RecommendationsfromtheSystemPerspective......................................1567Appendices......................................................................1597.1Definitions..................................................................................................1597.2Abbreviations.............................................................................................1647.3ReferencesperChapter............................................................................1687.3.1Chapter1......................................................................................................1687.3.2Chapter2......................................................................................................1687.3.3Chapter4......................................................................................................169www.ertrac.orgPage20of169FinalVersionListingofFiguresFigure1.ScenarioandotherdatafromtheERTRACCO2StudyFigure2.RoadvehicleactivityratesfromtheERTRACCO2EvaluationGroupstudyFigure3.IllustrationofdailyvariationinprimaryenergycarriersFigure4.Globalweighted-averagecapacityfactorsfornewonshoreandoffshorewindcapacityadditionsbyyearofcommissioning,1983-2018Figure5.Globalweighted-averagecapacityfactorsforutility-scalePVsystemsbyyearofcommissioning,2010-2018Figure6.AnoverviewofdifferentenergystoragetechnologiesFigure7.PowergenerationcapacityFigure8.SharesinpowergenerationFigure9.ElectricityStoragein2050Figure10.Overviewofthebiofuelconsumption(bytype)inEuropeFigure11.OperatingandplannedHVOproductioncapacitiesinEuropeFigure12.ThemainstagesofbiofuelproductionFigure13.Possibleproductionpathwaysfortailor-madefuelsFigure14.FuelMeritFunctionsFigure15.Blendstocksidentifiedbytheco-optimaproject,withapotentialtoreduceemissionsFigure16.Physical-chemicalpropertiesoftheblendstocksidentifiedbytheCo-OptimaprojectFigure17.Techno-economicpropertiesoftheblendstocksidentifiedbytheCo-OptimaprojectFigure18.LifeCycleGHGemissionsoftheblendstocksidentifiedbytheCo-OptimaprojectFigure19.Advancedbio-fuelpathwaysFigure20.TechnologyReadinessLevel(TRL)ofAdvancedFuelConversionTechnologiesFigure21.E-fuelsproductionroutesFigure22.Fischer-Tropschliquide-fuelproductsFigure23.Resourcesrequiredforliquide-fuelproductionFigure24.TheWell-To-WheelefficiencyofvariousfuelsandpowertrainscombinationsFigure25.Fuelsharescenarios(2050)Figure26.ScopeoftheJECWell-To-Tankanalysisv5(WTT)Figure27.Bioenergypotential[ENSPRESO]Figure28.EvolutionoftheADbiomethaneproductioninEUFigure29.ThepossibleshareofdifferenthydrogentypesindifferentmarketsFigure30.BEVpowertrainFigure31.IntegratedelectricaldrivemoduleFigure32.TypicalPermanentmagnetsynchronoustractionmachine(BMWi3)Figure33.RequirementsforbatteriesinroadtransportFigure34.StructureofaLi-ioncellFigure35.Schemeofoneconceptofasolid-statecellFigure36.BatteryassemblyofaPCandanE-ScooterFigure37.PCbatterysystemwithTMSFigure38.ShareoftheannualmileagefortheexampleofapassengercarinEuropeFigure39.ThefunctionalblockdiagramofageneralizedchargerFigure40.ExternalDCChargersofvariousbrandsandthecontentofarelatedpowercabinetFigure41.Illustrationoftheinductive(wireless)chargingprincipleFigure42.ThedifferentchargingprofilesfromdifferentBEVmodels(P3study)Figure43.DifferentelectricroadsystemconfigurationsanddemonstrationFigure44.IRENAsmartchargingforelectricvehiclesrevolutionFigure45.TheprofileofEVchargingunderbothunmanaged(left)andmanaged(right)scenariosFigure46.TheinvestmentrequiredinIberdrola’sdistributiongridsinSpain,UK,USAandBrazilFigure47.Standardizedinterfaceneedsforsmartchargingwww.ertrac.orgPage21of169FinalVersionFigure48.Smartchargingforelectricvehicles(IRENA)Figure49.VehicletoGridnetbenefit(€)inEuropeperPEVperannumFigure50.EnergytaxrevenuesperMemberStaterelativetototaltaxrevenues,2017Figure51.DevelopmentofCNGandLNGrefuellingstationsinEuropeFigure52.HydrogenrefuellingstationdevelopmentrequirementsFigure53.HydrogenrefuellingstationdistributionaroundEuropeFigure54.DifferenceperspectivesdetermineresearchneedsFigure55.DifferentvehicletypesandusesenvisagedofadistanceversuscapacitylandscapeFigure56.Exampleusecase,usagescenarioforacommuterin2030Figure57.SummaryoftheTRLofprocessesforadvancedbiofuelsproductionFigure58.SummaryofTRLofProcessesforanE-fuelSynthesisviaReverseWaterGasShiftandFischer-TropschListingofTablesTable1.SummaryofenergyexpendedandGHGemissionsforthe2050electricitymixscenariosconsideredintheERTRACroadmapTable2.PotentialprimaryusesofbiofuelsTable3.Potentialprimaryusesofe-fuelsTable4.Qualitativeoverviewofe-fuelsTable5.AdvancedbiodieselfigurestoERTRACmodel(2050)Table6.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT)Table7.E-fuelsfigurestoERTRACmodel(WTT,2050)Table8.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT)Table9.FossilfuelsfigurestoERTRACmodel(WTT,2050)Table10.FiguresforbiofuelprocesseswithCarbonCapture(BECCS)toERTRACmodel(WTT,2050)Table11.AnestimationoftheEuropeanproductioncapacity(TW.h)Table12.Liquefiedbiomethane(LBM)fuelsfigurestoERTRACmodel(WTT,2050)Table13.E-methanefigurestoERTRACmodel(WTT,2050)Table14.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT)Table15.FossilliquefiednaturalgasfigurestoERTRACmodel(WTT,2050)Table16.HydrogenfigurestoERTRACmodel(WTT,2050)Table17.Batterycharacterization[BATT4EU,SRAforbatteries2020]Table18:VolumechangeofdifferentbatterychemistriesduringoperationTable19.Expectedbatteryprogressovertime–EUCARcommonlyagreeddata(BEV)2021Table20.Expectedbatteryprogressovertime–EUCARcommonlyagreeddata(PHEV)2021Table21.TheemissionspeciesconsideredforemissionsstandardsformobilesourcesandtheirratingTable22.ThedefinitionorclassificationoffastchargingforpassengercarsTable23.TheadvantagesanddisadvantagesofdifferentERSTable24.ResearchneedsforenergycarriersTable25.TRLofprocessesforgreenhydrogenproductionandCO2captureTable26.SummaryofproductionpathwaysandTRLforadvancedbiofuelsproductionTable27.SummaryofTRLProcessesforE-fuelsSynthesisTable28.ResearchneedsforpowertrainsolutionsTable29.ResearchneedsforinfrastructureTable30.Researchneedsfromthesystemperspectivewww.ertrac.orgPage22of169FinalVersion1IntroductionTheroadtoGHG-neutrality3islongandintertwinedbetweenvehicles,energyandinfrastructuretechnologies.Naturally,whilstthegoalofGHG-neutralityisgiven4,fullclarityoftherouteaheadisnotyetavailable.Whatisclear,however,isthatthisrouterequiresthecontributionsfrommanystakeholdersandmuchinvestment.Thenegativeimpactsofmakingpossiblywrongdecisions,tooearly,aresignificant.Therefore,itisworthwhilenow,toconsidertheresearchneededtoreachthatgoal.Suchresearchcangive,withtechnicalneutralityandalong-termperspective,insightintofurtheropenquestions,risksandrewardsalongtheroute.Hence,throughundertakingthatresearch,theimpactsofreachingthemilestonesalongtheroadtoGHG-neutralmobilitymightbebetterunderstoodbyall,decisionsmadeuponfirmerfoundations.Suchresearchneedstorelatetothebroadperspective,roadtransportasasystemwithinaEuropeanenergyandinfrastructurenetwork.Therefore,considerationofthestateoftheartinrelationtoenergycarriers,vehiclepowertraintechnologiesandinfrastructurecapabilityisgiveninthisdocument;thisisfollowedbyanassessmentbaseduponaselectednumberofuse-casescenarios;hencerecommendationsfortheresearchneededarepresentedattheend.Thisroadmapshouldnotbereadinisolation:thereismuchpreviousandworkon-goingtosuggesttheresearchneeded,quantifytheconsequencesofpossibleroutesandofdifferentscenarios.Ofparticularimportancefortheshort-term(thisdecade)arethestrategicresearchandinnovationplansmadeinpreparationfortheHorizonEuropeframeworkprogramme5.Inaddition,giventhebroadnatureofthisdocument,referenceisgiventomanysourcesattheendofthispaper.Furthermore,thisdocumentshouldnotbeconsidereddefinitivenorset-in-stone:thesuggestedresearchneedsareopenforadjustments,asmoreislearnedaswetransitiontowardsGHG-neutrality.Similarly,theresearchneedscanbereviewinlinewithexistingandfuturepolicywithinEurope.Finally,itisalsoimportanttorealisewhatthisdocumentisnot.Thedocumentlooksattechnicalaspectstodetermineresearchneeds,fromaholisticperspectivebutwithoutdirectconsiderationsofthesocial,societaloreconomicaspectsthereto.Clearly,theseareimportantaspectsbutoneswhicharebeyondtheimmediatescopeofERTRAC,ETIP-SNETandCONCAWEactivities.1.1RegulatoryAspectsForthelastdecades,twoobjectivesataEuropeanlevelhavebeenofimportanceforthedevelopmentofpowertraintechnology:minimizingexhaustemissionsandthereductionofCO2emissionstomeetEuropeanandglobalregulations.ERTRACkeepstrackofregulatoryeffortsanddecisions67.Ontheotherside,regulatorytargetsneedtoreflectthetechnologicalrealitiesandpossibilities.Therefore,this3SeetheERTRACdocument,“TheTimelinetoCarbonNeutralityinRoadTransport–along-termeffort,withdifferentphases,multipletechnologiesandinterdependences”4SeetheERTRAC2050Visiondocumentsand“Well-to-WheelsScenariosfor2050CarbonNeutralRoadTransportintheEU”,Krauseetal.,2022,tobepublishedinthejournal“Fuels”or“TechnicalScenariosfortheDecarbonisationofRoadTransportfromaWelltoWheelsPerspective”,NeugebauerandEdwards,22ndInternationalStuttgartSymposium,March2022.IntheoriginaldocumentationandpresentationoftheERTRAC2050VisionandERTRACCO2EvaluationGroupwork,thewording“carbon-neutrality”wasused.However,basedonthedefinitionsusedwithinthisdocument(seeAppendix)actuallyGHG-neutralityisappropriatetoreflecttheextentofthestudies.5Seethe2ZeroSRIA,butalsothosefromlinkedorganisations,forbatteries,hydrogen,CCAMetc.6ACEA’sprogressreport“Makingthetransitiontozero-emissionmobility”,2019.https://www.acea.be/uploads/publications/ACEA_progress_report_2019.pdf7ACEA’sreporton“CO2emissionsfromheavy-dutyvehicles”,2020.https://www.acea.be/uploads/publications/ACEA_preliminary_CO2_baseline_heavy-duty_vehicles.pdfwww.ertrac.orgPage23of169FinalVersiontechnologyandresearchorienteddocumenttriestocontributetoaqualifieddiscussionamongallrelevantstakeholders.On17thApril2019,theEuropeanParliamentandCounciladoptedRegulation(EU)2019/631introducingCO2emissionstandardsfornewpassengercarsandlightcommercialvehiclesintheEuropeanUnion.ThisregulationsettargetsforthereductionoftailpipeCO2emissionsofnewlyregisteredpassengercarsby15%and37.5%fortheyears2025and2030respectively.Thesetargetsfollowfromthatof95gCO2/kmfortheyear2021,assetin2013.Usinglaboratorytest(WLTP)results,theprogressofmanufacturer,ismonitoredeachyearbytheMemberStates,basedonnewcarregistrationdata.The“Fitfor55Package”ProposalfromtheEuropeanCommission(July2021)goesfarbeyondtheseCO2reductiontargetsandproposesanadditionalone:from2035onwards,only“Zero-Emission”passengercarsshouldbeallowedfornewregistration.Inreality,thislimitsthepowertrainoptionstoBEV(BatteryElectricVehicles)andFCEV(FuelCellElectricVehicles)only.In2023,theEuropeanCommissionwillreviewtheregulation,reportingtotheEuropeanParliamentandCouncilontheprogressmadetowardsreachingthepassengercarCO2targets.Amongstotherthings,this‘mid-termreview’willtakestockoftheroll-outofchargingandrefuellinginfrastructureforalternativelypoweredvehicles,theirmarketuptake,aswellasCO2reductionsfromthecarfleet.TheregulationsettingCO2standardsfortrucksobligesmanufacturerstoreducetheiraveragefleetemissionsacrosstheregulatedvehiclegroupsby15%(by2025)and30%(by2030)comparedtothebaseline.Possiblefurtherregulatorylimits,beyond2030,arecurrentlyunderdiscussionandafirstproposalisexpectedduring2022.TheEUisseekingtoreduceCO2emissionsfromroadtrafficprimarilythroughfleetlimitsfornewvehiclesbasedona“tanktowheels”(TtW)perspective.However,between1990and2017theefficiencygainsenforcedbyregulatorylimitswereoutweighedbyincreasedtrafficvolume:in2017,CO2emissionsfromroadtransportamountedto543milliontons,18%higherthanin1990,virtuallyunchangedoverthefifteenyears.InthisdecadeEuropewillprobablyseeasignificantramp-upofelectrifiedvehiclesales(BEVandPHEV)withasignificantreductionoftheCO2emissionsfromthenewvehiclefleet.Butseveralscientificstudieshaveelaborated,thatthecumulativeGreenhouseGas(GHG)Emissionfromroadtransportwillbedominatedformanyyearsbytheexistingvehiclefleet.TheeffectivereductionofGHG-Emissionsrequiresalsoambitiousmeasuresforthevehiclestock.Aneffectivetechnicalmeasuretoreducethein-useCO2emissionsofaconventionalICEpoweredvehicleistheuseoflow-carbonfuels.Theintroductionoflow-carbonfuelstothemarketwouldhaveacomplimentaryimpactonthecumulativeCO2emissionsfromRoadTransportinthenextdecadestogetherwiththeintroductionofZero-Emission-VehiclesintheNewVehicleFleet8.Whilstitisnotthepurposeofthisdocumenttosuggestregulatorymeasures,inanyway,itisimportanttorealisethatthediscussionsleadingtothedefinitionoftheresearchneedshasbeenmadenotonlyfromtheholisticperspectiveofroadtransportasasystemwithinabiggerenergysupplyandinfrastructureprovisionnetworkbutalsowithregardtopossiblefuturemeasuresandassessmentmethodsforoverallsystemclimateneutrality.Hence,life-cycleanalysisassessmentmethodsandcirculareconomyaspectsareinherentfeaturesoftheresearchneedsidentified.8See,forexample,Kramer,“FVVFuelsStudyIV–TransformationofMobilitytotheGHGNeutralPostFossilAge”,SIAPowertrain&Energy,June2022www.ertrac.orgPage24of169FinalVersion1.2UseCasesandFleetScenariosAlthoughpurebatteryelectricvehiclesareexpectedtobeamajorpillarforachievingtheGreenDealobjectivesin2050,thesecanonlybeachievedrobustlywithanintelligentmixoftechnologies,onethatsatisfiestheneedsoftheusersandfulfilslocalenvironmentalrequirements.Thiswillrequireaholisticapproach.ThevehiclepowertraintechnologyvariationsthatareconsideredwithinthisroadmapareBEV,FCEV,aswellasPHEVandHEV,operatedwithsustainableelectricityand/orfuels(includinghydrogen).Today,whattheprecisesharebetweenthesetechnologieswillbeisunknown,butitisclearthatthesplitwillhelptoensurethateveryusercanmeetnearlyalltheirneeds,iswillingtopurchaseandusethesolutionsasdesigned.Furthermore,itisunknownhowthemobilitymodelswilldevelopandevolveoverthenextthirtyyears.Similarly,itisunknownhowtheregulationsthatactuallyapplyintheurbanareasandtheuser’spreferencesforownershiporwillingnessandopennessforconcepts,suchasthesharedeconomy,willdevelop.Mobilitywillbeakeypillarforeconomicsuccessandsocietalsatisfactionevenin2050:sothecriticalquestionis,“howisitpossibletoachievetheenvironmental,GreenDealobjectivesinparallelwithothersocio-economicobjectives?”.Therealisablerateofchange,forbothnewandexistingtechnologiesisachallengeandvitalconsiderationwhenregardingfuturescenarios.Forexample,howfastcanEuropebuild-upacompletelynewinfrastructureforelectricchargingandhydrogen?The“new”technologies,suchasBEVandFCEV,willalsofaceshiftsintheaccessandallocationofresources(e.g.increasingaccessneededforlithium,cobalt,catalystsetc.).Ontheotherhand,howsooncantheproductionandsupplyofrenewablefuelsbescaled-up?Hybridsolutionsmaybevitaltobridgethegapsthatmayappearduringthetransition:specificsolutionswillbeoptimised,fit-for-purpose,yetmaybeverydifferentfromwhatweseeonourroadstoday.Nevertheless,evenifthedetailedpathisunclear,wecantrytodescribepossiblemilestonesforthenextdecades:Milestone2030:Airqualitylimitsrelatedtoroadtransportareachieved,asfaraspossible,allacrossEurope(eveninhotspots).AlternativetechnologiesforCO2reductionarepushingstronglyintothemarket.Theclimaterelevant(CO2andequivalent)emissionsfromroadtransportaredecreasingbutslowly,forexample,possiblyduetothelowrateofvehiclestockturnoveryetgrowingroadtransport,andthelevelsofinvestmentintheenergyandinfrastructureaspectsneeded.Milestone2040:Sincethevehiclestockisrenewed,airqualityrelevantemissionsfromroadtransportarenolongeranissue.Whilstthemobilityofpeopleandgoodscontinuestogrow,climatechangerelevantemissions(CO2etc.)fromroadtransportaredecreasingrapidlywithinEurope,bytenstohundredsofmillionsoftonnesperyear.Significantinfrastructureandenergyproductionchanges,inparticularrelatedtorenewablesourcesandchemicalstorage,haveenabledthis.Milestone2050:Allofroadtransport,throughoutEuropeisclimate-neutralandair-qualityisnotaffectedbyvehiclepowertrainemissionsanymore.However,thenumberofunknowns,projectingastep-by-stepapproachto2050anddeterminingtheresearchneedsthereto,isextremelydifficult.Hence,toassistinthisprocess,“corner-point”scenariosat2050,whichbydefinitionmeettheGreenDealtargets,mightbeenvisaged.Fromthese,use-casescanbeconceived,asameansofvisualisingpossiblefinalconstellationsofthevehicleparc,itsenergysupplyandinfrastructurerequirements.www.ertrac.orgPage25of169FinalVersionSuch“corner-point”scenarioshavebeencreatedaspartoftheERTRAC2050Vision9andevaluatedfortheirenergyneedsthroughtheworkoftheERTRACCO2Studygroup1.Figure1illustratesthemarketsplitperpowertraininthedifferentscenarios:Figure1.ScenariodatafromtheERTRACCO2EvaluationGroup(thegraphsshow,foreachofthescenarios,theproportionofthepowertraintechnologiesinthedifferentvehicleclassesoftheprojected2050Europeanvehicleparc)The“HighlyElectrifiedincludingElectrifiedRoadsSystems(HE-ERS)”Scenario,representstheuseusingelectrificationtoaverysignificantdegree.Passengercarsandvehiclesforurbanusehaveabatteryelectrifiedpowertrainoraplug-inhybridpowertrain.Heavy-dutytruckscanalsouseelectrifiedroadsoverlongdistances.9Seehttps://ertrac.org/uploads/images/1.%20ERTRAC%20Vision%202050_ERTRAC%202017.pdfHE-ERSHE-HHYBwww.ertrac.orgPage26of169FinalVersionThe“HighlyElectrifiedincludingHydrogen(HE-H)”Scenariorepresentstheuseoffuelcelltechnologiesforlongdistancejourneys,inadditiontothepresencesofBEVandPHEV.The“Hybrid(HYB)”Scenariodescribesafleetmixinasituationwheretheinfrastructureforcharging,electrifiedroadsorhydrogenisnotfullydeveloped.Forthatreason,thereisarelativelylargeuseofcombustionengineswithrenewablefuelsinthisscenario.Evenifthescenariosarequitedifferent,theyeachincludeasignificantshareoffleetdistancetravelledelectrically(seeFigure2)andareallGHG-neutralbyusingrenewableenergycarriersorusingadditionalCarbonCaptureandStorage(CCS)technologiesifneeded.Thus,thefirstimportantmessageis,thatGHG-neutralitycanbeachievedbydifferentpathways,buttheconsequencesfortheenergysupplyandtheinfrastructureneedsarequitedifferent.Iflife-cycleaspects,suchaslanduse,wateruse,materialsoreconomicaspectssuchasinvestmentsorcosts,areconsidered,thesystemanalysisbecomeshighlycomplex.Therefore,itisverydifficulttodeterminewhichscenarioisthe“best”.Figure2.Roadvehicleactivityrates(perscenarioandenergycarrier)fromtheERTRACCO2EvaluationGroupstudy1010“T”relatesto“tera”,i.e.onetrillion.The“liquidfuel”usecomesfromthatwithinthePHEVvehicles.SeetheERTRACCO2study1forfurtherinformation.RoadVehicleActivityin2050[Tvehiclekm]HighlyElectrifiedincludingERSHighlyElectrifiedincludingHydrogenHybridisedFleetScenario432105ElectricElectricH2ElectricLiquidFuelCommercialVehicleActivityin2050[Tvehiclekm10]HighlyElectrifiedincludingERSHighlyElectrifiedincludingHydrogenHybridisedPessimisticScenario6420ElectricH2ElectricLiquidFuelElectricwww.ertrac.orgPage27of169FinalVersion1.3KeyMessagesforaClimateNeutralRoadTransportSystemin2050Followingtheaboveconsiderationswhilstnotyetgoingintothespecificresearchneeds,somekeymessagesariseuponwhichsuchneedsshouldbeframed.Insummary,thesemightbeexpressedas:0.Aclimate-neutralroadtransportsystemispossible!ERTRACiscommittedtouse100%renewableenergycarriersforroadtransportandtoendthedependencyonfossilfuels.ERTRACsharesthevisionofEuropebecomingaclimateneutralcontinentin2050.Toachievethis,allstakeholdersinroadtransporthavetobringsubstantialcontributions:theautomotiveindustry,energyproviders,electricgridoperators(TSOandDSO),publicandprivate(charging)infrastructure,thefuelandregulators.1.Theelectrificationofpowertrainsisthekeyelementforclimateneutrality.ThesepowertrainsincludethoseinBEV,futurePHEVandFCEV.2.Emissionsfreeinurbanareas:Allvehiclesinurbanareashavetouseemissionfreepowertrains.Theywilldriveby100%inelectricmode(geofencingforPHEV)andwillbehighlyefficientincludingusingrecuperation.3.A100%BEVscenarioincludinglongdistancetransportraisessignificantenvironmental,economicandsocialchallenges:-scalabilitymustbeensured:availabilityofcriticalresources;-charginginfrastructureisneededalloverEurope,includingareasoflowerpopulationdensity;-theenergysupplyanddistributionmustbesecuredatalltimes,inspiteofintermittentRES,adiversityofenergycarriersisneededtoincreasethesystemresilience;-customeracceptanceiskey:easeofuse,availability,costetc.;-asystemicevaluationisneededtoensurethatthewholesystemisviable.4.ThefuturePHEVwilldrivemainlyinelectricmode(circa100kmcustomerrange),sothee-modewillcovermostofthedailytrips.Onlyonlongdistancetripswillituseahighlyefficient,emissionsneutral,fuelauxiliarydrive.5.Renewablefuelsareneeded.Thankstothehighelectrificationofallpowertrains,thedemandforfuelswillbesignificantlyreduced.Thisamountcanbecoveredbyrenewablefuels.Renewablefuelsaretheonlyoptiontodecarbonizetheolderconventionalvehiclesinthefleet.6.Globalenergypartnership:Europeisnotabletoproducetheneededenergyinarenewablewayinternally.Despiteeffectiveenergysavingprogrammes,Europewillstillneedtoimportenergy.TheenergycouldbeproducedoutsideEuropeandtransported,mostlikely,viachemicalenergycarriers(gasandfuels)toEurope.Theexistingfuelinfrastructurecouldstillthenbeused.ThiscouldofferaspecificopportunityforaneconomiccollaborationbetweenEuropeandAfrica,duetothepotentialforrenewableenergyproductioninthiscontinent.7.ThefossilfuelledICE,asthemainpropulsionsysteminroadtransport,willphaseoutbyaround2040inmostareasoftheworld.Inhighlyelectrifiedpowertrains,theICEwilltakeonanewrole.TheICEwillbeGHG-neutralwhenpoweredbyrenewablefuel:itwillbeaGHG-neutralauxiliarydrivewithnegligibleemissions.8.ThetechnicalleadershipofEurope,jobsandmobilityforallwillbesecuredbythemixoftechnologies:BEV,futurePHEVandFCEV.9.AtrulyopenresearchprogrammecoveringallGHG-neutraltechnologiesisneeded.www.ertrac.orgPage28of169FinalVersion1.4TheStructureandContentofthisDocumentTheChapters2,3,4and5giveanoutlineofthestateoftheartwithrespecttotheirsubjectmatter:“Renewableenergycarriers”,“Vehiclepowertrains”,“Infrastructure”and“Asystemicviewandimpacts”.Abriefvisionofapossiblesolution,situationin2050willbegivenalongwithanindicationofthedevelopmentsneededtorealisethis.Consequently,therecommendationsforneededresearcharemadeinthelastchapter(Chapter6).Forassistance,atableofdefinitionsisgivenintheappendices.Similarly,alistofnotesisgiveninthedocumentandalistofreferencesattheendofdocument.TheworkonthisdocumentwasperformedbetweenJanuary2020andNovember2022:thedocumentisasnapshotofwhatwasobservedduringthisperiod.Inafastmovingandhighlyuncertainenvironment,validobservationsmadeatthattimemightbecomeobsoleteinthecomingyears.www.ertrac.orgPage29of169FinalVersion2RenewableenergycarriersformobilityIntroduction“Energycarriersformobility”:whatexactlyarewetalkingabout?Thewording“energycarriers”meansthatthesearenotenergysourcesinthemselves(oftenreferredas“primaryenergies”)butareintermediateswhich“carry”energyfromtheprimaryenergiestotheirfinaluse–roadtransportinthisinstance.PrimaryenergyreferstoenergyavailableonEarthwithoutanytransformation.Mostoftime,primaryenergycannotbeusedassuchinitsfinalapplication.Themostusedprimaryenergiestodayarefossil-based:coal,crudeoilandnaturalgas.Primaryenergiescanalsobe“renewable”:wind,sun,crops,wood,potentialenergyofwater(storedinalakeorinariver),geothermalheatetc.Anotherwell-knownprimaryenergyisnotfossil-basednorrenewable:thepotentialenergyoffissionreactionfromanucleus(mainlyuranium235).Beforebecomingenergycarriers,theseprimaryenergiesundergoasetoftransformations,called“process(ing)”.Afterthisstep,theywillbecomefinalenergiesthatcanimmediatelybeusedfortransportpurposes.Eachenergycarriercomeswithitsowncharacteristics,makingitmoreorlesssuitedforagiventransportapplication.Hence,itcanbeobservedthatanyenergycarriercomeswiththreeuniversalsteps:Feedstock(orprimaryenergy)➔Process➔Energycarrier.Eachofthesethreestepscomeswithitsowncharacteristics.Someofthemarelistedbelowforthepurposeofillustration:•Feedstock(orprimaryenergy)oAvailability,cost,carbonintensity,intermittency,waterconsumption,impactonbiodiversityetc.•ProcessoTechnicalmaturity,cost,yield(orenergyexpanded),waterconsumption,landuse,rawmaterialsneeds,pollutantsemissions,wastestoxicityetc.•EnergycarrieroSuitabilitytobeusedinapowertrain,easeofstorageandtransportation,energydensity,safety,pollutantsemissions,cost,customeracceptanceetc.Today,andintheforeseeablefuture,thereisnoidentifiedsingleenergycarrierthathasthebest-in-classpropertiesineachofthesethreesteps.Whencomparedtoeachother,theyeachhavetheirrelativeprosandcons,moreorlessacceptabledependingonthespecifictransportneeds.Thisisthereasonwhytheexpression“Thereisnosilverbullet”issooftenusedwhenconsideringthefutureenergycarriersfor(road)transport.Withthisinmind,itisindeedlikelythatawidevarietyofenergycarrierswillberequiredtofeedtransportin2050:thisisthepurposeofthischapter,todescribethesedifferentenergycarriers.Forthispurpose,thischapterisdividedinthreecategoriesofenergycarriers,eachofthemcorrespondingtoadedicatedsection:electricity,liquidfuelsandgaseousfuels.Forthesakeofclarity,eachoftheseparagraphshasthesamestructure:•First,thepanelofsolutionsconsideredfortheproductionoftheenergycarrierislisted.Here,thethreeaforementionedsteps(feedstock,processandenergycarrier’sproperties)aredescribedwiththeaimtogivethereaderabroadunderstandingoftheirstatus,theirspecificneeds,gapsandconstraintstomakethemGHG-neutral,andtheirforeseenevolutionsforthedecadestocome.•Then,energymixscenariosaredescribed.Thesescenariosrepresentarangeofdifferentassumptionsregardingthemixoffeedstockandprocesseswhichcouldbeusedtoproduceeachenergycarrierfamilyby2050,withaviewofreachingGHGneutralityfortransport.Theyhavebeenwww.ertrac.orgPage30of169FinalVersiondesignatedbytheERTRACCO2EvaluationGroupandwillbeusedfortheevaluationoftheusecases(seeChapter5).•Finally,anenvironmentalassessmentoftheenergymixisgiven.Inthisdocument,itsscopeislimitedtoGHGintensityoftheenergycarriers(HowmuchGHGisemittedwhen1kW.hofenergycarrierisused?)andtheirenergyexpanded(Howmuchenergyisneededtoproduce1kW.hofenergycarrier?).ThesevalueswillalsobeimportantinputstotheChapter5onusecases.However,itisimportanttokeepinmindthatthesetwoindicatorsonlyrepresentarelativelysmallshareofwhataholisticenvironmentalassessmentcouldbe,includingalsootherparameterssuchaswaterconsumption,landuse,rawmaterialneeds,impactonbiodiversity,pollutantsemissions,wastetoxicityetc.Theauthorswouldcertainlynotpretendthatthelatterarelessimportantthantheformer;theysimplywerenotinapositiontogivethisholisticview,regularlybecausethedataisnoteasilyavailable.Insomecases,itcantriggerfurtherresearchneeds,whichwillbedescribedinChapter6.DevelopingrenewableenergycarriersforaGHGneutraltransportby2050representatremendousamountofwork:itisnothingbutsimple.NotonlyoneneedstocheckthatGHGneutralityisensured,butalsotheavailabilityatscale,thecustomeracceptance(easeofuse,costetc.),thecompatibilitywiththeavailablewatersupplyandlanduse,theinclusionwithinasystem(e.g.withspinningreservesorstorageavailabilityortransmissioncapacitiesallowingtocompensateintermittency)etc.Inotherwords:oneneedsto“tickalltheboxes”toensurethatthewholesystemisviable.Asallofthese“boxes”couldnotbecheckedinthisdocument,theauthorscannotprovidedefinitiveconclusionsregardingthemostsuitableenergymixforaGHGneutraltransportby2050.However,thisdocumentwillhopefullyconstituteagoodfirststeptowardsthisultimategoal.2.1ElectricityApproximately23%ofthefinalenergyconsumptionintheEUin2017wasbasedonelectricity,31%ofwhichwasfromrenewableorigin(RES).Therestoftheelectricitywasproducedinnuclearpowerplants(25%)andfromfossilthermalpowerplants(44%).ThesharesofmainRESwerewind(11%),hydropower(10%),biofuels(6%)andsolar(4%).TheenergymixacrossEUcountriesdiffers.Forexample,71%ofelectricityinFrancecomesfromnuclear,whilstothercountries(suchasItalyorAustria)donothaveanynuclearpowerplantsatall.Theshareoffossilfuelsspreadsfrom91%inCyprustojust3%inSweden.Thetimetablesforthephase-outofcoalaresetbetween2025and2038.Naturalgasappearsasatransitionalfuel,thatwillbereplacedmainlywithrenewablesolutionslikesolarandwind,butthatcouldbepartiallyreplacedwithgreenandrenewablegasaswell.Traditionaloperationofthepowersystemisbasedonelectricityproductionmeetingelectricitydemandonareal-timebasis.WiththeprogressiveintroductionofvariableRES,powersystemsareevolvinginordertogetreadytobalanceupto100%variablerenewableenergyproduction,seeFigure3.Todate,thishasbeenpossiblebyusingdigitalisationtoolstopromoteefficientcooperationbetweensystemoperators,byupgradingelectricitynetworks,andbyincreasingcross-borderconnections.Balancingmarketsareincentivisingthedevelopmentofnewstoragecapacity,moredynamicdemandresponseandenergyconversion,providingnewsourcesofflexibilitythatcomplementflexiblegeneration.Theelectricitysectorisfullypreparedtofaceintothisfuture;oneinwhichitshallbethepivotingfactorindecarbonisationgiventhatithasalreadyembarkedonthewide-scaledevelopmentofrenewableenergiesandthemodernisationandreinforcementofelectricitygrids,amongotheractionsaimedatprovidingbusinesssolutionsalignedwithclimategoals.www.ertrac.orgPage31of169FinalVersionFigure3.Illustrationofdailyvariationinprimaryenergycarriers.Source[2.1]2.1.1PanelofsolutionsconsideredfortheproductionofdecarbonizedelectricityBothwindandsolarphotovoltaicenergyhaveachieveddrasticreductionincostsoverthepastdecades.Inthefuture,aswillbedetailedinthisdocument,itisexpectedthattheincreaseofflexibilitythatsmartgrids,distributedgenerationandstorage,anddemand-sidemanagementwillprovidetothesystemwouldcompensateforalossofflexibilityonthegenerationsideofintermittentrenewablesources,suchaswindorsolar.Windenergyisamatureandcompetitive11technology,beingakeypartofEurope´sindustrialbase,with260,000qualityhighskilledjobs.TheEuropeanwindindustryhasa40%shareofalltheturbinessoldworldwide,exportingtechnologyandservices.AccordingtotheIEA,windwillbecometheprimarysourceofelectricitygenerationinEuropein2030.EUoffshorewindresourceismuchgreaterandmorestablethanonshore,whichisdrivingthegrowthofoffshorewindinstalledcapacity.Duetothishigherresource,windturbinesarecurrentlyreachingnominalratingsof8-9MW,withsomedesignsreaching12MWandexpectationstoreachevenbiggermachines(15MWexpectedin2030).Additionally,theincreaseoftherotorsize,duetotheuseofstrongermaterialsandaerodynamicsimprovements,willsignificantlyincreasetheturbineloadfactor.In2019,theaverageloadfactorfornewoffshorewindcapacitiesreached44%,continuouslyincreasingoverthepastdecades(seeFigure4).Incomparison,thenewcapacitiesofonshorewindloadfactorreached31%,alsocontinuouslyincreasingovertime.Theoffshorewindindustryiscurrentlydominatedbytheuseoffoundationstructures.Forthisreason,theprojectsarelimitedtoshallowwaterareas(<~50mdeep).11BasedonLCOEwww.ertrac.orgPage32of169FinalVersionFloatingoffshorewindtechnology,inanincipientphaseofdevelopment,willallowthelocationstobeextendedtodeeperwaters,potentiallyaccessinglocationswithgreaternumbersofwindhours.Mostimportantly,offshorewindhasthepotentialtodeliverthebulkpowerneededtodelivertheEUtransitioninthepowersector,ontime.Figure4.Globalweighted-averagecapacityfactorsfornewonshoreandoffshorewindcapacityadditionsbyyearofcommissioning,1983-2018.Source[2.2]GlobalPhotovoltaicinstalledcapacityhasbeenincreasingatanaverage46%yearlyduringthelastdecade,withmodulesbeingthecomponentwithfastercostdecrease:24%lesseverytimecumulativecapacitydoubles.PortugalhasunveiledthefinalresultsofthesolarauctionheldovertheSummer2019,whichmadeglobalheadlinesasreportsemergedofbidpricesof€14.76/MW.h(aroundUS$16/MW.h)12.TheincreasinginvestmentinR&Dofmanufacturersismakingpossibletheemergenceoftechnologiesforthebestuseofthesolarresource,lessdegradationwiththepassageoftime,smallerresistancetothepassageofelectriccurrentandingeneralincreasedenergyoutputelectricfromthesamesolarspectrum.Theloadfactorfornewutility-scalesolarphotovoltaichasincreasedregularlyfrom14%in2010to18%in2018,astheshareofdeploymentinsunnierlocationshasrisen(seeFigure5).12Inordertovisualizehowcompetitivesolarpricesarealreadytoday,andassuminganaverageconsumptionofanelectriccarof20kW.h/100km,themarginalcostof“fuel”foranelectriccarusingdirectlythiselectricitywouldbeofjust0.28€every100km(taxesandtransportcostsexcluded).Incomparison,acarequippedwithaninternalcombustionenginewithaconsumptionof5litre/100kmwouldhaveamarginalcostoffuelof2€every100km(Dieselpriceat0.40€/litre,taxesandtransportcostsalsoexcluded).www.ertrac.orgPage33of169FinalVersionFigure5.Globalweighted-averagecapacityfactorsforutility-scalePVsystemsbyyearofcommissioning,2010-2018.Source[2.2].Hydropowerisaversatile,flexibletechnologythat,atitssmallest,canpowerasinglehomeand,atitslargest,cansupplyindustryandthepublicwithrenewableelectricityatanational,evencross-borderscale.Intermsofgenerationcapacity,hydroaccountsforeightoftheworld’stenbiggestexistingpowerstations.Therearefourbroadhydropowertypologies:Run-of-riverhydropower;Storagehydropower;Pumped-storagehydropower;andoffshorehydropower,agrowinggroupoftechnologiesthatusetidalrange,tidalcurrentsorthepowerofwavestogenerateelectricityfromseawater.Theglobalpotentialofoceanenergyresourcesisverylargebutmosttidalandwaveenergydevicesarestillintheresearchanddevelopmentphase.CumulativeinstalledcapacityintheEUin2030isexpectedtobebetween1.3to3.9GW,dependingonthescenarioconsidered(Source:EC).NuclearPowerPlantshavebeen,overdecades,thebasisforreliable,emission-freepowergeneration.Attheendof2017,448nuclearreactorswith393GWelin31countrieswereinoperation,and59unitswereinconstructionworldwide(Source:IEA).Mostnuclearpowergenerationisbasedonthreereactortypes:pressurizedwaterreactors,PWR(63.2%);boilingwaterreactors,BWR(18.3%);andpressurizedheavywaterreactors,PHWR(6.5%)–intotalrepresenting88%ofthenuclearfleet13.Beingusedmostoftimeasbasepower,nuclearpowerplantsbenefitfromthehighestloadfactor,reachinganaverageof90%inEurope14.Inasystemwithahighpenetrationofvariablerenewableenergy,energystorageofshort,mediumandlongdurationswillbenecessary.Therearemultiplestoragetechnologieswithdifferentpowercharacteristicsandstoragecapacity(duration),seeFigure6.Eachtechnologyisdeterminedtoprovideaconcreteapplicationbyitstechnicalsuitability,aswellasitscost.Untiltoday,onlyonetechnologyoflargeenergyvolumeandlong-lastingstoragehasproventobetechnicallyandeconomicallyviablesothatitcanbeexploitedmassivelyintheelectricitysector:pumpedstorage.Asanexample,lithium-ionbatteriesareontheirpartabletostoremediumvolumesofenergyduring4to6hours,providingback-upcapacityinperiodsofpeakdemand,regulatingthenetworkfrequencyinmillisecondsoroptimisingtheintegrationofrenewablesinthesystem.ThehighdemandforbatteriesforEVscouldleadtoimportanteconomiesofscaleandinvestmentsonthistechnology,whichcouldbedefinitelythestoragetechnologywiththegreatestevolutionuntil2030.However,itshouldbeclearthatthereisanothertypeoftechnologyindevelopment.13NuclearPowerReactorsintheWorld-2015Edition.InternationalAtomicEnergyAgency(IAEA).Retrieved26October201714Source:Foratomewww.ertrac.orgPage34of169FinalVersionFigure6.Anoverviewofdifferentenergystoragetechnologies.Source[2.3]Investmentsinelectricitynetworkswillbenecessaryforthedeploymentofnewinfrastructureandthedigitalisationplusautomationoftheexistingone,soastoensurethattheelectricitysystemissufficientlyrobustandflexibleinorderto:Integratealargeamountofintermittentrenewableproduction,managethegrowingdemandforelectricityandmaintainthecurrentqualityofsupply.2.1.2EnergymixscenariosInNovember2018,theEuropeanCommissionpresenteditsstrategiclong-termvisionforclimateneutralityby2050,‘ACleanPlanetforall’[Source2.4].ThestrategyshowshowEuropecanleadthewaytoclimateneutralitybyinvestinginrealistictechnologicalsolutions,empoweringcitizensandaligningactioninkeyareas,suchasindustrialpolicy,finance,orresearch–whileensuringsocialfairnessforajusttransition.TheCommission’sstrategicvisionprovidesadetailedanalysisofeightpathwaysforapossiblefutureEUeconomy.Thescenariosrelyonbothexistingandemergingtechnologicalsolutions,citizenempowermentandalignmentsacrosspolicy,financeandresearch.1.5TECHscenario–Powergenerationcapacity/sharesThe1.5TECHscenarioisoneofthetwoproposedbytheECthatreachesnet-zeroGHGemissionby2050.Thisscenarioisbasedon“energyefficiencyfirst”principle,balancedwiththeaugmentedneedtoproducerenewableelectricityfortheproductionofgreenhydrogen(P2X).Thisscenariobuildsontwotrendsthathavealreadystarted:•Decarbonizationofelectricity,duetothemassiveintroductionofcompetitive15RES.•Electrificationofthedemandintransport,buildingsandindustryallowsastrongreductionintheprimaryandfinalenergydemand.Underthisscenario,totalinstalledcapacityforelectricitygenerationinEuropewouldgrowfrom985GWin2015to2800GWin2050,seeFigure7.15AccordingtoLCOEwww.ertrac.orgPage35of169FinalVersionFigure7.Powergenerationcapacity.Sources[2.5&2.6]Electricitydemandin2050willbe2.5timesthatin2015(from3,000to7,200TW.h)whichmakestheelectricityshareoffinalenergyconsumptiongrowfrom23%in2017toover50%in2050.Mostoftheincreaseindemandcomesfromtheelectrificationoftransport.45%oftheelectricitydemand,inthescenario,isdedicatedtotheproductionofgreenhydrogenviaelectrolysers.AsillustratedinFigure8below,the1.5TECHscenario(“Decarb.2050”)envisionsanelectricitymixbasedonthefollowingshareofpowergenerationcapacity16:•Renewables(RES83%)oWind+Solar:69%oBiomasswithCCS:10%oHydro:4%(versus12%in2016)•Withcontributionofnuclear(12%)andnaturalgaswithCCS(4%)•Others(e.g.fossilwithoutCCS).Figure8.Sharesinpowergeneration.Source[2.5&2.6]16Thisisthepowergenerationinstalledcapacity(expressedforinstanceinGW).Theshareofpowergeneration(expressedforinstanceinTW.h)isdifferent.www.ertrac.orgPage36of169FinalVersion1.5TECHscenario–CarbonintensityoftheelectricitymixUnderthisscenario,theelectricitysectorwillbeabletoreachnetzeroGHGemissionsin2050duetothemassiveuseofrenewablesandCCSwithbiomass.BiomasswithCCSgeneratenegativeemissionsthatcompensatepositiveemissionsinothersectors(suchasindustry)withemissionshardertoabate.Inthe1.5TECHscenarioandforthepurposeofthis2050Roadmap,theresidualCO2eqintensityoftheelectricitymixhasbeenestimatedin5.2gCO2/kW.h17.1.5TECHscenario–StorageneedsAsillustratedinFigure9below,1.5TECHprovidesfiguresforstorageintheelectricitysector.Pumpinghydro(48TW.h)andbatteries(128TW.h),ontopoftheEVbatteries.Hydrogenproduction(105TW.h)willaswellbeasourceofstoragefortheelectricitysystem18.Figure9.ElectricityStoragein2050.Source[2.6]NeitherhydrogennorsyntheticmethaneorfuelsareusedtogenerateelectricityinECscenarios,althoughthiswouldbetechnicallyfeasible19.17Source:ERTRAC,basedonACleanPlanetforall[ACP4A2018].CIofelectricitymix–Details:Step1.Grosselectricitygenerationin2015baseline:3,234TW.h(Figure8fromACP4A-Appendixes).Step2.7,955TW.hgenerationin2050(1.5TECHscenario)(Note.146%ofadditionalgrosselectricitycomparedto2015baseline(Figure22fromACP4A-Appendixes)).Step3.Assumption:10%lossesduetotransmission/storage→Grosselectricitysupplyin1.5TECH2050:7,159TW.h.Step4.Emissionsfromthepowersector:37.5MtCO2eq(1.5TECH2050-asreportedinpage113ofACP4A).Carbonintensity:GHGemissions/grosselectricitydemand:5.2gCO2eq/kW.h.18Tobemoreaccurate,storagecanbeseenasatopicwith3levers:1.Thepowercapacityofthestoragecapacities(expressedinGW):thisistheinstantaneouspowerthatyoucanget(orwhichcanbeabsorbed)bythestoragecapacitiestoequilibratethegrid;2.Theenergycapacityofthestoragecapacities(expressedinTW.h):thisisthesumoftheenergycapacitieswhichcanbestoredsimultaneouslyatagivenpointintime;3.Thetotalenergywhichistakenfromstoragecapacitieseachyear(alsoexpressedinTW.h).Thisvalue(3)can(orcannot)differsignificantlyfromthepreviousone(2)dependingontheneeds.Forinstance,pumpinghydrostoragecanhaverelativelysmallstoragecapacitiescomparedtothetotalenergywhichtheycandelivereachyearastheycantheoreticallybeemptiedandfilledeveryday.Thesameapproachcanbeusedforbatteries.Butforhydrogen,thesituationislikelytobedifferentasitwouldensureinter-seasonalstorage:inthiscase,theratiobetweentotalenergytakenfromstorage(3)andstoragecapacity(2)shouldbelowerthanforpumpinghydroandbatteries.Theauthorsdidnotmanagetoclarifywhetherthestoragevaluesmentionedinthetextandinthefigurerefertostoragecapacities(2)ortototalenergytakenfromthecapacities(3).19Aselectricityisgettingdecarbonized,itcanbeusedtoproducegreenhydrogenande-fuelswhicharederivedfromit.Technicallyspeaking,itwouldbepossibletostoreandusethesefuelstoproduceelectricitywhenintermittentsourcesarenotsufficienttosupplyelectricitytothegrid;however,thispathwayisnotconsideredintheECscenarios,andthesefuelsareusedbyothersectorsinstead.www.ertrac.orgPage37of169FinalVersionWhile1.5TECHassumesapercentageoffossilfuelsandnuclearintheelectricitymix,otherstudiessuchastheNETZERO2050TOWARDSFOSSIL-FREEENERGYIN205020fromCambridgeEconometricsandElementEnergyortheonefromEnergyWatchGroupandLUTUniversityprovidedifferentscenariosthatshowthat100%RESenergysystemsinEuropeandworldwidewouldbefeasibleby2050.TheEnergyWatchGroupfinds,•Thereportconfirmsthatatransitionto100%renewableswouldbepossibleacrossallsectors.Thetransitionto100%renewableenergywouldrequirecomprehensiveelectrificationinallenergysectors.Thetotalelectricitygenerationwouldbefourtofivetimeshigherthantheelectricitygenerationin2015.Accordingly,electricityconsumptionin2050wouldaccountformorethan90%oftheprimaryenergyconsumption.Atthesametime,consumptionoffossilandnuclearenergyresourcesinallsectorswouldceasecompletely.•Theglobalprimaryenergygenerationinthe100%renewableenergysystemwouldconsistofthefollowingapproximatemixofenergysources:solarenergy(69%);windpower(18%);hydropower(3%);bioenergy(6%);andgeothermalenergy(2%).•By2050,windandsolarpowerwouldaccountfor96%ofthetotalpowersupplyofrenewableenergysources.Renewableenergieswouldbeproducedvirtuallyexclusivelyfromdecentralisedlocalandregionalgeneration.2.1.3EnvironmentalassessmentThesummaryoftheGHGintensityoftheelectricitymixusedintheERTRAC2050roadmapisdetailedbelow.Thiselectricitymixwillbeusedinbothdirectuse(e.g.BEVs)aswellasinindirectones(e.g.productionofH2ore-fuels).Theindustrialprocessesrequiredtoconvertwasteorbiomassintobiofuelsarealsodeemedtousethislowcarbonelectricitymix.Table1.SummaryofenergyexpendedandGHGemissionsforthe2050electricitymixscenariosconsideredintheERTRACroadmap(JEC2030WTTv5valuesareincludedforcomparisonpurposes).Electricitymix(WTT)DescriptionTimeframe2030JECWTTv5(EMEL3b)EU-mix/LV2050ERTRAC1.5TECH(Basecase)2050ERTRAC100%RES(Sensitivity)GHG(gCO2eq/kW.helectricity)2685.20Energyexpended,MJ/MJelectricity1.330.130.07RESinmix45%83%100%20https://europeanclimate.org/wp-content/uploads/2019/11/14-03-2019-towards-fossil-free-energy-in-2050-executive-summary.pdfwww.ertrac.orgPage38of169FinalVersion2.2Liquidfuels2.2.1Panelofsolutionsconsideredfortheproductionoflow-carbonliquidfuels2.2.1.1BiofuelsFigure10.Overviewofthebiofuelsupply(bytype)inEuropein2017.Source[2.7]‘Food&Feed’/‘Firstgeneration’/‘Stateoftheart’biofuelsBiofuelsfromfoodandfeed(alsoknownas‘firstgeneration’)arebasedonagriculturalcommoditiessuchascereals,sugarbeetandsugarcane,aswellasvegetableoils.Theyusewell-establishedconversiontechnologies.ConsumptioninEU28in2018amountedto19Mtoe,dominatedby62.3%biodieselwith17.5%bioethanolon2ndplace,and16.6%hydrotreatedvegetableoil(HVO),seeFigure10.Theuseofbiofuelsfromfoodandfeediscappedat7%(onanenergybasis)accordingtotheRenewableEnergyDirective(REDII–2018/2001/EC),inordertoavoidcompetitionwiththefoodandfeedindustry.Tobeeligibleforthestatusofbiofuels,thecorrespondingfeedstockmustcomplywithanumberofsustainabilitycriteria,amongstwhichisthereductionofGHGemissionscomparedtoafossilbasis,ortheforbiddingofdeforestation.Fromtheend-usepointofview,theuseandblendingratioofbiofuelsfromfoodandfeed,suchasethanol(EtOH)andconventionalesterifiedbiodiesel(FAME),isoftenlimitedfortechnicalreasons(incompatibilityissueswithmainstreamvehicles).Themostusedbiogenouscomponentingasolineenginesisethanol(EtOH).ItisalreadyintroducedinmanyEuropeancountriesupto10%v/vofethanolingasolinefuelgrades,whilemodern‘flex-fuelvehicles’(FFV)canrunonanygasoline-EtOHmixtureupto85%v/vEtOH(E85).EtOHisanaturallywidespreadchemical,whichcanbeproducedfromanyfeedstockcontainingappreciableamountsofsugarormaterialsthatcanbeconvertedintosugar.Fermentation(biotechnology)isthepredominantpathwayforEtOHwww.ertrac.orgPage39of169FinalVersionproduction.EtOHhastechnicaladvantagesasafuelforspark-ignitionengines,includingitshighOctaneNumber.Thisgivesthefuelastrongresistancetoknockwhichtranslatesintoincreasedefficiencyonadaptedengines.FAME,orbiodiesel,isproducedfromvegetableoils,animalfatsorwastecookingoilsbytrans-esterificationandesterification.Inthetrans-esterificationprocessatriglyceridereactswithanalcoholinthepresenceofacatalyst(liquidorsolid),formingamixtureoffattyacidsestersandanalcohol,whereastheesterificationprocessisnecessarytoconvertfreefattyacidsofoilsorfatstofattyacidestersandwater.Usingtriglyceridesresultintheproductionofby-productglycerol.Thephysicalcharacteristicsoffattyacidestersareclosertothoseoffossildieselfuelsthanpurevegetableoils,butpropertiesdependonthetypeofvegetableoil.Amixtureofdifferentfattyacidmethylestersiscommonlyreferredtoasbiodiesel,whichisarenewablealternativefuel.Itisalsonon-toxicandbiodegradable.Somepropertiesofbiodieselaredifferentfromthoseoffossildiesel,thusforcorrectlowtemperaturebehaviourandforslowingdownoxidationprocessesbiodieselrequiresadifferentsetofadditivesthanfossildiesel.Figure11.OperatingandPlannedHVOandBTLplantsinEurope.Source[2.8]Copyright©ArgusConsultingServices.HVOwhichcanbemadealsofromvegetableoils,wasteanimalfatsornewalternativeoilproductionpathwaysisarenewableparaffinicdieselfuelwhichcomplieswiththeEN15940standard.HVOcanbeblended,asadrop-infuel,withoutafixed‘blendingwall’intoconventional(EN590)dieselfuel,fittinganyexistingdieselvehicle,anyaftertreatmentsystemandanyexistinginfrastructure.Uptoabout80%blendingratiosindieselfuelwereshownachievable,andupto100%invehiclescompliantwithEN15940paraffinicfuels.HVO,withitsparaffinicnature,highcetanenumberandgoodwinterproperties,achievablethanktohydro-isomerisationproductionstep,isaverysuitablefueltobeusedincompressionignitionengines.Itshigh-energycontentissimilartotheoneofdieselfuel,reachingthebestvalueamongrenewablecomponents.Thismeansthatthecurrentstoragetankandvehiclefueltanksizesaswellasthewidedrivingrangeofdieselvehiclescanbemaintained.HVOproductiontechnology,relyingonwww.ertrac.orgPage40of169FinalVersionhydrotreatmentprocess,isreadyandusedinlargecommercialscale.HVOproductionisestimatedtoreach5.6Mt/yby2023inEurope,withexistingandplannedproductioncapacitiesgiveninFigure11above.Thetechnologyisinmanyrespectssimilartocatalyticprocessesusedintraditionaloilrefining;itisavailablefrommanyprocesstechnologysuppliers.ThemainproductofaHVOprocessisdieselparaffinicfuel,inadditionsomevolumesofaviationkerosenecanbeproduced.MinoramountsofrenewablehydrocarbongasolineandrenewableLPGareproducedassideproducts.ThelimitingfactorforthemaximumHVOvolumeistheavailabilityofsustainablefeedstock,sinceHVOcompeteswiththesamesourcesasFAME,especiallywiththeframeofthecaponbiofuelsfromfoodandfeedimposedbyREDII.Inparticular,HVOproduction(andFAMEproduction)iscriticizedforrelyingheavilyonpalmoilasafeedstock,whichissuspectedtocauseindirectlandusechange(ILUC),andforwhichregulationalreadyforeseesacapandacompletebanin2030.‘Advanced’biofuelsGeneralintroduction:Theproductionofadvancedbiofuelsalwaysfollowsthreemainsteps,seeFigure12:•Afterthefeedstockiscollected,itgoesthroughapre-treatmentstage;•Thenthefeedstockisdeconstructed,eitherthroughathermochemicalorabiologicalroute,resultinginintermediateproductssuchassugarorlipids;•Finally,theseintermediateproductsarerefinedbeforeobtainingfinalproducts.Figure12.ThemainstagesofbiofuelproductionBiomasstoliquid(BtL).Syntheticfuelsfrombiomassareamorerecentdevelopment,notyetavailableonthemarketatscale.Atthemoment,therearesmallresearchandpilotplantsbutgreatexpectationsarelinkedwiththefueldesignatedasbiomass-to-liquid(BtL),onereasonbeingthattheycanofferoutstandingGHGreductions(upto90%)whilecomplyingwithallthesustainabilitycriteria.AgreatadvantageofBtLfuelisthatmanydifferentsustainablefeedstockscanbeused.Therangeextendsfromwastematerialsalreadyproduced,suchasstraw,biologicalwastesandwoodoffcuts,toenergycropswhichcanbespeciallycultivatedforfuelproductionandfullyutilised.BtLfuelscanbeproducedfrombiomassinatwo-stageprocess.Inthefirststage(gasification),asyntheticgasisproduced,composedmainlyofhydrogen,carbonmonoxideandcarbondioxide.Forthispurpose,thebiomassisplacedinareactorandbrokendowninthepresenceofheat,pressureandagasificationagent,forexampleoxygen.Inthesecondstage,fuelcomponentsaresynthesisedfromthis,whichcanbeprocessedtotheBtLend-product,optionallywithdieselorpetrolpropertieswhichcanbe‘fine-tuned’.Thebest-knownsynthesisingprocessistheFischer-Tropsch(FT)synthesis:inthiscase,BtL(asHVO)canbeusedwithoutmajortechnicalmodificationstotheengine,andlogisticsispossibleusingtheexistinginfrastructure;themethanol-to-synfuelssynthesisisalsoregardedasapromisingoption.SeveralcompaniesandresearchinstitutesinEuropeareco-operatingtotesttheproductionofBtLfuelsonapilotscale.www.ertrac.orgPage41of169FinalVersionAnotherproductionpathwayofBtLisHydrothermalliquefaction(HTL).Itisathermaldepolymerisationprocessusedtoconvertwetbiomassintobiocrudeundermoderatetemperature(250°C-550°C)andhighpressure(5-25MPa).Inthisprocess,longcarbonchainmoleculesinbiomassarethermallycrackedandoxygenisremovedintheformofH2O(dehydration)andCO2(decarboxylation).Thesereactionsresultintheproductionofbiocrude,typicallywithalowerheatingvalueof33.8-36.9MJ/kgand5-20wt%oxygen.Thereactionusuallyinvolveshomogeneousand/orheterogeneouscatalyststoimprovethequalityofproductsandyields.Dependingontheprocessingconditions,thefuelcanbeusedasproducedforheavyenginesorupgradedtoroadtransportationfuelssuchasdieselorgasoline.Pyrolysiscanalsobeusedforproducingfuelfromlignocellulosicbiomass.Inthiscase,thetemperaturesusedcanbemuchhigher,rangingfrom210°Cto1000°C,dependingonthecompositionofthebiomass(hemicellulose,celluloseorlignin).Pyrolysisoilsareoflowquality,theytypicallyhaveadensityof1100-1200kg/m3,alowerheatingvalueof17-20GJ/m3andawatercontentof20-30wt.%21.Theycanbeimprovedeitherbyco-processinginarefineryorbyupgrading(e.g.hydrotreatment).SugartoDiesel.Theconversionofsugartoethanolisaverywell-knownprocess.Morerecently,someresearchprojectshavealsoproducedrenewabledieselcomponentsfromsugar.Thepotentialpathwaysareasfollows:heterotrophicorganisms,microbessuchasbacteria,yeastsandfungiareunabletosynthesizeorganiccompoundsthemselvesandneedtofeedonorganicmaterial,suchassugars,tomultiply.Byfeedingsugarsthesetypesofmicrobesarecapableofstoringlargequantitiesoflipidsintheircells,typicallyover50%oftheirmass.Theyproducealkanes,alkenesandlipids,andmultiplyveryrapidly,typicallyachievingmaturityinacoupleofdaystoaweek.Oil-producingmicrobescanbegrowninconventionalbioreactorsofthetypeusedinthebrewingandbiotechnologyindustries.Agriculturalandindustrialby-productsrepresentapossibilityassuitableandsustainablerawmaterialsforsugarsforindustrial-scaleproduction.Thesealkanesandalkenesfromsustainablerenewablesourcesarewellsuitedforfurther(co)processinginexistingrefineryinfrastructures.MicrobialoilproducedfromwasteorresiduebasedsugarsusingyeastsandmouldsisidealforproductionofHVO.Microbialoilconsistsoftriglycerides,suchasvegetableoils,andanimalfats.Itsfattyaciddistributioncanbeadjustedandoptimised.Dieselfromsugarcanbeusedimmediatelyandwithouttechnicalmodificationstotheengineasdrop-infuel.Advancedsugartoethanol(orhigheralcohols)pathways.Glucose,asonemoleculefromthewidefieldofsugars,isubiquitous,foundmostlyasapolymerincelluloseandhemicellulose.Glucosemetabolismcanbefoundinnearlyanyformoforganismsandisleadingtothesameintermediates,whichcanbecoupledbymodernbiology,tovirtuallyanytypeofproduct.Amongstthemistheformationofalcohols,especiallyethanol.Ethanolformationisamongtheoldestandbestsurveyedbiotechnologicalprocessesformankind.Thus,thetechnologyisestablishedatindustrialscaleandspreadworldwide.Ethanolisproducedcurrentlymainlyonbasisof,e.g.,corn,wheatorsugarbeet,withcellulosicethanolbeingnowintroducedinindustrialscale.Furthermore,butanolanditsisomersareveryinterestingfuelcomponents.Especiallywithbutanol,anincreasingnumberofcompaniesareinvestingduetoitsinterestingproperties(e.g.loweroxygencontentthanethanolandeasiermanagementofvolatilitywhilekeepingahighOctaneNumber).Butanolformationisachieved,nowadays,throughfermentationbyspeciallyadaptedmicroorganisms.Butanolcanbeintroducedintoexistinggasolinefuelsalreadytoday,withintheboundariesofcurrentEuropeanandU.S.specifications.Itsproductionprocessesusingsugarsfromsustainable,renewablesourcesorevenwastestreamsarehighlyattractiveforfuelswithreducedGHGfootprint.Enablinganethanolindustryonthebasisofcellulosicsugarsisallowingbutanolproductionfromthesesources.21Advancedbiofuelsfromfastpyrolysisbio-oil,K.Overwater,2ndEU-IndiaConferenceonAdvancedBiofuels,March2019.www.ertrac.orgPage42of169FinalVersionHigheralcohols,includingpentanolanditsisomersupwards,havenotbeenproventodayinasemi-technicalortechnicalscale.Forthesealcohols,alltheadvantagesforbutanolcomparedtoethanolwillalsobeinplace.WithanincreasingC-number,onemusttakeintoaccountthatthesemoleculeswillshowdegradedcoldflowproperties.Longchainalcohols,suchas1-octanol,1-nonanolor1-decanol,arealsoconsideredforuseinacompression-ignition(Diesel)engine.Thankstotheiroxygencontent,theyshowacapacityofloweringengine-outsootemissions.However,theassessmentoftheirlifecycleGHGemissionsshowslimitedbenefitscomparedtofossilfuels.Thecompatibilitywithsomerubberscurrentlyusedinenginesmayalsobequestioned,althoughitislikelythatalternativescouldbefoundifdedicatedenginesweredesigned.Algaetoliquidtechnologies.Algaeareaverylargeanddiversegroupofunicellularandmulticellularatrophicorganisms.Particularlymicroalgaehavebeeninthefocusofthebiofuelindustrybecauseoftheirhighlipidcontentandveryfastgrowthrates.Ithasbeenestimatedthatmicroalgaecouldproducebetween25-30toilperhectareandyear,whichcouldbeusedasbasisfortheproductionofbiodiesel,HVOandkerosene.Theyielddependsonthestrain’sgenetics,thegrowthmethod,assesstokeynutrientsandlocation(Rösch&Posten,2012).Microalgaeofmicroscopicsizecanbegrowninseawaterandonlandunsuitableforcultivation.Microalgaeproducesugars,lipidsandproteinsfromCO2,waterandnutrientsusingphotosynthesis.Theycanmakeuseofthenutrientscontainedinwastewater,forexample.AstheyalsobindCO2,theyalsoofferanumberofexcitingpossibilitiesinhelpingmeettomorrow’senergyneeds.Underfavourableconditions,microalgaecanproducelipidsyear-round,andofferadramaticallyhigherproductionpotentialthanoilplants.Theproductionpathwaysofdrop-infuelsfromalgaeoilfollowsimilarproductionpathwaysasotherbiofuelspathwaysusing,e.g.,vegetableoilsasfeedstocks.However,differentmeasureshavetobeappliedtoharvestthealgaebiomassinthefirstplace(e.g.centrifugation,sedimentationandfiltration)andtoextracttheoilfromthealgae(e.g.usingorganicsolventsorsupercriticalCO2).Dependingofthealgaespecies,theoilwillbecharacterizedbyahighdegreeofunsaturation,whichwillcauseproblemsintheproductionprocessofbiodieseliftheunsaturatedfattyacidsarenotatleastpartiallysaturatedbeforehand.Fortheconversionintobiodieselthelipidsneedtoundergotwoprocesses:esterificationandhydrogenation.About12kgofdryalgalbiomassareneededtoproduce1kgbiodiesel(Petkovetal.,2011).Analternativewayofproducingfuelsfromalgaewouldbetoproduceinafirststepbiocrudefromalgae,whichthencouldbeprocessedorco-processedinatraditionalrefinery.However,thisprocesshasnotyetbeendemonstratedastherearestillquestionsregardingthecompatibilityoftherefiningprocesswiththeimpuritiescontainedinbiocrude.Today,usingalgaeexclusivelyforenergypurposesiseconomicallynotviable.Biotechnologicalfuelproduction.Theideaofbiotechnologicalfuelproductionoriginatesfromthethousandsofyearsoldprincipleofmicrobialfermentationofsugar-richrawmaterials.Themicroorganismitselfrepresentsthecentralconversionunit,e.g.eukaryoteslikeyeast,prokaryoteslikebacteria(Escherichiacoli)andarchaeabacteria,couldactassmallfactories.Withinacellmultiplesynthesisstepsoccur,numeroussubsequentchemicalreactionswhichconvertthenutritionmaterialviametabolicpathwaysintovariousproducts,asthecellneedstomultiplyitselfandassemblesenergyfromthesubstrate.Inthecaseoftheyeastthecellmetabolisessugarperformingcell-internalfermentationandproducesethanolasproduct.Fromthisstartpointtheideaofmicrobialfuelproductionextendstothetargetofadesignedbiofuelproductiontogetavarietyofgasolineanddieselfuelcompatiblecomponentswhichofferthepotentialofbiofuelproduction.Anotherexampleisphotosyntheticmicroorganisms,whichareabletocollectsolarradiation(sunlight)andtakeupcarbondioxideasnutrientandconvertitintocomponentsthatshowcompatibilityasfuel.Thephotosynthesisprecedestheconversiontochemicalenergywhichthecellusesinmetabolicpathwaystosynthesizeproducts.Forexample,cyanobacteriatransformthecollectedlightandCO2inadirect,two-steppathwayintofuelproducts,ethanolandinthefuturetodieselproducts.Becauseoftheirecologicalwww.ertrac.orgPage43of169FinalVersionoriginthecyanobacteriacanalsoproduceinextremeenvironments,sotheycantolerateforexamplebrackishandsaltwater.Photosyntheticproducedfuelswouldnotrequireagriculturallandwithintheproductiontime–andwouldnotdirectlycompetewithbiofuelsbasedonsugarorlignocellulosicbiomass.Biomethanol.WiththechemicalstructureCH3OH,methanolisthesimplestalcohol,withthelowestcarboncontentofanyliquidfuel.Asabasicalcohol,methanolistodayatransportationfuelduetoitsefficientcombustion,easeofdistributionandhighlevelofavailabilityaroundtheglobe.Methanolisusedtodayintransportationinfourmainways:•Directlyasfuelorblendedwithgasolineincapturedfleetsandnichemarkets•Convertedindimethylether(DME)tobeusedasadieselreplacement•ConvertedtoMethyl-tertiary-butylether(MTBE)•Asapartofthebiodieselproductionprocess.Methanolisaliquidfuelthatiscurrentlymainlymadefromnaturalgasandcoal.Itcanalsobemadefrombiogasinsteadofnaturalgas,usingrenewableresourceslikewood,agriculturalormunicipalwaste22.Inthiscase,itreducesgreenhousegasesemissions.Alcoholfuelshavebeenusedwidelyintransporteversincetheinventionoftheinternalcombustionengine,theycontinuetobeemployedtodayasanalternativetogasolinederivedfromoilindifferentpartoftheworld.Methyl-tertiary-butylether(MTBE).Methyl-tert-butylether(MTBE)isablendcomponentofgasolinefuel.MTBEhasahighOctaneNumber,whichimprovestheknockingbehaviour.MTBEismanufacturedviathechemicalreactionofmethanolandisobutylene.DimethylEther(DME)andoxymethylenedimethylether(OME).DMEisasyntheticfuelthatcanbeproducedinanumberofpathways,withbothfossilandrenewablefeedstock.DMEisprimarilyproducedbyconvertinghydrocarbonssourcedfromnaturalgasorcoalviagasificationtosynthesisgas(syngas).Synthesisgasisthenconvertedintomethanolinthepresenceofcatalyst(usuallycopper-based),withsubsequentmethanoldehydrationinthepresenceofadifferentcatalyst(forexample,silica-alumina)resultingintheproductionofDME.Asdescribed,thisisatwo-step(indirectsynthesis)processthatstartswithmethanolsynthesisandendswithDMEsynthesis(methanoldehydration).Thesameprocesscanbeconductedusingorganicwasteorbiomass.DMEcanalsobeproducedfrombiomethanolviadehydrationtoformDME.DMEcanbeusedasatransportationfuelasdieselsubstitute.DMEisagasatatmosphericpressure,boilingpointisminus25°C,butitcondensestoaliquidatlowpressure5.1bar@20°C.PhysicalpropertiesandhandlingareverysimilartoLPG.DMEhasbeencommerciallyusedasahigh-gradepropellantforvarioushealthcareproducts,andits‘environmental,healthandsafety’(EHS)characteristicsarebetterthanconventionalpetroleum-basedfuels.TheLPGinfrastructureforvehiclefuelcurrentlyexistsinmanycountriesintheworld.ThesametechnologycanbeusedforDMEwithonlyminormodifications,mainlychangetoDMEcompatiblesealingmaterials.Polyoxymethylenedimethylethers(alsocalledOME)arepolymersofDMEwiththemolecularformulaH3CO(CH2O)nCH3wherenistypicallyabout3to8.Whennisbetween3and5,OMEareliquidandcanbeconsideredasadditivestodieselfuel.Tailormadefuelsfrombiomass(TMFB).Asconventionalbiofuelsusefeedandfoodcrops,theClusterofExcellence‘Tailor-MadeFuelsfromBiomass’wasestablishedin2007atRWTHAachenUniversitytoaddressthisproblemandimprovethewholeprocesschainfrombiofuelproductiontoitsutilizationintheengine.Thelong-termtargetistoderivenew,biomass-based,syntheticfuelswithoptimisedpropertiesforuseinvehicleapplications.Thesepropertiesdonotonlyincludethephysicalandchemicalcombustionpropertiesofthefuelasthefinalproductbut,atthesametime,takethebiomassconversionandfuel22Methanolcanalsobeapower-to-fuel(e-methanol).Seedetaileddescriptioninthenextsection.www.ertrac.orgPage44of169FinalVersionproductionby(bio-)catalysisintoaccount,therebyoptimisingthefuelproductionalongthewholeprocesschainfrombiomasstofueltocombustionproducts.Itisimportanttopointoutthatthisresearchprojecthasbeenset-upinaniterativeway,meaningthatneitherthefuelproductionpathwaysfrombiomassnorthefinalfuelshavebeendefineda-priori.Instead,bycombiningtheproductionandthefuelcombustionresearchiteratively,thepathwaysaswellastheproducedfuelarealteredastheprojectevolves.Thecompetitionto,e.g.,thefoodchainisbeingavoidedbyconsideringlignocellulosicbiomassingeneral–whichdescribesthewholeplantratherthanjustthefruitortheoil–asinputproductforthefuelproductionprocess.Firstofall,thelignocellulosemustbesplitupintoitscomponents,cellulose,hemicelluloseandlignin.Innovativereactionmediasuchasionicliquidsareusedtobreakupthelinkagesbetweenthesecomponentsandtoseparatetherespectivefractions.Usingvariouscatalyticconversionmethods,theindividualcomponentscanthenbeconvertedintothedesiredfuelmolecules.Figure13showspossiblemethodsofconvertingthelignocellulosefractionsviaselectedintermediatesintothedesiredfuelcomponents.ThepathwaysrepresentedinFigure13formonlyasmallgroupofthethousandsofcombinationspossibletotransformlignocellulosicbiomassintofuelmolecules.Figure13.Possibleproductionpathwaysfortailor-madefuels.Source[2.9]AccordingtothepathwayshownbyFigure13,threemolecules,whichmeettherequirementsforcleandieselcombustion,havebeenderived:•2-methyltetrahydrofuran(2-MTHF)•Di-n-butylether(DNBE)•1-OctanolAsitispubliclyfunded,(DFG–DeutscheForschungsgemeinschaft)theClusterofExcellencecanbeconsideredafundamentalresearchproject.ThescalesofTMFBproductionatthemomentdonotexceedlaboratorytosmallpilotplantscale.Nevertheless,thefueldesignprocessasithasbeendevelopedwithintheclusterasstrongunifierbetweenfundamentalnaturalsciences(chemistry&biology)andappliedengineeringresearch(processandchemicalengineering&mechanicalengineering)hastobeconsideredasvaluablemethodforfuturefueldevelopmentactivities.Co-optimisationoffuelsandengines(Co-Optima).TheU.S.DepartmentofEnergy(DOE)Co-OptimisationofFuels&Engines(Co-Optima)initiativewascreatedin2016andbringstogetherscientists,fromninenationallaboratories(e.g.Argonne,LawrenceLivermore,OakRidgeandSandianationalwww.ertrac.orgPage45of169FinalVersionlaboratories,plustheNationalRenewableEnergyLaboratory);withmorethantwentyuniversityandindustrypartnerstoinvestigatefuelsandenginesasdynamicdesignvariablesthatcanworktogethertoboostefficiencyandperformance,whileminimizingemissions.Applicationsincludetheentireon-roadfleet,fromlight-duty(LD)passengercarstoheavy-duty(HD)freighttrucks.Researchismainlyfocusedonidentifyingblendstocksthatcanbeaddedtoconventionalliquidfuelstotailorthefuelproperties.Consideredblendstockscanbeproducedfromawidevarietyofresources,includingnon-foodbiomasssuchasforestryandagriculturalwaste.Researchexploresoptionsthatpairtheseblendstockswithcombustionsolutionsincluding:•Turbocharged(or“boosted’)spark-ignition(SI)•Mixing-controlledcompressionignition(MCCI)formedium-duty(MD)andHDtrucks•Advancedcompressionignition(ACI)forthefullrangeofvehicleclassestargeting60%brakethermalefficiency.TheCo-Optimaapproachstartsbyestablishingcompoundspropertiesandmolecularstructurerelationships.Themostinterestingcompoundsfollowaretrosyntheticanalysisleadingtobiofuelprocessdevelopment.Finally,experimentalandtheoreticaldevelopmentsareperformed,relatedtothefuel-airmixturepreparation(e.g.sprays)andcombustion(e.g.auto-ignitionbehaviourorsootformation).In2018,theCo-OptimaprojectcompletedtheresearchonfuelsforSIengines.ItdevelopedameritfunctionwhichprovedthatResearchOctaneNumber(RON),octanesensitivity(S),andheatofvaporization(HOV)arethefuelpropertieswiththegreatestimpactonboostedSIengineefficiency,seeFigure14.Theprojectthenidentifiedtenblendstocksfromfourchemicalfamilies(alcohols,olefins,furansandketones)withthegreatestpotentialtoincreaseboostedSIefficiency.Figure14.FuelMeritFunctionsTheresearchonfuelsforCI(Diesel)enginesisstillon-going.Thousandsofmixturesandmoleculeswerescreenedviafuelpropertyexperimentalorinsilicotests(thousandsinsilico),comprisingawiderangeofhydrocarbonandoxygenatechemistries.Forinstance,allcandidatesofferaCetaneNumbergreaterthan40,anenergycontent(LHV)greaterthan28MJ/kg,GHGemissionsreducedbyatleast60%onawell-to-wheelbasiscomparedtoafossilreferenceetc.Atthisstage,ascanbeseeninFigure15,fiveblendstockswereidentifiedandmetthesecriteriawithnoadoptionbarriers(upperleft),andsevenothershavethepotentialtoreduceemissionswithsomeadoptionbarriers(upperright).Eightotherblendstocksarestillundergoingevaluationregardingtheirtechnical-economicalassessment(TEA)andtheirlife-cycleassessment(LCA)(lower).Theevaluationoftheblendstocks’physical-chemicalpropertieshasrevealedperformanceadvantagesforsomeethers,estersandhydrocarbons,asillustratedinFigure16below.Theblendstocksofinterestwerewww.ertrac.orgPage46of169FinalVersionalsoevaluatedregardingtheirtechnologyreadinesslevel(howfaralongistheblendstockonthepathtocommercializationandisitscalable?),theireconomicviability(whatisitgoingtocosttoproduceandaretheeconomicsfavourable?)andtheirenvironmentalimpact(whatwillbetheenvironmentalimpactsofblendstockproductioncomparedtofossilfuels?).TheresultsgiveninFigure17showthatmanyofblendstocksareatarelativelylowTRL:thereisstillalotofuncertaintyregardingblendingmetrics,testing,andlegallimitsoftheseblendstocks.Onamorepositivenote,thefeedstockchangestypicallyhavelittletonoimpactonthefuelproductionprocess.Theeconomicviabilitymetricsshowmostlypositiveoutcomes:DieselviaHTLofwetwastesandhydroxyalkanoate-basedether-estersofferthelowestpotentialtargetcosts.Feedstockcostismostlyfavourableandmarketcompetitionislowformostpathways.Environmentalimpactmetricsaremoreuneven:theyshowpositiveoutcomesforfattyacidethersandHTLpathways.Figure18showsthatsevenblendstockpathwaysshowsignificantreductioninGHGemissions(>60%comparedtoafossilreference);sodiumhydroxideandimportedprocesselectricityaremajorcontributorstoGHGemissionsexplainingthebadperformanceoflongchainprimaryalcohols.Figure15.Blendstocksidentifiedbytheco-optimaproject,withapotentialtoreduceemissionswww.ertrac.orgPage47of169FinalVersionFigure16.Physical-chemicalpropertiesoftheblendstocksidentifiedbytheCo-Optimaproject(colourcode:green:exceedscriteria;blue:meetscriteria;orange:barriersexist)Figure17.Techno-economicpropertiesoftheblendstocksidentifiedbytheCo-Optimaprojectwww.ertrac.orgPage48of169FinalVersionFigure18.LifeCycleGHGemissionsoftheblendstocksidentifiedbytheCo-OptimaprojectSummaryoftheadvancedbiofuelsproductionpathways(Figure19)andtheirassociatedtechnologyreadinesslevel(TRL),Figure20.Figure19.Advancedbio-fuelpathways.Source[2.10]www.ertrac.orgPage49of169FinalVersionFigure20.AdvancedFuelsConversionTechnologies.Sources[2.10&2.11]Potentialprimaryuseofbiofuels(Table2).Table2.PotentialprimaryusesofbiofuelsBiofuelsPassengerCarsHeavyDutyMaritimeAviationOthersectors(nottransport)GasBiomethaneXXXXXXXXLiquidsFAMEXXXXXXHVO/HEFAXXXXXXXXXXEthanol/alcoholsXXXXXSyntheticFuel(Gasification+FT,pyrolysis,HTL,etc)XXXXXXXXXXXX(no‘X’=noenvisagedpotential).Green=compatibleuse;blue=moderatepotential;yellow=uncertain/limitedrole.‘Othersectors’includeindustry,buildingandpower2.2.1.2Fuelsfrompower-to-liquidFuelsfrompower-to-liquids(ore-fuels)aresyntheticfuels,resultingfromthecombinationhydrogenproducedbytheelectrolysisofwaterwithrenewableelectricityandCO2capturedeitherfromaconcentratedsource(e.g.fluegasesfromanindustrialsite)orfromtheair(viadirectaircapture,DAC).TheTables3and4summarisethepotentialprimaryusesofe-fuelsacrossdifferenttransportsegments,andaqualitativeoverviewoflowerheatingvalue,storability,infrastructureandpowertraindevelopment(Table4).www.ertrac.orgPage50of169FinalVersionTable3.Potentialprimaryusesofe-fuelsE-fuelsPassengerCarsHeavyDutyMaritimeAviationOthersectors(nottransport)Gase-Methane(CH4)XXXXXXXXe-Hydrogen(H2)XXXXXXXLiquidse-Ammonia(NH3)XXXXe-Methanol(CH3OH)XXXXe-DME/e-OMEXXXXXe-GasolineXe-DieselXXXXXXe-JetXXXXsasaninitialestimateofthepotentialroleofdifferente-fuelsintransportsegments(no‘X’=noenvisagedpotential).Green=compatibleuse;blue=moderatepotential;yellow=uncertain/limitedrole.‘Othersectors’includeindustry,buildingandpowerTable4.Qualitativeoverviewofe-fuels.Source[2.12]23Hydrogen(asanunavoidablefirststep)E-hydrogenisusedasafeedstockforproducinge-fuels.Itcanalsobeafinalproductinitself.Itisproducedbyelectrolysisfromwater.Differentelectrolysistechnologiescanbeusedforproducinghydrogen.Theseincludelow-temperature(50to80°C)technologiessuchasanalkalineelectrolysiscell(AEC),protonexchangemembranecell(PEMC)orhigh-temperature(700to1,000°C)processesusingasolid-oxideelectrolysiscell(SOEC).Theefficiencyofelectrolysisistodaybetween60-70%andhastheperspectivetoreach70-75%foralkalineandPEMelectrolysisand80%forhightemperatureelectrolysisinthemidterm.Additionally,pricesforthesedevicesareforecasttodropsignificantlyasinstallationsallovertheworldaretakingupspeed.23https://www.concawe.eu/wp-content/uploads/Rpt_19-14.pdfwww.ertrac.orgPage51of169FinalVersionAsamassiveproductionofgreenhydrogen(atleast40GWrenewablehydrogenelectrolysersandtheproductionof10milliontonnesofrenewablehydrogenby203025)isforeseeninthenexttwodecades,alsoroadtransportcouldbenefitfromthistransfer.Inroadtransport(passengercarsandtrucks),hydrogencanbeusedinfuelcellsandforheavyandlargeapplicationalsotheuseincombustionenginescouldplayasignificantrole.CO2captureTheproductionofe-fuelsrequiresCO2(excepte-ammonia),whichcanbeobtainedfromvarioussourcesincludingbiomasscombustion,industrialprocesses(e.g.fluegasesfromfossiloilcombustion),biogenicCO2,andCO2captureddirectlyfromtheair.E-fuelsrelatedtechnologiesE-fuelsproductionroutes,seeFigure21,consistofe-hydrogenreactingwithcapturedCO2,followedbydifferentconversionroutesaccordingtothefinale-fuel:methanolsynthesisfore-methanol,e-DME,e-OMEore-liquidhydrocarbons;orthereversewater-gasshift(RWGS)reactiontoproducesyngas+Fischer-Tropschsynthesistoproducee-liquidhydrocarbons,suchase-gasolineore-diesel;E-ammoniadoesnotrequireCO2andissynthesisedfrome-hydrogenthroughaHaber-Boschreaction.Figure21.E-fuelsproductionroutes.Sources[2.13&2.14]E-Methanolanditsderivatives:•Methanol(aspureandasdropincomponent)•DimethylEther(DME)andOxyMethylenedimethylEther(OME)•Syntheticgasoline(throughMethanoltoGasolineprocess)(EN228)•MTBE•MethanoltoKerosene/Diesel25COMMUNICATIONFROMTHECOMMISSIONTOTHEEUROPEANPARLIAMENT,THECOUNCIL,THEEUROPEANECONOMICANDSOCIALCOMMITTEEANDTHECOMMITTEEOFTHEREGIONS:Ahydrogenstrategyforaclimate-neutralEurope.www.ertrac.orgPage52of169FinalVersione-Methanolisasimpletogeneratebasechemicalwhichisbuiltfrome-Hydrogenandcircular(re-usedfromcarboncapture,biomassbasedoraircaptured)CO2.Methanolproductionfromthesecomponentsis,generallyspeaking,stateoftheartandmethanolisinthemoment(mainlyfromfossilsources:naturalgasandcoal)producedandshippedataround90Gtscalep.a.TherearealreadylargerscaledemonstrationplantsonrenewablemethanolsuchasCRIinIceland.Furthermore,therearesevenshipsformethanoltransportrunningonmethanolalreadyinoperation.TheproductionofmethanolfromhydrogenandCO2canreachefficienciesofupto85-90%,whichismuchhigherthantheliquefactionofhydrogenwithanefficiencyofroughly70-75%.Besidestheuseofneatmethanol(M100),methanolisusedasblendcomponent(upto3%inEN228gasoline,inEurope,asregulatedbyDirective200/30/EC)andhigherblendratesareandhavebeentestedaroundtheworld.Furthermore,methanolhassomeefficientwaystogeneratederivativessuchasDMEandsyntheticgasolineorkerosene.DMEisarathereasytouseliquidgas(suchasLPG)forCIengines.Syntheticgasoline,e.g.generatedbytheMethanoltoGasolineprocess(whichisexistinginlargescaledemonstrationandcommercialsize),isabletofulfiltheEN228specificationand,therefore,canalsohelptodecarbonizetheexistingvehiclefleetaspureordrop-incomponent.Additionally,thereareotherefficientproductionroutesthroughEthylenewhichcanenableKeroseneormoreDiesel-likeproductsbasedonMethanolasafeedstock.Fischer-Tropschproducts(withfocusonparaffinicDiesel)Liquide-fuelsproductionviatheFischer-Tropschreaction(sameprocessasfortheBtLrelatedtechnology)resultsinamixoffuelgases,naphtha26/gasoline,kerosene,diesel/gasoil,baseoilandwaxes.Figure22showsatypicaldistributionoftotale-crudeproductleavingtheFischer-Tropschreactorsbeforetheyareseparatedorconvertedbyfurtherprocessingsteps.Theproductdistributionisafunctionofmanyfactors,includingthecatalystcomposition(e.g.ironversuscobalt)andtheoperatingconditions.Figure22.Fischer-Tropschliquide-fuelproducts.Source[2.15]26Naphthaisacutofhydrocarbons,mainlycomposedofalkanesandcyclo-alkanesintheC5-C10range.Itcaneitherbeuseddirectlyinthegasolinepool(straight-runnaphtha),beincorporatedinthegasolinepoolaftergoingthroughfurtherstepofrefining(e.g.isomerizationorreforming)orbeusedasfeedstockforthechemicalindustry.www.ertrac.orgPage53of169FinalVersionTheresulting‘e-crude’fromtheFischer-Tropschreaction,whichcanbeasinglestreamorseveralseparatestreams,couldbefedtoahydrocrackingunit.Theintermediatewaxmoleculesarehydro-processedwithinahydrocrackerintoshorter‘middledistillate’molecules,whicharethenpurifiedbydistillationintonaphtha,keroseneandgasoilfractions.Themassbalancetoproduce1litreofliquide-fuel(~34MJ/litre)is3.7–4.5litresofwater,82–99MJofenergy(heator)electricity27and2.9–3.6kgofCO2(seeFigure23).TheFischer-Tropschproductsproducedthroughthisprocesshavetheadvantageofbeing‘drop-in’,whichmeansthattheyimmediatelycanbeusedwiththeexistinginfrastructureandtheexistingvehiclesfleet.TheyalsocanreachGHGneutralityonawell-to-wheelbasisiftheelectricityusedisrenewable(e.g.fromwindturbinesorsolarpanels)orcarbon-free(e.g.fromnuclear)andiftheCO2iscapturedfromtheairorcapturedfromfluegases,providingthatthefluegasesareconsideredaswaste28.However,theyhavethedrawbackofbeingthermodynamicallyextremelyinefficient:forinstance,asillustratedinFigure24,ifoneconsiderstheproductionpathwayusingDirectAirCapture,theefficiencyofe-fuelsproductionisdownto35%.Theefficiencydropsevenmore,toroughly10-12%,oncetheoverallwell-to-wheelpathwayistakenintoaccount,giventhatthesefuelsaretobeusedininternalcombustionengineshavingalimitedefficiencyaswell.Figure23.Resourcesrequiredforliquide-fuelproduction(e-Fischer-Tropschpathway)2927ThisincludestheenergyrequiredforCO2capture.Thisdoesnotincludetheenergyneededforwaterdesalination(ifrequired),knowingthatitisaminorcontributiontotheenergyneeded(<1%).28Dependingontheaccountingmechanism,theCO2capturedfromthefluegasescaneitherbesubtractedfromtheemissionsoftheprocesswhichcreatedthefluegases,orfromtheprocesswhichutilizesit(toproducee-fuelsinthisinstance),butitcannotbeboth.Underthisprovision,asfluegasesareconsideredasawaste,itisassumedthattheCO2emissionsaresubtractedfromthewell-to-wheelanalysisofe-fuels,whichallowsthemtoreachGHGneutrality.29CONCAWEE-fuelstechno-economicassessment(tobepublished).www.ertrac.orgPage54of169FinalVersionFigure24.TheWell-To-Wheelefficiencyofvariousfuelandpowertraincombinations.Source[2.15]E-OlefintoAlcoholOlefinsarepartoftheFischer-Tropschproductmixtureandarequitevaluablebasechemicals.Theyarealsousedforproductionofsyntheticbaseoilsandtheshorterchainparaffinscanalsobeusedtogeneratealcoholsthroughhydroformylation.Thesealcoholsareingenerallycapableofbeingusedasblendcomponentsinhighamountstogasoline(C2-C4)andDiesel(C5-C11).Suchblendcomponentshaveingeneralapositiveimpactonthecombustionandemissionbehaviouroftheengines(suchasimprovedNOx/PMtrade-off30)andcanalsohelptobringparaffinicproductsclosertotheexistingfuelsstandards(especiallyEN590).Besidestheprocessesandfuelsdescribedabove,whicharealreadytodayforeseeableandmostofthemhighlyprobablycandidatestotransformtheworld’senergysystemtoGHGneutrality,alsonewroutessuchasdirectH2OandCO2co-electrolyzersandothersarebeingdevelopedandhavethepotentialtosignificantlyincreasetheefficienciesofthechemicalenergystorageandfuelproductioninthemidterm.2.2.2LiquidfuelsmixscenariosThefuturefuelmixin2050isexpectedtobeacombinationofdifferentfeedstocksandconversiontechnologies,producingdifferenttypesofeitherdrop-infuels(withsimilarcharacteristicstothe30Mixing-ControlledCompressionIgnition(MCCI)FuelPropertyEffects,NREL,2020.www.ertrac.orgPage55of169FinalVersionconventionalfossilbasedgasoline/dieselbenefitingfromtotalcompatibilitywithenginesandexistinginfrastructure)orblendingcomponentslimitedbyfutureblendingwalls(difficulttoforeseeatthisstage).WithinERTRACRoadmap2050,itisimportanttonotethat:•Totaldemandforfuels(asenergycarriers)isdefinedbythefleetscenariosdescribedinChapter5:itwillbedeterminedbytheshareandfuelefficiencyofinternalcombustionenginespoweredvehicles(includingHEVandPHEV)in2050•Withineachfleetscenario,thefuelmixscenarios:oexploredifferentcombinationoffuelpathways(fromdifferentfeedstock&productionroutes)withfocusondrop-infuelroutes(Well-to-Tank)oassesstheirimplicationsintermsof,amongstothers,GHGemissionsavings,feedstockandelectricitydemandoreachWell-to-WheelCO2eq(i.e.GHG)neutrality.Therefore,theadditionalnegativeemissionsrequirementsareestimatedtocompensatethepotentialremainingCO2eqemissions.Dependingonthescenario,negativeemissionscouldbeachievedbyeithercouplingCarbonCaptureandStoragewithBiofuelproductionplants(BECCS)orcombiningDirectAirCapture(DAC)technologieswherethecapturedCO2ispermanentlystoredunderground).Duetothecomplexityanduncertaintyaroundthe2050futurefuelmix,fourfuelmixscenarioshavebeenexploredinthisreport,summarizedasfollows,seeFigure25.(BECCSreferstobiofuelproductionroutescoupledwithCCS(allowingnegativeemissions)).Figure25.Fuelsharescenarios(2050)Noteonthescenarios:•Advancedbiofuels:thisscenarioconsidersthat90%oftheproductionoffuelsin2050willbecomposedofadvancedbiofuelsfromeitherlignocellulosicmaterial,residuesorwaste(nofood/crop-basedfuelsincludedintheassessment).Theremaining10%ofthedemandwillbesatisfiedbye-fuels.•Mixed:Amixscenarioincreasestheroleofe-fuelsandexploresacasewithanequalshareofbothadvancedbiofuelsande-fuelstomeetfueldemand.www.ertrac.orgPage56of169FinalVersion•E-fuels:Thisscenariopushesthelimitsfore-fueldeploymentintransport(100%).Forthisscenario,asnobiofuelsareproduced,directaircaptureplants(DAC)willbethetechnologyusedtocreatenegativeemissions.•Limitedfossil:Thisscenariobuildsontheadvancedbiofuelone,wherethemajorityofthefueldemandissatisfiedthroughadvancedbiofuels(80%)byconsideringsomeremainingfossilderivedfuelsinthefuelmix(10%).2.2.3EnvironmentalassessmentIntheJECWell-To-Tank(WTT)v5report,thecomplexityofthefuturealternativefuelmixisclearlyrepresentedbymorethan250differentfuelpathwaysmodelledascombinationofdifferentfeedstocksandconversiontechnologies,allofthematdifferentstagesoftechnologyandcommercialreadinesslevels.Forthepurposeofthisreport:•SomeJECWTTv5routeshavebeenselectedasindicativevaluesrepresentingthedifferentbigclustersofthetypefuelsmentionedabove.oTheJECWell-To-Tankdata,usedasthebasisfortheERTRACassessment,includesproducing,transporting,manufacturinganddistributingtothefinalconsumer(retailstation)anumberoffuelssuitableforroadtransportpowertrains(Figure26).oThefuelrelatedpathwaysproposedinthissectionshouldnotbetakenasERTRAC’sviewononesinglefeedstock/pathwaybutasillustrativeexamplesoffuturecarbonintensitiesofdifferentfuelswhichcouldbecomeavailableinthemarket31.Figure26.ScopeoftheJECWell-To-Tankanalysisv5(WTT)31Forexample,thefactthatonlyDieselpathwaysweremodelledforthesakeofsimplificationdoesnotmeanthatgasolinepathwayswillnotexist.www.ertrac.orgPage57of169FinalVersion•BuildingontheJECWTTv5data,thefollowingmajormodificationshavebeenconductedtoderiveERTRAC2050values:oTimeframe:extensiontowards2050pushingthelimitsforprocesselectrificationAstheJECWTTv5valuesrefertothe2030timeframe,theERTRAC2050figures:▪Increasethelevelofelectrificationintheconversionprocesses(replacingthermalenergywhenpossible33).Heatandsteamforprocesschemicalshavealsobeenreplacedbyelectricitysources.▪Assesstwodifferent2050electricityscenarios–asdefinedinSection2.1.3:–The1.5TECHscenarioasthereferencecase(withacarbonintensityof5.2gCO2eq/kWh)–One100%renewablescenariowithnoresidualCO2eqemissionsinthegenerationphase,asasensitivity.Note.Forthee-fuelproductionprocess,100%renewableelectricitywillbeassumedinbothscenarios.Asensitivityontheproductionofe-fuelswithelectricityfromthegrid(carbonintensityasinthe1.5TECHscenario)willalsobeexplored.▪Replacefossilfuelsusagebybiofuelsinsomeprocesses(e.g.collection,chopping)wherelimitedelectrificationisforeseen.oJECState-of-the-arttechnologyasaverageenergyconsumptionin2050.NoadditionalenergyefficiencyimprovementversustheJECWTTv5figureshasbeenconsideredassumingthataverageplantsin2050wouldexpendasimilaramountofenergyperMJoffuelproducedthanthestate-of-the-arttechnologiesmodelledinJEC(withtheonlyexceptionoftheuseofhighlyefficientturbineswhenrequired).oTransport:▪OutofEurope:theCO2eqemissionsduetotransportoffeedstockstoEuropewillbesignificantlyreducedaccordingtosomeon-goinginternationalinitiative,e.g.GHGemissionsrelatedtomaritimetransportreducedby50%,followingIMO’slongtermstrategy.▪Logistics/Intra-Europe:Alltheemissionsfromthedomestictransportarealreadyincludedwithinthefleetemissions(sodeletedfromtheJECfueltransporttoavoidduplication).oAsaproxy,N2OandCH4emissionslinkedtothebiofuelproductionprocessesarekeptasinJECWTTv5.ThefollowingtablesummarizesthevaluesusedfortheERTRAC2050Roadmap,asillustrativeexamplesofliquiddiesel/gasoline-likefuels,basedontheconsiderationsdescribedabove:33TotallywithinEuropeandpartiallyintheupstreamsteps–whenproducedoutofEuropewww.ertrac.orgPage58of169FinalVersionAdvancedbiofuelsTable5.AdvancedbiodieselfigurestoERTRACmodel(WTT,2050)Diesel-likeWoodresidueWoodviablackliquorWasteFeedstock/ProcessWastewoodtogasification/synthesisplant(Fischer-Tropsch)(i)Wastewoodviablackliquor(i)WastecookingoiltoHVO(ii)Timeframe2030JEC(WWSD1a)2050ERTRAC1.5TECH(Basecase)2050ERTRAC100%RES(Sensitivity)2030JEC(BLSD1a)2050ERTRAC1.5TECH(Basecase)2050ERTRAC100%RES(Sensitivity)2030JEC(WOHY1a)2050ERTRAC1.5TECH(Basecase)2050ERTRAC100%RES(Sensitivity)GHG(gCO2eq/MJfuel)9.70.060.055.30.050.0411.10.340.09Energyexpended(MJ/MJfuel)1.211.161.150.110.050.050.160.200.14Shareinthe2050biofuelmix-ERTRAC(iii)-80%-10%-10%Notes:(i)Includingforestresiduecollection,seasoning,chipping,gasificationorsynthesisplantanddispensingatretailsite.(ii)IncludesHVOproductionanddispensingatretailsite.The2050ERTRACroadmapdoesnotattempttoestimatethepotentialsustainableavailabilityofthebiomass/wasterequiredfortherealisationofthedifferentscenariosexplored.AsareferenceforthediscussionandaccordingtotheENSPRESOREPORT[JRC201934],thetotalsustainablebioenergysupplypotentialatEuropeanlevel(2050)couldrangefromto~190Mtoe/y(<>8,000PJ)upto500Mtoe/y(~21,000PJ)withthemajorshareofthepotentialfromagricultural/forestrybiomassandasmallproportionofwaste-basedbiofuelsinallthescenarios.Additionalinvestigationswillbeneededtoverifythesustainablepotentialwithnobiodiversityimpactfortransport,consideringalsotheneedsofothersectors(outofthescopeofthisreport).34https://www.sciencedirect.com/science/article/pii/S2211467X19300720?via%3Dihubwww.ertrac.orgPage59of169FinalVersionFigure27.Bioenergypotential[ENSPRESO]Table6.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT).Liquidbiofuelmix(ERTRAC2050)ERTRAC1.5TECH(Basecase)ERTRAC100%RES(Sensitivity)GHG(gCO2eq/MJ)0.0860.053Asasimplification,thevaluespresentedaboveareconsideredasaproxyforbothgasolineanddiesel-likefuelsin2050.www.ertrac.orgPage60of169FinalVersionE-fuelsThee-fuelproductionpathwayspresentedbelowhavebeendefinedbasedonthefollowingconsiderations:Table7.E-fuelsfigurestoERTRACmodel(WTT,2050)e-DieselFeedstock/Process(i)H2fromhightemperaturewaterelectrolysisbasedonSOEC(100%RES)+Fischer-Tropschroute+CO2fromfluegases(industrialsite)H2fromhightemperaturewaterelectrolysisbasedonSOEC(100%RES)+Fischer-Tropschroute+CO2fromfluegases(biomassupgrading)H2fromhightemperaturewaterelectrolysisbasedonSOEC(100%RES)+Fischer-Tropschroute++CO2fromDirectAirCapture(DAC)Timeframe2030JEC(RESD2a)2050ERTRAC100%RES(BaseCase)2050ERTRAC1.5TECH(Sensitivity)2030JEC(RESD2b)2050ERTRAC100%RES(BaseCase)2050ERTRAC1.5TECH(Sensitivity)2030JEC(RESD2c)2050ERTRAC100%RES(BaseCase)2050ERTRAC1.5TECH(Sensitivity)GHG(gCO2eq/MJfuel)(ii)0.730.083.80.730.083.20.730.084.2Energyexpended(MJ/MJfuel)(iii)1.51.52.531.11.11.941.81.82.92Shareinthe2050biofuelmix-ERTRAC(iv)12.5%12.5%75%Notes:(i)Sourceofhydrogen:waterelectrolysiswith100%renewableelectricity.Fortheproductionprocesses,100%renewableelectricityisalsousedasthemainreferencethrougheitherdirectconnectionbetweenelectricitygeneration/productionfacilitiesorthepurchaseofGuaranteesofOrigin.Asensitivityontheuseoftheelectricitymixisalsoexplored(1.5TECH).(ii)Forthepurposeofthisexercise,CO2isconsideredasawasteand,inthissense,CO2burdenfree.Therefore,asintheJECWTTv5,theGHGintensityvaluesremaininvariableregardlessofthepointofsource.(iii)ThemaindifferencebetweenthepathwaysmodelledistheenergyrequirementtocaptureCO2fore-fuelproductionwhichvariesdependingonthelevelofconcentrationofCO2inthefluegasesorair.(iii)In2050,allsectorsintheeconomyaredeemedtohavereducedtheirCO2emissionssignificantly.Inthepresentstudy,25%oftheCO2isconsideredtocomefromfluegases(eitherfrombioenergyorindustrialprocesses)and75%fromdirectAirCapturetosatisfythefeedstockfore-fuelproductionatmassscale.www.ertrac.orgPage61of169FinalVersionTable8.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT)Liquide-fuelmix()-(ERTRAC2050)ERTRAC100%RESERTRAC1.5TECH(Sensitivity)GHG(gCO2eq/MJ)0.084.0Energyexpended(MJ/MJfuel)1.72.7Asasimplification,thevaluespresentedaboveareconsideredasaproxyforbothgasolineanddiesel-likefuelsin2050.FossilfuelsDespitethelimitedcontributionoffossilfuelsincludedintheERTRACfuelmixscenarios,thepotentialofthesepathwaystowards2050hasbeeninvestigated,bothintermsofenergyconsumptionandGHGemissions:Table9.FossilfuelsfigurestoERTRACmodel(WTT,2050)DieselOilbasedFeedstock/ProcessOil(EUmix)processedwithintheEUrefiningsystem(i)Oil(EUmix)processedwithintheEUrefiningsystem+CarbonCaptureTimeframe2030(JECCOD1)2030JEC(COD1C)2050ERTRAC1.5TECH(Basecase)2050ERTRAC100%RES(Sensitivity)GHG(gCO2eq/MJfuel)18.913.77.83(iii)7.82Energyexpended(MJ/MJfuel)0.260.32(ii)0.300.30Notes:(i)CrudeoilfromtypicalEUsupply,transportbysea,refininginEU(marginalproduction),typicalEUdistributionandretail.(ii)TheadditionoftheCarbonCaptureandStoragetechnologyincreasestheenergyrequirementtoproduceaMJoffuel.(iii)Besidesthegeneralcriteriabehindthe2050ERTRACvalues,inthisspecificcase,a~40%reductionintheupstreamvalue(crudeoilextraction)hasestimatedasanaverageimprovementratioduetozeroflaringandventinginitiativesworldwide[ICAOseminar201935].35M.S.Masdani,H.M.El-Houjeirietal.,Science,361(6405),851-853.www.ertrac.orgPage62of169FinalVersionBiofuelprocesseswithCarbonCapture(BECCS)–NegativeemissionsAsmentionedearlierinthedocument,thenumberofbiomassconversionfacilitiescoupledwithcarboncaptureandstorage(CCS)solutionsareexploredintheERTRACstudytocompensatetheresidualGHGemissionsinallscenarioswhenreachingGHGneutrality.Asaproxy,abiofuelproductionpathwaybasedonwoodgasificationhavebeenusedasthepointofsourceforbiogenicCO2.ACCSschemehasbeenintegratedwithinthisfuelproductionpathwayasdetailedbelow:Table10.FiguresforbiofuelprocesseswithCarbonCapture(BECCS)toERTRACmodel(WTT,2050)WoodresidueFeedstock/ProcessWastewoodtogasification/synthesisplant+CarbonCaptureandStorageTimeframe2030JEC(WWSD1aC)2050ERTRAC1.5TECH/100%GHG(gCO2eq/MJfuel)-105.1-119.4Energyexpended(MJ/MJfuel)1.311.26Besidesthisroute,theDirectAirCapturetechnologyhasalsobeeninvestigated.Duetotheearlystagesofdevelopmentofthetechnology,thereisabiguncertaintyaroundtheenergyconsumptionwhendevelopedatscale.Differentsourcesshowarangebetween0.5to2.7MW.helectricity/tCO2[ICEE201936].Forthepurposeofthisstudy,anenergyexpendedof1.6MW.h/tCO2hasbeenused.2.3GaseousfuelsGaseousfuelsrepresentakeyelementtosupportthetransportdecarbonizationprocess.Inthissubchapter,aperspectivefrommethaneandhydrogenispresented.Concerningmethane,whenlookingtothelong-termobjectivein2050,wemostlyrefertorenewablegas:bothCNGandLNGcanbeproducedfromavarietyofrenewable,scalableandverylowcarbonintensityenergysources,suchasorganicwasteandbiomassproducedthroughanaerobicdigestion,thermalgasificationorbydirectlyconvertingcarbondioxide(CO2)intosyntheticmethanebyusinghydrogenproducedfromrenewableelectricity.Withrenewablegasbeingpracticallyidenticalincompositiontonaturalgas,moderatetohighblendlevelsareabletofurtherenhancethebeneficialeffectsofusingnaturalgas,whichisalreadyatypeoflow-carbonfuel,providingsubstantialreductions(CNG(EUmix):67.6gCO2eq/MJversus92.1gCO2eq/MJforDiesel,Well-to-Tankwithcombustionassessments37)oftotalGHGemissions.TodayroadtransportsectorinEUisconsuming2.3bcmnaturalgas,where17%isrenewable38.36ThePotentialRoleofDirectAirCaptureintheGermanEnergyResearchProgram—ResultsofaMulti-DimensionalAnalysis.PeterViebahn,AlexanderScholzandOleZelt.WuppertalInstituteforClimate,EnvironmentandEnergy,Doeppersberg19,42103Wuppertal,Germany(6thSeptember2019)37JECWTTv5report.38SourceNGVAEurope/EBA:https://www.ngva.eu/medias/the-european-green-deal-in-the-fast-lane-with-biomethane-in-transport/www.ertrac.orgPage63of169FinalVersionConcerninghydrogen,todayitisproducedworldwidemainlyfromthethermochemicalconversionofnaturalgas(“grey”hydrogen)andapproximately5%isproducedviaelectrolysis(“green”hydrogenwhenusingrenewableelectricity).Severaldemonstrationprojectsareunderwayforhydrogenproductionviasteammethanereforming(SMR)coupledwithcarboncaptureandstorage(CCS)-referredas“bluehydrogen”.Potentially,bluehydrogenproductionfromnaturalgascanbecoupledwithashareofbiomassfeedstocksthatcouldbringtheoverallhydrogengreenhousegasfootprinttonetzeroorevennegative.Withtheassumptionofanincreasingshareoflow-costrenewableelectricity,greenhydrogenproductionviaelectrolysiscouldbeapromisingdecarbonizationoption.2.3.1Panelofsolutionsconsideredfortheproductionoflow-carbongaseousfuelsLookingtothedifferentproductionpathwaysforbiomethane,AnaerobicDigestion(AD)isanaturallyoccurring,microbialprocessusedtoproducebiogasfromwastewater,wasteordedicatedbiomass.Biogasisprimarilycomposedofmethane(CH4;40to>70%)andcarbondioxide(CO2;<25-55%).Fertiliserisasecond,oftenunderestimatedproductofADwhichcanbeusedtoreplacechemicalfertiliser.Viathisclosednutrientloop,ADcontributestofulfilacirculareconomy,becomingmoreeconomicviableandecologicallyinteresting.Thebiogascanbeusedonsitetogenerateheatandelectricityinacombinedheatandpowerplant(CHPunit)orasprocessenergyinindustry.Iftheuseofbiogasisnotlocatedontheproductionsite,purification(removingimpureness)andupgrading(removalofCO2)processesareappliedresultingintheso-calledbiomethane,aproductwhosequalityallowstheinjectionintothenaturalgasgridorthedirectutilisationonnaturalgasvehicles.TheevolutionoftheEUproductionofbiomethaneisshowninFigure28.Figure28.EvolutionoftheADbiomethaneproductioninEU.Source[2.16]AsecondwayisrepresentedbytheThermalGasification(TG),whichisperformedinanenclosedreactor(gasifier)underhigh-temperatureconditions(700-1000°C).Theheattodrivetheprocessisprovidedbythecombustionofpartofthecharproducedduringgasification(autothermal)orfromanexternalheatsource(allothermal);forthisreason,TGplantsareveryoftenintegratedwithCombinedHeatandPowerwww.ertrac.orgPage64of169FinalVersion(CHP39),Thebasicstepsfromsolidfueltoproductgasaredrying,pyrolysisandgasification.Themaindesiredproductisacombustiblegascalledproducergasorsyngas,amixtureofCO,CO2,H2O,H2,CH4.Amethanationstepfollowsgasificationconvertingtherawsyngas(carbonmonoxideand/orcarbondioxide)intosyntheticnaturalgas(SNG)whichhasequalchemicalandtechnicalconditionsasbiomethaneornaturalgas.ThermalGasificationplantsareinthebiggerscaleabove20MWastheplantrealizedinSwedenwithintheGobiGasproject.TheprojectedcapacityofproductionofSNGfromTGinEuropeisestimatedat880TW.hin203040,buttodaymorethan95%ofrenewablegasisbasedonADprocesses41.ThethirdpathwayreferstoPowertoGas(PtG)processes,oftenseenasawaytoconvertandstoresurplusfromrenewableelectricityproduction.Excessrenewableelectricityisusedtosplitwaterintooxygenandhydrogen.Therefore,itundergoesamethanationprocess(conversionofhydrogenandcarbondioxideintomethane)eitherelectrochemically(Sabatierprocess,TRL8)ormicrobiologically(anaerobicdigestion,TRL7).Today,inEurope,Germanyhasthemostimportantinstalledcapacitywithmorethan20MW(electrolysiscapacity)overmorethan30pilotprojects,butalsoothercountrieslikeSwitzerland,Austria,France,Spain,Sweden,ItalyarerealizingPtGplantsforbothsyntheticH2andSNGproduction42.Thecarbondioxidereactingwithhydrogenforthemethanationstepcanbederivedfromindustrialprocesses(offgas)orfromabiogasorsyngasupgradingsystemprovidingahighlyenrichedCO2source.Inbiologicalmethanation,microorganismsmetabolisehydrogenandcarbondioxidetomethaneinadedicatedfacilityordirectlyinthebiogasdigester.ThecatalyticalmethanationorSabatierprocessisanalternativetoproducemethanefromcarbondioxideandhydrogen,asisalsoappliedintheupgradingofsyngasfromgasificationtobio-SNG.Hydrogencanfacilitatethelarge-scaleintegrationofrenewables,enablinggridbalancingandseasonalstorageaswellasthedecarbonisationofnaturalgasthroughinnovativetechnologies.Itisimportanttorememberthathydrogenisnotaprimaryenergy.Therefore,hydrogenisanenergycarrierwhichisas“clean”astheprimaryenergiesusedtoproduceit.Thisiswhyhydrogenproducedfromrenewableelectricity(‘green’hydrogen)orfromSteamMethaneReformingassociatedwithCarbonCaptureandStorage(SMR+CCS,‘blue’hydrogen)isfavouredinthisroadmap.Hydrogenrepresentsasolutionforthedecarbonisationofhard-to-abatesectorsoftheeconomy,suchastransport,especiallyheavy-dutyvehicles.Hydrogen,frombothlow-carboncontentaswellasrenewableenergysources,canhaveakeyroletoplayalongthejourneytowardsGHGneutrality.Hydrogenhasanimportantroleineachofthestrategicbuildingblocks43theEuropeanCommissionforeseesforpavingtheroadtoanetzerogreenhousegaseconomyby2050.Hydrogenisatacrossroadsofseveralkeytechnologiesrelevanttotheenergytransition:itcanbeproducedviawaterelectrolysiswithlowcarbonorrenewablepower,andSteamMethaneReforming(orautothermalreformingand/ormethanecracking)withCCS/CCU.Biogas/biomethanereformingandbiomassgasificationorpyrolysisareotherwaystoproducehydrogenusingrenewablegasesorwastes44.39https://publications.lib.chalmers.se/records/fulltext/124695.pdf40https://www.goteborgenergi.se/Files/Webb20/Kategoriserad%20information/Forskningsprojekt/The%20GoBiGas%20Project%20-%20Demonstration%20of%20the%20Production%20of%20Biomethane%20from%20Biomass%20v%20230507_6_0.pdf?TS=63680719166278098241https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c6a7adfd&appId=PPGMS42https://www.dena.de/fileadmin/dena/Publikationen/PDFs/2019/Roadmap_Power_to_Gas.pdf43SeeCOM(2018)773final–Acleanplanetforall–AEuropeanstrategiclongtermvisionforaprosperous,modern,competitiveandclimateneutraleconomy.44Furthermore,whererenewableenergysourcesareusedtoproducehydrogenandwherecarboncaptureandstorageincombinationwithbiogeniccarbonfeedstockisapplied,theresultinghydrogencouldbeconsideredashavingaGHGnegativeimpact.Note:naturalgascanbeusedforhydrogenproductionvia(steam)methanereformingormethanecracking(IV-H2).InordertoavoidGHGemissions,theCCSandCCUtechnologybecomesanintrinsicpartoftheproductionprocesses.Similarly,coalgasificationandsubsequentcarboncaptureandstoragedeliveringhydrogen(IV-H2)isarelevantoptionhere.www.ertrac.orgPage65of169FinalVersionElectrolysiscanplayanimportantroleinthefuturehybridsystem.WhileEuropecurrentlyboastsastrongpresenceandroleasafrontrunnerintheelectrolysismarket(integrators,componentproviders,OEMs),thistechnologyremainsrelativelyexpensiveatthisstageduetothehighcapitalcostsofthetechnologywhichrequirelargermarketsandfurtherdevelopmenttoreachindustrialscale-upandbringcostsdown.However,costsareexpectedtodecreasedramaticallywiththeuptakeofpower-to-gas/power-to-hydrogen.Furthermore,withtheforecastedincreaseinwindenergygenerationforexample(perIEAitisexpectedtoreacharound40%ofEUenergygeneration,becomingtheprimarysource),electricitycostscanalsodecrease,enablingacheaperhydrogenproductionthroughrenewableenergysources[2.17].Bycombiningrenewableenergyresourcesavailabletoourcontinentandourvastgeologicalhydrogenstoragecapacity,Europecanfurthersupportitspathasgloballeadershipinhydrogen.Conversely,SteamMethaneReforming(SMR)technologies,whicharetodaymatureandwidelyused,whencombinedwithCarbonCaptureandStorageorUsage(CCS/CCU)couldenableafastandcost-efficientscalingupoflowGHGhydrogenintotheenergysystem,contributingtoeconomiesofscale.LowGHGhydrogenprojectscanfacilitateawiderdeploymentofhydrogenandcontributetotheupscalingofthemarketforhydrogen.Inthemid-to-longerterm,onecouldenvisageafullswitchtorenewableand/orlowGHGhydrogeninthegasgridtoachievedeepdecarbonisation.Forexample,inonestudy,theHydrogenRoadmapEurope(Figure29)representsthepossiblesharesofthedifferenthydrogentypesandindifferentmarketsegments:Figure29.Thepossibleshareofdifferenthydrogentypesindifferentmarkets.Source[2.18]Finally,andwithaviewto2050,asignificantcost-effectivedecarbonisationcanonlybeachievedthroughanintegratedsectoralapproachusingboththeelectricity,gasandheatinfrastructures.Hydrogenandgasintegrationcaneasethetransitiontowardsadeepdecarbonisation,thankstotheabilityofthegasgridtointegratevaryinggeographiesandscales(conversionofclustersforindustryzone/region/country/EU)aswellasadmixturesofhydrogenintothegrid,therebyaddingtothepositivespill-effectsthathydrogenproductiondeploymentcanhaveinEurope.www.ertrac.orgPage66of169FinalVersionTable11.AnestimationoftheEuropeanproductioncapacity(TW.h).Sources[2.18&2.19]CH4H2YearAnaerobicDigestionThermalGasificationPowertoGas(e-methane)GreenBlue2050660350160108710872.3.2GaseousfuelsmixscenariosThesameapproachasdefinedintheLiquidfuelmixscenariosisappliedtothegaseousfuelsin2050,basedontheproposedCO2EvaluationGroup:NaturalGas:•Samescenariosasdefinedforliquidfuels:oAdvancedbiofuel:90%biomethane+10%e-methane(PtG)oMixed:50%biomethane+50%e-methane(PtG)oE-fuel:100%e-methane(PtG)oLimitedfossil:80%biomethane+10%e-methane(PtG)+10%fossilNGNote.DuetothecompositionoftheERTRACfleet,onlyLNGsparkignitedbasedpowertrainsareincludedintheassessment.HydrogenForhydrogen,thefollowingscenarioshavebeenexplored:•Allfuelmixscenarios(butlimitedfossil):o100%renewableH2producedbywaterelectrolysis)isused(PEMtechnology).oThe1.5TECHelectricitymixisusedasthesourceofelectricity(1.5TECH)withtheexceptionofe-fuelswhere100%renewableelectricityisused.LimitedfossilThisscenarioisusedasasensitivityontheoriginofhydrogenwhere:•50%ofthetotalH2demandwillbesatisfiedasrenewablehydrogen(asdescribedabove)•50%fromlowGHGroutesbasedonfossilfuels(steamreformingofnaturalgascoupledwithCO2captureandstoragetechnologies).2.3.3Environmentalassessment2.3.3.1LiquefiedNaturalgas-likefuels(methane)Itisworthnotingthat,duetothecompositionofthefleetasdefinedintheextremecasesdefinedforthepurposeofthis2050exercise,allthenaturalgasrelateddemandwillrefertoLiquefiedNaturalGas(LNG)routes(slightlymoreenergyintensiveprocessthanthecompressednaturalgasproductionrouteduetotheliquefactionprocess).Inthiscontext,asderivedfromtheJECWTTv5valuesfollowingthesamelogicasforliquidfuels,thefiguresusedintheERTRACanalysisforgaseousfuelsaresummarizedbelow.www.ertrac.orgPage67of169FinalVersionAdvancedbiofuelsTable12.Liquefiedbiomethane(LBM)fuelsfigurestoERTRACmodel(WTT,2050)SourceWoodresidueMunicipalWasteMixadvancedbioFeedstock/ProcessWastewoodgasification/methanation(i)Upgradedbiogasfrommunicipalorganicwasteasliquefiedbiomethane(LBM)(ii)LiquefiedBiomethane(Bio)50%woodresidue+50%municipalwasteTimeframe2030JEC(WWLG2)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)2030JEC(OWLG1)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)GHG(gCO2eq/MJfuel)25.31.91.713.80.260.071.090.90Energyexpended(MJ/MJfuel)1.180.910.861.00.820.770.870.82Notes:(i)Syntheticmethane(asLNG)viagasificationofwastewoodandmethanation.Includesforestresiduecollection,seasoning,chopping,liquefaction(onsiterefuellingstation)andLBMdispensing.(ii)Includesfermentation,upgradingaswellasliquefactionandLBMdispensing(sameas(i)).www.ertrac.orgPage68of169FinalVersionE-methane(liquid)Thee-methaneproductionpathways(sometimesreferredasLSM(LiquidSyntheticMethane))arederivedfromJECWTTv5and,asmentionedearlier,refertotheliquefiedrouteduetothedemandfromthevariousERTRACfleetscenarios:Table13.E-methanefigurestoERTRACmodel(WTT,2050)e-methaneFeedstock/Process(i)H2fromwaterelectrolysis(100%RES)+CO2fromindustrialfluegasesH2fromwaterelectrolysis(100%RES)+CO2frombiomassupgradingfluegasesH2fromwaterelectrolysis(100%RES)+CO2fromdirectaircaptureTimeframe2030JEC(RELG1a)2050ERTRAC100%RES2050ERTRAC1.5TECH(Sensitivity)2030JEC(RELG1b)2050ERTRAC100%RES2050ERTRAC1.5TECH(Sensitivity)2030JEC(RELG1c)2050ERTRAC100%RES2050ERTRAC1.5TECH(Sensitivity)GHG(gCO2eq/MJfuel)6.70.02.956.70.02.96.70.03.19Energyexpended(MJ/MJfuel)(ii)1.141.01.811.111.01.771.821.22.04Share12.5%12.5%75%Notes:(i)Refertoe-fuelTable7inLiquidfuelssectionforadditionalgeneralassumptionsforthee-fuelroutes.(ii)TheenergyuseislowermainlyduetothehigherefficiencyoftheelectricitysupplyforCH4liquefactionincaseof100%RES.Table14.2050valuesusedforERTRACmodellingpurposes–Advancedliquidbiofuelmix(WTT)e-CH4mix()-(ERTRAC2050)ERTRAC100%RESERTRAC1.5TECH(Sensitivity)GHG(gCO2eq/MJ)0.023.1Energyexpended(MJ/MJfuel)1.12.0Asasimplification,thevaluespresentedaboveareconsideredasaproxyforbothgasolineanddiesel-likefuelsin2050.www.ertrac.orgPage69of169FinalVersion(Fossil)liquefiednaturalgasDespitethelimitedcontributionoffossilfuelsincludedintheERTRACfuelmixscenarios,thepotentialofthesepathwaystowards2050havebeeninvestigatedbothintermsofenergyconsumptionandGHGemissions:Table15.FossilliquefiednaturalgasfigurestoERTRACmodel(WTT,2050)SourceNaturalgasFeedstock/ProcessRemotenaturalgasliquefiedatsource,transportedanddispensedasLNGatretailpoint(i).Timeframe2030JEC(GRLG1)(ii)2050ERTRAC1.5TECH2050ERTRAC100%RES(iv)GHG(gCO2eq/MJfuel)(iii)16.67.15Energyexpended(MJ/MJfuel)0.180.13Notes:(i)Remotenaturalgasliquefiedatsource(importedfromAlgeria,Norway,NigeriaandQatar),LNGseatransport,LNGdistributionviatruck(500km),LNGdispensingatretailpoint.(ii)PathwayGRLG1Chasbeenusedasthebasisforthe2050estimate,includingCCSattheliquefactionpowerplant(locatedoutsideEU).(iii)LoweremissionsduetodifferentimprovementsinGHGreductionwhenlookingintothe2050timeframe.E.g.(1)reductioninnon-routineflaring,minimumventingandfugitives(upto50%assumedoverallduetotheimplementationofon-goingworldwideinitiativesuchasthezeroroutine-flaring,amongothers).(2)lessnaturalgasrequiredindownstreamprocessesinsideEUversusJECWTTv5duetothereplacementofnaturalgascompressorsbyelectricallydrivenones(3)electricallyheatedvaporizationinstalled.(iv)Verysmall(hardlydetectable)differencesbetweenthetwoscenariosbecauseofthesmallamountsofelectricityrequiredinthepathway(onlyforpumpingattheLNGrefuellingstation).www.ertrac.orgPage70of169FinalVersion2.3.3.2HydrogenTable16.HydrogenfigurestoERTRACmodel(WTT,2050)HydrogenElectricityNaturalgasLimitedfossilscenarioFeedstock/ProcessWaterelectrolysiswithlowGHGelectricity(renewable)Steamreforming(SMR)ofnaturalgaswithCO2captureandstorage(CCS)(ii)50%Electricity+50%NG(CCS)(iv)Timeframe2030JEC(WDEL1/LH1)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)2030JEC(GPCH2bC)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)2050ERTRAC1.5TECH(BaseCase)2050ERTRAC100%RES(Sensitivity)GHG(gCO2eq/MJfuel)9.50.13039.725.625.412.8612.72Energyexpended,(MJ/MJfuel)(ii)0.870.740.700.840.690.650.710.68Notes:(i)Electricityfromwindenergy.Watercentralelectrolysis,hydrogenpipelinetransport,hydrogencompressionto88MPa.(ii)NaturalgasfromRussia,transporttoEUbypipelinefromSouthernAsiaorMiddleEast(4000kmtoEU),distributionthroughhighpressuretrunklines.Centrallarge-scalereformer,hydrogenpipeline,hydrogencompressionto88MPaatretailsitewithCCS.(iii)Moreefficientgasturbinesthenhavebeenusedinthedownstreamlong-distancepipelinetransportversusJECWTTv5anddownstreamdistributionconductedbymeansofelectricallydrivencompressors(insteadofnaturalgasones).(iv)ItisworthnotingthattheintentionoftheERTRACscenarioisnottoforeseethefuturebuttoexplorealimitedfossilscenario,wherethemeaningfulcontributionfromfossilnaturalgaswithCCSisconsidered.Forsuchacase,anevensharewithelectrolyticH2hasbeenused.Worthmentioningthat,severalotherstudiessuchasNavigantone47showapotentialdifferentratio(35/65).47https://gasforclimate2050.eu/publications/www.ertrac.orgPage71of169FinalVersion3PowertrainOptionsforRoadMobilityIntroductionAutomotivepowertrainsareincreasinglyturningtowardsloworzerotailpipeemissions.Thediversifiedpowertrainportfoliointhefuturewillleadtoasignificantreductionofgreenhousegas(GHG)emissionsinagreementwiththetargetsoftheParisclimatechangeconferenceandthegoalsof“Fit-for-55”.Thefuturepowertrainportfoliowillbemorediversifiedthantoday,comprisingmainlyBEVsandalsoadvancedICEs(gasoline,diesel,gaseousfuelsandseveralrenewablefuels,includinggreenhydrogen),HEVsandPHEVs.ThiscompositionofdifferentpowertrainswillbegraduallycomplementedbyFCEVs.Theautomotiveindustryactivelyworksonreachingcostcompetitivenessofnovelpowertrainstopromotethedevelopmenttowardszeroemissiontransport;however,decisionsareprimarilymadeonhowtomostefficientlyandcosteffectivelymeetthevalidemissionlimits.AsdescribedinChapter1andexplicitlyemphasisedfortractionbatteries,theresponsiblehandlingofresources,landscapesandrelatedpersonsandacirculareconomyaregeneralgoalstobeworkedon,aswellasfurtherpowertrainresearch.InadditiontoimprovingBEVswithincreasingachievablerange,itispossiblethatlong-distancejourneyswithpassengercarscouldstillbeaddressedbyPHEVs,HEVsandadvancedICEpropelledvehicles.Whilstthemajorityoftwo-wheelerandpassengercar(PC)powertrainswillbeelectrified(BEV,xHEV),HDlonghaulagevehicleswillseeasmallershareofBEVandhighersharesofICEswithrenewablefuels,H2(includingFCEV)andhybridisation.Duetoexistingchallenges,ICEpowertraintechnologiesfor2030long-distancevehicles,suchasPHEVs,hybridsandadvancedICEvehicles,willbeoptimisedforhighestefficiencyandincreasinglysuppliedwithrenewablefuel.FCEVs,especiallyfuelledwithgreenhydrogen,willbeaddedtothelong-distancepowertrainoptions.Besidestheroll-outoffastchargingstations,furtherH2refuellingstationswillbenecessarywithanincreasingnumberofFCEVs.SmallerandlighterL-categoryvehicles,suchaselectricallychargeablepoweredtwo-wheelers(ePTWs),areverymuchsuitedtourbanuseandare,assuch,wellpositionedtofullyexploittheadvantagesofBEV,consideringmobilityandsustainabilitychallenges.PowertrainTechnologiesThischapterdescribestheprimarypowertrainvariationsthathavethepotentialtobeoperatedCO2neutrally,hencecontributetoachievingsustainablemobility.Thesuccessofthesevariationsdependsonuseracceptance,minimalcostforadditionalinfrastructureandoperationatnearzero-impactemissions.Thevariationscanbeclassifiedintwobasiccategories:electricorinternalcombustion,whichmayalsoincludehybriddrives.Whileatransformationnowmovestowardselectrifiedandespeciallyfullyelectricvehicles,theinternalcombustionengine(ICE)inahybridpowertrainorincombinationwithalternativefuelsstilloffersspecificadvantages,suchasnearlyunlimiteddrivingrangeduetorapidrefuelling.Ontheotherhand,theelectricdrive(BEVorFCEV)offerssignificantlyhigherefficiencyandzerotail-pipeemissionoperation.Awiderangeofvehicletypes,vehiclesizes,transportationpurposesandoperationprofilesincombinationwiththenecessaryenergyandfuelinfrastructureleadstoavarietyofpowertrains.Thesecanrangefromsolutionsforfullelectriclightvehicles,suchase-scooters,ePTWs,toPHEVpassengercars,anduptofuelcellorH2-ICEpoweredlonghaulageheavy-dutyvehicles.Inthefuturethevarioustypesofpowertrainswillcomeundercloserscrutinyregardingoverallenergyefficiencyandenvironmentalimpact,intermsofLifeCycleAnalysis(LCA).www.ertrac.orgPage72of169FinalVersionTheneedtoapproachengineeringlimitsfornewpowertrainsolutionsandtoreducedevelopmentcostsandtimerequiresfurtherresearchinscalableandmulti-domainmodelstoefficientlysupportlayoutandtailoringofpowertraintopologyandcomponent’saswellassystem’scharacteristicstotheintendedusecaseofthevehicle,i.e.rightsizingwithregardstopowerandenergydensity.Atthesametime,digitalisationhasbecomesynonymouswithconnectivityandwillbevitaltosupporttheprocessofusingdigitaldataforbothdesignandoperation,whichwillrelyonadvancedconcepts,e.g.digitaltwins.Withinthevehicle,thisenablesdatacollectionforpowertrainanalysis,designandmanagementinteractingalsowiththethermalmanagementstrategyoftheBEVorwiththepowertraincontrolofaPHEV,aswellasofthehydrogen-poweredlong-haultruck.Apartfromoverallpowertrainmonitoring,performingspecificfunctions,suchasconditioningofthebatteryoraccuraterangeprediction,areindispensableforBEVs.Applicationsarecurrentlyinpreparationbutlimitedtoprototypetestinganddemonstrationprojects,aswellasinitialstepsinnicheproducts.Additionally,theinteractionwitharunningfleetofferspotentialforimprovementsofroadtransportintermsofenergyconsumption,maintenanceandrepair,operationtimesandcosts,andtrafficoptimisation.Toaddressthechallenges,adequatesimulationcapabilitiesandtheuseofdata-driven,artificialintelligence(AI)techniquesarepromising,yetneedfurtherresearch.3.1BatteryElectricVehicles(BEV)Thefollowingsub-chapterfocussesonthebatteryelectricvehicle(BEV)powertrainbutincludesrelatedvehicletechnologyaspectsduetothestronginteractionanddependencyonsystemssuchasthermalmanagementandespeciallyconnectivityencompassingbothdataandpower.Thetractionbatterywillbeaddressedinitsownsub-chapter(Section3.2).ThecontentisanupdateandcomplementationoftheformerERTRACRoadmapofElectrification,whichisstillvalidfornon-powertraintopics.(Theaspectsdescribedbelowneedtobeinterpretedindividuallyfromeachapplicationperspective.Thefocusmayvarybetweendifferentvehiclecategoriesandapplications).VISIONANDPROPOSEDAREASFORSUPPORTIngeneral,BEVsareparticularlyattractiveduetotheirhighefficiency,verycleanlocaloperationandwillbeabletocovermanyoftheroadtransportapplicationsfrom2030.Additionally,inherentmodularaspectsofpowertrainoffernewdegreesoffreedominvehicledesignandhenceuserexperience.Focusingontheseaspects,tofurtherimproveparameterssuchasenergydensity,willbeneededtosuccessfullyexpandtheshareofpureelectricvehiclesintomainstreamusage.Rethinkingandfullyunderstandingfuturemobilityandlogisticmodelsandexpectations,aswellasfit-for-purposechargingoptions,willalsobeakeyelementinspecifyinganddesigninginnovativeandaffordablepowertrainsthatoptimallymeettheuser’sspecificneedsandespeciallytheeconomicexpectations.Itwillbeparticularlynoveltoconsiderthesysteminwhichthevehiclewillbeoperatedandhowconnectedsystemscanbeusedtobenefitpowertraindesignandoptimisationontheonehandandoptimisecontinuouslyoperationalusageandlifetimereliabilityontheother.Integratedandmorecompact,potentiallymodular,powertrainsubsystemsandcomponentscanstronglybenefitfuturevehicledesign.Inparticular,themeansof(physically)connectingtothepowergridandtheneedforfastandintegratedcomfortchargingorbatteryswappingareofgreatinterest.Finally,industrialization,frommanufacturing(prototypingtoseries)torecycling,andtheresponsibleuseofresourcesmustbeaddressed.CURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSBEVpowertraintechnologyiscurrentlytransitioningfromthefirstgenerationtoasecondgeneration.Asstrongmarketgrowthhasincreasedsteadily,individualcomponents,suchasinverters,chargers,electricmotorsandbatterypacks,haveconstantlyimprovedandbeenoptimisedforaspecificelectrical-networkarchitectureandvoltagelevelaccordingtothevehiclecategory,alsoforlargerseriesproduction.Thesearedeployedintypical,conventionalvehiclesbyreplacingtheexistingICEpowertrainswithanelectricdrivewithoutmajorchangesinvehicledesign.Currently,thefirst,dedicatedelectricvehicledesignshavesuccessfullyenteredthemarket,butarestilloftenbasedonstand-alonecomponents,thathavemadewww.ertrac.orgPage73of169FinalVersionverygoodprogressoverthelastyearsyetarestillconsideredtobeinanearlyphaseofalongdevelopmentprocesstoincreasetheirtechnicallevelandmaturity.Figure30.BEVpowertrainAtthesametime,thefirstintegratedsolutionsandmodularplatformsareenteringthemarketwithpowerelectronics,electricmotorsandtransmissionsimplementedinsinglepackageswithinasharedhousing.Evenhigherdegreesofintegrationareexpected,inordertoreducecostandsupportnovelvehicledesigns.Transmissionswillalsobeincludedinthetrendtowardsintegratedandmodularsolutions.Aspectssuchasvoluminousspaceoccupation,efficiency,weight,cost,noiseandperformancestillofferpotentialforimprovementbasedontoday´stechnologicalstatus.Avarietyofsolutionsisandwillbeavailableasrequiredbythemassmarket,fromcurrentsimpleone-stagegearsuptocomplexin-line-planetarylayouts,eventuallycombiningtwomotorsandenablingtorquevectoring.ThehighintegrationoftheBEVpowertraincomponentsandtheirmodularityalreadystartstoconsidernewlayoutopportunitiesforfuturevehicleandpowertraindesigns.Creatingdedicatedpowertrainsbyusingmodulesisdesirablewhentryingtomakemobilitybothcostefficientanddesirableatthesametime.Thischainofopportunitiesofmodularpowertraincomponentsstartswiththeresearchonmaterialleveloversystemandgoesonwithcomponentresearchanddevelopment.www.ertrac.orgPage74of169FinalVersionThebatteryitselfisadominatingcomponentoftheBEVpowertrainandhastoberightsizedconsideringbothvehiclecategoryandspecificordominantapplication.Thesizesdependonthecustomer’spreferenceaswellasthewaytoprovideenergy(chargingversusbatteryswapping).Inexpectationofamassivelygrowingchargingnetworkandchangingboundaryconditionswithinthechangingmobilitysector,itisexpectedthatatleasttwodifferentlayoutswillbeaskedforbythecustomer:thefitforpurposelowrangevehicle(e.g.250km)butalsothelongdistancevehicleabletocover500kmormore.Thesameappliestolightandheavy-dutyvehiclesaccordingtotheiruse-case.Withinthisframeworkitisworthinvestigatingthepotentialofsmall,swappableandinterchangeablebatteriestailoredforelectricallychargeablepoweredtwo-wheelers(mopedsandsmallmotorcycles)astheyaremainlyusedinurbanenvironmentrequiringlimitedamountsofenergy.Besideitssizeandweight,thebatteryisalsodefiningthevehicleperformanceintwoways,theacceleration(dischargingpowerforpropulsion)andtherecuperationthatmaybepossible.Eventhebatterytechnologyatthecelllevelcaninfluencedirectlythecustomervalue(seeSection3.2)duetothedependencyontherequiredpowerandenergydensity,aswellasonlifetimeandreliability.Thisisespeciallyrelevantregardingthetimerequiredtorechargethebattery.Thekeyfiguretocomparethecell(dis-)chargeperformanceistheC-rate,whichisanormalizedandquantifiablemeansofdescribingthebatterycapabilitiesevenatthesystemlevel.AhigherC-ratemeansshorterchargingtimes.AverysimplifiedestimationofchargingtimebasedonC-ratesistodivideanhourbytheC-ratevalue(e.g.10-80%chargein15minutesequalsroughly4C).Thebatterymanagementsystem(BMS)alsodirectlyinfluencesactualdrivingperformancebycontrollingthebatterytofulfilitsprimaryfunction,and,incombinationwiththethermalmanagementsystem(TMS),maintainfavourableoperatingconditions.TheBMShasakeyroleinthepowertrain,researchisrequiredandongoingtoreachthedesiredmaturitylevelsoon,intermsofarchitecturesandfunctionalitiesforadvancedoperatingstrategies.TheTMS,incooperationwiththeBMS,isavitaloverarchingtopicforallcomponents.Itisachallengetokeepthesecomponentswithintheiroptimaltemperaturelimitsinalloperatingmodes,sincetheymayhavedifferentspecifictemperaturewindowsforefficientandreliableoperationovertheirlifetime.Abatteryneedstobepreheatedatcoldambientconditionsyetsufficientlycooledathighpowerusageorfastcharging.Similareffectsapplytootherpowertraincomponents.Further,thereisnosourceofheat,aswithinternalcombustionenginepowertrains,delivering“waste”-heatwhichisusedtoconditionthecabin.WithinthescopeofTMS,anefficientandcleverreuseofheatneedstobeconsidered,especiallyinacaselikefastchargingorhigh-powerdemand.TechnologiestoaddressthewidevarietyofpotentialneedsforthermalmanagementinfluencethetotalefficiencyofaBEV.Acurrentexampleonthemarketistheuseofheatpumpsforamoreefficientwaytosupplyheat,e.g.tothepassengercompartment.Charging,asdescribedindetailinSection4.1,isvitalforthesuccessofBEVs,butalsoisaverywidetopicandopentechnologicalarea.BEVsenteringthemarketneedtobecapableofdifferentchargingoptionsinparallel,inordertosupportcustomer’sspecificneedsfortheirownusagemodelsandtodealwiththelimitedanddiverse(butfastgrowing)infrastructure.Manydifferenttechnologiesforcharging,withlow/highpower,DC/AC,wirelessorplugged,robotizedandincludingbidirectionalconnected(V2G)andevendynamic,continuouswhilstdrivingon“ElectricRoadSystems”(ERS),arecurrentlyconsideredinresearchanddevelopment.Theadvantagesofhavingarangeofsolutionsavailablemaybeparticularlybeneficialintermsofmatchingdifferentuser’sneeds.However,thechargingtechnologyaffectstherelatedpowertraincomponentssuchasinverters,battery,BMSandTMS.Highpowerchargingleadingtohighercurrenthenceincreasedthermallosses,celldegradation,moreefforttomanagewasteheatandincreasedcostsforthecustomer.www.ertrac.orgPage75of169FinalVersionFigure31.IntegratedelectricdrivemoduleTheelectricdrivetrain,asshownbywayofexampleinFigure31,providesthetorquetopropelthevehicleandusetractionmachinesthatalreadyarecapableofreachingpeakelectricefficienciesupto97%athighloads,whilstoffering>90%overawiderangeofoperatingpoints(seeFigure32).Intensiveresearchison-goingandrequiredinallaspectsofthemotor,withthefocusoncost,weightandsizereductionplusefficiencyimprovement.Reducingenergylosseswillalsohaveadirectimpactontherequirementsonthethermalmanagementsystem(TMS).Figure32.Typicalpermanentmagnetsynchronoustractionmachine(BMWi3)4848Li,Y.;Yang,H.;Lin,H.;Fang,S.;Wang,W.ANovelMagnet-Axis-ShiftedHybridPermanentMagnetMachineforElectricVehicleApplications.Energies2019,12,641.https://doi.org/10.3390/en12040641www.ertrac.orgPage76of169FinalVersionBesidesthemotor,otherelectricHVcomponentsinthepowertrain,especiallypowerelectronics,alsoneedtobeoptimisedtoreduceenergylosses,sincethepowertraindependsontheoverallperformanceandefficiencyofallcomponentsinvolvedintheoverallsystemand,especially,onthecontradictingtrendsofhowefficiencychangeswithpowerdemand.Atverylowpower,theefficienciesoftheelectricmotorandinverterarelow,whilebatterydischargeefficiencyishigh.Athigherpower,efficienciesoftheelectricmotorandinverterarehighandthebatterydischargeefficiencydecreases.Talkingaboutpowertrainefficiencyalwaysrequiresanoverallsystemperspective,holisticapproachandrelatedresearchtobalancetheindividualcomponentsandtheirpropertiestowardsamostefficientpowertrainandBEV.Thecurrentstate-of-thearthasprimarilyfocusedonoptimisingthecomponentsattheirownfunctionallevelandoverallperformance,butoftenwithlessconsiderationoftheoverallefficiencyofthesystem.CURRENTSTATUSOFEUROPEANRESEARCHEuropeanfundingwithinprogramssuchasFP7andH2020haveverysuccessfullysupportedtheinitialstepsofelectrificationwithinroadtransport,particularlyforlightvehicles,passengercarsandbuses;furtherR&Ieffortsareneededfortheelectrificationofheavy-dutyvehicles.Sofar,theresearchhasfocusedoncomponent,sub-systemandvehiclelevelimprovementsandaddressedtopicssuchasfastandautomatic(wireless)charging,vehicletogridcapabilities,materials,lightweighting,fleetmanagement,componentsandtheirdigitalmodels,aswellasvehicletechnologies.ThereisanevenhigherdemandforfundingofthetransitiontothenextgenerationsofBEVsandofnewelectricmobilitysolutions,sincetheexistingfundinghasbeenwellinvested,leadingtothecurrenttrendoftherapidlygrowingmarketforEVs.WhilstdevelopingthefirstgenerationofBEVpowertrains,numerousnewquestionsandtechnicaloptionscameup,whichwillenableEurope’smobilitytobeintheleadingpositionintheworldwidecompetition.Frommaterialsoversystemsandcomponentstodigitalelements,allaspectsareimportanttocontributetoachieveCO2-neutralroadtransportandshouldbeconsideredinasystemperspective.3.2BatteriesThissectionispartofaEuropeannetworkofresearchanddevelopmentinitiativesanddescribescoherentcontenttootherroadmapswhilebeingdistinguishedbetweencommonbatterytopicsandtopicsspeciallyrelatedtoroadtransportenvisagingthenextstepsto2035.VISIONANDPROPOSEDAREASFORSUPPORTThebattery(actuallytheaccumulator)isthemostefficientpracticalmeansofstoringelectricalenergyinvehicles,asidefromsuper-capacitors(whichareinhibited,astheonlymeansofstorage,mainlybycostaswellasvolumeandweightconsiderations).Everyvehiclewithelectricdrivemotorswillhaveatractionbatterythatisspecifiedfortheparticularvehicle’sneeds,intermsofpowerandenergy.Itisexpectedthatthesebatterieswillbeconstantlyimproving:constantevolutionintheareasofcost,durability,chargingefficiency,safety,powerand(energy)power-density(resistanceofthesystem)49.Inaddition,thebatterymustfulfilabalancedandoptimisedcombinationofthefollowingrequirementsasshowninFigure33.49A.König,L.Nicoletti,D.Schröder,S.Wolff,A.Waclaw,M.Lienkamp,AnOverviewofParametersandCostforBatteryElectricVehicles,WorldElectricVehicleJournal,2021,12(1),21;https://www.mdpi.com/2032-6653/12/1/21www.ertrac.orgPage77of169FinalVersionFigure33.RequirementsforbatteriesinroadtransportAcombinationofchemicalelementsresultsinthetheoreticalenergystoragepotential,thisissuccessivelyreducedstartingwithcellbuild-upandendingwiththeeffortneededforthemodulesandpacks.Envisagedimprovementsandinnovationincelltechnologywillalwaysserveasthecornerstonebutwillultimatelybeassessedatthesystemlevel,e.g.improvementsinoverallbatterypackenergydensityandtheabilitytochargequickly,overtheentirelifetimeofthebattery.Atthesametime,theoverallbattery/vehiclesystemsupportsimplementation,especiallyregardingthechallengesofthermalmanagement,whichisvitalforelectro-chemistryandensuringmaximumlifetimefromthecellstotheoverallsystem.Finally,regardingtheend-of-lifeforbatteries,itisessentialtorecoverscarceandvaluablematerials,whilstkeepinginmindthatalltheseeffortsmustultimatelyproveethicalandeconomicallyviable,boththroughdesignandthroughmaterialrecoveryprocess50.ItappearsthatLi-iontechnologywillhavethegreatestimpactinmobilitypurposesforalongtimetocome.Othertechnologies,suchassodium-ionandevenmagnesium-ion,areunderfundamentalinvestigationandmayfindamarketshareforspecificpurposesmainlystationaryapplicationsorships.Duetothefarlowerenergydensityofsodium-ionormagnesium-ion,itisunlikelythatthesealternativeswillplayaroleinroadtransport,atleastnotforpassengercars.CURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSThebatteryisthecorecomponentofelectricmobilitysinceitdefinesthelimitsofpowerandenergyorrangeaswellas,toasignificantdegree,theoverallweightandcostofthevehicle.Currently,theweightshareofbatteriesweightistypically20-30%forpassengercarsanduptomorethan40%fore-scooters:thebatterycandefineupto50%ofthecost(notthesellingprice)ofthevehicle,especiallyforsmallvehicletypes.50J.VanMierloetal.,BeyondtheStateoftheArtofElectricVehicles:AFact-BasedPaperoftheCurrentandProspectiveElectricVehicleTechnologies,WorldElectricVehicleJournal,2021,12(1),20;https://doi.org/10.3390/wevj12010020-03Feb2021www.ertrac.orgPage78of169FinalVersion3.2.1FundamentalsBatterycellsaredesignedtofulfiltheapplicationrelatedenergyandpowerrequirements,whilstkeepingwithintheavailablespace,weightandcostlimitations.Thistypicallyleadstoenergyorpowertypesofcell/batterydesigns,sometimesalsosomewhatin-between(e.g.forPHEVcells).Itisalwaysatrade-offofenergyversuspower.Itisnecessarytochooseonevariationaccordingtotheapplicationwhendesigninganddevelopingthebatterymoduleandpack.Anoverviewofthedifferent,mostprominentcelltechnologiesandtheirclusteringisgiveninthetablebelow:Table17.Batterycharacterization[BATT4EU,SRAforbatteries2020]BatteryGenerationElectrodesactivematerialsCellChemistry/TypeGen1Cathode:LFP,NCAAnode:100%carbonLi-IoncellGen2aCathode:NMC111Anode:100%carbonLi-IoncellGen2bCathode:NMC523toNMC622Anode:100%carbonLi-IoncellGen3aCathode:NMC622toNMC811Anode:carbon(graphite)+siliconcontent(5-10%)OptimisedLi-IonGen3bCathode:HE-NMC,HVS(high-voltagespinel)Anode:silicon/carbonOptimisedLi-IonGen4aCathode:NMCAnode:Si/CSolidelectrolyteAllsolid-stateLi-IonGen4bCathodeNMCAnode:lithiummetalSolidelectrolyteAllsolid-stateLi-metalGen4cCathode:HE-NMC,HVS(high-voltagespinel)Anode:lithiummetalSolidelectrolyteAdvancedsolidstateGen5LiO2–lithiumair/metalairConversionmaterials(primarilyLiS)Newion-basedsystems(Na,MgorAl)Newcellgen:metal-air/conversionchemistries/newion-basedinsertionchemistries3.2.2CellTechnologyIngeneral,theanodeismadeupofgraphiteoramixofgraphiteandsilicon,whilstthecathodeactivematerialcanrefertoanumberofdifferentLimetaloxidematerials,dependingonthefinalrequirementsofthebatteryfortypicalmaterialcombinations.Inmostcasestheseare:NMC(lithiumnickelmanganesecobaltoxide),NMC-LMO(NMCmixedwithlithiummanganeseoxide),NCA(lithiumnickelcobaltaluminiumoxide)andLFP(lithiumironphosphate).Thecathodesandanodesarekeptelectricallyisolatedbyaseparator,whilstthewholeassemblyisimmersedintoaliquidorgeltypeelectrolyte.Costhasbeenaddressedmainlybyhigherscaleproductionprocesses,asseeningigafactories,improvingmanufacturingwww.ertrac.orgPage79of169FinalVersionprocessesandalsobytryingtoreducethemostexpensiveelements(e.g.cobalt).Theresultingnickel-richelectrochemistrywillrequiremoreresearchtoadequatelypreparefornewsafetychallenges.Oneoftherelevantfactorsforthelifetimeofcellsistheso-called'breathingfactor',whichresultsfromthechangeincellvolumebetweenfullchargeandfulldischarge.Thisdiffersconsiderablyfordifferentcellmaterials.VolumechangevaluesarelistedintheTablebelow.Table18:VolumechangeofdifferentbatterychemistriesduringoperationBatterychemistryBreathingfactorfor0-100%SoCLithiumIronphosphate/graphite<1%LithiumNickelManganeseCobaltoxide/graphite3%LithiumNickelManganeseCobaltoxide/Lithiummetal15-25%Whilstthechemistryofferssignificantadvantagesintermsofenergydensityandperformancefactors,thehighvolumechangeespeciallyofallsolidstatebatteriescontainingLithiummetalanodesstillhastobeconsideredinthecelldesign,whichisoneofthebiggestchallengestofulfilproductrequirements.3.2.2.1Li-IonCellTechnologyAtypicalstateoftheartlithium-ionbatteryconsistsoftwodifferentelectrodes–calledanodeandcathode.Thoseareelectronicallyisolatedviatheseparatorinsidethecell.Duringdischargingtheelectronsmoveviatheexternalcircuitfromtheanode(negativeelectrode)tothecathode(positiveelectrode),whilstthelithium-ionsinsidethecellsmove,viatheelectrolyte,fromthecathodetotheanode.Theliquidelectrolyteisdistributedhomogenouslyoverthewholecell(inporoseelectrodesandtheporousseparator.Thelithiumionscandiffuseunhinderedthroughtheliquidphase.Figure34.StructureofaLi-ioncellwww.ertrac.orgPage80of169FinalVersion3.2.2.2Non-LithiumAlternativesAlternativesthatsubstituteLi-ionsasthechargecarrier,suchasNa-ionsorMg-ions,havebeenconsideredformanyyears.Themainadvantagemightbeasignificantcostreductionaswellastheavailabilityofmaterials,thediversityofsourcestosecureavailabilityandevensafetyissues.Mg-batteriesstillneedsignificantimprovementsconcerningcellvoltage,energydensityandelectrolyteavailability.Theseperformanceissuesstillhinderfurthercommercializationofthistechnology.Sodium-iontechnology(SodiumIonBattery(SIB))hasmadesignificantprogressoverthelastdecade.Energydensitiesarestilllowercomparedtolithium-iontechnologiesbutimproving.Sodium-ioncellsshowgoodcyclelife,longevityandsafetybehaviour.Alargecellmanufacturerannounceda2022marketentryforSIB’s:thelowercostperkW.handusagethanLithium-ionbatteryproductiontechnologymakesthiscelltypeinteresting,atleastforstationaryenergystorage.Assumingfurthertechnologyprogress,SIBsmightalsobecomepost-lithiumcandidatesformoredemandingapplications.3.2.2.3SolidStateCellSolidstate(polymerorceramic)cellsaredefinedbytheuseofsolidelectrolytesFigure35.Schemeofoneconceptofasolid-statecellThemostobviousdifferencebetweensolid-statecellsandconventionallithium-ioncellsisthefactthattheelectrolytetakesonthefunctionoftheseparatorinsolid-statecells.Ingeneral,threepromisingtypesofsolidelectrolytesareknowntoday,theorganicelectrolytes,oxidicelectrolytesandthesulphidicelectrolytes.Itisnotyetclearwhichofthethreewillbestmeettherequirementsofthemarket.Solidelectrolytesgenerallyoffertheopportunitytouseverythinanodes(15µm)ofpure,metalliclithiumbecauseofthesolidstructure,whichispreventinglithiumdendritegrowth.ThisleadstoahigherenergydensitycomparedtoLi-Ioncells.Furthermore,replacingvolatileelectrolytesleadstoimprovedsafety.Puresolid-statecellsrequireahomogeneousionicconductivityateverypositionoverthewholecellareafromlayertolayer(phaseboundary)andoverlifetime.Thisisoneofthekeychallenges.Ontheotherhand,theelectrolytehastobeabsolutelystableagainstlithiummetal.Oxidicandsuphidicelectrolytesshowthehighestpotentialtoenterthebatterymarketforthenext10yearsorlater.OXIDICCERAMICELECTROLYTETheadvantagesofoxideceramicelectrolytesarethemechanicalbarriersagainstthegrowthoflithiumcrystalsthatcauseshortcircuits(dendrites)andthattheyarechemicallystableagainstlithium.Thechallengesare:thelowerconductivity,byoneorderofmagnitudeinrelationtoliquidelectrolyte,(~10-3S/cm@25°C);thehardmaterialhasahighcontactresistancetowardsthecathodelayer;thewww.ertrac.orgPage81of169FinalVersionproductioninthinlayers(<20µm)isachallengeandthelowelasticityisverysensitiveformicrocrackswhichcausesshortcuts.Inaddition,highpressuresmightbeneededtostabilizethesolid/solidinterphases.Examplesare:•Li6.06Al0.196La3Zr2O12,Garnet(~10-3S/cm@25°C):stableagainstmetalliclithium,buttheproductioninthinlayersoftenshowpores.Lithiumdendritesaregrowingimmediatelythroughtheporesgeneratingshortcuts.SULPHIDICCERAMICELECTROLYTETheadvantagesofthesulphidicelectrolytesarethehighionicconductivity.Someofthesulphidicelectrolytesshowanionicconductivitywhichisalmostcomparabletoliquidelectrolytes(10-2mS/cm@25°C).Thematerialissoft,resultingingoodcontactresistancesatthephaseboundariesandagoodresistanceagainstcracking.Themaindrawbackisthechemicalreactionofmostsulfidicelectrolyteswithlithiumandhumidity,oftenleadingtotoxicreactionproducts.Examplesare:•Li10GeP2S12(~10-2S/cm@25°C):notstableagainstmetalliclithium;•Li7P2S8I(~10-3S/cm@25°C):stableagainstlithium,butlowerconductivity;•80Li2S&20P2S5(~10-3S/cm@25°C):stableagainstlithium,butreactionofsulfuroncathode(NCA,LiNi0.8Co0.15Al0.05O2),protectionrequired.POLYMERELECTROLYTEPolymerelectrolytesareasoftandveryflexiblematerial.Theycanbeproducedinasimplemanner.Thisenablesarelativelyeasycellfabrication.Ontheotherhand,theelectrolyteshavealowconductivity,20-5mS/cm(25°C),whichisthreemagnitudeslowerthanforliquidelectrolytes.Thecellshavetobeheateduptoaround60°Cuntiltheoperationcanstart.Duetothesoftmaterial,thebarrieragainstdendritegrowthisverylimited.Thisdoesnotallowfastcharging.3.2.2.4AnodelessUsingsolid-stateelectrolytesallowsanodelesscelldesign.Thisischaracterizedbyacomposite-layerontheanodecurrentcollector.Duringthefirstchargingprocedure,thelithium(includedinthecathode)isevenlydepositedonthecollector.Thecompositelayerisresponsibleforahomogeneouslithiumdistribution.Thistechnologyisintheveryearlystageofresearch.Amajoradvantageforthisconceptistheavoidanceofpre-lithiationoftheanode,hencethereisachancefortheuseoflesslithium.Anotherbenefitisseeninthesimplifiedproductionprocessandprocessenvironmentoftheanode.www.ertrac.orgPage82of169FinalVersion3.2.2.5BatteryProgress–dataandtimeTable19.Expectedbatteryprogressovertime–EUCARcommonlyagreeddata(BEV)2021Table20.Expectedbatteryprogressovertime–EUCARcommonlyagreeddata(PHEV)20213.2.3BatteryTechnologyCurrentbattery-solutionsforBEVsareoftendesignedforhighenergy,i.e.range,butcansupplyahigh(peak)poweronlyforalimitedperiodoftime(e.g.10sdependingontheSoCandtemperature).Currentlythebatterysystemsofferapackofonehomogeneoustypeofcelltechnologyanddonotmixdifferentcelltechnologiesorincludesuper-capacitors.Generation3aisalreadyfindingwidespreadusageinthecurrentinitialmarketgrowthphase,whichislargelydrivenbylargestatesubsidies,whilstGeneration3band4arejustbeginningtoenterthemarket.Arecentannouncementpromisesverylongrangesusingadvancedbatterychemistries.However,thissignificantlyincreasesthemassofthebatterypackhencetheoverallwww.ertrac.orgPage83of169FinalVersionvehicleweight.Also,thefirstheavy-dutyapplicationswithsolidstatebatteriesmaysoonentersomemarkets.Figure36.BatteryassemblyofaPCandanE-ScooterThecurrentlydominatingbatterytechnologyintheautomotivesectorislithium-ionGeneration3a,whilstothermaterialsandchemistries,uptosolidstatebatteries,arepartofcurrentresearchactivities.Itisimportanttorealisethatimprovementsatacellleveldonotautomaticallyresultinthesameimprovementatapacklevel,duetoadditionaleffectsinsidethebatterypack.Thebreathingorswellingofbatterycellsareonlyoneofthewell-knownchallengesforabatterypack.Additionalchallengesarisefrominherentlyincreasedlossesathighcharging/dischargingpowers,duetotheheatgenerationofcell,moduleandbatterypackconnectors,contactorsandcables.Asmentionedabove,theseeffectsareofparticularimportanceinphasesofhigh-powerloadsas,e.g.,duringfastchargingandhillclimbing.Increasingelectricallossesandheatstressnotonlyleadtoenergylossesbutarerelevantforageing.Thermalmanagementis,therefore,akeytopicinthedevelopmentofbatteries,especiallyiffastchargingisoftenused.Thesensitivityofthebatteryperformancetotemperatureisaveryrelevantfactor.Veryloworveryhightemperaturesnecessarilyleadtopowerlimitationstoprotectthebatterycells.Sincethisisalimitingfactorforthevehiclefunctionality,thethermalmanagementalsohastheroleofensuringtheidealconditionstoachievethebestpossiblefunctionalitywithinthecurrentlimits.Thus,thedesignofthebatterythermalmanagementsystem(BTMS)iskeytokeepthebatteryoperatingathighperformanceundersafeconditions.Accurate1D-3Dthermalmodelsareindispensabletopredictthebatterythermalbehaviour.OptimalBTMSstrategiesmayincludeactivecoolingsystemsbasedonair,orotherliquidssuchaswater,ethyleneglycoloroil.Passivecoolingsystemscanalsobeimplemented,whichincludephasechangematerialsandheatpipes51.Continuingresearchisneededinordertooptimisethebatterythermalperformanceinthebestwaysuitedforeachenduserapplication.51H.Behi,D.Karimi,M.Behi,M.Ghanbarpour,J.Jaguemont,M.A.Sokkeh,F.H.Gandoman,M.Berecibar,J.VanMierlo,AnewconceptofthermalmanagementsysteminLi-ionbatteryusingaircoolingandheatpipeforelectricvehicles,Appl.Therm.Eng.174(2020).doi:10.1016/j.applthermaleng.2020.115280.www.ertrac.orgPage84of169FinalVersionFigure37.PCbatterysystemwithTMS(Source:Audi(websitehomepage))Moreover,fastchargingisknowntocauselithiumplatingontheanodesurface,deterioratingbatterylifeandsafety.Inparticular,heavy-dutyEVswillrequirefastchargingratesandveryhighchargingpowertoreducechargingtimes,whichwillaffectthelifetimeofthebatteryevenmorethaninpassengercars,whichareexpectednottofastchargeasoften.EV(Lithium-ion)batteriesdeteriorateovertimeduetoirreversiblephysicalandchemicaldegradationthatoccursnaturallyaswellasbeinginducedbytheoperatingtemperature,thecurrentdemandandthefrequency/depthofchargeanddischargecycles.Theageingphenomenainfluencethebatterycapacity,energyandefficiency,ultimatelyresultinginreducedperformanceandrangeofelectricvehicles.DuetoresearcheffortsandimprovementsofchargingstrategiesandchemicalcompositionsthenegativeimpactofthedescribedphenomenacouldbereducedresultinginanimprovedsuitabilityofBEVsfordailyuse.State-of-Health(SoH)isthe“tracking”parameterthatcanbeusedasanindicatorforbatteryageing,whilsttheparameterthatdefinesthelifeofabatteryisEnd-of-Life(EoL).TheEoLofabatteryisreachedwhentheenergycontentordeliveredpowerisnotsufficientforthespecificapplication.ThebatterysystemsarenowadaysnotequippedwiththenecessarysetofsensorstoproperlymonitortheSoHofthebatteryandtheBMSdoesn´thavetherequiredintelligencenordatabasetoreliablypredicttheEoL.Estimationandmanagementaredependentuponthecomputationalpowerandthestoragecapacityofthebatterymanagementsystem(BMS).Withtheuseofmachinelearningandcloudcomputing,thecapabilitiesofBMScanbeincreased53.Hence,adaptivemodels,real-timedata-drivenmodelsandphysics-basedmodels,canbeappliedtomonitorthecapacityandthepowerfadeofthecells,withincreasedefficiency,accuracyandreliability.Extendedmulti-physicsandmulti-scalemodellingisneededtounderstandthebasicphenomenaandtoactasparentmodelsforconsistentlyscaledreducedordermodels,e.g.asdigitaltwinsforBMS.Additionally,inrecentstudies,thepossibilitiesofutilizingmultiple53Berecibar,M.(2019).Accuratepredictionsoflithium-ionbatterylife.Nature,568,325-326.www.ertrac.orgPage85of169FinalVersionsensortechnologies,non-destructivetestingprobeswithhighfrequencyandknowledgeofthemechanicalpropertiesofthecells,suchastheinternalpressureinthebatterycell,areexploredforSoXestimation54.Thetechnologymentionedabovewillhelptoassessthedurabilityofabatteryunderreal-worlduseconditions,incorporatingthecalendarlifeaswell,butthisstillneedstobedeveloped.LifetimetestinguntilEoL,toobtaincondition-basedpredictions,isaverytimeconsumingandcostlyprocessthatisnotyetwelldeveloped.Currently,nopracticalmethodexists,inashortcomprehensivetest,toquantifyallconditionsofabattery.InordertobeabletoforecastthebatteryEoL,acceleratedageingtestsarewidelyused;however,thismethodstillshowsalackofreliabilityandreproducibilityforstandardizationpurposes.Batterypackdesignformanufacturingandintegrationpurposesisgenerallymadeupofmodulesthatcontainthecells,andarebuilt-updependingonthetypeofcellbeingused,cylindrical,pouch,prismatic,etc.Themodulelevelwouldbeidealforservicing,repairandpotentialusein2ndlife,butnostandarddesignexists.Furthermore,modularityalwayscomeswithanoverhead(e.g.forconnections)thatneedstobeweighedagainsttheneedtomovetohigherintegratedsystemsandsolutions.Modularityshouldattempttofindtherightbalancebetweenthefunctionalrequirementsandtheaforementionedadvantagesofthemodulelevel.Nowadaysthereisalsoatrendtogoawayfromfixedmoduleelementsinordertosavespaceandintegrationeffort(cell-to-chassis).Servicewillbemorechallenginghere,dependingoneachspecificconcept.Alternativesolutionsarecell-to-pack,cell-to-carorswappablesystems,whichofferdifferentprosandconsandrequirefurtherresearchneeds.EVbatteriesaretypicallyconsideredattheendoftheirfirstlifewhentheycannolongermeettheautomotivestandards:still,theyretainapproximately70to80%oftheirinitialcapacity,althoughthosefigurescanvarydependingoncurrentorplannedusecases.Torecovermostoftheresidualvalueofdisusedbatteriesandtopreventabuild-upofhazardouswaste,twooptionsarepossible:reuse/repurposeorrecyclethevaluablematerials.3.2.4Reuse&RecyclingItistheoreticallypossibleandalreadypreparedbylegislationthatmobilebatteriescouldbeusedattheendofin-vehiclelifeinlessdemandingapplications(i.e.,batterycyclingandenvironmentalconditions)ifthecostdifferentialbetweennewandreusedbatteriesissufficientlylargetowarranttheperformancelimitationsofthelatterones.However,thismightdelaytheramp-upofthereturnratetorecyclershenceaffecttheeconomicviabilityofrecyclinginthefirstyears.ItwouldalsorequirestandardizedpackormoduledesignsaswellasstandardizedinterfacestotheBMSandthermalsystems,thatvehiclearchitectsanddeveloperswouldhavetoconsiderearlyinthedesignphase.BMSpresentsafurtherchallengesincethesesystemshavenotyetbeendesignedforindividualmonitoringofcellperformance,fromthelackofdataontheperformanceofdifferentbatterychemistriesanddesigns,totheassessmentoftheresidualcapacityatcelllevelthisremainschallenging.Itisexpectedthattheuseofartificialintelligence(AI)willplayanimportantrolehereinthefuture.ThetopicdescribedaboveisaddressedinseveralprogramsofEuropeanresearchwithintherelatedstakeholdersandremainsanimportantresearchtopic.Recyclersarefacedwithchallengesrangingfromthehandlingofhigh-voltagebatterieswithreactivecomponentstotheefficientrecoveryofexpensivematerialsandraremetalsundereconomicallyviableconditions.Thismayleadtonewhazardsforrecyclers,duetothebypassingofbatterysafetyprecautionsfromtheoriginaldesignanddeployment.ItmaybenecessarytoconsiderthisinfuturedesignsaswellasanymeansnecessarytomaximizethematerialrecoverywithminimalenergyinordertominimizetheCO2-balanceovertheentirelifetimeofthevehicle(LCA).54Berecibar,M.,Gandiaga,I.,Villarreal,I.,Omar,N.,VanMierlo,J.,&VandenBossche,P.(2016).CriticalreviewofstateofhealthestimationmethodsofLi-ionbatteriesforrealapplications.Renewable&sustainableenergyreviews,56,572-587.https://doi.org/10.1016/j.rser.2015.11.042www.ertrac.orgPage86of169FinalVersion3.2.5SafetyBatterytechnologycurrentlyoffersahighsafetylevel.Wellacknowledgedsafetyhazardlevelshavebeendefinedforroadtransportinthepast,byEUCARandserveasacommonbaseforinternationalbatterydevelopment.Increasingenergydensitiesleadtohighercathodepotentialsand/orlesselectrochemicallystablematerials,whichrequiresreassessingpotentialrisks,toensureatleastthealreadyachievedlevelofsafetyatthesystemlevel.Numerousandintensetestingfromcelltosystemlevelandfinallyonvehiclelevelispartofthedevelopmentprocess.Currentsafetyconceptsarebasedoninternationalstandardsandregulations(ISO,SAE,IECetc.)forhighvoltage(HV)systems,onhardwaretestingandonmonitoringofcertaincriticalparameters(e.g.voltageortemperature).Avarietyofstandards(SAEJ2464;SAEJ2929;ISO12405-1/2/3;IEC62660-2;ECER100;GB38031)forabusetestingisusedoncell/module/packlevel.ECER100andGB38031aremandatoryatbothvehicle(withatractionbattery)andcomponentlevels.Batteriesalsoneedtobetestedandapprovedasaseparatecomponenttobeusedinasystem.GB38031isnotyetmandatoryfor48Vtractionbatteries.Inaddition,theUN38.3transportregulationismandatoryforairtransportofallLi-ionbatteries.Apartfromthemandatoryregulationsforhomologationofcomponentsandvehicles,thereisnoofficial,legalstandardizationoftestingandriskmanagementatpresent.Hence,everycellsupplierisfreeinhissafetystrategy.Currentlegislation,European,nationalandlocalrules,leadtoexpensiveeffortsfortransportofcritical/non-operationalbatteries(e.g.,forrepairsorupdates),whichmayprecludeaviable2ndlifescenario.TransportingLi-ionBatteriesisregulatedworldwide,forthebatteryandpackagingmaterials,byIATAandIMDG,andinEuropefallsspecificallyunderADR55.ThetransportofdefectiveLi-ionbatteries(eitherdamagedorcriticallynon-operational)thatneedtobereturnedtothesupplierisaparticularchallengewhichcurrentlyrequiressignificanteffortandneedsinnovativesolutionstoensureeconomicviability.Activitiesaboutthisareon-goingbutthetopicstillrequiresfurtherresearchactivities.3.2.6DigitalisationThedevelopmentanduseofbatteriesinroadtransportnowadaysarenotyethighlysupportedbydigitaltools.ThisisreflectedinthelimitedfunctionalitiesoflifetimemonitoringandcollectionofdataaswellasinthesubsequentuseofAIandphysics-basedmodelsforimprovedthermalmanagement,safetymeasures,SoHmonitoringandEoLprediction.Simulationhasthepotentialtosupplementtheexperimentsonalargescale,thussavetimeandeffort,andisveryimportantinthevaluechainofbatteryproduction.Multi-physicsandmulti-scalemodellingrequirefurtherresearch,toboostunderstandingofthebasicphenomenaandtobeabletofullyusesimulationforcelldevelopmentandproductionplanning.Consistentscalabilityofthesedetailedmodelstomechanisticallybasedreducedordermodelsandtheirintegrationinsystemlevelsimulationsenablesefficientexplorationofthelargedesignspaceandaccuratevirtualassessmentoftheinteractionsbetweenthecell,module,pack,powertrainandvehicle.Improvementsinthistechnologicalfieldwillstronglysupportthenextgenerationsofbatteries,intermsofsafety,performance,costandreliability.55ADR=Accordrelatifautransportinternationaldesmarchandisesdangereusesparroute.www.ertrac.orgPage87of169FinalVersionCURRENTSTATUSOF(EUROPEAN)RESEARCHSincetheriseofelectrification,alargenumberofEUfundedprojectshasinvestigatedtopicssuchashigh-capacityanodes,high-voltagecathodes,highervoltageandenvironmentallyfriendlyelectrolytes,andenhancedenvironment-friendlinessacrosstheentirevaluechain,scale-upandmanufacturingprocesses,theincreaseofenergydensityandtheoverallqualityimprovementofbatterycells.Eventhoughthisresearchlaidthegroundworkfortheefficientandsustainabledevelopmentofbatteries,furtherinvestigationisneededin,e.g.,theimprovementofmaterialcompositionsortherecyclingofbatterycells,tomaintainEurope’scompetitivenesswhilstworkingtowardstheGreenDealgoals.Short-andlong-terminitiativessuchas,e.g.,BEPA/BATT4EU,Battery2030+orBatteriesEurope,aimtocontributetothedevelopmentofultra-high-performancebatteries,thataresafe,affordableandsustainable.TheyprovidedisruptivetechnologiesthroughouttheentirebatteryvaluechainfortheEuropeanbatteryindustryandenableEurope’slong-termleadershipinthefield.3.3PowertrainadaptationforusewithElectrifiedRoadSystemsPowertrainsforvehiclesrunningonelectricroadsystemsareelectrifiedandincludetheabilitytoreceiveenergywhilstdriving.Generally,thesepowertrainswouldbethesimilartothoseinBEV,withadditionalequipmentinstalledtotransfertheenergytothemovingvehicle.Thisenergyisusedforpropulsionbutcanalsobestoredon-board,e.g.,byrechargingthevehicle’sbattery.Thiswouldmakeitpossibletoreducethebatterycapacityincomparisontovehicleswithoutsuchadditionalequipment(e.g.from650kW.hto200kW.h).Ideally,onlyminimaladaptionofthepowertrainwouldbenecessary,tokeeppowertrainvariationstoaminimum.Powerconversionwouldbenecessarytoensurethatvoltagelevelsarecompatiblewiththevehicle’stractionpower-network.Thepowertrainofavehicleusinganelectrifiedroadnormallyincludesanelectricdrive,eithersolelyorinahybridconfigurationwithanotherpowersource,suchasaninternalcombustionengineorahydrogenfuelcell.Thismakeselectrifiedroadsystemadaptionsatechnicallypossibleadd-ontootherelectrifiedpowertrains,althoughthecostimplicationsneedtobeinvestigatedforeachenvisagedcombination.Sincesuchelectrifiedroadapplicationsmaysavenetcost,payloadandresourcesonthevehiclesideand,possibly,atthesystemlevel(seeChapter4ontheelectrifiedroadsysteminfrastructure),powertrainsusingsuchsystemsareofinterestwherelargebatteries(duetotheircostandimpactonpayload)andtheirchargingneeds(high-power,forashortperiodoftimeandoftensimultaneouslywithmanyothervehicles)couldlimittheadoptionofbatteryelectricpowertrains:hencelong-haulheavyroadfreighthasbeenafocusofthistechnologydevelopment.Suchvehicles,however,havedemandingrequirementsontheelectrifiedroadsystem.Thelistherecoversafewkeycriteria,inordertoensureadequatefunctionalityforlong-haultruckoperations:•Powerrequirements:200kW-450kW,withreasonableenergylosses;•Proofofconcept:energyefficienttransferat100km/hon-highway;•Installationonatruck:needtobeabletofitonanarticulatedtruck,withanominalminimumgroundclearanceof345mm56.Eveniftheserequirementshavebeenrealizedinprojectswiththeoverheadcontactlineorgroundcontactrailinfrastructures,thereareadditionaltopicsrelatedtothefurtherdevelopmentofpowertrainsusingdynamiccharging,particularlyrelatedtothepantographorotherpick-updevices.Aswithotheraspectsofthechangesinthemobilitysystem,thechallengeofdynamicchargingistoreachahighutilisationofthesystem,whichmeansthatmanytrucksneedtobeequippedtouseit,notonlydomestictrucksbutalsotrucksininternationaltraffic,aswellas,possibly,somecarsorvans.ThismeansthataEuropeanstandardandinitiativeisneeded,toenablescale-upinaneffectivewayandtoreducethelead-timeforthesystem.56ThisistheexampledatafromthatoneOEM.Often,onewouldexpectabout550mmgroundclearanceforatruck,between170to200mmforapassengercar.www.ertrac.orgPage88of169FinalVersionTheapplicationoftrucksusingelectrifiedroadsiscurrentlybeingtestedinselectedroutes,atasmallscale.Connectingasignificantshareoftoday’sfreighttractorstosuchsystemswillrequirelargeinvestmentstoretrofithighwayswithERS-infrastructureandpowerstationsnearby,injectionpointsandconductorswithsuitablecrosssections,theglobaleconomicandecologicalimpactofwhichisstillunderevaluation.FurtherdiscussionofthisisgiveninChapter4.VehicleregulationThecurrentUNECER100reads,“Iftheon-boardREESScanbeexternallychargedbytheuser,vehiclemovementbyitsownpropulsionsystemshallbeimpossibleaslongastheconnectoroftheexternalelectricpowersupplyisphysicallyconnectedtothevehicleinlet.”.Thiswillclearlyneedtobechangedtoallowvehicleoperationwithaconductiveelectrifiedroadsystem.ThecurrentWeights&DimensionsDirectiveshouldbeupdatedtogivethesame,specialextensionsfortrucksusingdynamicchargingasforothergreentruckconcepts57.AswitheachinnovationinuseacrossEurope,thehomologationandtechnicalinspectionforvehicleswhichuseelectrifiedroadsystemsneedstoberegulatedataEuropeanlevel(e.g.,Whatrequirementsneedtobefulfilled?Whoistaskedwiththeinspection?Howfrequentlyistheinspectiontobedone?).3.4FuelCellElectricVehicles(FCEV)CURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSDifferentbuildingblocksoftheFCtechnologyhavebeenvalidatedinnumerousEuropeantrials.Researchershavedevelopedthesecomponentstothepointwheretheyhavetheoperationalreliabilitytoallowthemtobedeployedinsmallseriesproductiontomainstreamvehiclecustomers(1,000sofunitsintheUSandAsia);themaindriverforfuelcelltechnologyinEuropeisheavy-dutyapplications(over1,600busestobedeployed).ThefuelcellstacksoperatinginLondon’sbusessince2010havelastedforover25,000hours,therebyprovingtheirlongevityforheavy-dutyapplications.TrialswithasmallfleetofL-categoryvehicles(two-wheelers)havealsobeencarriedout.Thechallengenowistoreducecostthroughacombinationofincreasedproductionvolumeaswellastechnologydevelopmenttoimproveproductionandautomatetechniques,reducematerialcostsperunitofoutput(specificallycostsofpreciousmetalsusedascatalystsinfuelcellsandcarbonfibreintanks)andimprovedesignsatstack(e.g.catalystlayers)andsystemBoPcomponentslevel(e.g.airloop).Spill-overs,intermsoftechnologyandup-scalingwillbeconsideredregardingLDVsystemsandareexpectedforotherfieldsofHDVapplicationssuchasrail,marineoraviation.L-categoryvehiclesfaceadditionalchallengessurroundingrefuellingprotocols(workison-goingatvehiclemanufacturerlevel)andfacemoreacutecostpressures.VISIONFOR2030ANDPROPOSEDAREASFORSUPPORTHighlevelR&D,demonstratedformanufacture,hasenabledfuelcellsystemsandhydrogentankcomponentstobeoptimisedtoallowFCEVvehiclestobeofferedonacostcompetitivebasisfromlighttoregionalmarkets.Forheavy-dutyapplicationsmoreR&Dneedstobecarriedoutinordertomeetpowerdensityrequirementsinthe(loworhightemperature)fuelcellsystemandinthetankssystemsforthetransportmission.3.4.1FuelCellTrucksCURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSThereisalotofinterestfromseveralOEMsinlaunchingfuelcelltrucks.Notjusttheexistingplayersbutstart-ups,aswellascompaniesthatdidnotselltrucksinEuropebefore,areactiveinthisfield.Most57Asfullyelectrictrucksusingelectrifiedroads,thecurrentderogationforgreenvehiclesdoesallow1extratonneofGVW.www.ertrac.orgPage89of169FinalVersionproductsandprojectsinthehydrogenfuelcellareathoughremainineitheralimitedmarketlaunchordemonstrationdomain(TRL5to6)withrapidtechnologicalimprovementsneededtoachieveperformancerequiredformassmarketpenetration.SomedemonstrationactivitiesforfuelcelltrucksincludetheFCHJUREVIVEandHECTORprojects.TheFCHJUfundedproject2Haulstartedin2019andwilldevelopanddemonstrate16FCheavy-dutytrucksupto44tons.OneOEMhaslaunchedEurope’sfirstmassproducedfuelcelltrucksstartingwithSwitzerlandmainlyaimedatregionalhauloperations.TwootherOEMsplantolaunchtheirfirstproductsinthe2021-23timeframeandseveralotherswilllaunchtheirproductsinthesecondhalfofthedecade.However,theinitialspecificationsofthesevehiclesmaynotbesuitableforwideadoptionandfurtherimprovementswillbeneededincludingtechnologyimprovements,costreductionandinfrastructureforhydrogen.TheseareasofimprovementsincludefuelcellstacksandsystemsbutalsootherpartsoftheFCEVincludinghydrogenstorage,coolingsystems,vehicledesign,batteries,electricdrivesetc.VISIONFOR2030ANDPROPOSEDAREASFORSUPPORTIn2030asignificantgrowthofFCHDVmarketisexpectedtoacceleratesalesafter2030duetonewCO2regulationsandTCOcompetitivenessversusotherzeroorGHG-neutraltechnologiestocontributetotheCO2-neutralmobilityby2050.TheFCEVsforHDlong-haultrucksarestillforeseentocostmorethananICEdiesel,andasustainablepolicysupportisneededtosupportthetransition.FlagshipprojectsWithagrowingneedtodecarboniseallareasofthetransportsector,andahighfocusonairqualityissuesincitiesarisingfromtrafficemissions,thedemandforzeroemissionvehiclesinallsegmentsisanticipatedtocontinuetogrowoverthenextdecade.ThedevelopmentanddemonstrationactivitiesoutlinedabovewilllaythefoundationsforalargerscaleFCHDVrolloutprogrammeinthemid2020’s.Keyprioritiesinthemarketactivationphaseincludedevelopingandimplementinginnovativecommercialmodelstomanageriskappropriatelyandsupplychaindevelopmenttoensurethatthevehiclesarefullysupportedthroughouttheiroperationallives.SupportingsuchprioritiesentailsguaranteeingcustomerexpectationsintermsofFCsystemreliabilityanddrivingrange.3.4.2FuelCellBuses,Coaches,Minibuses&LDVCURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSThetechnicalperformanceoffuelcellbusesaswellaslight-dutyvehiclesandassociatedrefuellinginfrastructurehasbeenvalidatedviaseveralmulti-yearrealworldtrialsfocusedonurbanbusesandpassengercars,whichhaveshownthathydrogenfuelcellsarecapableofmeetingtheneedsofeventhemostdemandingbusoperations.However,LDVsandfuelcellbusesarenotyetafullycommercialproposition,mainlyduetotherelativelyhighcosts(capitalandoperatingcosts)ofvehicles.Thisinturnisduetothelimitedvolumeproductionmethodsforthevehiclesthemselvesandthedrivetraincomponents.Improvementsintheoverallmaintenanceandsupportsupplychainarealsoexpectedwithvolume,whichwillbringupthevalueofthevehiclesfortheuserstoastandardsetbyvehiclespoweredbycombustionengines.Thelatestdemonstrationprojects(JIVEprogramme)aredesignedtoallowthesectortobegintoscale-upandachievetheeconomiesofscalefortheproductneededformorecost-effectivefuelcellbuseswhilerunningcostsaresignificantlydeterminedbythecostsofthe(green)hydrogen.Theseactivitiesarefullyalignedwithacommercializationvisionsetoutbystakeholdersinthesector,whichenvisagedincreasingscaleviajointprocurementasastepping-stonetowardsthepotentialdeploymentofmanyoffuelcellbusesbythemid-2020’s.VISIONFOR2030ANDPROPOSEDAREASFORSUPPORTThevisionfor2030forFCHDVsketchedaboveincludesbuses,coachesandminibuses.Withahydrogeninfrastructurerolledoutforheavy-dutyapplicationsandwithasupplyindustryfulfillingtheneedsoflarge-www.ertrac.orgPage90of169FinalVersionscalemarketintroductionofFCHDV,alsoLDVmarketintroductionisexpectedtooccurinthesecondhalfofthe2020s.FuelcellsolutionsforurbanbusapplicationsweresuccessfullydevelopedanddemonstratedwithinthescopeofactivitiesoftheFCHJU.Thus,furthersupportshouldfocusonadoptingtheFCtechnologyforcoachesandminibuses.3.5Plug-inHybridElectricVehicles(PHEV)&Hybridsusingrenewableenergycarriers3.5.1IntroductionTheadvancedinternalcombustionengine(ICE)asacorecomponentofPHEVsandHEVs,e.g.operatedwithrenewablefuels,maintainsitsrelevancebeyond2030,however,aspartofamultiplepowertrainmarketscenario.Infuturewithadvancedinternalcombustionengines,pollutantemissionswillreachnearzeroimpactlevel.BesidesBEVsandFCEVs,PHEVsandRExEVsrepresentsuitableICE-equippedvehicleconceptsforthoseurbanareaswithaccessrestrictions.Zeropollutantemissionscanbeachievedinelectricmodewithincitylimitsand/orwarrantedbyair-qualityconditions,whilst,alternatively,ICEmightstillbeusedoutsidethosearease.g.inruralsurroundings,enablingcustomerstofulfiltypicalmobilitydemandsundersustainabilityaspects.Sustainablealternativefuelsproducedfromrenewablesourcesbearthepotentialforafurtherreductionofgreenhousegas(GHG)emissionsinawell-to-wheelframe.Renewablegasesincludingmethaneorhydrogencanalsoreducedirectvehiclegreenhousegasemissionsand/orpollutantemissionstowards2030.Incontrasttovehicleswithonlyonetypeofdrive,hybridshavethefreedomtodistributethedriverequirementstooneortheotherdriveaccordingtoanyoptimisationcriteria.Inthefirstdevelopmentstage,thecriterionwasoftenminimaldevelopmentcosts,sothatahybridwaslittlemorethantheadditionofanelectricdrivetoafully-fledgedinternalcombustionenginedrivetrain.Theneedtomakeoptimumuseoftheenergyoncestoredon-board,beitfuelorelectricalcharge,requiressubsequentdevelopmentstages.Thisinvolvesredistributingthetasksbetweenthecombustionengine,transmission,e-driveandbattery.Theselectedpowertraintopologyessentiallydefinestheextenttowhichfunctionsareshiftedbetweenthemainelements.Inadditiontofunctionalconsiderations,economiesofscalefromthejointuseofcomponentswithconventionalICEvehiclesorBEVsarerelevanttothisquestion.ThisexplainsthattodayP0andP2topologies(thesupportinge-motorislocatedonthebeltsideoftheengine,P0,oronthetransmissioninput,P2)arestronglyrepresentedinthemarket.Inthefutureashifttohighertopologiesortoserialhybrids(rangeextenders)canbeanticipated,especiallyforHDapplications,whereinvestmentsaremorelikelytobeviable.Thiswillveryprobablyresultinamajorchangetothecombustionengine,whichwillnolongerbeoptimisedwithregardtorapidtorquebuild-upbutmust,aboveall,guaranteepermanentlyhighpowerwiththelowestpossibleconsumptionandlowesttailpipeemissions.Similarfar-reachingchangesareobviousforgearboxes,astheICEspeedandloadrangewillchange.Thefundamentallynewfunctionalarchitectureandchangestothemaindriveelementsopenupthepossibilityofsignificantcostreductionscomparedtohybridsofthefirstgenerations.www.ertrac.orgPage91of169FinalVersion3.5.2InternalCombustionEngines(ICE)forhybridapplicationsThissectionisacomplementaryupdatetothestillvalidERTRACRoadmap“FutureLightandHeavy-DutyICEPowertrainTechnology”from05.04.2016,whichdescribesindetailthegeneralaspectsofICEbasedpowertrains.ThecontentofthementionedroadmapwillnotberepeatedwithinthisICEchapter.ThechapterfocussesondescribingthetechnicalpossibilitieslinkedtotheICEwhilebeingaware,thatlong-termdecisionstowardsICEinvestmentscouldhavealimitedlikelihood.3.5.2.1PassengercarsandmotorcyclesAsshowninFigure35,below,therearecustomerrequirementsforlongdistancedriving,soitisexpectedthattheICEwillremainasignificant(butabating)powertraincomponentforLDvehiclesalsointhenextdecadeandforHDvehiclespossiblyevenlonger.Sinceithasbeenoptimisedforcurrentfossilfuelsinthepast,afurtherstepwouldbetheoptimisationfornew,alternativefuelsasdescribedabove.WhilethenewfuelwillprovidealoworzeroCO2footprintincombinationwithaunique,high-energydensity,thatisespeciallysupportingtherequirementsofmoderntransportationsystems,suchasbriefrefillingtime,thededicationoftheICEtothenewfuelwillreducetheoveralldemandofresourceshencesupporteconomicusecasesanddeliveringaclearadvantagerelatedtotheCO2footprintregardingthetotallifecycle.ThededicationoftheICEtothedifferentlowcarbonfuelsincludesvarioustechnicalmeasures,implementedasmodificationtocurrentenginegenerationsor,linkedtohigherinvests,leadingtonewengines.Theoveralltargetistheincreaseofengineefficiencyincombinationwithnearzeroimpactemissions.Differentfuels(e-fuels,syntheticfuels,liquid,gaseous)havedifferentpropertiesandrequirededicatedICEtechnologies.Fuelsofferdifferentknocklimits,differentsprayandinflammationbehaviours,differentsootcreationandmanymore.Acurrentexamplefortheneedofdedicatedenginelayoutsarerenewablemethaneengines.Thestate-of-the-artsolutionisabivalentconceptbasedontheregularSIpetrolengine.Gasolinedeterminesthemaximumcombustionpressurebytheknocklimit.Sincerenewablemethanehasgotasignificantlyhigherknocklimitthanpetrolahighercompressionratiowouldallowforanincreasedengineefficiency.Thisbenefitcannotbeusedinbivalentconceptsduetothelowerknocklimitofgasoline,evenwhenrunningonrenewablemethane.Adedicatedenginewithhighercompressionratioandothertechnicalfeatureswouldoffersignificantlyhigherfueleconomy.Followingthatexampleallfuelpropertiesneedtobetakenintoaccountandanoptimisedengineneedstobedevelopedforeachrelevantrenewablefuel.www.ertrac.orgPage92of169FinalVersionFigure38.ShareoftheannualmileagefortheexampleofaPCinEurope(Source:BMW.Samplesize200,000BMWpassengercarsintheEUmarket.Normally,BMWdriversare“long-distancedrivers”sothatanaverageofallbrandsinEuropewillbemoretowardsahighershareoftripsatlowermileage)HYDICE:Hybrid/RenewableFuelDedicatedCombustionEngine.Thisneedstohavethehighestlevelofmechanicalintegrity(peakpressure)andthermalcapability(coolingsystem).Furthermore,apeakefficiencyoptimisedcombustionsystemincludingairpath,fuelinjectionandpotentiallyexhaustgasrecirculationarestrictlydependingonthefuelusedandtheoperatingcondition.Dependingonthefuelproperties,theleancombustioncanbeusedaswelltoincreasetheoverallefficiencytolevelsabove51%,toreducefuelcostandtoreduceNOxrawemissions.Atechnicallyevenmorepromising(butmoreexpensive)approachistheparalleldevelopmentoffuelandrelatedenginestoreachnewlevelsofefficiencyforfuturehybridpowertrainswithalternativefuels.TheuseofanICEinahybridpowertraincreateshighereconomicchallenges.HybridsaremorecomplexthanpureICEpowertrainshencehighercostsareinvolved.Atthesametime,theoperatingrangeoftheICEcanbereducedwithinahybridlayoutbyusingthehighvoltagecomponentsforsomeofthetasks.Examplesareidlingortransientoperations,whichcanbeskippedorsupportedbytheelectricengine.TakingthosetwoaspectstogetheradedicationforelectrifiedpowertrainsandasimplificationarethenecessarystepsforthedevelopmentoftheICE.Lesscomplexfunctionalitywillleadtolesscomplexandlessexpensivehardware.www.ertrac.orgPage93of169FinalVersion3.5.2.2Heavy-dutypropulsionsystemsInparticular,onlong-distancemissions,thelowweight-andvolume-specificenergystoragecapacityofbatteriesischallenging.Hybridpropulsioninvolvingafuelcelloraninternalcombustionengineaspowerconversionunitforrenewablechemicalenergyvectors(cf.Chapter2ofthisdocument)isasolutiontotravellinglongdistancesinanecologicalandeconomicalway.Whilstthechallengesoffuelcellshavebeendiscussedinapreviousparagraphinthischapter,thissectionfocusesontheapplicationofinternalcombustionenginesforHD-(P)HEVs.However,ithastobenotedthattheERTRAC“EuropeanRoadmapElectrificationofRoadTransport”,the“ERTRACLongDistanceFreightTransportRoadmap”,andtheERTRAC“Futurelight-andheavy-dutyICEPowertrainTechnologies”documentsavailableatwww.ertrac.org/index.php?page=ERTRAC-roadmapareconsideredup-to-dateandvalid,andshallnotbeextensivelyquotedhere.WhilsttheoperationofHD-PHEVsinzeroemissionareasisenabledbyusingelectricitystoredinabatteryand/ordrawnfromanelectrifiedroad(ifandwheredynamicchargingisapplicable),thebatterycapacityshallbelimitedtotypicalmissionsinsidethoseZEzones.Asidefrominvestmentcostrelatedtotheinstalledbatterysize,minimisingitsweightandsizethusbecomesacommercialadvantage,asitmaximisestheusablepayload.Therefore,powertrainsforHDVwillasanalternativetopureelectricdrivetrainswhereapplicablemostlikelydevelopintoPHEVarchitectures.TheelectricdrivemaybeintegratedintothedrivetraininP2,P3orP4positionstoenableanelectric-onlyoperationwiththeICEunclutched.ThisincludeshybridpowertrainvariantswithoneaxlepropelledbyanEDUandtheotherbytheconventionalpowertrain.Withacontinuedeconomicgrowthafterrecoveryfromthepandemic,thechallengetoreduceGHGandpollutantemissionsfromfreighttransportremainsunbroken.HDVmustincreasetheiruseofrenewableenergyinanyformsignificantly,todelivertheirrequiredcontributiontoclimateandenvironmentalprotection.AsindicatedinChapter2,drop-inrenewablefuelshavethepotentialtoreducethewell-to-wheelGHGemissionsoftheentirefleetatlarge.Dependingonthecomposition,theymayfurtherbedesignedtounleashefficiencyincreasesofnewlydevelopedorretrofittedinternalcombustionengines.Providingtheminlargescalewithstandardisedspecificationsratherthanonrequest,isamatteroffindingabusinessopportunityforfuelproviders.Nonetheless,largetruckagecompanieshavetheirtractorsmostlyrefuelledinthedepot.Therefore,theymayalsodeploytrucktractorunitswithinternalcombustionenginesdedicatedtospecialblendsofsyntheticrenewablefuelstoenjoylessfuelconsumptionandadditionaltaxincentivesfromcuttingtheircarbonfootprint.ResearchchallengesforHD-PHEVsarethereinthehigherlifetimeexpectanciesrelatedtoHDcommercialvehicles,aggravatingthealreadydescribedchallengesforPHEVpowertrains.Inordertouserenewablefuelsthatarenot100%compliantwithcurrentstandards,enginesmayneedtobeflex-fuelenabled,viafunctionalitiessuchasvariablevalveactuation,variablecompressionratioandelectrifiedturbochargers.Furtherresearchonusingelectricallyheatedcatalystsandspecialcoatingsforimprovedconversionafterre-startingtheenginemayalsoberequiredtocometozeroimpactemissionsofHD-PHEV.www.ertrac.orgPage94of169FinalVersion3.5.3PollutantemissionsSimilartotheothermeasuresprimarilytargetingGHG,useofthenewandalternativefuelsoffersfurtheropportunitiesforpollutantemissionabatement58whilst,inparallel,avoidingimplicationsforairpollutants59frombothnewvehiclesandtheexistingstock.Monitoringtheeffectsofthesenewfuelsshouldnotbelimitedtothosepollutantscurrentlyregulatedbutshouldalsoincludenewspeciesthatmaybecomerelevantbecauseofthealternativefuelformulation.Inthiscontext,theexampleofrenewablehydrogencombustionisbasicallyassociatedonlywithNOxemissions(generallyhighatengineoutconditionsduetothehighflametemperaturesbutwhichcanbeloweredbyleancombustion)andparticleemissions(mostlyoriginatingfromthelubeoil),whilst,atthesametime,thecombustionisbasicallycompletelyCOandhydrocarbonfree60.ThiscallsforthedevelopmentandadaptationofappropriateDeNOxsystems,whichwouldincludeTWCinthecaseofstoichiometriccombustionandSCRsystemsinthecaseofleancombustion,thelatterofferingthepossibilityofusingH2itselfinsteadofAdBlueasreagent61,62.Thecurrentrangeofairpollutantscontainedintheemissionstandardsdefinitiondoesnotcoverallrelevantspecies.Asnewvehicletechnologies,exhaustaftertreatmenttechnologiesand,inparticular,fuelsandadditivesareexpectedtobeintroducedinthefuture,thefocusshouldmovetocoveringthesespeciesaswell.Somenotableexamplesincludeformaldehyde(HCHO)fromalcohol-basedfuels,ammonia(NH3)andnitrousoxide(N2O)fromsophisticatedexhaustaftertreatmentsystems,butalsobrakeandtyrewearparticleemissions,whichareemittedinlowerquantitiesbyfullyelectriccarsaswell(seeChapter3.6),andwhicharenottodaycoveredbyemissionstandards.RecentlypublisheddataindicatethatcurrentEuro6dplug-inhybridsperformextremelywellintermsofemissionsandcomplywiththerespectivelimitsbyalargemarginwhentestedunderthecurrentRDEtestconditions.Therefore,inthefuture,SIorCIinternalcombustionenginesinthecomplexplug-inhybridpowertrainsoperatedontailorede-fuels,areexpectedtobeultra-lowemittersunderpracticallyallreal-worlddrivingconditions63.Thesewillincludechallengingsituations,suchasrepeatedcoldstart/shorturbantripsandlowambienttemperatures,aswellaslesschallengingsituationssuchasharshaccelerations,highvehiclepayloadincludingtrailertowingandfilterregenerationevents.Thus,theywillbecontributingtosubstantialimprovementsofforexampleurbanenvironmentswhereairqualityisamajorconcern.Asalreadymentionedwithinthevehicle,connectivityandautomationwillenableaccuratethermalmanagementstrategiesinPHEVs,suchasthepreheatingoftheEATS,furthercontributingtoasustainableusageofthezeroemissionICE.Table21summarisestheseemissionspecies,theirmobilesources,currentstandards,harmfulnessandpreliminarypriorityindications.58E.g.Villforth,J.,Kulzer,A.C.,Deeg,H.-P.,Vacca,A.etal.,“MethodstoInvestigatetheImportanceofeFuelPropertiesforEnhancedEmissionandMixtureFormation,”SAETechnicalPaper2021-24-0017,2021,doi:10.4271/2021-24-001759E.g.Garcia,A.,Monsalve-Serrano,J.,Villalta,D.,andGuzmánMendoza,M.,“OMExFuelandRCCICombustiontoReachEngine-OutEmissionsBeyondtheCurrentEUROVILegislation,”SAETechnicalPaper2021-24-0043,2021,doi:10.4271/2021-24-004360ThomasKoch,Sousa,A.andBertram,D.,"H2-EngineOperationwithEGRAchievingHighPowerandHighEfficiencyEmission-FreeCombustion,"SAETechnicalPaper2019-01-2178,2019,https://doi.org/10.4271/2019-01-2178.61Syed,Sirajuddin,Renganathan,Manimaran,“NOxemissioncontrolstrategiesinhydrogenfuelledautomobileengines”,https://doi.org/10.1080/14484846.2019.166821462Koch,D.,Eßer,E.,Kureti,S.etal.H2-deNOxCatalystforH2CombustionEngines.MTZWorldwide81,30–35(2020).https://doi.org/10.1007/s38313-020-0229-363Giechaskiel,B.;Valverde,V.;Kontses,A.;Suarez-Bertoa,R.;Selleri,T.;Melas,A.;Otura,M.;Ferrarese,C.;Martini,G.;Balazs,A.;Andersson,J.;Samaras,Z.;Dilara,P.EffectofExtremeTemperaturesandDrivingConditionsonGaseousPollutantsofaEuro6d-TempGasolineVehicle.Atmosphere2021,12,1011.https://doi.org/10.3390/atmos12081011www.ertrac.orgPage95of169FinalVersionTable21.TheemissionspeciesconsideredforemissionsstandardsformobilesourcesandtheirratingMobilesourceCurrentstandardsHarmfulness(framework)HighpriorityNO2EmissioncontroldevicesWithNOx,butlimitmaybetoohigh.Health,environment,ozoneformation(AQpollutant)NH3EmissioncontroldevicesOnlyconcentrationlimitforEuroVIenginesHealth,environment.SecondaryaerosolswithPM.(AQpollutant)N2OEmissioncontroldevicesNoStrongGHG.Globalwarming(IPCC)64andpossiblycontributingtostratosphericozonedepletionNMOGE.g.alcoholfuelsWithTHC,butneedsrevisionHealth.OzoneformingMethaneFuelrelatedForHDenginesandwithTHCStrongGHG.Globalwarming(IPCC)50.OzoneformingpotentialFormaldehydeCombustion(e.g.dieselengines),fueloxygenNoHealth,environment(ozone),USEPAParticlese.g.sPN<23nmFuel,lube,combustionBCthroughPM,PNSeeSection3.4.MediumpriorityAcetaldehydeCombustion(ethanolfuels),fueloxygenNoHealth,environment(ozone),lessharmfulthanformaldehydeEthanolFuelrelated(ethanolfuels)PartiallyinTHCHarmfulathighconcentrationsIsocyanicacid,cyanidesEmissioncontroldevices.NoDifficulttomeasure(lowconcentrations)LowerpriorityOzoneVOC,NOxinduced(Appendix1)NoDifficulttomeasure.1,3-ButadieneCombustion,emissioncontrolNoLowambientandexhaustconcentrations.EasiertolimitfuelolefincontentAcroleinSecondaryfrom1,3-butadieneemissionNoDifficulttomeasureToluene,xylenesCouldbelimitedthroughfuelqualitySecondaryaerosols(SOAorSIA)PM,NH3,SVOC,aromatics,PAHNoDifficulttomeasure,couldbelimitedthoroughprecursorsDioxinsandfuransFuelandoiladditives.NoCouldbelimitedthroughfuelandoilchlorinecontentBenzene,PAH,metalsFuelandoilrelated,enginewearmetalsPartlybyfuelqualitystandard“Trojanhorse”effecttobeconsideredPb,SO2FuelrelatedFuelqualitystandardHealth,Environment64IntheJECv5report,theGHGeffectofN2OandCH4isnotaccountedforintheTank-to-Wheelemissions.Hence,themethodusedintheJECv5reportimplicitlyassumesaperfectcombustion,whereCO2istheonlygreenhousegaspresentatthetailpipe.TheWell-to-WheelemissionscalculatedintheCO2studyanddisclosedinChapter5arebasedonthesameassumption.www.ertrac.orgPage96of169FinalVersion3.5.4HydrogenFuelledInternalCombustionEngines(H2ICE)Aviablewayfordecarbonizationisapplicationofgreenhydrogen,beingafuelwithzerocarbonfootprintpotential,inICEs.AsdescribedaboveNOxremainsoneofthefewharmfulcombustionby-productswhichcanbeminimizedduringcombustionand,finally,removedthroughefficientaftertreatmentconcepts.Inaddition,theuseofhydrogeninmodernICEsoffersanear-termandcost-effectiveaswellasefficientroutetodecarbonization.CURRENTSTATUSOFTHETECHNOLOGYANDDEPLOYMENTSHistorically,theportfuelinjectionengineconfigurationwasappliedforhydrogenICEs:thissuffersmanylimitations,includingpre-ignition,knocking,backfiringandlowvolumetricefficiency.Hence,limitingtheengineachievablespecifictorqueandefficiency.Akeysteptoeliminatethesedeficienciesisdirectinjectionofhydrogen.Similartootherenginetypes,aproper,engineoperationpointspecific,interplayofinjectionpressureandtimingaswellasignitiontiming,air-fuelratio,EGRrateandengineincludingcombustionchamberdesignisneededtooptimisethetrade-offbetweenenginepoweroutput,efficiencyandNOxemissions.ApplicationofEGRandmultipleinjections(requiringhighrailpressures)alreadyprovedasefficientmeasurestosignificantlydecreaseNOxemissions,however,ifhighspecifictorqueneedstobeachievedsimultaneouslywithlowNOxemissions,NOxaftertreatmentsystemsneedtobeapplied.Withthesemeasures,hydrogenfuelledICEscanmatchpoweroutputsandefficienciesencounteredinmodernfossilfuelledICEcounterparts,whilsteliminatingtail-pipecarbon-basedemissionsandfeaturingultra-lowNOxemissions.However,theuseofhydrogenasfuelinICEsismorechallengingthanusingconventionalfuels,requiringcertainR&Iactivitiestoensurelarge-scaledeployment.Onthecomponentlevel,oneofthesignificantchallengesisavailabilityofdurableandlow-costhydrogenhigh-pressureinjectionsystems,beingexposedtothefuelfeaturinglowlubricityandviscosity.Inaddition,hydrogenchemicallyinteractswithmetals.Fuelstorageandfuelsupplysystemshavereachedhigherlevelofmaturity,whereasR&Iactivitiesarealsoneedinthisfield.However,themainchangeinreachingengineeringlimitsintermsofengineefficiencyandemissions,whilstensuringdurable,safeandlow-costoperation,iscertainlyholisticenginedevelopmentandoptimisationthatensuresmostadequateengineperformancewithrespecttoitsintendedapplication.Anadditionalchallengeisthedevelopmentofhighlyefficientexhaustaftertreatmenttoachievenearzeroemissions.InthiscontextbothNOxandparticlenumberemissionsneedtobetackledviafurtherexplorationandoptimisationofexistingtechnologiesinviewofthespecificboundaryconditionsofH2combustion.VISIONFOR2030ANDPROPOSEDAREASFORSUPPORTH2-fuelledICEwillleadtoafastintroductionandimplementationofanH2-infrastructure(carbon-freeproduction,distributionnetworkandfillingstations).TheleancombustionsystemsofH2enginesfortruckapplicationsandothercommercialvehicleswilleliminatetailpipeNOxandparticleemissionsofthesevehicles.Compressed(C-H2)orliquid(L-H2)hydrogenwillenablelongrangeoperationtogetherwithbriefrefuellingtimes.Inparallel,H2-fuelcelltruckscaneasilybeintroducedtothemarketbasedonanH2-infrastructureandH2-tanksystemsavailableatmassproductionscalealready.H2-ICEpropelledcommercialvehiclesmightbeusedforlongdistancetransportationaswellasforshortedannualdistancesandlighterloads.www.ertrac.orgPage97of169FinalVersion3.6ComplimentaryDrivelineAspectsNon-powertrainsub-systemsorcomponents(themaincomponentsconcernedherebeingtyresandbrakes),contribute,ontheoneside,toCO2emissionswiththeirspecificenergyconsumption(eitherdirectlyatvehiclelevelormoregloballywhenconsideredthroughLCAapproach)and,ontheotherside,tonon-exhaust(andtodaymostlynon-regulated)emissions.Bothaspectsarelinkedandmustbetackled,inparallel,inordertoachievetheoverallobjectivesofroadtransportregardingimpactonenvironment.3.6.1Reducingtheenergyconsumptionofnon-powertraincomponentsKnowingthatovercomingtherollingresistancealonerepresents20%to30%ofthetotalenergyusedbyavehicle,whateverthepropulsionmode,thefirstchallengeforenergyconsumptionreductionisthuslinkedtotyrescontinuousdevelopmentactivitiesinordertoimproverollingresistance,combinedwithgrip,handling,noiseandwearwhilsttakeintoaccountrealusesandnewusesintyreconception.Thesecondchallengeforenergyconsumptionreduction,foralltypeofnon-powertraincomponents,isatamoregloballevel,alongthelifecycleofthecomponents:reducingtheuseofrawmaterials,improvinghealthmonitoringandendoflifemanagement.SpecificresearchneedsrelatedtothesechallengesaregiveninChapter6.Moregenerally,simulationoftheglobalsystemofmobilityisalsokeytoreducetheglobalCO2emission.Theecosystemissocomplexthatsimulationiskeytospeed-upandimproveconceptionandmaketherightdesignchoices,eitheratcomponent(liketyresorbrakes)leveloratsystemlevel.Furthermore,withnewtypesofmobilitysolutions(e.g.,automatedvehicles),simulationallowstolimitthenumberoftestswhilestillconsideringallpossiblescenario(scenariorelatedasanexampletoemergencymanoeuvre,brakingoralsoCO2emission).3.6.2Reducingnon-exhaustemissionsThetrendtowardsvehicleelectrificationisincreasingtheimportanceofnon-exhaustemissions,withbrakesandtyreswearparticlesbeingasignificantpartoftheseemissions.Accordingly,brakedusthasbecomeanimportanttopictostudy,inordertounderstandbrakeparticlebehaviour,startimplementingmeasurementmethodsthatmightleadtofutureteststandardsandbrakecomponentapprovalregulations.In2014,theEuropeanCommissioncreatedtheParticleMeasurementProgramme(PMP)InformalWorkingGroup(IWG)toinvestigatethistopicandprovideenoughdataandknowledgetoestablishfuturelegislation.ThemainobjectiveofthePMPistosetupacommonlyacceptedmethodologyformeasuringbrakewearparticles,withitsroadmap65alreadydefined.Furthermore,someEuropeanUnion(EU)fundedprojectshavebeenworkingontheissueofparticles,inordertocontributetoandcomplementPMPgroupactivities.Othermarketsarealsoinvolvedinthistopic,suchasJapanandtheUSA,mainly,butalsoIndia,KoreaandChina.Inparallel,theautomotiveindustryiswillingtoreducetheemissionsbyapplyingnewandinventivetechnologies.Differentsystemsandinnovativeideashavebeenusedforreducingbrakedustemissions,suchas:•BrakeDustParticleFilter:Anewparticlefiltersystemcapabletoreducefinedustcomingfromthebrakesystemofthevehicleshasbeencreated.Passivesystemscanreducetheemissionsbyaround40%whileactivesystems,withpowersupplytofiltersandsuckingdevices,canreduceupto80%ofthebrakedustemissions,althoughtheirrelativebenefitisyettobedetermined.6551stPMPIWGMeeting-JRCpresentation.TF2(Developmentofamethodforsamplingbrakewear(BW)particlesandselectionofthemostsuitablemethodsforBWparticlesmeasurementandcharacterization)roadmap.www.ertrac.orgPage98of169FinalVersion•Usageofdrumbrakes(wherepossibleundersafetyaspects)helpreducingthebrakedustemissionsandmaythereforeleadtosmaller,lighterandcheaperfiltersystemsorevenmakethemobsolete•RegenerativeBrakeSystems:AnothersolutionforthebrakedustemissionsconcernistheregenerativebrakesystemsofalltypesofEVandHEV.Ithasbeendemonstratedthepotentialforparticlereductionanditwilldependontheusedrecuperativebrakesystem,thefoundationbrake,thedrivingbehaviouretc.•Dedicatedbrakingstrategiesactivelycontrollingthebrakeforceatthewheelstomaintaineachbrakeinthebestpossibleoperatingwindowcanhelpreducingtheemissionsbyupto30%.•Lowabrasioncomponentsforbrakepads/discs/drumsofferfurtherreductionpotentialofupto60%.•Recycledbrakepads:Theycanmaintaincomparablefriction,wearandairborneparticleemissionbehaviouraswellascommercialvirginbrakepads.However,furtherstudyofrecyclingintofull-scalebrakepadissuggested.Brakeandtyreweararelinkedduringthebrakingphase.Itcouldbeinterestingtoaddressthismatteratthesametime.Ontyresideemissionsconcernbothairquality(non-exhaustemissions)andexteriornoise.Differentsystemsandinnovativeideashavebeenusedforreducingtyreemissionslikeelectrostaticcapturing.Improvingthewearperformanceisonewaytoreducethewearparticlesemissionsbutalsothereareotherimportantelementstobetakenintoaccountliketheroadsurface,drivingstyle,trafficflow,vehicledesignandweight.TheimpactofTRWP(TyreandRoadWearParticles)isnotyetfullymeasurednorunderstood.EveniftheinternationaltyreindustryalreadyconductscrucialscientificworkontyreabrasionthroughtheTIP(TyreIndustryProject)undertheroofoftheWBCSD(WorldBusinessCouncilofSustainableDevelopment),itisstillnecessarytocharacterisemorepreciselyTRWP(composition,quantify,biodegradabilityetc)andadapttireconceptiontolowertheirimpact.Roadcharacteristicsalsohaveanimpactonalltyreperformances(rollingresistance,grip,noise,wearetc)and,sinceroadparticlesareincludedintoTRWP,itisnecessarytoworkinparallelonroadformulationtoimprovebothtyreandroadperformances.Tyredesigncouldalsohaveasignificantimpactonroadendurance.Sustainableroadsshouldbeacomplimentaryobjectivetosustainableroadtransport.Reducingthetyreroadnoisegenerationcorrespondsalsotooneoftheexpectationsofthecityinhabitantsandmustbefurtherstudiedandimproved.Theuseofaconductiveelectrifiedroadsystemalsocreatesemissions,mainlybyabrasionoftheslidingcontactsurfaces.Investigations66onoverheadcatenarysystemshaveshown,thatabout1000kgofcopperisreleasedovera35-yearlifetimefromeachkilometreofthetrack,thisisconsideredenvironmentallyharmfulduetoitstoxicproperties.Overall,itisclearthatfurtherinvestigationsinthecomingyearsmustbedoneinordertoreducenon-exhaustparticlesemissionsand,atthesametime,theentirevehicleemissions.66KeesvanOmmeren,PeterHaanen,MartijnLelieveld(allDecisio),JeroenQuee,WaltherPloosvanAmstel(allSweco),MichielAldenkamp,ThijsvanderWoude,RuudvanSloten(allEVConsult);“Cost-effectivenessanalysisElectricRoadSystems(ERS)fortheNetherlands”;March2022.www.ertrac.orgPage99of169FinalVersion4Infrastructuressupportingrenewableenergies4.1Electricity4.1.1ChargingInnovativetransporttechnologiesandbusinessmodelshavethepotentialtoimproveliveability,connectivityandsustainabilityinurbanplusnon-urbanareas.However,tofullymakeuseoftheirpotential,theintegrationofnewformsoftransport,includingelectromobility,andtheenergysupplyplanning,includingthedeploymentofthenewcharginginfrastructure,shouldbemadeinaholisticway.Electrificationintransporthasbeenadisruptiveinnovationthathasledtoafast-chargingmarketoffer.However,differentelectricpowertrainsrequirespecifictypesofcharging(orrefuelling)infrastructure:differentformsofcharginghavepenetratedthemarkettovaryingdegrees.Atthesametime,manyelectricvehicleowners,especiallyincities,willneedtorelyonaccesstochargingstationsincollectiveparkinglots,atapartmentblocks,officesorbusinesslocations;thissuggeststhatmemberstatesfocusonchargingstationdensityinurbanareas.ThecurrentlevelsandtheexpectedfurtheradoptionofEVscreatesdemandfornewapplicationsandservicesalongthevaluechain,including:thecharginginfrastructure(charginghardware,chargingservicesandnavigation);thepowersector(smartchargingand/orsmartgridapplications,aggregateddemand-sidemanagement);carsandcomponents(e.g.batteryleasing);recyclingservices.Standardsinthechargingstationsnetworkshavetobepromotedinordertoensuretheservicecompatibility.Newmobilitybusinessmodels,especiallythosecentredonvehiclesharingcan,alreadyintheshort-term,removebarriers(e.g.rangelimitationsandhighpurchaseprice)forthelarge-scaleadoptionofEVsasprivately-ownedvehicles).Setting-upthenewcharginginfrastructureimplieshighinstallationcosts:ononeside,governmentscannotbearalonethesecosts;ontheother,forcompanies,thesaleofelectricpowertoEVdriversbyitselfisnotenoughtogenerateenoughrevenuetorepaytheinvestments.Todevelopnewbusinessmodelsfortheupdatedcharginginfrastructureset-up,aparticipatoryapproach,involvingalltherelevantactors(e.g.localauthorities,spatialplanners,citizens,privateinvestorsandtransporters)mustbeenhanced;multi-fundingstrategiesandinnovativecostsplusrevenuesharingapproacheshavetobeputinplace.Theissueofgovernanceisstrategicbecausethevaluecreationisdirectlyderivedfromthepropermanagementofinter-relationshipsamongststakeholders.Newparticipatoryandmulti-actorbusinessmodelconceptsshouldbeaccompaniedbygovernancemodeswhichfosterembeddingthestakeholders,tobettermanagetheinter-organizationalrelationshipsinthelongterm.Thedevelopmentofinnovativebusinessmodelsandmarketengagementstrategies,aimedattheimplementationofeconomicallysustainablecharginginfrastructureplanningsolutions,canbeaddressedbyexploitingavailabletoolsorbyprovidingincentivestothedevelopmentofnewtools.Forinstance,tofacilitatetheplanningprocess,decisionsupporttools,optimisationmethodsandtheexploitationofavailabledata,canaccommodateforecastedtrends.Theuseofeconomicassessmentmethodstoanalysethecomplexityoftheelectromobilityecosystemscanbesuccessful,inordertounderstandtheimpactthatthedifferenttypesofelectricvehiclechargingscenarioshaveindifferentelectromobilitysectors.Thus,enhancingandfacilitatingresearchandstudiesthatassesstheeconomicsbehindtheEVcharginginfrastructurewouldprovidesignificantsupporttogovernmentsandregulators,forinstancewhentheyhavetodefinehowtostructuretheelectricitybillortodesignspecialsubsidiesortaxdiscounts.www.ertrac.orgPage100of169FinalVersion4.1.1.1ChargingfromtheVehicleUserPerspectiveElectricenergycanbetransferredinthreefundamentallydifferentways:conductively,inductivelyorcapacitively.Conductiveenergytransferusesadirectconductor-to-conductortransferofelectriccurrentfromaprimarysource,e.g.theACgrid,tothevehicle’spowersystem.Thisisthemostcommonwayusedforalmostallchargeablevehicles,frombicyclestoheavy-dutytrucks.Wireless68energytransfermeansthattheprimaryelectricenergysourceisconvertedintoahighfrequencymagneticfieldthatistransferredtothevehicle,whereareceiveragainconvertsthishighfrequencymagneticfieldintoacurrentthatcanbefedintothevehicle’spowersystem.Thisisusuallyreferredtoas“inductivecharging”or“wirelesscharging”,thelatterduetoitnotneedingacableorcontactforconnection.CapacitiveenergytransferconvertstheprimarysourcevoltageintoahighfrequencyACvoltagethat,viaconductiveplatesincloseproximity,istransferredviaelectricfieldstothevehicle,whereitisrectifiedandusedtofeedpowerintothevehicle’ssystems.Thisisuncommontechnologythatisdemonstratedbyresearchtosufferfromlowpowerdensity,i.e.alargespaceisneededevenformodestchargingpowertransfers.Almostalltypesofenergytransfersystemstoelectricvehiclesarebasedonasequenceofenergyconversions,theycantakeplaceeitherwhenthevehicleisstandingstill(staticcharging)orwhenmoving(dynamiccharging).StaticChargingStaticchargingincludesalltechnologiesfortransferringenergyfromanexternalenergysourcetoanelectricvehicle,inmostcasestotheenergystorageon-boardofthevehicle.TheenergysourcecanbeanACgrid,anexternalDCsource,suchasarectifiedACgridvoltage,oranexternalbattery,aPVplant,oranothervehicle.Sinceanelectricvehicleusuallycanprovideabidirectionalenergyflow,itismorecorrecttotalkaboutstaticenergytransferratherthanstaticcharging.Exampleswheretheoppositeenergyflowdirectionmaybeinterestingiswhereonevehicleprovidesanotherwithenergy,whereavehicleprovidesahouseoralocalgridwithenergyetc.Staticenergytransfertakesplacewiththevehicleandtheenergysourcestandingstill.Thismeansthatthereisnormallyawaytoforcetheelectricpotentialofthechassisandanytouchablestructuresoftheinvolvedequipmenttogroundpotential,i.e.connectingthemtoProtectiveEarth(PE).Thisisveryimportantfromanelectricsafetypointofview.ThefunctionalblocksofalmostalltypesofchargerscanbeillustratedwiththeblockdiagramofFigure39.Notethatatransformerisapartoftheenergyconversionchain.Thisisusedtoseparatethesupplyside(theACgrid)fromtheloadside(theEVbattery)electrically,toprovidesafetyandtoadaptvoltagelevels.Figure39.Thefunctionalblockdiagramofageneralizedcharger68Commonlyknownas“inductivecharging”althoughthattermistechnicallyincorrect.www.ertrac.orgPage101of169FinalVersionThereareseveraltypesofEVbatterychargersthatcanbedescribedbytheblockdiagramofFigure39.TheOn-BoardChargerTheOn-BoardCharger,theACCharger,containsthefiverightmostblocksofFigure39inthevehicle,thusonlyanACvoltageneedstobesuppliedtothevehicle.SinceACpoweroutletsarewidelyavailable,allelectricvehiclesareequippedwithanOn-BoardCharger(OBC).Thereare,however,tworeasonswhythepowerofOBC’sislimited:mostACpoweroutletsarelimitedinpoweroutputandthesizeandweightoftheOBCislimitedbythevehicle.ACpoweroutletsindomesticbuildingsareusuallylimitedtoafewkilowatts.InEuropea230V50Hz10A1-phaseoutletprovidesupto2.3kW.With3phasesanda32Afusingthecorrespondingpoweris22kW.Plug-inhybridandfullelectricvehiclesareusuallyequippedwithanOBCthatcanhandleanACsupplyinthisrange,from1Phase2.3kWto3Phase22kW.22kWisahighelectricpowerfromadomesticenergyusepointofview,notallhomescanprovidethatpowerlevel,butfromachargingtimepointofviewitisstillarelativelyslowprocess,providingabout100kmorrangeperhourforanormalelectriccar.OnecomponentthatdeterminesthesizeofanOn-BoardChargeristhetransformer.Thesizeofatransformerisinverselyproportionaltothefrequencyitoperatesat.Toreducethesizeofthetransformer,theRectifierandHFInverterblocksofFigure36areusedtoincreasethefrequencyofthepowergrid(50or60Hz)to100’sofkHz,evenMHzarepossible.TheprospectofincreasingthispowerbyusingalargerOBC,orparallelconnectionsofseveralOBC’s,isnotattractive,duetosizeandweightlimitations.IncarstheOBCpowerisusuallylimitedto22kWorless,butcommercialvehicleshaveOBC’swithpowersupto44or88kW.Evenso,88kWisstillarelativelylowchargingpowerforacommercialvehicle.Toincreasethepowerwithoutvehiclepenaltyonsizeorweight,itisnecessarytomovethechargingcomponentsoutofthevehicle,thuscreatinganOff-BoardCharger.TheOff-BoardChargerTheOff-BoardCharger,theDCcharger,containsthefiveleftmostblocksofFigure36notinthevehicle;thus,itsuppliesDCtothevehiclebatterydirectly.Sincemostoftheequipmentneededislocatedoutsidethevehicle,thesizeandweightlimitationsarereduced.Forthisreason,thetransformerfunctiondoesnotneedtobeminimizedandtheRectifierandHFInverterblocksofFigure39areoftenomitted,usingagridfrequencytransformerinstead.AnOff-BoardChargercanbedesignedtoprovidesignificantlyhigherpowersthanon-boardchargers.Figure40showssomeoff-boardchargers.Notethatthechargingstand(thatlooksalmostlikeafuelpump)doesnotcontainthemainenergyconversionblocksofFigure39;instead,thesearemountedinaseparatecabinetlocatednearbythechargingstand.Figure40.ExternalDCChargersofvariousbrandsandthecontentofarelatedpowercabinetwww.ertrac.orgPage102of169FinalVersionInductive(Wireless)ChargingTheinductivechargertakesadvantageofthepossibilitytosplitthemagneticcoreofthetransformerinFigure41intotwohalves,oneofwhichismountedoutsidethevehicle(theprimaryside)andonethatismountedinthevehicle(thesecondaryside).Itthesetwohalvescanbepositionedcloseenough,energytransfercanbemadewithoutinvolvinganyplugs.Normally,theprimarysideismountedonthegroundandthesecondarysideintheunderbodyofthevehicle,seeFigure41.Figure41.Illustrationoftheinductive(wireless)chargingprincipleThedistancebetweentheprimaryandsecondarysideoftheInductivechargerisnormallyequaltothegroundclearanceofthevehicle.Fromatransformerpointofview,thisgivesachallengetoprovideareasonablechargingpowerfromacertainsurface.Tosomewhatalleviatethischallenge,a“z-mover”canbeused,thateitherliftsthegroundsidepartorlowersthevehiclesidepartbeforethechargingstarts.DevelopmenttrendsinstaticchargingTherearethreemaintrendsthatdescribethedevelopmenttrendsofstaticchargingequipment:•Thepowerlevelisincreasedtowardslevelslimitedbythebatteryandtheconnectorplugtoshortenthetimespentonfaststaticcharging.•Theneedforautomationiswithfewexceptionsnotaccommodatedbystaticchargingsystemsbutisexpectedtodevelop,notleastduetotheemergingofautonomousvehicle.•Bidirectionalcapabilities,usedinVehicle-to-Grid,Vehicle-to-Infrastructure,Vehicle-to-Vehicleapplications.Alargefleetofelectricvehiclesconnectedtothepowergridrepresentamassivesourceofelectricpowerandenergythat,ifcontrolled,canbecomeanimportantplayerontheelectricitymarket.Technologiesthatfacilitatesuchoperationareexpectedtodevelopsignificantlywithinthenextdecade.DynamicChargingsystemsSystemsthatcanprovideacontinuouselectricenergysupplytoavehiclewhilemovingarereferredtoas“ElectricRoadSystems”(ERS).Thisisnotanewtypeofinfrastructure,ithasexistedformorethanacenturyassupplyto,e.g.,trolleybusesandeventrucksinbuildingsites.Attheendofthe20thCentury,companiesbegantolookforalternativestooverheadlinesastheywereconsideredlessaestheticinurbanenvironments,sothegroundlevelpowersupplyintheformofelectrifiedrailsthatweseetodayemerged.Thereareseveraldifferenttypesofelectricroadsystemsthatcanbeusedbothincitiesandoncountryroads.FurtherinformationonsuchsystemsisgiveninSection4.1.1.3,below.www.ertrac.orgPage103of169FinalVersion4.1.1.2FastchargingInordertoincreasetheacceptanceofe-Mobility,chargingtimesmustbedrasticallyreduced.Asaconsequence,fastchargingwillenablenewmobilitymodesforpeopleandgoods,tosupportthetransformationofmobilitybehaviour.Fastandsuper-fastchargingmustbeanoptionforlongertraveloremergencycharging,eventhoughthegreatmajorityofthechargingproceduresmaybedoneathomeorworkwithlow-power.Therequiredinfrastructureforfastchargingshallberobust,interoperableandshouldcomewithusercentredservices.FastchargingisbasedonDC-charging.Differentmodesoftransportandgridsupplywillfosterdifferentsolutions,butefficiencywillbekey.Itisexpectedthatfastchargingwillbeavailableindifferentpowerclasses,including,forexample,lowvoltagedirectcurrentforePTWs.Thecurrentstandardforchargingstationsrefersto500Aenabling350kWchargingpower.Additionally,thereisanewglobalplugstandardinpreparation.The“MegawattChargingSystem”willenablepowerlevelsofmorethan3MW,inordertoenableLongDistanceFreightTransportusecaseswithheavy-dutybatteryelectrictrucks69.Forafuturedecarbonizedmobilitybasedonelectricenergy,duetoahigherchargingrate,fastchargingisanenablerforbothlongdistancesandforraisingthecustomer’sinterestforEVs.Table22.ThedefinitionorclassificationoffastchargingforpassengercarsChargingmodePowerC-RateChargingRateSoCStandardcharging<50kW<1C<3km/min.<90%SoCFastcharging<150kW<3C<20km/min.<80%SoCUltrafastcharging≤350kW>3C>40km/min.<70%SoCUnderstandingtherelationshipbetweenC-Rateandfastchargingiskeyforanytarget(andlimit)setting,forresearchanddevelopmentoffastcharging.C-Raterelatestotheamountoftimeneededtoreachthenominalcapacityofthebatterywithrespectto1Cachieving100%SoCinonehour.Currently,theaverageC-Rate(overthecapacityrange)isupto1C.Forthefutureweexpectfrom1Cupto3CasnormalforBEV70,asanaverageC-rateduringtheentirechargingtime.Accessibilityisanimportantpointforhigh-powercharging.Itcanbeassumedthatconductiveplugchargingislimitedupto350kW,andtoachievethispowerrate,cablecoolingisessential.Therefore,inordertoreachcomparabletimesforthe“refuelling”,differentinterfacesshouldbeconsidered.Shouldthesecablesbesignificantlyheavierorhardtohandlethanexistingrefuellingequipment,adaptationsmightbeneededtoensureeaseofhandlingbydisabledorolderpeople.Theavailabilityandnumberoffastchargingstationsshouldalsopreventdelaysforcommercialvehicles,thechargingtimesshouldbecompatiblewiththemandatoryrestperiods.Followingtheexampleofcommercialheavy-dutyvehicles,automatedchargingforopportunitychargingisfullyapplicableforpassengervehicles.Insteadofanoverheadconnector,underbodysystemsorcharging69Conductiveplugchargingiscurrentlybeingstandardizedforpowerofmorethan3MW(3000A@1000-1500V)bytheCharINtruckchargingworkgroup,withmorethan70membersacrossindustries(truckOEMs,chargingequipmentmanufacturer,cableandplugmanufacturers,utilities,CPOsetc.).70AsofAugust2020,thenewHyundaiIconiq5hasa>2C-rate,forexample.www.ertrac.orgPage104of169FinalVersionarm-robotsarealsounderconsideration:thesecouldallowpowertransferlevelsupto1MWifthebatterysystempermitshigherchargingrates.Ontheotherhand,wirelesschargers(byinduction)arealsoseenasapossiblecharginginterfaceforhighpowercharging.Nowadays,powerlevelsupto100kWcanbereachedbutrequireatotallydifferentsystemintegrationfromthatoftheconductivechargingsystem.Wirelesschargingisalsoanoptionforovernightcharging71,itrepresentsacharginginterfacewhichmaybesharedfordifferentvehicletypologies,fromcarstotrucks.TherequiredcharginginfrastructuretechnologyanditsdeploymentdependsuponthetypeofEVs,theirbatterytechnologyandtheiruse.Itisexpectedthat,forthetimebeing,EVtechnologywilldefinetherequirementsfortheinfrastructure.Infuture,forexamplewithsolid-statebatterieshelpingtheelectrificationofheaviermobilityapplications,thepowerandchargingprocessshouldberedefinedaccordinglywiththetechnicalrequirementsofthisnewtechnology72.Regardingthelocationandamountoffastcharginginfrastructure,itwilldependonthespecifictopologyofeachcountryandcity.Inacitywithalargepercentageofprivateorwork-placeparkingavailable,theneedand,therefore,theamountofpubliclyavailableurbanfastchargerswillbesignificantlylowerthanacitywithlessprivateparkingavailability.Also,inacountrywithlowpopulationdensityandlongdistancesbetweencities(forexampleFranceorSpain)aninterurbanfastchargingnetworkwillbeparamount;butnotincasesofahighpopulationdensitycountrywithsmalldistancesbetweencities(forexampleTheNetherlands).Thus,therewillnotbea“one-size-fits-all”configurationandthelevelofstringencyoffuturepoliciesregardingtrafficinthecentreofcitiescouldhaveanimpactintheurbandeploymentoffastchargers.Pricingmodelsdependingonchargingspeedwillalsoinfluencechargingbehaviour.Ultrafastchargingwill,ingeneral,bemoreexpensivethanchargingwithlowerpower.Intheend,itisthedriverdecidingwhichpowerbestsuitstheirneeds.ChargingmanagementsystemsandplatformsareimportanttoolstomeetandsteerthedemandsoftheEVmarket.Theyareoneofthemostdecisivefactorstooptimisethegridconnectionstothechargingstations,i.e.byshort-termandlong-termdemandpredictionforchargingandprovision.ItisimportanttogrowtheinfrastructurefasterthantheEVmarket.Thisisachallengesincethetwomarketshaveverydifferentfactorsthatinfluencethedecisionsforimplementation.Thus,inastronglyincreasingEVmarketwithstronglyincreasingpowerdemands,comprehensive,reliableandhighlyscalablesystemsaremandatorytocovertheneedsofthemarketinthefuture73.Interoperabilitymeanseachvehiclecanchargeateachchargingstation.Interoperablefastchargingshouldensurefulltransparencyofandinteroperabilityforanyvehicleatanychargingstation,toguaranteetheavailabilityoffreeandoperablechargingspaces,thusincludingchargingpowerasaparameterforconsistentplanningisimportant.Or,inotherwords,the“ultimategoal”istogettheamountofchargingthatane-Mobilitycustomerreallyneeds,attherighttime(access),therightspotandtherightcharging71WirelessPowerTransfer(WPT)willbefocussed,inthebeginning,onresidentialandovernightchargingusecaseswithpowerlevelsofupto11kW.Currentlythereareseveralnewpassengervehiclesinpreparationforlarge-seriesproductionatEuropeanandAsianOEMwith11kWWPTfunctionality.72Fastchargingsolid-statebatterieswithhigherpowerlevelsthantoday’sbatterytechnologyremainstobeprovenathigherTRL(seetheBATT4EUSRIA,SA7–Advancedmaterialstoenableultra-fastcharginghasTRL5in2023andTRL7in2027)73Forexample,asimpleestimateofthepowertobedeliveredontheparkinglotsonmotorwayswithheavytrafficuse,leadstoapproximately50fastchargingstationsfortrucksand200forcarsevery100km,withatotalpowerof40MW(assumingaflowof5,000trucksperday,40%onlongdistancetrips,i.e.2,000trucktobefastchargedover24hours,twiceasmanyvansand5timesasmanycars,withsomepeakloadedhours.Thus,approximately,30slotsfortrucks@600kW,60slotsforvans@150kWand150slotsforcars@100kWwouldberequiredonaparkinglot,i.e.42MW,whichismorepowerthanonalargeairporttoday.www.ertrac.orgPage105of169FinalVersionpower.Cross-borderchargingopportunitieshavetobeestablishedwithinEurope,ensuringchargingindependentlyofthevehicle,thecountryandtheenergyprovider;roamingmustsupportthedriver’sneedsatbothnationalandEU-widelevels.Intermsofthecommunicationprotocol,PLCandwirelessinterfacesmaycoexistinordertoallowlaunchingcommunicationwiththeEVbeforeitreachesthechargingpoint,providingpositioningaids(suchasbuseswiththeOppchargeprotocol).Therefore,thechargingpreparationprocesscanbereducedintime(doneduringtheEVapproach),advancingthepowertransferprocess,improvingtheuserperceptiononthechargequickness.Forhighpowercharging,thecommunicationinterface(HWandSW)fortheexternalconvertercontrol(V2Gcommunication)willberequired,inordertoavoidsafetyissuesandtoensurethecompatibilitywithallBEVsinthemarket(whichmaybeaffectedduetothenoiseinductionovertheCPLinecausingchargeabortions).Athighercurrent,thereisahigherriskofelectricalnoiseinductionoverthelinethatcontainstheanaloguePWMcommunicationandthehigh-levelPLC.WLANcommunicationuncouplesthehigh-levelcommunicationfromthepowerlines,socouldbeafeasibleoptionforhighpowercharging.However,WLANcouldbringdifferentissuesrelatedtorobustness,crosstalkandatamperingand/orhackingrisk.Additionally,anintermsofchargingsystemdevelopment,asustainedfastchargeshouldbethemaingoalfortheOEMs74toimproveuser’sfastchargingperception.Nowadays,weseeverydifferentbehavioursdependingonthevehicle,someofthemarecapabletochargeatsuper-highratesbutjustforaverylimitedSOCwindow(10-25%),inothercases,therearevehicleswhichprovideamainlyconstantchargeratefrom0to80%approximately,seeforexamplethedatainFigure42.Figure42.ThedifferentchargingprofilesfromdifferentBEVmodels(P3study)74ACEA,togetherwithTransport&Environmenthavemadeclearstatements,pushingforbindingnationaltargetsinAFID,regardingtheurgentneedofdeploymentofstationarycharginginfrastructure(andH2refuelling)inEurope.https://www.acea.auto/press-release/zero-emission-trucks-industry-and-environmentalists-call-for-binding-targets-for-infrastructure/.www.ertrac.orgPage106of169FinalVersion4.1.1.3ElectricRoadSystemChargingAnERSenablesthetransferofelectricpowerfromtheroadtovehicleswhilstinmotion,vehiclescaneasilyconnectanddisconnecttotheinfrastructure,runningwithorwithoutusingthesystem.ERShasseendevelopmentinthepasttenyears:solutionsarecurrentlybeingtestedonseveralhighwaysandmunicipalroadsinEurope.Interestinthesystemismotivedbyitsabilitytoachievemanyofthebenefitsofelectrification(e.g.lowoperatingcosts,lowWTWGHGemissionandzerotailpipeemissions),withoutthelimitationsotherwiseimposedbycurrentbatteries(size,weightandcost)andstationarycharging(e.g.timelostwhilststandingstill).Thisisparticularlyrelevantfortheelectrificationofcommercialvehicleswithhighdailymileages,whereasthewidespreadapplicationofdynamicchargingtopersonalvehicleshasyettobeshownrelevant.Someanalysisshowsthatelectricroadsystemsonthebusiestmotorwayscouldbeaneconomicalalternativetodieselfuel.However,acrossEuropethereisstilldiscussionaboutaviablescale-uprate,hencethetimenecessarytobuild-upasufficientnetworktorealiseanimpactinatimelymanner:thisisalsorelatedtotheelectricitygridcapabilityindifferentcountries75.Ingeneral,electricroadsystemsmayneedadditionalpowerlineinfrastructuretoreachremotesectionsofhighway.ConceptsCurrently,therearethreemainconcepts,withdifferentdegreesofmaturity,asshowninFigure43.Anoverheadcontactlinesolutionusesconductivewires(alsoknownascatenaries)abovethevehicletoprovidetheenergy.Theenergyistransferredtothevehiclebymeansofapowerreceiverdevice(calledapantograph)installedontopofthevehicle,whichfollowsanddetachesautomaticallyfromtheoverheadcontactlines.Thisconceptbuildsonexpertise,componentsandstandardsfromrailways,lightrailandtrolleybuses76.Anin-roadsolutionforconductiveenergytransferfromroadwaytoelectricvehiclesusesconductiverailsinstalledinorbesidetheroadtoprovidetheneededenergy.Theenergyistransferredtothevehicleviaapowerreceiverpick-uparminstalledbeneaththevehicle,whichfollowsanddetachesautomaticallyfromtherail77.Anin-roadwirelesssolutionusesinductionviaamagneticfieldtotransfertheenergy.Electriccurrentinprimarycoilsinstalledintheroadwaycreatemagneticfieldswhichinducecurrentinasecondarycoilinstalledbeneaththevehicle78.75TheGermanauthority“TheFederalMinistryofTransportandDigitalInfrastructure”havemadearoadmaptowardsclimatefriendlycommercialvehicles.Intheirperspectiveitisclearthatstationarychargingisthewayforwardforcitydistributionandregionalhaul.ForLHBEVtheyhaveadecisionpointforfast/ultrafastcharginginfrastructurein2024;thedecisionforelectrifiedroadsystemsisexpectedbetweenmid-2024andtheendof2025.https://www.bmvi.de/SharedDocs/EN/Documents/overall-approach-climate-friendly-commercial-vehicles.pdf?__blob=publicationFileTheroadtransportdepartmentinSwedenhave,inarecent,studyclearlystatedthatERSare,inalmosteverypossiblescenario,notafinanciallyviablesolution(andenvironmentalimpactlow),butstationarychargingisfinanciallyviableandhaveahigherenvironmentalimpact.ThisstudyisbasedonrealvehicledatafromScaniaandVolvo.However,theinterpretationoftheresultsisstillamatterofdebate.http://trafikverket.divaportal.org/smash/get/diva2:1540415/FULLTEXT01.pdf(onlyinSwedish).TheFrenchMinistryofEcologicalTransition(inchargeoftransport),in2021,committedthreeworkinggroupstoanalysetheenvironmentalandeconomicpotentialofERS,thepros/consoftheavailablesolutionsetc.Reportsareavailable:https://www.ecologie.gouv.fr/lautoroute-electrique(alsoavailableinEnglish);Anupdatedanalysisispublishedin2022:“Lesroutesélectriques(ERS)”,RGRAN°989,Mars-Avril2022,https://www.editions-rgra.com/revue/989.76OnedemonstrationwascarriedoutinSwedenonanopenroad(2km)in2016-2020,andthreereallifetrialsarebeingcarriedoutinGermanysince2018,2019and2021;trialshavealsotakenplaceintheUSA.Catenarysystems,togetherwithstationarychargersandhydrogenstations,arepartoftheGermantransportministry’s4.1bn€scaling-upeffortduring2021-2023thatshallleadtoonethirdofallHDVkilometrestravelledtobepoweredbyelectricityby2030.77TestsanddemonstrationshavebeenrunninginSweden:atesttrackwasdevelopedoverafewhundredmetresin2017withaflatrail(seeFigure40),andademonstrationproject,withahollowrail,hasbeenrunningona2kmsectionofanationalroadsince2018andanotherdemonstrationofadifferentconductiverailtechnologyhasbeencarriedoutsince2020ona1kmmunicipalroad.78AdemonstrationprojectisrunninginSwedensince2020ona2kmmunicipalroadusingarigidtruck,a2kmtesttrackisequippedinItaly(testsarestartingin2022),andsometestsareplannedinFranceandGermany.www.ertrac.orgPage107of169FinalVersionFigure43.DifferentelectricroadsystemconfigurationsanddemonstrationTable23.TheadvantagesanddisadvantagesofdifferentERS.AdaptedfromSource[4.1]butalsosee79Tech:OverheadconductiveGround-conductiveGround-inductivePro’s•Mediumtohighpower80transferandefficiency,atuptohighwayspeeds•Noimpactonthemotorwaysurfaceandinterior•Basedonmaturetechnology•Nomajorvisualimpact•Mediumtohighpowertransfer(morethansomeothertechnologies)•Technologysuitableforchargingallvehicleswithvariouspowerneeds•Notvisibleforoutsideviewers•Nointerferencewiththeroadoperationafterinstallation•Potentially,noadd-ontechnologywithmoveableparts•Thepowerreceiverisnotsubjecttomechanicalwear•TechnologypotentiallysuitableforchargingallvehiclesCon’s•Visualimpact•Allocatesspaceoverandalongsidethemotorway•Pylonsneedprotectionviasafetybarriers•Imposesanoverheadobstacle•Risksshouldthecatenarysystemfail81•Dragforcesofthepantograph•Abrasionoftheoverheadline,generatingparticles•Extensiveuseofcopper•Notsuitedtosmallvehicles•Impactontheroadstructure(grooveinthesurface)•Adaptationofthemachinestorenewthepavementupperlayerwithoutremovingtherail•Exposedrailintheroadwaysurface:provisionstobetakentoensureagoodskidresistanceandwinteroperation82•Needformaintenanceduetodirt,snowandice(forthehollowrail)•Risktoandofthepick-uparminthecaseofaccidentoremergency•Impactonroadstructureduringinstallation.•Mediumtolowlateraltolerance•Generatesmagneticfieldforthelowtomediumpowertransferpercoilandalowerefficiency•Limitationofthepowertobetransferredtothevehicle83•Highuseofcopper8479Analysiscarriedoutinhttps://www.ecologie.gouv.fr/lautoroute-electriqueandon-goingbyPIARCintheTF2.2.SeealsothereportsoftheSwedishdemonstrationsmentionedabove.80However,withsomelimitationsforaseriesoftruckstravelingatshortdistances(50m),aboveallonslopes.81Therateofpantographscouldbeapproximately100timesmorethanontherailway(upto10,000perdayversuslessthan100).Moreover,thehighfrequencydynamicvariationsofthealtitudeofthepantographs(pavementevennessplustrucksuspensionandtyrestrains,muchhigherthanonrailways,mayimposeshocksonthecatenaryandelectricarcs.82Thelatestdevelopmentsoftheflatrailtechnologiesseemtosatisfythesecriteria.83Withthecurrenttechnology,inductioncouldnotfeedthemostdemandingtrucks(300kWandabove),whichwouldalsorefrainpoweringandchargingthevehiclessimultaneously.However,thetechnologyisprogressing.84Theinductivetechnologiesmayusealmostasmuchcopperasthefullbatterysolution(https://www.editions-rgra.com/revue/989),whilsttheotherdynamicchargingtechnologieswouldsaveasignificantamountofthismaterial.InroadOn,besideroadAboveroadWireless(“inductive”)Conductivewww.ertrac.orgPage108of169FinalVersionEnergyefficiency&TCOAchievingahighenergyefficiencyisessentialtorealizingthepotentialofelectricroadsystems85,86,asseveralkeybenefits,suchaslowoperatingcostandlowWTWemissions,stemfromthis.Theenergyefficiency,achievedinexistingoverheadERSprojects,whilstdrivingat90km/honmotorways,isabove90%fromtheelectricgridtovehiclepropulsion(forconductivesystems),andbetween70to90%forinductivesystems.Forothersolutionstheresultsfromreal-worldexperiencesarelimited.Since,inmostEuropeancountries,amajorityoftheroadfreighttransportisconcentratedtoafewpercentofthenationalroadnetwork,hencelimitingtheneededinfrastructureinvestment,ERScanresultinalowerTCOcomparedwithotherelectrificationsolutions,biofuelsorevenconventionaldiesel(especiallyonroadswithhightrafficvolumes,asshowninsomereports87).Roadmap,EuropeandimensionandStandardizationToachievethefull-scalebenefitsofelectrifiedroadsystems,thefirststepwillbetopilotthesystembyelectrifyingshuttleroutes,e.g.20-100kmlongsectionsbetweenportsandlogisticscentres,oronenvironmentallysensitiveroutes,whereahighnumberoftrucksgobackandforth.Subsequently,thoseshuttleswouldbelinked-uptoformsectionsofagrowingnetwork.Inthatphase,theflexibilityofdynamiccharging,mentionedinSection3.5,canbeusedtogetherwithotherfuelsandpowertrains.Specifically,inthisstage,theuseofhybridtrucksenablesasmoothtransitionfromthecurrentfossilfuelregimetoanincreasinglyelectrifiedone.Inthelaststage,thenetworknearscompletion(withlinksestablishedbetweenMemberStates),thisactsasacatalysttotransitionthetruckfleetawayfromhybridstowardsfullyzero-emissionvehicles,e.g.BEVsandFCEVsequippedtousetheERS88,89.AnalysisinGermanyshowsthat89%oftrucktripsbeyondthemotorwayare50kmorshorter,meaningthatelectricroadtruckscouldhaveafairlysmallbatteryandstillperformnearlyallmissionselectrically.Suchatruckcouldbeaffordable,thusloweringabarrierforuptakeofnewtrucktechnologiesbysmalllogisticsoperators.ManyEuropeancountrieshaveexpressedinterestinelectrifiedroads(includingSweden,Netherlands,France,Italy,Austria,HungaryandtheUK).Althoughlargercountries(eg.FranceorGermany)maybeabletojustifyinvestmentsindependently,ajointapproachcouldachievegreaterbenefitseconomicallyandintermsofemissionsreduction:however,thiswouldrequireagreementsontechnicalissuestobereachedearlyon90.Thestandardisationofthevariousdynamicchargingtechnologies,includingtheinterfacesbetweendifferentsub-systems,ison-going.Furtherattentiontosecureaseamlesscross-borderoperabilityisessential.Theremainingmainchallengeislegalcertainty.Dynamicchargingsystemsarerelatedtobothpowergrids(Directive2009/72/EContheelectricitymarketandnationallaws)androads(nationallawsandDirective1999/62/ECfortollsandusercharges).Thiswillhaveaneffectonenergymetering,datacollection,enforcement,accesscontrolandthebusinessmodel.85SeeBossel,“UsefulTransportEnergyfromRenewableElectricity”,2006andhttps://youtu.be/bEdcdsLC88Y?t=615886Thehydrogenefficiencyis27%withelectrolysis(60%fortheelectrolysis,90%forcompressionand50%forthefuelcells).87Source4.2,alsoBMVI,Öko-Institute,ICCT,UCDavis,IEA,FrenchMinistryofEcologyTransitionandRGRA(https://www.editions-rgra.com/revue/989).88NotethedatashownthereisfromaspecificstudyinSource[4.3],thisdataisdifferenttothatusedintheERTRACstudy,sources[1.1]and[1.2].89ThescenariorecommendedintheFrenchreport:https://www.ecologie.gouv.fr/sites/default/files/GT1%20rapport%20final.pdfisdifferent.Itisrecommended,afterthepilotandachoiceofaharmonizedtechnology,todevelop(inFrance)4,900kmofelectrifiedroadsover5years(by2030)and3,950kmby2035.Anextensiveeconomicstudywascarriedouttoprovetheadvantageofsuchaplanning.90InGermany,theNationalPlatformforMobilityoftheFuture(themainpolicyadvisorybodyforthetransportministry)inJune2020recommendedthat4,000kmofhighwaysbeequippedwithERSby2030,inordertosecurereachingthe40%reductionintransportCO2thatGermanyhascommittedto.InFrance,thestudycarriedoutbytheFrenchMinistryofEcologicalTransitionin2021,recommendedthat4,900kmofmotorwaysbeequippedwithERSby2030,and3,950morekmby2035.Doingthat,nolocationwouldbefurtherthan125kmfromanelectrifiedmotorway,allowingcoveringthewholeterritorywitharangeof250kmonbattery.ThereductionofCO2forthefleetoftrucksandvanswouldbe86%by2040.www.ertrac.orgPage109of169FinalVersion4.1.2GridintegrationPEV91chargingloadscanhavenumerouspositiveandnegativeimpactsonthedistributiongrid,dependingonthePEVsspatialandtemporalbehaviour,thecharacteristicsofthecharginginfrastructureandofthedistributioninfrastructure,includingage,utilization,peakloadandpresenceofotherdistributedresources,suchassolarPV.WhilstglobalBEVproliferationwillhavearelativelysmallimpactintheglobalelectricitydemand(ifallpassengercarswereelectricinEurope,thiswouldrepresentanincreaseof17%ofthetotalelectricityconsumptioninEurope,lessthan1%yearlygrowthprojecteduntil2040),uncontrolledchargingwouldsubstantiallyincreasethepowerpeakloadoftheglobalsystem,potentiallocalgridinstabilitiesandwouldleadtolocalgridcongestion,requiringfurtherinvestmentsingridreinforcementsandinpeakpowerplants.Gridreinforcementsassociatedwithnewelectrifiedusesis“businessasusual”toEuropeanDSOs92andTSOs93.Forinstance,theSpanishelectricitydemandgrewasmuchas6%peryearbetween1997and2007andtherequiredgridinvestmentswerecarriedoutassuringsupplysecurity.EVswillrepresent3,955GW.hoftotalstoragecapacityin2040,equivalenttoapproximately20%ofthehighestpowerdemandinEUandhalfoftoday’sdailyEUelectricityconsumption.Thisstoragecapacitywilloffernewopportunitiesforconsumersandthepowersystem,whichcouldbenefitfromagreatsourceofflexibility(seeFigure44),underefficientmarketsignalsandbasedonthedevelopmentofuser-centrictechnologiessuchas:•Smartcharging:consumerscanshiftchargingtoothertimes,eitherthroughapriceincentive(TimeofUse(TOU)charging)ordirectcontrol(V1G)•Vehicletogrid(V2G):consumerscanusetheirEVbatteriestoprovideenergyandnon-energyremuneratedservicestoTSOs(frequencyregulation,balancingetc.)andDSOs.•Vehicletohome/business:consumerscanusetheirEVstopowertheirhomesorbusinesses,combinedornotwithself-consumption(thebatteryonanEVcontains~3-4daysoftheelectricityconsumptionofanormalhome).Forthesenewopportunities,forbusinessestohappen,allinvolvedstakeholderswillhavetoworktogethertodevelopawarenessandacceptancebyusers.ThevalueofusingEVbatteriestosupportelectricitygridswillhavetobesharedbetweenstakeholders,includingEVowners.Figure44.IRENAsmartchargingfortheelectricvehiclerevolution91PEVstandsforPlug-inElectricVehicles,itincludesBEVandPHEV.92DSOstandsforDistributionSystemOperator(lowandmediumvoltagepowergrids).93TSOstandsforTransmissionSystemOperators(highandultra-highvoltagepowergrids).www.ertrac.orgPage110of169FinalVersion4.1.2.1SmartchargingSmartcharging,duringoff-peakperiodsandwhendemandandnetworkcongestionisotherwiselow,meansthatconsumerscanpotentiallybenefitfromcheaperpricingwhencharging,futurenetworkreinforcementanditsimpactonelectricitycostscanbeavoided.Smartchargingmightsave60-70%oftherequiredgridreinforcementinvestmentneededtoserveafullyelectrifiedlightdutyvehiclefleet(seeFigures45and46,forexample).Therearetwomaintypesof“managedcharging”forPxEVs,whichadjustthetimeandspeedofcharge:•Time-of-use(TOU)Charging:driversareincentivizedbyalowerelectricityratepricetochargeduringoff-peakhours,usuallypre-programmingthestarttimethroughthechargerorPEV.Forexample,day-timeoff-peaktariffsinSpringmaybeproposedbyutilitiestoencouragechargingduringtimesofhighsolarPVgeneration.•V1G,referringtounidirectionalpowerflowtovehiclefromgrid:thePEVparticipatesinademandresponse(DR)programmethatcontrolsactivechargingtobeonorofforatadifferentspeedthroughthechargerorvehiclesoftwarebutdoesnotallowforthedischargingofthePEVbatterybacktothegrid.UnderaDRprogramme,electricityusageisadjusted(typicallyreducinguseorshiftingusetoothertimesintheday)atcertaintimesinresponsetopricesignalsorotherconditions.Anaggregator(utilityorprivatecompany)usuallydirectlycontrolschargingformanyvehiclesatoncetoshiftchargingtotimesthatprovidethemostgridbenefitwhenpricesareloworrenewableenergyisabundant.TOUchargingisalreadyusedbyutilitieswhileV1Gprogrammesarestillinthepilotphase.Figure45.TheprofileofEVchargingunderbothunmanaged(left)andmanaged(right)scenariosfora100%electrifiedfleet.Source[4.4]9494TheEVdemandshownonlyappliesforBEVsolutionswithstationarycharging,itdoesnotincludethedemandwhenusingelectrifiedroadsystems.www.ertrac.orgPage111of169FinalVersionFigure46.TheinvestmentrequiredinIberdrola’sdistributiongridsinSpain,UK,USAandBrazil:unmanaged(left)andmanaged(right).Scenario:FullEVpenetrationestimatedinalltheseregionsexceptforBrazil(30%)95.Source[4.5]Smartcharging(V1GandV2G)technologieswillrequirethedevelopmentofstandards,asthebasisforcommunicationsbetweenelectricvehicle,chargingpointandDSOsthatallowdynamicandadvancesmartcharging.Itwillalsorequiredatasharingrelatedtobatteriesbetweenvehiclesandtrustedsmartchargingserviceoperators,whichmustbemadesafeandsecure.Figure47.Standardizedinterfaceneedsforsmartcharging.Source[4.6]Withanefficientintegration,TSOandDSOswillachievemorecost-efficientoperationandavoidunnecessarygridinvestments,whilstallowingmoresolarandwindpowerintegration,reducingcurtailment(wastedenergy)and,ultimately,reducingtheCO2emissions.Thenetbenefitofsmartchargingdependsonthedominantrenewableenergysourceineachcountry:•Inwind-dominantcountries,overnightEVchargingcanabsorbexcessofrenewablesaswellasavoidincreasedinpeakloadonthedistributionnetwork.•InPV-dominantcountries,daytimeworkplacechargingmaybethemostadvantageouswaytoabsorbexcessofrenewables.95SameconclusionsarepresentedintheFrenchTSOstudyonsmartcharging,May2019.www.ertrac.orgPage112of169FinalVersionInbothcases,smartchargingwillpreventlocalgridcongestions,overloadorinstabilities,andtheirassociatedinvestments.Figure48.Smartchargingforelectricvehicles(IRENA:ExamplesofstudiesassessingtheimpactofEVchargingstrategies(Figure34)).Source[4.7]4.1.2.2Vehicletogrid(V2G)AnaggregationofPEVs(similartosmartcharging)couldactasstorageforthegrid,bychargingoversomehours,storingtheenergyinthecarbatteryandthendischargingsomeenergybacktothegrid.UnderV2G,PEVscouldalsoprovidesomeancillaryservicestothegrid,continuityofenergysupply,peakloadshaving,orcompensationofthereactivepower.ProvidingflexibilityservicestotheTSOorDSOwouldofferearlyrevenuesforEVowners.However,netbenefitsdependonflexibilityservicesprices,whichvaryamongMemberStatesandaresubjecttoregulatorychanges(seeFigure49,whichshowshowbenefitsordisbenefitsmayarise,eachasaconsequenceoflocalregulation).SeveralV2Gprogrammesarealreadyinthepilotphase.Nevertheless,thedecisiontoparticipateingridintegrationwillultimatelyrestwiththecustomers.EVusageprofiles,user-centrictechnologies,regulatorymeasuresandmobilitypatterns(i.e.,ownership,mobilityasaservice)willbethekeydriverstoefficientlyintegrateBEVinthepowergrid96,yetthesemustbebalancedwiththepossibleimpactsonthevehiclebatterylife,henceoverallbenefitsforthevehicleownersorusersmustbedetermined.96Seehttps://www.reutersevents.com/sustainability/why-v2g-holds-key-electric-vehicle-revolution:“Cyclingthebatterywhilethecarisstationaryhasnonegativeimpactandisaverystablewayofremovingelectrons…Individualdriversarelikelytobemorereluctanttoallowtheircarstobeusedlikethis,inpartbecauseofthelossofflexibilityandalsobecauseofconcernsaboutbatterydeteriorationfromrepeateddischarges.”www.ertrac.orgPage113of169FinalVersionFigure49.VehicletoGridnetbenefit(€)inEuropeperPEVperannum.Source[4.8]Vehicletohome/businessVehicletohomeisalreadytechnicallyfeasibleandhasmanybenefitsinDChouses97.Itcanbeusedforpeakshaving,reducingthecostofthefixedpartoftheelectricitycontractinmostoftheEUMemberStates.WithTOUpricing,thebatteryoftheEVcanbechargedatnightandusedduringpeakpricinginsteadofagridsupply,alsodecreasingtheelectricitybill.Coupledwithsolargeneration,thebatterycanbeusedtostorepotentialexcessRESelectricityduringthedayandmakeitavailableaftersunset.Businesscaseisdirectlyrelatedtoself-consumptionregulation.4.2LiquidfuelsInEuropetoday,morethan120,000servicestationsareavailabletoconsumers,oftenatalmosteveryotherstreetcornerinpopulatedareas.Themostimportantpropertiesofliquidfuelsarewell-understoodbyvehiclemanufacturersandbyconsumers:theirpropertieshavebeencontinuouslyimprovedovermanyyearstoproducehigh-energy,high-value,economicalandtrouble-freeproducts.Onanaverageday,morethan25millionvehiclesarerefuelledwithapproximatelyonebillionlitresofliquidfuels.Theseservicestationsarerefuelledfromasophisticatedandhighlydevelopedsupplyanddistributionnetworkthatconsistsofrefineries,blendingterminalsandservicestations,efficientlyinterconnectedbypipelines,bargeoperationsanddeliverytrucks.Approximately36,000kmofpipelinesensurestheefficientmovementofcrudeoilandrefinedproductsacrossEurope.Blendingterminalsaretypicallyusedtomixincertainbio-components,especiallyethanolbecauseofitsaffinityforwater,beforethefinishedproductisdeliveredtotheservicestation,whilstminimizingwaterseparationandcorrosion.Similarly,conventionalbiodieselcomponents(FAME)canincreasethepotentialformaterialsincompatibilitiesandcontaminationinmanufacturinganddistribution:fuelsupplyanddistributionsystemshavebeenengineeredtominimisetheseproblemsoverarangeofenvironmentalandclimaticconditions.Majorresearchiscurrentlynotneededbecausemostproblemscanberesolvedthroughpropermaterialsselection,qualitycontrol,andsupplysystemhousekeeping.97https://www.edsoforsmartgrids.eu/wp-content/uploads/EDSO-paper-on-electro-mobility-2.pdfELECTRICVEHICLESANDTHECALIFORNIAGRID,NEXT10,JULY2018.www.ertrac.orgPage114of169FinalVersionLiquidrenewableorsyntheticfuelsproducedbythermochemicalorcatalyticprocesses,byhydrogenationofvegetableoilsorelectro-fuelsundergoingaFischer-Tropschconversionhavelessofanimpactonthedistributionsystem.Inthefuture,theremaybeagrowingpreferencefortheserenewableorsyntheticliquidfuelswhosepropertiesaresimilartofossilhydrocarbonsasameanstoreducesystemincompatibilitiesandimprovevehicleperformance.Inthisscenario,fuelsupplyanddistributionsystemcanbeexpectedtobelesssensitivetoadvancedbiofuelsandelectro-fuelsblendsasthequalityandthechemicalstructureofrenewablecomponentsimprove.Inanalternativescenario,someresearchquestionsmayariseasnewfueltypesandblendsmayenterthemarket.Forexample,therecanbeproblemswithsparkignitionenginesusingblendsofhighbiofuelcontentdistributedbypipeline;orcompatibilityissueswithcompressionignitionenginesusingblendswithahighrateofoxymethylenedimethylethers(OME).Moreinformationregardingtheperformanceofdifferenttypesofbiofuelsandelectro-fuelsincurrentandfuturevehicletechnologiescouldhelpensurethebestandmosteconomicselectionofrenewablecomponents.Sinceservicestationtanksandpumpsarefrequentlydifficulttoretrofit,logisticsandmarketscale-upbecomeincreasinglydifficultifnewengineconfigurationsareintroducedtothemarketrequiringaspecificfuelthatisnotroutinelyavailableattheservicestation.Betterintegrationandoptimisationoffuel,engineandvehiclealsorequiresthedevelopmentofrobuststandardsforliquidandgaseousblends.EnergytaxrevenuesrepresentanimportantshareoftotaltaxrevenueforMemberStates.Fueltaxationrepresentsbetween3%and4.5%whereasotherenergytaxes(suchaselectricityandgas)representcloseto2%(see,forexample,Figure50).Figure50.EnergytaxrevenuesperMemberStaterelativetototaltaxrevenues,2017.Source[4.9]www.ertrac.orgPage115of169FinalVersion4.3Gaseousfuels4.3.1NaturalGasInfrastructureToday,thenaturalgasinfrastructurerepresentsanimportantassetinEurope:itiscomposedwithapproximately200,000kmofhigh-pressurepipelinesforgastransmission,andmorethan2,200,000kmoflow-pressurepipelinesforgasdistribution.Allthissystemensuresthetransportofahugeamountofenergyoverlongdistanceinacost-effectiveway.Gasstoragefacilitiesofferthecapabilitytomanagelargeamountsofenergy,providingflexibilitytotheenergysystemtomatchtheseasonaldemand(todayenergypeakdemandsaremetbythermalandhydropowerplants(upto85%))contributingtothesecurityofsupplyandofferingalow-coststoragesystemforawidefamilyofrenewableenergies.Ontopofthat,thegasinfrastructurealsocontributestothediversificationoftheenergysupply(soalsotothesecurityofsupply)andensurestheconnectionoftheEUsystemtotheglobalLNGmarket.LookingtothedirectutilisationofLNGinthetransportsector,thisiskeytosupportthemaritimesectoraswellasintheheavy-dutyapplications(trucksandcoaches).4.3.2CNGandLNGrefuellinginfrastructureOverthelastyears,consideringnaturalgasasplayingaroleasatransitionalfuel,Europehasimprovedthedevelopmentoftherefuellinginfrastructureatanaveragerateof200newCNGstations/yearand50newLNGstations/year.ThedevelopmentoftheLNGrefuellinginfrastructureisrelativelyrecent,consideringthatin2014Europejusthadafirstnetworkofjust30stations.Therefuellinginfrastructureasofend2019isreportedinFigure51.Itisimportanttounderstandhowandhowmuchrenewablegascanbeintegratedintothisinfrastructureinthefuture.Figure51.DevelopmentofCNGandLNGrefuellingstationsinEuropewww.ertrac.orgPage116of169FinalVersion4.3.3IntegratingrenewablegasThenaturalgasinfrastructureandvehicletechnologiesarefullycompatiblewithrenewablegas,whentheappropriatepurityiscontrolled,thusofferingawideflexibilityinmanagingtheprogressiveinjectionofmethaneproducedfromdifferentpathways.Anaerobicdigestionprocesses,thermalgasificationandPower-to-Methanepathwaysareallleadingtothesamemolecule,whichcanbebothinjectedintothegridorusedinvehicles.Hydrogenblendinginthenaturalgasgridisaninterestingadditionaloptioninthefuture.Thiswillneedanalysisaboutthecompatibilityandtheadaptabilityofthesystems(distributiongrid,stationcompressorsandstoragesystem,vehiclestorageandfeedingsystem,impactoncombustionprocess)plusthemaintenanceofsafetystandards.4.3.4HydrogenInfrastructureUnlikeotherfuels,currentlythereisalackofinfrastructureanduncertaintyinitsdeployment,inordertobringhydrogentohydrogenrefuellingstations:thisshouldbetakenintoaccountintheevaluationofthedeploymentoftheFCEVandH2ICEinfrastructure.ThecontributionofFCEV(andotherhydrogen-basedpowertrains)todecarbonisationinallmodesoftransportcanonlyberealisedifanappropriateinfrastructureisestablished.Therefore,therapidexpansionofhydrogenrefuellingstationsisneededandequivalentconsiderationsastothehandlingoftherefuellingequipment(asforfastchargingmentionedabove)needtobemade.Anappropriateframeworktoinvestinthehydrogenrefuellinginfrastructureshouldreflectthemulti-facetedsolutionsthathydrogentechnologiescanbringtothetransportsector’sdecarbonisation(i.e.,multi-purposeHRSatstrategiclocationsforseveralapplications(e.g.,airportGSE+publicHRS)).Thesectorforeseesaneedforatleast3700HRSby2030,basedontheHydrogenRoadmapforEurope(seeFigure52).TheseHRSshouldbecapableofservicing1tH2.Figure52.Hydrogenrefuellingstationdevelopmentrequirementswww.ertrac.orgPage117of169FinalVersionHowever,today’sinfrastructureisratherlimited,withthemajorityofthepubliclyavailablestationsbasedinGermany,France,DenmarkandtheUK(seeFigure53below).Figure53.HydrogenrefuellingstationdistributionaroundEurope.Source[4.10]4.4Otherinfrastructureaspectssupportingefficiency4.4.1ElectricRoadSystems(ERS)Independentofwhichdynamicchargingtechnology(overheadorgroundconduction,orwireless(induction))isused,theroadinfrastructureandthemaintenanceofthatwillbeaffected,althoughtheeffectvariesnoticeablybetweentheoptions.Additionalresearchwouldbeneeded,aslistedinChapter6.4.4.2RoadconstructionandmaintenancerelevanttofuelefficiencyItisknownthatroadgeometry(hills,curvesetc.)hasalargebearingonfuelefficiencyandaccordinglyroadsaredesignedinhillyareastominimiseinclinesthroughcutandfill,travellingalongsidethesideofmountainsofthroughtheuseofbridgesortunnels.Realistically,thereislittleoptionforretrofittingsystems.Increasingtheefficiencyofbridgeortunnellingmethodsmayimprovethebenefitcostratioforsomenewschemes.Theconditionoftheroadsurfaceitselfalsoplaysaroleinthefuelefficiencyofvehicles.Bumpyandunevenroadsorthosewithpotholesarenotonlylesscomfortablefordriversandpassengers,butalsoresultinincreasedsuspensiontravelthansmoothroads.Thenetresult,otherthanincreasedwearandtearonthevehicle,isincreasedenergyuse:fuelorelectricitythatshouldbeusedtopropelthevehicleforwardisbeinglostinthewheelsmovingupanddown.Thecaseforon-goingresearchinimprovedroadconstructionandmaintenancetechniquesremainsstrong.ResearchshouldbeconsideredforareaslistedinChapter6.4.4.3AlternativefuelsandroadconstructionormaintenanceTheimpacts,eitherpositiveornegative,ofalternativefuels,suchasliquidorgaseousbiofuelsonroadconstruction,operationandmaintenancearelikelytobenegligible.www.ertrac.orgPage118of169FinalVersionTheimpactsoffuturebatterypoweredvehiclesmightbemoresignificant,giventheirdifferentmassandwheeltorquecharacteristics,hencerequireresearch.Thereiscurrentlyarelativelylowpenetrationofelectriccarsontheroadandthosethatare,havetendedtobebuiltonastandardvehiclechassis.Forlargervehicles,thepenetrationlevelislowerstill.Theloadingimpactsoffuturebatteryvehiclesonhighwayinfrastructureshouldberesearched,includingthevibrationfrequencyofthepowertrains.Itisknownforexample,thatroadsurfacesandbusbayscansufferingruttinganddeformationthroughtheenginevibrationofstationarybuses.Thevibrationfrequencyofelectricbusesandotherheavyvehicleswillrequireinvestigation.Researchshouldbeundertakenontheuseofalternativefuelsandpowertrainsinconstructionmachineryandnon-roadmachinery,takingintoaccountcurrentandfutureemissionstandards.www.ertrac.orgPage119of169FinalVersion5Asystemicviewandexpectedimpacts5.1IntroductionIntheprecedingchapters,thestateoftheartandlikelydevelopmentsinthreeaspectsofroadmobility(energycarriers,powertraintechnologiesandinfrastructure)havebeenpresented,suchthatfutureresearchneedscouldbeidentified(ascollatedinChapter6)giventheconstraintsofanytechnologyroadmap.Inthischapter,analternativeapproachistakentodetermineidentifiablefurtherresearchneeds.GiventheoverallgoalofnetzeroCO2emissionsroadmobilityby2050,possiblescenariosolutionsforthattimeareconsidered,basedupontheworkingsandfindingsoftheERTRACCO2EvaluationGroup1.Subsequently,specificindividualusescasesaresuggested:envisagingtheseusecasescanhelptoidentifyyetmorepossibleneedsforresearch98.Finally,lookingfromthepossiblesituationin2050backtothe2020’s,helpstovisualizepossibleissuesalongtheroutefromtodaytowardsanetzerocarbonroadmobilitysysteminbymid-century:suchasystemperspectiveovertimecanhelptorecognizefurtherpossibleissuesandthenecessaryresearchtohelpaddressthem.5.2NetZeroGHGRoadMobilityScenariosfor2050TheERTRACCO2EvaluationGroupposedandgeneratedanswersforsomerelevantquestionsusingascenarioapproach:•WhichtechnologiescansupportnetGHG-neutral99roadtransport?•Howlargeistheirspecificeffect?•Whatcouldbethefleetandfuelimpact?•Howmuchenergyandwhichenergy(carrier:electricity,hydrogenandorsyntheticfuels)isneededforroadtransport?•Whichenergypathsdowehaveandhowmuchelectricityisneededtoproducethedifferentenergycarriers?fromawelltotank(WtT)plustanktowheels(TtW)basis.TheWtTbasisincludedfourextremefuelmixscenarios,individualfeedstockroutesandtwodifferencescenariosforelectricityproduction,butnottheenergyneededtocreateabatterythatiscapableofstoringenergy.TheTtWbasisincludedrisingtransportdemandsbetween2020and2050aswellasdifferentactivityprofiles,efficiencymeasures(optimisticandpessimistic)andvehiclefleet(parc)compositions.Thestudyconsideredthreedifferentpowertrainscenarioswithinthosevehiclefleet(parc)compositions:HighlyElectrifiedincludingElectrifiedRoadSystems(HE-ERS);HighlyElectrifiedincludingHydrogen(HE-H);HybridsScenario(HYB).Somespecificconclusionsweredrawnfromthisevaluation:•ToachieveGHG-neutralroadtransport(WtW)in2050,drasticchangesareneededinallthreeareas:Vehiclefleetandefficiency,powertrainsandtraffictechnology;Infrastructure;Energyproduction(electricity,hydrogenandrenewablefuels).•ThecompleteandrobustGHG-neutralityofroadtransportcouldbeachievedwithamixoftechnologies,whereelectrificationisthekeyelementforthereductionoftheCO2emissions:BEV(possiblycombinedwithelectrifiedroads);PHEV;FCEV;andAdvancedHybridpowertrains(notingthatthemixofthesepowertrainoptionswillstronglydependonthedevelopmentofthe98Sincetheresultantefficiencyoftheroadmobilitysystemisaconsequenceoftheindividualtechnologies,theirindividualusageandtheirinteractionswithinthesystem.Further,systemefficiencywilldependontrafficmanagement,resilienceetc.Systemeffectivenesswillneedtoaddresstheissuesofsystemrobustnessandcyber-securityrisksforexample.99IntheoriginaldocumentationandpresentationoftheERTRACCO2EvaluationGroupwork,thewording“Carbon-neutrality”wasused.However,basedonthedefinitionsusedwithinthisdocument(seeAppendix)actuallyGHG-neutralityisappropriatetoreflecttheextentofthestudies.www.ertrac.orgPage120of169FinalVersioninfrastructure(charginginfrastructure,electrifiedroadsystems,hydrogenfillingstations,productioncapacitiesforrenewablefuelsetc.)).•TheoverallWtWenergydemanddecreasesdrasticallywithfleetelectrification.•Theenergyefficiencymeasuresidentifiedreducetheenergydemand(fuelconsumption)inallscenariosinaverysignificantway.•Thedemandforfuelsdecreasesmassivelyinallscenarios(forexample,inhighlyelectrifiedscenariosbyupto95%).•Instronglyelectrifiedscenarios,theWtWdifferencesinenergyconsumptionbetweenthefuelscenariosarequitesmall.•Thetotaldemandforelectricityinroadtransportwillincrease(energyproduction+useinvehicle):equivalentto20%-30%ofthetotalEU28electricityconsumptionin2019asaminimum(intheadvancedbiofuelsorlimitedfossilscenarioscombinedwithhybridfleet;equivalentto40%-55%ofthetotalEU28electricityconsumptionin2019inhighlyelectrifiedscenarios;upto1.6timesthetotalEU28electricityconsumptionin2019ife-fuelsareusedalongwithahybridfleet).•ThelargelyGHG-neutral,renewableproductionofelectricityisaprerequisitefor“GHG-neutral”roadtransportinallfleetandfuelscenarios.AndsomefurtherresearchneedswerepresentedbytheERTRACCO2Evaluationgroup:•Enablingfleetmixchangebyimprovingpowertraintechnology:cost,range,functionalityetc.;andadaptinginfrastructuretechnologyandconcepts.•RealisingtheefficiencyimprovementsbyMeasureA:Vehicle;MeasureB:Trafficconditions;andMeasureC:TrafficReductionTechnologies.•BesideRoadTransport:–Realisingrenewableelectricitygenerationcapacity(insideandoutsideofEurope)–RealisingnetGHG-neutralH2andfuelproduction(insideandoutsideofEurope)–RealisingthetechnologyandcapacityofCCSandDAC(whichhasnotyetbeendemonstratedatlargescale)–Determiningtheavailabilityofrawmaterialsandsustainablefeedstocks(appraisedinalife-cycleanalysisperspective).5.3UseCasesWhilstascenario-basedassessmentisusefultoevaluatewhethertheroadtransportsystemcanachieveanetzerocarbonstatus,inrealityitislikelythateachindividualuserwillchoosetheirmeansofmobility,asaconsequencetheirownneedsandconstraints.Thisindividual,bottom-upoptimisationisnotthesameasthetop-down,systemoptimisation100(asillustratedinFigure54):theremaybesignificantdivergencefortheendresult,theproducts,mobilitymodesandinfrastructureneeds.Assuch,improvedunderstandingoftheindividualcomparedtothesystembehaviourinanetzerocarbonroadmobilitysituationisneeded.Itisveryimportanttobetterunderstandhowthesebehaviourswillchangeinthefuture,togetherwithwhatfactorswillinfluencethechange.Further,thedivergencemaybemoreacutealongtheroutetowardsnetzerocarbonmobilityat2050,whenthepossibleratesofchangeoftherelatedindustries,regulatorylimitsandsocietalbehavioursmaybecomebottlenecks.Questionsariserelatedtohowmuchincentiveswillbeusedtoencouragethechange,increasetherateofchange,whilstatthesametimeretainingsocialequality.Alternatively,orperhapsconsequently,therateofchangeisunlikelytobecontinuous,monotonic.Rather,particularlyasaconsequenceoftheallowablecarbonbudget,significantlyincreasedratesofchange,varyingatany100OnecanenvisagethattheERTRACCO2Evaluationconsidered“cornerpoints”inthesolutionspace:individualmobilityusagesareaslikelytobesomewhere“inthemiddle”ofthesolutionspaceand,assuch,maywellhavedifferent,furtherneedsforresearchinordertoapproachoptimalsolutions.www.ertrac.orgPage121of169FinalVersionsinglepointintimebetweendifferenttypesofroadtransport,arelikelytobenecessaryandexperienced.Assuch,anunderstandingoftheachievableratesofchangeinanysingleparameterrelatedtotheroadmobilitysystemneedstobereached.Figure54.DifferentperspectivesdetermineresearchneedsHencethequestionarises:howcansuchusecases,suchusagemodels101bedefined?Isausecase:onevehicle,oneroute,oneenergycarrier?Orisitonetechnologylevel?Onescenario?Orisitoneyearduringthetransitiontonetzero?WhilstthetechnologiesdiscussionwithChapters2to4mightimplycertainusecases,usagemodels,aspecificapproachisneededhere.Further,whilsttheERTRACCO2EvaluationGroupstudyconsideredthreepowertrainscenariosandtwotechnologicalprogressscenarios(optimisticandpessimistic)onaTtWbasis,plustwoelectricitysupplyscenarios(100%RESand1.5Tech.)andfourfuelsscenarios(biofuels,e-fuels,mixedfuelsandlimitedfossil)onaWtTbasis,onlytheconsequencesofthosescenariosthatdirectlyaffecttheuserareimportanttogenerateusecasesandusagemodels.Hence,thedifferentvehicletypesandtheirpowertrainscenariosareofprimaryimportance(thetechnologyprogressscenariosaretoodetailedtoallowdiscrimination):whatgoesintothe"plug"or"fuelnozzle",aslongasitiscompatiblewiththevehicle(i.e.drop-in),ismostlyonlyofsecondaryimportancefortheuser.Hencetheuseofthefollowingvehicletypesmustbeconsidered:•Two-wheelers•Smalland/ormediumcars•LargecarsandSUVs•Lightcommercialvehicles(LCV),upto3.5tonnesGVW.101Thereisnosingulardefinitionforacomprehensivedifferentiationbetween“usecases”and“usagemodels”,aconsiderationmightbe:“usecase”-oneparticulartripwithinausagemodel(orscenario),describedasdetailedaspossible.Thisisnotasinglemanoeuvre,norasingleuserinteraction.Sincethesystemofinterestis,principally,theenergytransferandmanagement,ausecaseshouldconsistofrelevantsituationsforenergyconversions;“usagemodels(orscenarios)”-couldbetypicaprofilesofhowavehicleisbeingusedbyaparticulargroupofusers,definedbystatisticaldata(averagedistance,speed,mileageetc.),alongwithaconsequentialpreferredtypeofvehicle.626/06/20222050ERTRACScenarios(TopDown)TypeAMeasures:Vehicleefficiencyimprovement:Powertrains:BEV,PHEV,FCEV,(H2-ICEorICEreg.fuels)Usage:Urban,Rural,Highway:El.urbanvsxxEVHighwayTypeBMeasures:ImprovementsintrafficflowTypeCMeasures:Roadtransportreduction(Efficiencyimprovementshavethepotentialtoreduceenergyconsumptionby~35-40%)Howtocreate(flexible)vehicleconceptstheensuremaximumusabilityforseveralusagemodelsResearchonenergyefficiencyeffectsatvehicleandfleetlevelsforconnectedandautonomousvehicles,mobilityasaserviceandmodalshiftsAdaptiveandprognosticcontrolincorporatingon-boardmonitoringforgeofencingandenergyefficientoperationResearchonthetransitionovertime,lookingatresourceneeds&sourcingw.r.tallowableornecessaryratesofchangeResearchNeedsUseCases,Usagemodels(BottomUp)CommuterBEVDeliveryBEV/PHEVLongTrip,onewayBEV/PHEVLongDistanceCommercialVehiclese.g.e.g.e.g.e.g.www.ertrac.orgPage122of169FinalVersion•MediumDutytrucks•CityBusses•HeavyDutyTrucks•Coacheswhere,possibly,smallcars,largecarsandheavy-dutytrucksareofmostimportancefromaGHGgenerationperspective.Further,fromtheuserperspective,whetheryoufuelwithfossilfuel,renewablefuelorhydrogen,aslongastherangeissufficient,therefuellingtimeshouldbethesame:thecriteriawillonlybeavailabilityoffuellingstation,rangeandcost(seeFigure55).Presumingthosethreearegiven,asaconsequenceofmarketforcesetc.,thesecollapseontoone.Hence,therearereallyonlytwoprimarypowertrainchoices:solelyBEVorxEV,wherexisnot"B"butrather"PHorFCorH2",hencewecanrepresenttheseas"xxEV"todifferentiatethemfromBEV.Figure55.DifferentvehicletypesandusesenvisagedoveradistanceversuscapacitylandscapeConsequently,collatingvariousfactorsrelatedtospecificusecases,usagemodels,basedonthesedifferentvehicletypes,applicationdomains,andmotivationshelpstoidentifypossiblechallenges,enablersorresearchneedsforenergycarriers,vehicletechnologiesorinfrastructuresspecifically,aswellascollectively.Inaddition,societalmatterscanbetreatedsimilarly,ascanstandardizationorregulatoryneedsplusanyotheraspects.Suchacollationforseveralusecases,usagemodelswillbepresentedanddiscussedinthefollowingsection.5.4ResultsAnexampleofsucharesultisshowninFigure56,foracommuterin2030.Variousaspectshavebeenconsideredfollowingadescriptionoftheusecase:whatvehicletypesmightbeusedbaseduponwhatmotivation;whatotheraspects,includingstandardizationorregulatoryneedscanbeidentified;hence,whatresearchneedsmightbederivedfortheenergycarriers,thevehicles,theinfrastructureandtheconsiderationofsocietalaspectscanbeidentified.Thus,theusecaseexampleforacommuterin2030mightbesummarizedasfollows.DistanceCapacityLcategorySmallCarMediumCarLargeCar,SUV,(recreationalm/c)LCVMDTHDTBusCoachUrbanRegionalInternationalwww.ertrac.orgPage123of169FinalVersionFigure56.Exampleusecase,usagescenario,foracommuter2030Thecommuterin2030willuseindividualroadtransportwithincitiesandasasmallfamilymeansoftransportwithinandbetweentownsandcities.Assuch,theregularjourneyislikelytobelessthan50kmonewayandpresenteasilyaccessiblerefuellingorrechargingopportunities:forexample,overnightchargingpriortothejourneyandarechargeopportunityduringtheworktime(orshoppingactivity,forexample).Much,ifnotall,oftheoperationislikelytooccurwithinaZEzone.Consequently,anL-category,smallormediumsizedcaristhevehicleofchoice,aspartofamulti-modaljourneysolution,orafall-backsolution.Thevehicleownershipmightbeprivatebutitcouldalsobearentalorcommerciallyownedvehicle.Questionsthatmightarisefortheownercouldbe,“howwilltheaffordabilityofthismodechange?”,“howwillextra-urbanmobilitydevelopmentschangemymodechoice?”,“whatmightthelife-cycleaspectsofthismodechoicebe?”.Consequently,thefollowingresearchneedsand/orquestionsmightbeidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,sincethisismostlylikelytobeaBEVwithlimitedenergystorage,whataretheimplicationsofandforfast,smartchargingwiththisusage;howmightthereliability,durabilityoftheenergycarrier(thebattery)beimprovedinthisusecase,andatwhatcost?•Forthevehicleandpowertrain,howmightthisusagechangethevehicleconcept,hencethepowertrainarchitecture?•Fortheinfrastructure,issufficientlowpowerchargingavailableattheappropriatelocations(e.g.junctionswithothertransportmodes,workplaces,leisurevenuesetc.)andarethesesmartenoughtooptimisetheenergymanagementforthevehicleandthetransportsystem?•And,forsocietyingeneral,“howwillthevehicleconceptschangeovertime?”,“howwilltheirsafety,theircomfortetc.bemaintained?”,“whatwillbetheimpactsoftheuseandownershipofsuchvehicleswithCCAMdevelopments?”,“whatwillbethesubsequentimpactonmobilitychoices,modeusageintensities,socio-economicaspectsofmobility?”.Finally,“whatrateofchangeintheseaspectswillbeacceptableinthisusage?”.www.ertrac.orgPage124of169FinalVersionConsideringanotherusecase,theurbandeliveryin2030,thiswillalsouseindividualroadtransportwithincitiesandasmallvanwithinandbetweentownsandcities.Assuch,theregularjourneyislikelytobelessthan50kmbutinarepeatedloopsoastoalsopresenteasilyaccessiblerefuellingorrechargingopportunities:forexample,overnightchargingpriortothejourneyandarechargeopportunityduringtheshifttime(atthedeliverydepot).Much,ifnotall,oftheoperationislikelytooccurwithinaZEzone.Consequently,anL-category,smallormediumsizedcarorvanisthevehicleofchoice,althoughbussesservicesmightalsobeused.Thevehicleownershipmightbeprivate(e.g.asinsomeMaaSofferings)butismorelikelytobeacommerciallyownedvehicle.Assuch,theprimaryquestionthatmightarisecouldbe,“whatpotentialistheretolimittheenergystorage,toreducethevehicleinitialpurchaseprice?”.Consequently,thefollowingresearchneedsand/orquestionsmightbeidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,sincethisismostlylikelytobeaBEVwithlimitedenergystorage,whataretheimplicationsofandforfast,smartchargingwiththisusage;howmightthereliability,durabilityoftheenergycarrier(thebattery)beimprovedinthisusecase,andatwhatcost?•Forthevehicleandpowertrain,howmightthisusagechangethevehicleconcept(whilststillallowingotherusages),hencethepowertrainarchitecture,withfrequentstopandgooperation?Howwillcabinthermalmanagementbemade?•Fortheinfrastructure,issufficientlowpowerchargingavailableattheappropriatelocations(e.g.regulardeliveryvenues)andarethesesmartenoughtooptimisetheenergymanagementforthevehicleandthetransportsystem(e.g.higherpowerchargingatdepotsforduringbreaksandshiftchanges)?•And,forsocietyingeneral,“howdointra-urbandeliverymodeschangeovertime?”,“whatnewbusinessandservicesmodelsmightarise?”.Consideringanotherusecase,deliveryin2030,butthistimewithadifferentvehiclepowertrain,thatisaPHEV,thenthefollowingdifferencesmightbeseen.Theregularjourneyislikelytobelongerupto100kmbutagaininarepeatedloop.MuchoftheoperationislikelytooccurcrossingaZEzone,hencegeo-fencingregulationwillbenecessaryandbeneficial.Amediumsizedcarorvanisthevehicleofchoice.Thefollowingchangeinresearchneedsand/orquestionsmightbeidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,sincethisistobeaPHEVwithlimitedenergystorage,whataretheimplicationsofandforfast,smartchargingwiththisusage;howmightthereliability,durabilityoftheenergycarrier(thebattery)beimprovedinthisusecase,andatwhatcost?Retaining,now,thePHEVarchitecture,butconsideringanotherusecase,thelongerone-waytripin2030,forfamiliesordeliveriesbetweenurbancentres.Assuch,thejourneyislikelytobe100to750kmoneway,requiringeasilyaccessiblerefuellingandovernightcharging.SomeoftheoperationislikelytooccurwithinaZEzone,requiringalimitedZErange,suchthatconsiderationofinter-urbanmobilitydevelopmentsneedtobeconsideredforthisextra-urbanmode.Consequently,mediumsizedcarorlargercarsarethevehicleofchoice.Thevehicleownershipismostlikelytobeprivate(oreffectivelyso).Consequently,thefollowingresearchneedsand/orquestionsmightbeidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,“howmightthesupplyandshareofnet-zerocarbonenergycarriersbemostrapidlyincreased?”•Forthevehicleandpowertrain,“howmightthechoiceofZEragebesegregated?”•Fortheinfrastructure,“howmightthesupplyofnet-zerocarbonenergycarriersbeprioritised?”•And,forsocietyingeneral,“whatpotentialfutureservices(e.g.relatedtoSOCmanagementorcomfortversusenergymanagement)mightbeofferedtothesevehicles?”.Considering,finally,anotherusecase,thelong-distancecommercialvehicleoperationin2030,thiswillincludejourneysbetween300,often600and1000km,mostprobablyone-way,whilstrunningatabove16tonnesGVW,outsideofurbanareas,ZEzones.Assuchthiswouldincludetrucksandlong-distancewww.ertrac.orgPage125of169FinalVersioncoaches.Here,theprimarydeterminantofusewillbeoperationaleffectivenessandefficiency,determinedinpartonagravimetricorvolumetrictotalcostofownershipbasis.Consequently,thefollowingresearchneedsand/orquestionsmightbeidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,“howquicklyanddenselycanfastcharging,hydrogenandnet-zerocarbonhydrocarbonliquidfuelrefuellingcapabilitiesbeachieved?”•Forthevehicleandpowertrain,“whatarethelimitsoffuturepowertraincomponentreliability,durabilityandsafety?”,“whatarethelimitsforthegravimetricandvolumetricpowertrainarchitecturesandhowmightregulationbedevelopedtorecognisethiswhilststillenablingimprovementsinoperationalefficiencyandreductionsinitscarbon-intensity?”•Fortheinfrastructure,is“whatopportunitiesaretherewithindepot,forcharging,refuelling,energycarrierconversionandsmartenergymanagement?”.Whilstthepossiblerisksrelatedwithindividualusecases,usagemodelshavenotbeen(andpossiblyshouldbe)derived,itisfoundthatthroughthisanalysissomeresearchneedsareidentifiedthatarebeyondtheusualERTRACvehicletechnologyrelatedareas.Whatbecomesclearfromthisconsiderationofusecases,usagemodelsisthat,especiallyforindividualmobility,weshouldensurewealwayshaveachoice(withvaryingcosts)evenasthesystemchanges:thequalityofmobilityneedstoberetained.Further,thatconnectivity(analogoustoperfectinformationsupplyincommerce),throughdigitalisationand,possiblyrealisedthroughautomation,givesustheopportunitytooptimiseboththeindividualmobilityefficiencyandmobilitysystemefficiencyconcurrently(relativetowhatparameterswedeterminemostappropriateinanyincidence,e.g.energyefficiency).Moreover,thatsuchconnectivitygivesusameanstoinvestigate,topracticeadaptiveandprognosticcontrolwithinthesystem.Asystemsapproachviaconnectivitywillrealise,thusdemandsystemchanges,realise,forexample,modalshiftsandmobilityasaservice.Hence,connected,collectivemobilityshouldcostless(givenanequalbasisforenergyandinvestmentcosts)andservicecostsshouldreduce,utilityfactorsshouldimprove.Onemightconsiderthisamovetowardsrationalmobility,analogoustotheidealoftherationalconsumer.5.5OtherAspectsTheERTRACCO2Evaluationacknowledgedthatthequestion,“Whatisthebestfuel/fleetcombination?”(which,fromasystemperspective,isequivalenttothequestionposedoftenbyindividualusersandinsuchusecases),couldnotbeansweredbythestudy.Specifically,systemoptimisationcannotbebasedonanextremescenarioapproach.Furtherresearch,innovationanddevelopmentworkwillbeneededtoassessandestablishtheoptimalsolutions,onthebasisofvariouscriteria.Suchcriteriawereidentifiedas:•Energyproductionandstoragecapacity;•LifeCycleAssessment(LCA)toaccountfortheemissionsandenergyrequiredforinfrastructureandvehicleproduction;•Investmentsininfrastructureandenergyproductionfacilities;•Costofenergyproductionanddistribution,aswellasvehicletechnologydevelopment;•Landuse,wateruseandotherresourcesneeded;plustheirallocationbetweendifferentsectors;•Differentlocationsforenergyproduction(EUorMENA-Region);•Customeracceptanceofspecificvehicletypesandfuels;•TheacceptanceofCCS.Itisnotedfromtheconsiderationoftheelectricityneedsofthedifferentscenariosinthestudythatthereisa“Widevariationintotalelectricityrequest:Rangebetween600TW.hupto4400TW.h(representingfrom~20%upto~140%oftotalEU-28electricityconsumptionin2019(3220TW.h).”Furtherresearchissuggestedtoreducethesizeofthisrange.www.ertrac.orgPage126of169FinalVersionItisnotedfromthedifferentscenariosthat“Thedifferencesbetweentheelectricityscenarios(RESand1.5TECH)areprettysmall.”Furtherresearchmightbetounderstanddifferencesrelatedtootherimpacts,apartfromenergyneeds,betweenthetwoscenarios.Itisnoted,fromtheconsiderationoftheoverallWTWenergyneedsofthedifferentscenarios,that“TheshareofTTWinthewholeWTWenergyconsumptionvariesbetween~50%upto90%,increasingwiththeleveloffleetelectrification.”Thevalidityofthisvariationneedstobeestablishedwhenalsoconsideringotherlife-cycleaspects,suchastheenergyneedsrelatedtothemanufacturingofthevehicle,inparticularhowthosechangee.g.withtheinclusionofbatterymanufacturing,whichisnotpartoftheexistingstudy.Itisnoted,fromtheconsiderationoftheoverallWTWenergyneedsofthedifferentscenarios,that“E-Fuelsproductionwithout100%renewableelectricityisnotareasonablescenario!”:thismaybetruefornet-zeroat2050,butise-fuelsproductionearlier,without100%renewableelectricityareasonablescenario?Whatdoweneedtoknowtoanswerthis?Isitreasonableintheramp-upphaseasalongasthe“long-term”pathwayleadstothe100%renewablescenario?Thesequestionscouldbeansweredwithfurtheranalysisconsideringdifferentparametersandperspectives.Itisnotedthat,“Thedemandforfuelsdecreasessignificantlyinallscenarios”(inhighlyelectrifiedscenariosupto95%).Whatarethesocio-economicconsequencesthereof?Since,forexample,thiscanhaveanimpactonthescale-economyofliquidfuelproductionthatwouldhaveconsequencesforothersectorsaswell.Thesearealsoareasforfurtherresearch,beyondthosetraditionallyaddressedbyERTRAC.Similarly,itisnotedthat,“Thetotaldemandforelectricityinroadtransportwillincrease(energyproduction+useinvehicle)”.Whatarethesocio-economicconsequencesthereof?Furthermore,researchneedsfromotheraspectsmightbederivedfromtheconsiderationsinSection5.4andbeyond,forexample:•Determinationofthebalancebetweentechnicalandsocietalmatters,theirratesofchange;•Societalacceptance,givenfuturescenarios,ofothersourcesofdecarbonisedelectricity,energy,suchasnuclearpowercomparedtolongertermissues(e.g.wastemanagement);•Systemsecondordersensitivities,ratesofchangepossible,andtheratesofchangeofthesethatareacceptable;•SocietalTCOaspectsofandsolutionsandpathwaysthereto.Inaddition,thereweresomecaveats,whichimplyfutureresearchneedsandnecessarycontinuingreferencetootherstudies:•Thisstudyexploreddifferentcornerscenariosbasedonastaticfuelandfleetmodellingexercise;•Theanalysisdoesnotincludedynamicmodellingorprediction;theresultsoftheanalysisshouldbeconsideredasestimatesforcomparativepurposes;•Theanalysisdoesnotdrawconclusionsonfuelandelectricityavailability,competitionwithothersectorsdemand,economics,societalacceptance...especiallythefundamentalsofsupplyversusdemand.www.ertrac.orgPage127of169FinalVersion6ResearchrecommendationsIntroductionBaseduponthereviewofthestateoftheartandtheprimaryissuesrelatedtoeachoftheaspectsofenergycarriers,powertrainsandinfrastructures,togetherwiththeconsiderationoftheusecasesandefficienciesinfutureroadmobility,awiderangeofneedsforfutureresearchforroadtransportcanbeidentified.Thesearelistedinthischapterandrepresenteddiagrammatically,peraspectoveraselectionofdifferentTRL.Theresearchneedsidentified,eachinrelationtotheGHG-neutralityobjectiveandairqualitytargetscompliance,arecolourcodedinlinewiththefollowingdefinition:•Blue,inlinewithafullbanofinternalcombustionenginesales:-Thiscolourcodecoversresearchneedsrelatedtozero-tailpipeemissionstechnologies,inascenariowhereinternalcombustionengineswouldbebannedfromsalesforallcategoriesofvehicles(includingpassengercars,lightcommercialvehiclesandheavy-dutyvehicles);•Yellow,requiredtoachievetheobjectiveandbysomelegislation(e.g.theRenewableEnergyDirectiveorEuro7)whilstincludingthesaleandcontinueduseofinternalcombustionenginedvehicles:-Thiscolourcodecoverstwocategoriesofresearchneeds:oAfirstcategorycorrespondstodevelopmentsrequiredbysomeexistingpiecesoflegislation.Forinstance,accordingtotheRenewableEnergyDirective(RED),advancedbiofuelsande-fuels(RFNBOs)willneedtobesuppliedby2030,whichrequiresresearchanddevelopmenttoensurethesolutionsareavailable.AnotherexampleisEuro7,whichtriggersresearchanddevelopmentneedsforpassengercars,lightcommercialvehiclesandheavy-dutyvehicles,notwithstandingapartialoffullbanoninternalcombustionengineswhichmighthappenlateron.IndependentofanICE-ban,theseresearchneedsarerequiredatleastduringaperiodoftransition;oAsecondcategorycorrespondstotheachievementofclimategoals.Forinstance,independentofanICE-ban,GHG-neutralfuelsarerequiredtomeetclimategoals(andtheyhelpreachingnetGHG-neutralitysooner),astheyactonthelegacyfleet.InsomescenariosthatdonotincludeafullICE-ban,ICEcouldbeusedinthelongerterm(i.e.post-2050)andstillcomplywiththeclimatetargets.Thesecouldalsorequirethefurtherdevelopmentofadaptedpowertraintechnologies;•White,additionaltopics,beyondtheobjectiveandtargetsabovebutrelatedtothetopicofthisdocument,thesetopicsareoftentransversal:-ThiscolourcodecoversresearchneedsnotdirectlycoveredbytheEUGreenDealnortheFit-for-55Package,relatedornotrelatedtoclimategoals.www.ertrac.orgPage128of169FinalVersion6.1Recommendationsforenergycarriersforroadtransport6.1.1ElectricityAsresearchrecommendationrelatedtoelectricitygenerationarenotspecifictoroadtransport(becauseelectricityisprovidedtoalmostallsectors),theywillnotbedetailedinthisdocument.TheycanbefoundinthereportspublishedbyETIPSNET102(EuropeanTechnology&InnovationPlatformsforSmartNetworksforEnergyTransition,whoseroleistoguideResearch,Development&Innovation(RD&I)tosupportEurope’senergytransition).6.1.2Liquidfuels6.1.2.1FeedstockfortheproductionofliquidfuelsBiomassBiomassisusedasafeedstocktoproducebiofuels.Agreatdiversityofbiomassexists.IntheRenewableenergydirective(REDII)alone,morethantwentydifferentresourcesarelisted.Today,thereisnoconsensusonhowtoregroupbiomasscategories.Somecategoriesarelinkedtothecompositionofthebiomass,as“Lignocellulosic”,whilesomearelinkedtotheoriginofthebiomassortheiruse,as“Food&Feed”.InREDIIcategoriescorrespondto:•Conventionalfeedstock:biomassthatcouldbeusedinthefood&feedsector;•Advancedfeedstock:listedintheAnnexIXpartAoftheREDII,andcanbesplitinthefollowingcategories:oAgricultural&forestryresidues(e.g.straw,cornstover,bagasseetc.);oIndustrialresidues(e.g.sawdustandblackliquoretc.);oWoodyandgrassyenergycrops(e.g.Poplar,willow,ryegrass,miscanthusetc.);oAlgae&micro-organism(autotrophicandheterotrophicorganisms);•Others:listedintheANNEXIX,partB,i.e.UsedCookingOil(UCO)andanimalfat.Transportrepresentsonlyaminorpartofthebiomassusedforanenergypurpose(lessthan10%).Itisoneofthereasonswhytheprospectiveevaluationofbiomassavailabilityforbiofuelproductionisadifficultexercise.Theestimatesarecalculatedwithmodelsbasedonseveralassumptionsincluding:•Theusagecompetition;•Theyieldandtheavailableplantationarea;•Thesustainableamountofresiduesthatcanberecovered;•Thefooddemand.Consequently,theestimatesvarygreatlyfromonestudytoanother.Theyalsovarydependingonthetypeofbiomass,eachtypefacingdifferentchallengesthatcanaffecttheiravailability.Beyondtheevaluationofbiomassavailability,furtherevaluationsmustbeperformed,suchas:•Evaluatingtheimpactofbiomasscultivationandcollectiononbiodiversity;•Evaluatingthepotentialofactuallymobilizingbiomass,fromitscollectiontoitsdeliveryinabiorefinery;•Optimisationofpracticesforenergycrops,algae&micro-organism.102https://smart-networks-energy-transition.ec.europa.eu/publications/etip-publicationswww.ertrac.orgPage129of169FinalVersionTable24:ResearchneedsforEnergyCarrierswww.ertrac.orgPage130of169FinalVersion“Green”hydrogenisobtainedthroughwaterelectrolysisbymeansofrenewableelectricity.Severaltechnologiesareproposed,ofwhichalkalineelectrolysiscellsaretechnologicallymatureandprotonexchangemembranesaretechnologicallyadvanced.Othersolutionsareunderdevelopmentorresearch.Amongsttheresearchneeds,theliteratureliststheco-electrolysiswithCO2,underpressurizedstackoperation,aimingattheavoidanceofthereversewatergasshift(RWGS)stageandthereductionofcosts.Researchonco-electrolysisofSolidOxideElectrolysisCell(SOEC)toreducestart-uptime,andimproverampingflexibilityisproposed,allowingforthereductionofbatterysizeandinvestmentcost.Processheatintegrationandoptimisationoftheoperatingconditionspromotinginternalmethanationhavealsobeenproposed.ResearchonplasmachemicalconversionaimsatincreasingthepowerdensityandconsequentproductivityandeasingconditionsforsplittingCO2throughvibrationalexcitationofthemolecules.Plasmatechnologyincreasesproductivitybyafactorof10byvolumeascomparedtoSOECelectro-chemicalconversion.However,thetechnologyrequirestheoptimisationofthereducedelectricfield,andthereductionoftheCO2gastemperaturetoincreasedenergyefficiency.Oneofthemainchallengesofgreenhydrogengenerationfore-fuelsproductionisthecouplingofintermittentrenewableelectricitywithcontinuousfuelproduction,requiringelectricityand/orhydrogenstoragefacilities.Table25.TRLofprocessesforgreenhydrogenproductionandCO2capture[Cerulogy2017]103WasteplasticWasteplasticcanbeusedforproducingfuels.TheuseofwasteplasticisgovernedbytheEUwastemanagementlaw,andthewastehierarchymustbefollowed.Therecoveryofwasteforotherpurpose,suchastheproductionofbiobasedfuel,isallowedonlyifprevention,reuse,andrecyclingarenotpossible.Inaddition,wasteplasticshouldbeusedforfuelproductiononlywhenthewaste-to-fuellife-cycleemissionsresultinaGHGemissionsreductionrelativetofossilfuelswhenconsideringtheemissions103Cerulogy2017.WhatroleisthereforelectrofueltechnologiesinEuropeantransport’slowcarbonfuture?https://www.transportenvironment.org/sites/te/files/publications/2017_11_Cerulogy_study_What_role_electrofuels_final_0.pdfwww.ertrac.orgPage131of169FinalVersionassociatedwiththepreviousdispositionofthewaste.Thiswilllimittheplasticquantitiesavailableforfuelproduction.theestimatedEUvolumesofnon-recyclableplasticwastesis10Mt/y,where37%islandfilled.Thismeansthat3.7Mt/ycouldpotentiallybeusedfortheproductionofrenewablefuels,whichcanbeseenasaquitesmallpotentialconsideringthatitisspreadalloverEurope.6.1.2.2Biofuels‘Food&Feed’/‘Firstgeneration’/‘Stateoftheart’biofuelsTransesterificationisanindustrialisedprocessavailabletoproduceFAMErenewablefuel.Ithastheadvantageofallowingtheconversionofvegetableoilintoestersunderlowtemperatureandpressure,relativelyshortreactiontime,andtoensureahighconversionrate.Theprocesswasoriginallydevelopedfortheupgradingofvegetableoilandwasexpandedtoalltriglycerides,asareanimalfat,usedcookingoil(UCO)anddedicatedenergycropsforvegetableoilproduction.Theindustrialisedmethodoftransesterificationisthroughhomogeneouscatalyst.Recentinvestmentandresearchaimsat:1)theexpansionoftheprocessontoadvancedfeedstockrequiringintensifiedpre-treatmentand,2)thetechnicaldevelopmentofnewmethodstoimprovetheprocessselectivityandconditions.Hydrotreatmentisflexibleinitsfeedstockrequirementsallowingtheuseofvegetableoils(HVO),wasteandresiduematerials.Possiblefeedstocksaretriglycerides,sourcedfromvegetableoil,UCOoranimalfat.Theprocessrequiresapre-treatmentofthefeedstock,whichensuresobtainingafeedstockabsentofimpuritiesandcompatiblewithhydrotreatmentprocessthatwillnothavenegativeeffectsofitsoperation,independentlyofthefeedstockoriginandproperties.Thepre-treatmentstepshavemadesignificantprogressoverthelastdecadeandarestillevolving.Otherresearchactivitiesconcernthehydrotreatmentprocessitself,whichisacatalyticprocess.Researchworksoncatalystdevelopmentindicateahighconversionupto99%,thatcanbedeterioratedduetocokedeposit,andrequiringregeneration.Developmentoftransitionmetalphosphides(TMPs)catalystsforthehydrodeoxygenation(HDO)hasbeenencouragedastheyareacost-effectivesolution,presenthigherresistancetowater,anddonotrequiresulphurfeed.Otherdevelopmentsincludecatalystproductiontomaximiseconversionofspecifictorenewableresourcesaswastecookingoils.Undesiredreactionsaspolymerisationandcokeformationaretobeavoided,astheycandamagecatalyticconversionandcancountfor2to30wt.%ofthefeed.Themainchallengeofhydrotreatmentprocessistheavoidanceofcokeformation.Forthis,itisdesiredtominimizepolymerisationandcondensationreactionsthatoccurathightemperature.SomesolutionsarethereductionoftheHDOactivationenergy,theincreaseofHDOreactionrates,andavoidfasttemperaturesincreasewithintherangeof200-250°C,abovetheHDOreactionrate,aspolymerisationwouldquicklytakeplace.Otherresearchneedsobservedintheliteraturearecatalystmaterials,catalystsuitableforhydrogenatingcarbonylsintoalcohols,dehydratingalcoholstoolefins,andsaturatingolefinsintoalkanes.Furtherresearchisproposedoncatalystsurfacepropertiesaffectingreactionmechanism,andtechnologiestoreduceconventionalH2consumption.Theeconomicfeasibilityofadvancedbiomasspre-treatmentispoorlydocumented.‘Advanced’biofuelsBiomasstoLiquids(BtL)viaGasification+FT.GasificationfollowedbyFisher-Tropsch(FT)productionofwaxes,andupgradingtoalkanes,isaproventechnologythathasbeenappliedtocoalsincemid-twentiescentury.Extensiontoprocessapplicationtolignocellulosicrenewableresourceshasgainedattentionandpilottodemonstrationplantshaveservedtoconfirmthetechnologyreadiness.Severalresourcesoflignocellulosecompositioncanbeusedasfeedstock,asareagriculturalandforestryresidues,woodyandgrassyenergycrops,andindustrialresidues(biomass).Theprocesscountsoffourmainsteps:pre-treatment,gasification,gascleaning,andFischer-Tropschandupgrading.www.ertrac.orgPage132of169FinalVersionThemainsgoalsofpre-treatmenttechniquesaretoincreasethevolumetricenergydensity,tohomogenisethebiomasscomposition,andtofacilitatethecontinuousflowofthebiomassintogasifier.Researchanddevelopmentofdrybiomasspre-treatmentaimsatimprovingtheefficientandhomogeneousheattransfer,thetreatmentofinertgas,optimisingorprocessinggas(CO,CO2)andparticledischarges,andimprovingtheflexibilityofoperationbetweenstart-upandsteady-statephases.CurrentresearchanddevelopmentworksrelatedtogasificationaimatadaptingthebedconditionstooptimisesyngascompositionforaFTprocess,improvingyield,ensuringacontinuousflow,andtheintegrationontoFischer-Tropschstage.CleaningandconditioningofbiosyngasiscriticalforcorrectfunctioningandhighyieldofFischer-Tropschstage,asimpuritieswouldresultincontaminationanddeactivationoftheFischer-Tropschcatalyst.Morespecifically,aratioofH2:COof2:1isnecessarytoensuremaximalconversion.Gascleaningmustbedesignedtoallowhighcontrolflexibilityasimpuritiesaredependentonthebiomassandthegasificationtemperaturecontrol.Gasqualitycontrolcanbeemployedusinganalyserscapableofdetectingimpurities,asforexamplesulphuratppbconcentrations.TheFischer-Tropschprocessisacollectionofpolymerisationreactions.Reactorsascobaltandironareknowntoincreasereactionrates,butothermaterialsarealsoresearched.Forexample,cobaltreactorsarebetteradaptedtodieselfuel,whilerutheniumismostefficient(yield)catalystbutismoreexpensive.Figure57.SummaryoftheTRLofprocessesforadvancedbiofuelsproduction104.Reactiontemperature,reactorpressure,andspacevelocityhaveasignificantinfluenceonFTcatalystactivityandproductselectivity.ResearchonFischer-Tropschcatalystsaimsatimprovingefficiencyand104SustainablebiomassavailabilityintheEU,to2050,C.Panoutsou,ImperialCollegeLondonforConcawe,2021.https://www.concawe.eu/wp-content/uploads/Sustainable-Biomass-Availability-in-the-EU-Part-I-and-II-final-version.pdfwww.ertrac.orgPage133of169FinalVersionmaterialselection,andintegratingFischer-Tropschandisomerisationreactionsintoonestage.Furthermore,someresearchworksfocusonefficient(massconversion)androbustFischer-TropschcatalyticsystemforconvertingH2deficientandCO2containingsyngas,athighC5+selectivityinordertoavoidtheintegrationofawater-gas-shiftstageandtoreducecost.HydrothermalLiquefaction(HTL)+upgrading.TheR&DchallengesforHTL+upgradingfuelproductionare:•Co-Liquefaction,whichcanimproveeconomicsbyenhancedfeedstockavailability;•Watermanagement;•Co-processingwithcrudeoilinarefinery:threeEuropeanprojectsconsiderHTLbiocrudeco-refining:4refinery,Waste2Road,HyFlexFuel;•Moregenerally,upgradingofHTLproductstofuelproductsisanimportantR&Dchallenge;•Biocrudefractionation;•Theaqueousphasemanagementisoneofthemainbottlenecksforprocessscale-up.Pyrolysis+co-processing/upgrading.Here,twodifferentprocessesshouldbelisted:•FastPyrolysis:somefull-scaleindustrialplantsalreadyexist(GreenFuelNordicplantinFinland,PyrocellplantinSweden).Itconsistsinathermochemicaldecompositionofbiomassresiduesthroughrapidheating(450-600°C)inabsenceofoxygen.Differenttypesoflignocellulosicbiomassresiduesareconvertedintoonehomogeneousenergycarrier:FastPyrolysisBioOil(FPBO).FPBOis“anemulsionofligninfragmentsinasugarsyrup”.Itisadarkliquid,butnotatypicalrefineryfeedstock.Itistypicallyco-processedwithcrudeoilinarefineryinaFCCunit,upto5%atindustrialscale,andupto10%atpilotscale.TheR&Dchallengesarerelatedtoincreasingtherateofco-processingandupgradingthebio-oiltofuelsproductsthroughotherpathwayssuchasHydrotreating,HydrocrackingorGasification(+Fischer-Tropsch).•SlowPyrolysisisarobustandmaturetechnologywithmanyreactortypesavailableatanysize.Itisamulti-feedstocktechnologyfocusedonsolids.Forthistechnologyaswell,theR&Dchallengesarerelatedtoupgradingthepyrolysisproductstofuelproducts.Alcoholtosynfuels.Theprocessisanadaptionofthealcoholtojetpathway,forwhichtheindustrialisedstagesarereadilyavailable.Thefirststagesconcerntheproductionofmethanol(e.g.usingbiogas)orethanolthroughfermentationfromlignocellulose.Resourcescanbeeitheragriculturalandforestryresidues,woodyandgrassyenergycrops,orindustrialresidues(biomassresidues).Ethanoliscleanedandsubsequentlydehydratedintoethylene.Toensurehighpurity,theproductundergoesaprimaryseparationandapurification.Thestageisfollowedbyoligomerisationintoolefins,andhydrogenationandfractionationfortheproductionofparaffinsandisoparaffins.Theproductsarerenewablegasoline,diesel,jet,andnaphthainminorproportion.Sugar-to-Diesel.AresearchdemandtowardstheproductionofdieselfuelsorofC4+alcoholsisintheengineeringoforganismscapableofusingbothC6andC5sugarsaswellasanincreasedproducttolerance.Thesupplyofsugarsfromcelluloseandhemicellulosestillisconsumingaremarkableamountofenergyduringtheproductionprocess,soitisvitaltoprovidelowenergyintensiveprocessestodepolymerisecelluloseandhemicellulose.Separationtechnologiesalsoplayamajorroleintheproductionprocessandisenergyconsuming.Moreefficientseparationtechniqueswillthusberequiredforanimprovedsustainability.Algaetoliquidtechnologies.TheR&Dneedsofalgaeasdrop-infuelscoverthefullrangeoftopicsfrombasicbiologytoengineering:•Theecologyofalgae,theirlipidproductivityandcomposition,growthratesandgrowthcontrolhavetobedevelopedandoptimised.Thisdoesnotonlyrefertoyieldratesandstrainimprovementtowardsadesiredfattyacidprofilebutalsotoincreasedtoleranceofcontaminants.•Scaleupisacriticalissueforalgaefuelproduction.www.ertrac.orgPage134of169FinalVersion•Ongoingresearchandcostreductionofefficientcultivationreactorsisofimportance.•Low-cost,high-efficiencyalgaecultivationtechnologyneedstobedevelopedforlargescalealgaeproduction.•Theenergybalanceofcultivation,harvestingandoilextractionmustbeimproved.•Facilitationofsustainablecost-competitivenessofalgaefuels.Thisneedstoincludeidentifyingalgaespecieswithhighoilcontentsandwithhigheryields,butalsodevelopingandoptimisingdifferentstepsinthecultivationprocess.•FurtherR&Dneedstoensureawholevalue-chainapproach,whichtakeseconomic,socials,environmentalandtechnological,aswellasbiorefiningandLCAintoaccount.Biotechnologicalfuelproduction.TheR&Dchallengesforbiotechnologicalfuelproductionare:•Toidentifyand/ormodifystrainsandspeciescapableofproducingvaluablefuelcomponents.Methodsofgeneticengineeringcouldbeusefultoswitchonoroffandtoregulatethedesiredmetabolicpathways.•Toinvestigatecultivationneeds,growthrates,growthcontrol,substratesandenergyefficientharvestingandextractionmethods.•Todevelopenergyandcostefficient,scaled-upcultivationreactors.•Toinvestigateandassessfuelcomponentsontheirpotentialtomakeasubstantialcontributiontofuturesustainablemobility.•Totestnewfuelsandcomponentsontheirpotentialforreducingfuelconsumptionandloweringemissionsincurrentandfuturedrivetrains.•Toensureawholevalue-chainapproachestakingintoaccountthestakeholdersalongthechainandthetechnological,economic,socialandenvironmentalproperties.DimethylEther(DME)andoxymethylenedimethylether(OME).TheR&DchallengesforDMEandOMEare:•Forrenewableproduction,gasificationtechnologybelongstothekeytechnologies.Blackliquorgasification(andthewholechainfromproductiontouseinHDvehicles)hasbeensuccessfullydemonstratedintheBioDMEproject.Furtherdevelopmentofdirectgasificationisoneimportantfieldforfurtherresearch.•Increasingtheproductionenergyefficiencyandtheprocessofsourcingfrombothbiofeedstock.www.ertrac.orgPage135of169FinalVersionTable26.SummaryofproductionpathwaysandTRLforadvancedbiofuelsproduction105-(MSWisMunicipalSolidWaste)105SustainablebiomassavailabilityintheEU,to2050,C.Panoutsou,ImperialCollegeLondonforConcawe,2021https://www.concawe.eu/wp-content/uploads/Sustainable-Biomass-Availability-in-the-EU-Part-I-and-II-final-version.pdfwww.ertrac.orgPage136of169FinalVersion6.1.2.3Fuelsfrompower-to-liquidProducingpower-to-liquids(e-fuels)canusevariousprocesses.Themostmaturepathwaysinvolvee-methanol,producedfrom“green”hydrogenandcapturedCO2,anditsderivatives.ThederivativescanbeobtainedthroughDMEsynthesis(describedabove)orolefinsynthesisthroughdehydration.Fromolefins,hydrocarbonscanbeobtainedthrougholigomerization(alcoholtosynfuelspathwaydescribedabove)orhydrotreating.Alltheprocessesmentionedabovearetechnologicallymaturetodayandavailableatindustrialscale.Anothere-fuelprocessisnottechnologicallymatureyetthough:theoneinvolvingReverseWaterGasShift(RWGS)andFischer-Tropschtoproduceparaffinice-fuel.RWGS,whichisasteptoproducecarbonchainliquidfuelsthroughCO2upgrading,isthetechnologybottleneckhere.ThereactionofCO2withH2toproduceCOandH2OmusttakeplaceathightemperaturetoensureCOselectivity.Theprocessrequiresfurtherresearchanddevelopment.Forexample,nopilottestsareobservedintheliterature,althoughRepsolhasannouncedane-fuelpilotplantinvolvingRWGSby2024106.Publicationsareatlaboratoryresearchandinitialupscalingstage.Amongsttheresearchneeds,itisobservedthattheprocessrequiresdevelopmentofhightemperatureenduringcatalystsasresearchaimsattheavoidanceofseveresinteringofcatalysts.AvoidingthermodynamiclimitationshelpachievehighconversionandsuppressCO/CO2methanation.Researchneedsalsoextendtocatalystsolutionstoavoidthehighcostofnoblemetalcatalyststofacilitatecommercialisation,andtoimprovingprocessstabilityunderrealoperatingconditions.Table27.SummaryofTRLProcessesforE-fuelsSynthesis[Cerulogy,2017]105106Powertoliquids–PTL,Repsol,2021;https://www.concawe.eu/wp-content/uploads/Session-2-Presentation-4-Alfonso-Garcia.pdfwww.ertrac.orgPage137of169FinalVersionFigure58.SummaryofTRLofprocessesforane-fuelsynthesisviaReverseWaterGasShiftandFischer-Tropsch108.6.1.3GaseousfuelsAsresearchrecommendationrelatedtogaseousfuelsproductionconsideredinthisdocument(biogas,andpower-to-gas)arenotspecifictoroadtransport(becausethesegaseouscomponentsareprovidedtomanyothersectors),theywillnotbedetailedinthisdocument.Regardingbiogasmoreparticularly,theycanbefoundinthereportspublishedbyGasforClimate107(Associationaimingatanalysingandcreatingawarenessabouttheroleofrenewableandlowcarbongasinthefutureenergysystem).ThedocumentcontainsanalysisregardingthefeasibilityofREPowerEU2030targetsandproductionpotentialsofbiogasintheMemberStatesandoutlookto2050.107BiomethaneproductionpotentialsintheEU-FeasibilityofREPowerEU2030targets,productionpotentialsintheMemberStatesandoutlookto2050,AgasforClimatereport,July2022.https://gasforclimate2050.eu/wp-content/uploads/2022/10/Guidehouse_GfC_report_design_final_v3.pdfwww.ertrac.orgPage138of169FinalVersion6.2RecommendationsforPowertrainsThevarietyofpowertraintechnologiesenvisagedrequiresnumerousdifferentresearchneeds.Theseareclusteredbelowaccordingtotherelatedsub-chapterandTRL.Digitalisation,asatool,representsanoverarchingactivityforacceleratingthedevelopmentofadvancedpowertrainsandisinherentatallTRLs.Significantadvancementsofdigitalisationcallforbuilding-upknowledgeandcapabilitiesintheareasof:Modellingandsimulation:•Significantadvancementsinpredictivemulti-physicsandmulti-materialmodelsforsimulatingcoupledtransport,thermodynamics,electrochemistry,chemicalkinetics,electromagneticsandmaterialmechanics,aswellasfatiguephenomena,tosupportthedevelopmentofalltypesofelectrifiedpowertrains(generallyappliedatlowerTRLs);•Developmentofconsistentlyscaledandcomputationallyefficientmodels,e.g.reduced-ordermodels,sharingashighalevelofconsistencywiththedetailedmodelsaspossible,toenablehigh-fidelitysystemlayoutanalysisandtheapplicationofthemodelsincyber-physicalsystems,e.g.Hardware-in-the-Loop(HiL)applications,aswellasforon-linemonitoring(appliedathigherTRLs);•DevelopmentofinnovativeinteractionsofAIandphysics-based,detailedaswellasreduced-ordermodelstofurtherboostefficiencyofthedesignspaceexploration;•Developmentofadvanced,physics-basedandAIsupporteddigitaltwins(includingSoXobserversandEoLpredictionfunctionalityforbatteries,fuelcells,electricalmotors,invertersandotherrelevantcomponentsofelectrifiedpowertrains),whichareapplicabletoon-boardandoff-line(cloud)applications,foron-linemonitoring,virtualsensorfunctionalities,modelbasedfaultdetection,modelbasedpredictivemaintenanceandforsupportinghealth-passportfunctionalities,withanaimtoenhancereliabilityandsafetywhilstreducingTCO;•Developmentofadvanced,integratedandinteroperablemodelsoftheentirePLM,includingLCA.Connectivityanddatamanagement:•Developmentintheareaofsafetransmissionandreliablestorageofkeydata,whichisvitalforefficientdataaccesspurposes,conditionmonitoring,anomalyandfaultdetectionaswellaspredictivemaintenance;•Developmentintheareaofstandardizationofdataexchangeanddatamanagementprocedures;•DevelopmentofHWsupportingsafeandefficientdatatransferandprocessing,includingtelemetryenabledfunctionalities.6.2.1RecommendationsforBEVEarly-StageResearchActions(TRL2-3)potentialmarketentry2030-2035•AdvancedpowerelectronicsbasedonbeyondGaN(Ultra-Wide-Band-Gapmaterials);•NovelPCBconceptsandmaterials,includingadditivemanufacturingand3Ddesign;•Extremely,highlyintegratedpowertrainsystemsandcomponents,includingnovelelectricalconnections;•Integratestructuralbatteriestothevehiclechassis(e.g.aspartofthebodystructure);•TelemetryenabledBMS,EMSandxMSarchitectures;•AI-basedhealthmanagement(i.e.self-updatingalgorithmsbasedonin-situdata);•100%fossil-freeenergyformanufacturingandrecycling;•Recyclingwiththehighestefficiencyinmaterialrecovery,atasensiblelevelforLCAandeconomics,referringtotherecyclingstrategyoftheEC(70%),whilstacknowledgingthattherealgoalisacirculareconomy.www.ertrac.orgPage139of169FinalVersionDevelopmentResearchActions(TRL4-6)potentialmarketentry2025-2030:•Right-sizedvoltagelevelsinnovelarchitectures(TRL3or4);•Modularpowertrainarchitectures,ideallysuitedforright-sizingpowertrainandvehicleconcepts;•Integratedelectro-mechanicalcomponentsandcontrolsystemsfunctionality;•Improvementsinthermalmanagementsystemswithstructurallyintegratedliquidcoolingand/orheating;•Improvementsinbatterypacksintegratedintoafullvehiclethermalmanagementsystem;•Improvementsinintegratedthermalmanagement(powertrainwithoverallvehicleperspective)toimproveoverallsystemefficiency;•Air-cooledpowertrainsystems(TRL4);•Lightweightpowertraincomponentsandsystemsforvehicleconcepts;•Newtestingofpacksandmodulesforthephysicalinvestigationofsafetyanddurability;•Swappablebatteries(harmonizationacrossL-categoryvehiclesandclasses):oIdentificationanddefinitionofparametersforharmonizationofbatterypacksandbatterymodulesforspecificvehiclecategories;oImprovementofbatteryrecycling,refurbishingratesthroughsharedarchitectures;oAdvanced,loadpeakshavingandbattery-to-gridtechniques,basedondistributedbatteryswappingstations;oSmartandpredictivebatteryhandlingsystems,basedonusageandageingprofiles;oTechnicalimprovementbasedonwideusageprofilingandclustering.•Researchofstructuralmeasuresandprocessesfortheintegrationofthebatteryintothechassis,vehicleincludingnewmaterial,productionoptions;•Rightsizing:optimisingtheuseofresources(toachievesustainabilityandreducecost)tosatisfythemostrelevantusecasesanduserneedsbytailoringperformanceindicatorsandrequirementsthatharmonizevehiclespecificationsanddesigninaholisticmanner;•Advancedcomponentsandmodulesforintegratedvehiclethermalmanagementtomaximiseoverallvehicleefficiency,designedfortheadoptedsolutions(batteries,EMdesign,invertertechnologiesetc.)consideringcost,weightandsizecriteria;•Achieving,demonstratingunprecedentedsafetythroughaholisticsystemsapproachfromcomponenttothesystemlevel,includingnovelsensorsandobserversplusdigital-twins;•Continuetheresearchonfunctionalintegration,atthelevelofcomponents,systemsandsystemsofsystems,toimproveperformanceandaffordability;•Enabling,establishing/demonstratingofbidirectionalchargingsystemswithincreasedefficiencyandpowerquality,usingwide-bandgappowermodules,convertertopologiesandcontrolsystems.•High-powerautomatedcharging.InnovationActions(TRL7-8)•Demonstrationofadvancedconceptsunderreal-worldconditions(follow-upofearlierTRLs);•Demonstrationoffail-operationalpowertrains;•Dataacquisition(standardized)tosupportfutureAIneeds;•Developing/demonstratingcomfortcharging(fast,wireless,roboticetc.);•Furtherinvestigationinoptimisedpowermanagementtechnologiesforextendedbatterylife,increasedsafetyandreducedenergyconsumption;•Implementationofeco-designprinciplesconsideringmanufacturing,recyclingandtheeconomicsofBEVpowertraincomponents.www.ertrac.orgPage140of169FinalVersionTable28.ResearchneedsforPowertrainSolutionswww.ertrac.orgPage141of169FinalVersion6.2.2RecommendationsforBatteriesBasedontheexplanationsofSection3.2thefollowingresearchneedscanbederived:AdvancedvirtualdevelopmentofbatteriesisoneofthekeypillarsforstrengtheningpositionoftheEUinthebatteryvaluechain.Therefore,inadditiontotheoverarchingdigitalisationtopicsaddressedinChapter3,alargeleapforwardisrequiredinspecificareasofthevirtualdevelopmentofbatteries108:•Developmentofinnovative,fundamental,multi-scale,multi-physicsandAIsupportedmodelstoenableacceleratedoptimisationofmaterialcombinationsandinterfaces,aswellasforthedesignofelectrodesandelectrochemicalcells;•Developmentofinnovative,scale-bridgingapproachestosuccessfullytransferkeyaspectsfromlower-scalemodelstocontinuum-scalemulti-physicsmodelsappliedincell,moduleandpackengineering,aswellastoadvanceddigitaltwinswithanaimtoboosttheKPIsofprototypesandfinalproducts.Theabilitytofastchargebatteries(withsmallerstoragecapacities)withoutimpactingbatterylifetimeisanotherdecisiveresearchchallengeforbatteriesfromthesystemperspective.Manyofthedetailedaspectstotacklethischallengeareincludedinthedescriptionofthevariousresearchactionsdescribedbelow:Early-StageResearchActions(TRL2-3)Celltechnology:•Increasetheenergydensityofhigh-powerdensitybatterycellsforrecuperationandfastcharging,includingmaterialsanddesignsforenhancedheatrejection;•Advancedandaffordablelithium-iontechnologiestoachievehighenergyandpowerdensity,aswellashighenergyefficiency,atsufficientlylowdegradationratesandincreasedsafetywhilstoperatinginthedesiredtemperatureranges(Generation3bandGeneration4);•Improvedunderstandingoftherootcauseofbatterydegradation,inordertoimprovefastchargingandV2Gcapabilities;•Fundamentalresearchoninnovativebatterychemistrybeyondlithiumcelltechnology(Generation5);•Integrationofsmartfunctionalities(e.g.,sensingandself-healing);•IncreasetheratiobetweenactivetopassivematerialinthebatterytoensurelowLCAfootprintaswellastosupportefficientandcost-effectivemanufacturabilityandrecyclability•Researchonswelling(overlifetime)andbreathing(overchargecycle)mechanismtoavoidorminimizethevolumechangeandtherelatedchallengesoncellandsystemlevelModule/packsystemtechnologyincludingBMSandTMS:•Celltopackintegrationconsideringdesign,integration,functionality,durabilityandsafetyaspects,aswellasmanufacturabilityandrecycling;•Increasesystemlevelpowerdensityforhighenergydensitybatteriesthroughnewstructuralmaterialsandnewthermal-rejectionmaterials,aswellasmethodsforpassivecooling;•InnovativeTMSforenhancedtemperaturecontrolofbatteriesatminimizedenergyconsumption;•Methodsfordetecting,preventingandsuppressingthermalrunawayandfirepropagation,inordertoincreasesafety;108Thesepointsarerelatedtothebattery2030+initiativeroadmaps,seehttps://battery2030.eu/wpcontent/uploads/2021/08/c_860904-l_1-k_roadmap-27-march.pdfwww.ertrac.orgPage142of169FinalVersion•BMScapableofsupportingphysics-basedSoXcellobserving,aswellasself-healingfunctionalities;includingperformancetrackingonfleetbasis(seebatterydirective)•AI-basedadaptiveBMS(i.e.self-updatingalgorithmsbasedonin-situdata);supportedbycloudlevelsolutions•Establishingacost-effective,circulareconomyformodulesandpacks,includingtechniquesformaterialrecovery(e.g.mechanicaldisassemblyandprocessing);•Post-lithiumbatteryconcepts(packdesignandalltechnicalchallengesdependingonthechoiceofcelltype).DevelopmentResearchActions(TRL4-6)Celltechnology:•Batterydesignswithanoptimaltrade-offbetweenenergyandpowerdensity,durability,safety,fastcharge,costandLCA-footprint,tailoredtospecificapplications(L-categoryvehiclesanddifferentLDVsaswellasHDVs);•Implementationofadvancedbatterytechnologies(monitoring,sensing,data,modelsandpassports)toboostservicelifeandsafety,aswellastoenablemoreefficientsecondlifeuse.•Researchonswelling(overlifetime)andbreathing(overchargecycle)mechanismtoavoidorminimizethevolumechangeandtherelatedchallengesoncellandsystemlevelModule/packsystemtechnologyincludingBMSandTMS:•Lightweightandspecificvolumeoptimised,nextgeneration,high-energydensitybatterypacks,includingTMSandBMS;•Enhanced,intra-packsafetyconceptsthroughsafetybydesignandinnovativemanufacturing(cellbreathing/swellingcompensation,crashconcepts,emergencyconceptsetc.);•Advancedbatterypackdesigntailoredtocellchemistries(structuralintegrity,thermalmanagementandmaterialsincludingmulti-materialstructures);•IntegrationoflowcostandreliableHWandvirtualsensorsforSoXmonitoringandsupportingemergencyfunctionalities;•ApplymethodsandtoolsofbatterydegradationtoimprovefastchargingandV2Gcapabilities;•ResearchonintegrationofBMS,TMSetcintotheoverallvehiclecontrolsystem•BMSforadvancedchemistries,includingSWandHWenhancementstosupportadvancedSoXandsafetyfunctionalities;supportedbycloudlevelsolutions•Innovative,low-costconceptsforcellbalancing,featuringlowweightandhighenergyefficiency;•Acceleratedtestandvalidationofmodulesandstacksformassmarketapplications;•Developmentofinnovativehigh-voltageelectricalcomponents;•Activitiesforstandardizationatthemodulelevel,includingsensingfunctionalitiesandcommunicationprotocols;•Researchonstructuralbatteries(e.g.aspartofavehiclebodystructure);•Researchonmodularpackdesignstoenableend-of-lifemanagementandflexiblesecond-lifeusage;•Implementationofeco-designprinciplesforbatteriesonsystemlevel•Integrationofsafetyrequirementsforpacksandhousings,includingcooling,intothebatterytechnology.Manufacturing/materialrecovery:•Optimisationofthemanufacturingprocessforcostreduction,minimizingenvironmentalimpact,andenhancedqualityofcellsandpacks(qualityimprovement,reductionofenergyconsumption,minimizationoftheprocesssteps,increaseinprocessspeedetc.);•Optimisationoftheentirechainfromrawmaterialstobatterypackproduction,tocomplywiththeprinciplesofacirculareconomy,withanaimtoreducethelife-cycleimpactofbatteries;www.ertrac.orgPage143of169FinalVersion•Developmentandoptimisationofmethodforhighvolume,highefficiencyandlow-costmaterialrecoveryandintegrationintocirculareconomy.InnovationActions(TRL7-8)•Demonstrationofenhanced,lithium-iontechnology(Generation3bandGeneration4)developedwithadvancedsimulationtools,developmentmethodsandadvancedmanufacturingprocesses;•Demonstrationandvalidationofnovelbatteryconceptsunderreal-worldconditions;•ConfirmingthattheKPIs(technical,durability,safety,economicandfinancial)canbemetwhilstprovidingcompellingeconomicandenvironmentalcasesfortheendusersofthetechnology.•Researchonswelling(overlifetime)andbreathing(overchargecycle)mechanismtoavoidorminimizethevolumechangeandtherelatedchallengesoncellandsystemlevel6.2.2.1ForBatteryMaterialsIngeneral,inrelationtomaterials,specificallytheprovisionthereof,thereisaresearchneedtodecreasetheuseofrarematerials(e.g.recycling,improvingdesigns)ortheneedtofindsuitablereplacements.Generation3:AdvancedLithiumFortheGeneration3aresearchtopicsare:•Atthecathode,NMC811:promisedhighercapacity,aswellashighersafetyaspects,howeverthemanufacturingandthefast-ageingpropertyistodayachallenge;•Attheanodeside:carbon(graphite)+siliconcomponent(5-10%)areresearchtopicsforcyclingstabilityandcorrosionstability.Generation3b:•Atthecathodeside:HE-NMCneedsfurtherresearchforstability,manufacturingandlifetime,alsoHV-spinelsystemsareunderconsiderationforahighercellvoltage(5V),howevertheexpenseofenergycontentistodayunderintensiveresearchtogetthesamevaluesastheNMC811material.Generation4:Allsolidstate,lithiumionorlithium-metalSolid-statetechnology:Generation4aisdealingwithpolymersolid;Generation4bisdealingwithallsolid-stateLimetal:•ResearchisneededsothatEuropeisnotlosingcompetitivenesstootherregions.•Researchtodecreasethetendencytobuilddendritesandinhomogeneousplating•Gen4c:researchoncreating/enablinganelectrolytebeingstableathighervoltage•ResearchontechnologiesfortheproductionofseparatorsGeneration5:LithiumAir,LithiumSulphurFurtherresearchneedswillbeidentifiedinthefuture.•Researchonactiveelectrolytestominimize/avoidunwantedreactionswithcontactpartners(e.g.lithiumvssulphur)BeyondGeneration5,post-lithiumtechnologiesneedtoberesearched.6.2.3RecommendationsforvehiclesusingElectricRoadSystemsTheresearchneedonthevehiclesideisaboutadaptingBEVtodynamicchargingapplications,whichrequiressystemssolutionsofthekindalreadymentionedinSection3.3.Inrelationtocatenarysystems,thetechnologyisalreadyatahigherTRL,thechallengesarefurtheroptimisationofthecost,weight,volume,standardization,regulationetc.Hence,thefollowingaresuggested,particularlyrelatedtotheothertypesofelectrifiedroadsystems:•TRL4-6:Researchonsafetysolutionsforgroundedsupply;www.ertrac.orgPage144of169FinalVersion•TRL7-8:Developmentandadaptionofspecificonboardsystems;•TRL4-6:researchonsafetymeasuresfordifferentkindofpossiblefailures(suchascablebreakages);•TRL7-8:researchonsmartenergymanagementtoavoidalackofpowersupplywhenmanyvehiclesareusingthesystematthesametimeandclosetogether.6.2.4RecommendationsforFuelCellsEarly-StageResearchActions(TRL2-3)Fundamentalimprovementsareavailableforallofthefuelcellvehiclecomponents.Keyareasofresearchinclude:Fuelcellstacktechnology:•Developmentofnewtechnologiestowardsimprovedareaandvolumetricpowerdensity,increasedreliabilityandextendedlifetimevalidationatthesinglecellandshortstacklevel;•Increasetheefficiencythroughdesignandmaterialstoreducethermallosses,henceminimisethecoolingeffort;•Technologiestoenablecostreductions;•Technologiestoallowoperationathighertemperatures(100C)soastoreducethecoolingsystem(packagingetc.)requirementsinvehicles.Fuelcellsystemtechnology:•ImprovementordevelopmentofstrategicBoPcomponentsanddesignofsystemsforlowcostandscaled-upmanufacturing;•Developmentofnew,disruptiveconceptstowardsimprovedvolumetricandgravimetricpowerdensityandincreaseddurabilityofHDVsystems.On-boardstoragetechnology:•Developmentofnewmaterialsforhighpressuretanks,enhancingthepropertiesofthelinerandtargetingcostreductionofthereinforcement;•Developmentofnovelstorageconceptstoimprovestoragedensity,includingsolidcarriers,pressurizedtanksandliquidhydrogen;•Developmentofrecyclingtechnologiesthereto.Recycling(LCA,CircularEconomyapproach):•RecyclingforFCStackstoregainPt,Au,allpreciousmetalsingeneral;•RecyclingforH2storage,tacklingcarbonfibrerecycling,whichhascomplexityduetotheresinsused.Attentionwillalsobepaidtodevelopingsystemsforscaled-upfuelcellmanufacturingplants.DuetothehightechnicalmaturityofFCEVs,thereisnotacaseforearlyphasedevelopmentprojectsatthewholevehiclelevel.DevelopmentResearchActions(TRL4-6)Developmentprojectswillworkonexistingtechnologiesdeployedinrealsystems,including:Fuelcellstacktechnology:•Stacklevelimprovementsforhighersystemperformance,durabilityandreliability(includinggamechangingconceptsforcorecomponents);•Developinglow-costconceptsandimprovingmanufacturability(processes,automation,qualitycontroltools,inlineandendoflinediagnostics).Fuelcellsystemtechnology:•Improvingsystemmanufacturability;www.ertrac.orgPage145of169FinalVersion•Optimisationofthesystemtodifferentusecases(e.g.withinheaviercommercialvehicles),targetingimprovedperformanceanddurability(e.g.,hybridizedpowertrains,rangeextender,advancedtoolsandmethodsforimprovingcontrolandstrategies.On-boardstoragetechnology:•Developmentandvalidationofintegratedmountingconcepts,safetybydesignandinnovativemanufacturingtechniques;•Integrationoflowcostandreliablesafetysensorsforstructuralhealthmonitoringandfiredetection.Integration:•Systemintegrationintodifferentvehicletypes(classes),developmentofBoPcomponents,benchtestvalidationofcompletedrivetrains,packagingandvehicleintegration;•Supplieridentification,benchmarkingandstandardisationatacomponentlevel.InnovationActions(TRL7-8)DuetothesupportoftheFCHJUandHorizon2020funding,multipledemonstrationprojectshavealreadybeenabletoprovethereliabilityandtechnicalreadinessofFCEVs.Asaresult,theonlydemonstrationprojectsneededover2021-2027willbedemonstratinglessdevelopedusecases,suchasheavy-dutylong-haulFCtrucks,heavy-dutyoff-roadFCvehiclesand,toalesserextent,FCvans.6.2.5RecommendationsforFuelCellsforCommercialVehiclesAsabove,referenceshouldbemadeheretotheCleanHydrogenEuropePartnershipSRIAandtheresearchprojectsfromtheprecedingJU109.DevelopmentResearchActions(TRL4-6)Buildingonthedevelopmentworkalreadyunderwayinthissector,atargetedprogrammeofsupportcanhelptocoverthecostsoffurtherdevelopmentactivitiesandattractagrowingnumberofsuppliers.Thereisacaseforfundingtosupportnon-recurringengineeringcostsandprototyping/developmentactivities,including:•EstablishingFCHDVspecificationsrequiredtomeetuser’sneedsandregulationconstraintsforarangeoftrucksizes,dutycyclesandauxiliaryunits(e.g.,refrigeratedfoodtransport)powerdemand.Modelling,optimisationandlifecyclecostanalysistoolsareessentialtosuitablyaddressoptimalHDVandcoachpowertraindesignsandenergymanagement,aswellasdeterminingtheFCrelatedrecyclingpotential;•Prototypingactivities,developmentofcontrol,diagnosticandprognosticprocedure,interfacesbetweensub-systemsandintegrationofFCsystemsandon-boardhydrogenstorageintoFCHDV.Investigationoffutureusageofliquidhydrogen.Developmentofhealthofstatemonitoringconceptsforserviceandmaintenance.Coaches:Adaptingfuelcellsystemsfromothervehicles(urbanbusesorcars)forlongdistancecoaches,developingsolutionsforintegratingfuelcell-basedpowertrainsintocoacheswithoutcompromisingtheutilityofthevehiclesandcertifyinghydrogen-fuelledcoachesinlinewithexistingregulationsgoverningconventionalcoaches.109Seehttps://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_enwww.ertrac.orgPage146of169FinalVersionMinibuses:Adaptfuelcellsystemsfromothervehicles(carsandvans)forminibuses,developingsolutionsforintegratingfuelcell-basedpowertrains(includingFCsystem,electricdrivetrain,hydrogentanksetc.)intominibuses,whilstmaintainingpassengercarryingcapacity,rangeetc.LDVs:Costreductionandspecificperformanceimprovementsviareducedneedforplatinumgroupmaterials,higherfunctionalintegrationatacomponentlevelandstandardizationofcomponents,aswellassub-systems.InnovationActions(TRL7-8)GiventhesimilaritiesandsynergiesbetweentheFCHDV(includingcoaches)andthemarineorrailwaysectors,demonstrationprojectsinthisareacanlearnfrompreviousreal-worldtrials.Furtherdemonstrationsinthepost2020periodshouldfocuson:•Validatingtheperformanceofthetechnologyinarangeofreal-worldoperations,specificallyKPIssuchasavailability,lifetime,efficiencyandownershipcosts;•Preparingthemarketforwiderroll-out,e.g.bytrainingtechnicianstomaintainthevehiclesetc.;•Collectingandanalysingempiricalevidenceonperformance(technicalandcommercial)ofvehiclesandassociatedrefuellinginfrastructure.Exploitingthepromisingsynergiesbetweenhydrogenbasedrenewabledistributedenergysystemsandthetransportsector;•Ensuringtherangeoftrucktypesaretrialled(e.g.,differentweightclassesandnichessuchasrefusetrucks);•Ensurethesafetyissuesassociatedtothesignificantamountofon-boardstoredpressurizedhydrogenarefullyaddressed.SupportfordeploymentofEuropeanheavy-dutyfuelcellsinthebusmarket,andsupportfornewentrantbusOEMsandnoveldrivetrainconcepts.DemonstrationwillberequiredfornewentrantOEMs,fuelcellcoaches,minibusesandLDVsduringtheperioduntil2030.Thescopeoftheseactivitieswillinclude:•Validationoftechnicalperformanceinrealworldoperationalenvironment;•Optimisingsolutionsandmodifyingdesignsbasedonfeedbackfromtrials;•ConfirmingthatKPIs(technicalandeconomic)canbemet,providingcompellingeconomicandenvironmentalcaseforendusersofthetechnology.6.2.6RecommendationsforPHEVandalternativefuelsInternalCombustionEngines:Early-StageResearchActions(TRL2-3)Measurestoincreaseengineefficiencyandminimizeexhaustemissions:•Basicresearchonthecombinedoptimisationofthepropertiesofrenewablefuelsandtailoredcombustionmodes,toexplorethedesignspaceandreachengineeringlimits,intermsofmaximizedefficiencyandminimizedexhaustemissions;•Developmentofnewmaterialstoreduceheattransfer,minimizefrictionandwear.DevelopmentResearchActions(TRL4-6)Measurestoincreaseengineefficiencyandminimizeexhaustemissions:•Technologytomaximisethebenefitsoflowcarbonfuels(“Dedicationtolowcarbonfuels”);•DeterminethehighestinjectionpressureforCI(2000++bar)andSIenginesforrenewablefuels,tooptimisecombustion.•Createafullyvariableanddynamicairpathtooptimisetransientengineoperation;www.ertrac.orgPage147of169FinalVersion•IncreasetheperformanceofignitionsystemswhenrunningwithrenewablefuelsandhighEGR,dilution,soastoreducethecyclicvariability;•Dedicatedcombustionstrategies(lean,stratified,controlledautoignition(CAI)etc.)tailoredincombinationwithrenewablefuel(s);•Characterisationoffuelpropertiesandtailoredcombustionmodesbylaboratoryengine(andother)teststodeliverdatafordigitalmodels;•Advancedphysicaland/orvirtualsensors(e.g.fastlambdacontrol)andclosed-loopcombustioncontroltotailorcombustiontoengineoperatingpointandfuelproperties;•Detectionandusageoffuelquality(sensors,electronics,digitalmodels);•Optimisationofthermalbehaviour(fastheating-up,optimisedheatflux,minimumthermallosses,thermalisolation/storageetc.)includingsystemleveloptimisation;•Tribology:oImprovethelifetimeoftheengineoilbydedicatedlubrication-oilsforrenewablefuels(acid,ashesetc.)underconsiderationofunregulatedemissions(NoLimscategory);oHolistic,systemleveloptimisationdedicatedtoelectrificationincludingsimplificationandphlegmatization.InnovationActions(TRL7-8)Demonstrationatthesystemlevel:•Boostingefficiency(maximizingcompressionratio,variablecompressionratio,AtkinsonorMillerCycle,largestroke/boreratio,minimizedheattransferetc.);•Electricallydrivenaccessories(largerpotentialforDHE);•Sweetspotoptimisationandoperation(largerpotentialforDHE);•Increasestructuralstrengthandthermalpropertiestocoverhighercombustionpressuresandthermalloadslinkedtorenewablefuels;•Dedicationtoelectrificationincludingsimplificationinoperationstrategiesandhardware.6.2.7RecommendationsforICEpollutantemissionsResearchtargets•Developmentofexhaustaftertreatmentsystemsforalltypesofenginesandfuelsabletoachievetheaboveobjectives;•DevelopmentofsensorandOBMand/orOBDtechnologiestosecuremonitoringofvehicleperformanceunderalldrivingconditionsandoveritsentireusefullife;•Developmentofemissionandconsumptionoptimisedcontrolsystemsthroughgeofencing;•Developmentofpowertrainnon-exhaustemissioncontrolsystems.Developmentofexhaustaftertreatmentsystemsforalltypesofenginesandfuelscapableof:•Ultra-fastlight-offunderextremelylowtemperatures;•Maintaininghighconversionefficienciesunderthezeroflowconditionsduetofrequentandintermittentenginestart-stopandunderageingeffects;•Highfiltrationefficienciesforalllevelsofparticleloadingforanytypeofengineandfuel;•Highfiltrationefficienciesforparticlesdowntonanoparticles•Highfiltrationefficienciesforsolidparticleswithaspecificattentiontosemi-volatileparticles;•FocusonsecondaryaerosolandVOCproductionpotentialaswell;•Negligibleback-pressurethusminimizingthefuelpenaltyandassociatedCO2emissions;•Reductionofall(today)non-regulatedpollutants(NO2,NH3,NMOGandFormaldehyde)andGHGgases(CO2,N2OandCH4);•Materialcompatibilityandefficiencyofaftertreatmentsystemswithsustainablebioandsyntheticfuels,consideringLCAissuesaswell;www.ertrac.orgPage148of169FinalVersion•Measurementtoolsdevelopmentfordatarecordingandanalysistoaddresstailpipeemissionfornon-regulatedpollutants,PMandPN;•Researchonthehealtheffectsfromnon-sootparticles,suchasthosefromureaandash;•Researchontheeffectsofparticleemissionsfromalternativefuelsonhealth;•Robustsimulationmodelsforinsightsonperformanceandmethodsofoptimisingconfigurations;•Multipleexhaustaftertreatmentfunctionalitiesintoasingleunit;•Surfacechemistryandphysicsforhigh-efficiency,low-temperaturecatalysisandfiltration.DevelopmentofsensorandOBM,OBDtechnologiesfortheaccurate,continuousandsecuremonitoringofvehicleperformanceunderalldrivingconditionsanditsentireusefullife•Includingenergyconsumption;•Optimisediagnosticcapabilitiesandfunctionalities.Developmentofemissionandconsumptionoptimisedcontrolsystemsthroughgeofencing•Eco-routing,eco-drivingimpactassessment;•Cloud-connectednextgenerationvehiclesforreal-timeco-optimisationtominimizerealdrivingemissionsandlocalpollution.Developmentofpowertrainnon-exhaustemissioncontrolsystemstoaddress•Particlesfromelectricalmachinesetc.;•FuelevaporationlossesorleaksthatresultinVOCemissions;•Electromagneticemissions.6.2.8RecommendationsforH2ICEEarly-StageResearchActions(TRL2-3)H2fuelsystem:•Durableandlow-costhydrogenhigh-pressureinjectionsystems(includingthepumpandthenozzles),enablingmultipleinjectionincludingmaterialandtribologyrelatedresearch;•Highlyunder-expandedH2jetswithshockformationdownstreamoftheinjectornozzletooptimiseinjectionandmixtureformation.H2combustionsystem:•BasiccombustionanalysesatICErelevantconditions,includingstratifiedand/orhighlydilutedmixture,toexpandtheknowledgebaseoncombustionkineticsandthebehaviouroftherelevantregulatedandunregulatedemissions(alsoformingthebasisforhighlyprecisemodelling);•Developmentofspraydriven(diffusioncontrolled)H2combustion.Exhaustgasaftertreatment:•Focusingoncoldstartoperationandonhighlyefficientnanoparticlefiltersyetalsoaddressingnon-volatilecomponents;•Innovativetechniques,suchastheuseofH2asreductantinaftertreatmentdevices.DevelopmentResearchActions(TRL4-6)H2fuelsystem:•Optimisationoftheinjectordesign,theoperatingparametersoftheinjectorandtheinjectionstrategiestothetargetedgeometricalconstraintsofthecombustionchamber,toensurepropermixtureformation,enablinghighlyefficientandlowemissioncombustion;•H2pre-conditioning(pressure,temperature);•IndirectH2injection(H2-meteringunderspecialconsiderationoflowvolumetricH2density,air-H2mixturepreparation,eliminationofbackfire);•DirectH2injection(pressurizing,injectionnozzle,spraypatternandmultipleinjection)optimisation.www.ertrac.orgPage149of169FinalVersionH2combustionsystem:•Optimisationoftheentireprocessfrominjection,mixtureformationtocombustion,leadingtospecificoptimaltrade-offsforspecificpower,efficiencyandlowemissionsatfulland,inparticular,atpartloads,byexploringthepotentialofmultipleinjection,chargestratificationanddilution;•In-cylinderchargemotionandturbulence,consideringthehighcombustionspeedevenunderleanoperation,aswellastheeffectonwallheatlosses;•In-cylindermixturepreparationconsideringthegaspropertiesofH2andtheexpectedlonginjectiondurations(duetolowdensitiesandlowspecificvolumetricheatingvaluesofH2);•Ignitionsystemswithaspecialfocusontheverylowenergyactivationandshortignitiondelay,leadingtolowenergyignitionsystemsbutcausinghighriskforirregularcombustioninitiatedbyhotspotsinthecombustionchamber;•Controlofburnratesunderconsiderationofthelowignitiondelays,thehighflamevelocitiesandcombustionspeedsforAir+H2mixtures,aswelltheavoidanceofknockingcombustion.H2ICEcontrol,sensorsandOBDfunctions:•Closed-loopinjection/combustion-controltoachievethetargetedoptimalspecifictrade-offsbetweenpower,efficiencyandemissions,aswellascylinderbalancingandenginedurability.H2ICEoilconsumptionoptimisation:•Enginedesignforthelowestpossibleoilconsumption,forefficiencyimprovementandemissionreductionwithoutnegativeeffectsondurabilityandreliability.Minimizationofoilconsumptiontominimizeunwantedemissionby(partly)burnedoilandothereffectsoncombustionignitionthroughengineoil.Exhaustgasaftertreatment•LeandeNOxaftertreatment;•SCRaftertreatment;•PresenceofunburnedH2withtheneedofaspecificaftertreatmentsystem;•SootemissionsfromoilcombustionduetoH2burningveryclosetowalls(cylinderliner)and,consequently,theneedofparticlefiltration;•Managementofthecompleteaftertreatmentsystem,focusingonefficiencyatlowtemperature,thermalmanagementandtransitionmode(stochiometric/lean)ifneeded.6.2.9RecommendationsforComplimentaryDrivelineAspectsImprovetyrerollingresistancecombinedwithgrip,handling,noiseandwear20%to30%oftheenergyusedbyavehicleisdissipatedintoitstyres(elasticdeformations).ReducingthetyrerollingresistancewithoutsacrificingsafetyiskeytoachievetheobjectivesofenergyefficiencyandCO2emissionsreduction.Thisleadstothefollowingresearchneeds:•Developingnewandinnovativetechnologies(architecture,materialsetc.)andsystemstoreducetherollingresistance(forallapplications,frommicro-mobilitytoheavytrucks);•Developingnewtyresfornewvehiclestoimprovetheirenergyefficiencybutalsotoretrofitexistingvehicles(thiscouldhastenthetransitiontolowerCO2mobility).Tyreperformance(rollingresistance,grip,noise,wearetc.)isalwaysacompromise,improvementofoneperformanceismostoftenondetrimentofothers.Tyreuseonfuturevehicles(e.g.,electricorautonomous)willbeslightlydifferentthantoday’sclassicalvehicleusage,leadingtodifferentornewconstraints(e.g.mechanicalsolicitationsordimensionalconstraints)fortyres.Thisleadstotheneedtoimprovetyreperformance(rollingresistance,grip,noise,wearetc.)regardingthenewapplications:•Characterizethedifferentornewusesandtheirimpactfortyres;•Developdedicatedtyresadaptedtospecificvehicleanduseswithenhancedspecificperformance.www.ertrac.orgPage150of169FinalVersionTakeintoaccountrealuse(includingfuelconsumption):(tyresbetteroptimisedtorealuse)•Characteriseusesandimpactontyreperformance;•Developreal-usemodels,includingcomponents(tyres)specificity.ReduceuseofrawmaterialTyresarestillmainlyproducedusingfossilrawmaterials.Reducingtheuseofthistypeofrawmaterialisnecessaryforenvironmentalbenefits.Hence,researchanddevelopmentsneedsare:•Developnewtechnologiestoreducetyremass;•Useofrecycledmaterialsasrawmaterials;•Maximisethetyrere-use.UsebiomaterialsasrawmaterialsRawmaterialsfortyresaretoday,inthemajority,stillcomingfromfossilresources.Replacingtheserawmaterialsbyrenewableand/orbiomaterialsisanecessity.•Developbiopolymers,bio-componentsetc.RecycletyresEvenifpartoftoday’sEndofLifeTyres(ELT)arerecycledintootherapplicationswithgranulates,partofthemisstillburnedincementkilns.BetterusesforELT,intohighvalueproductsorprocesses,isneeded,especiallytofeedthetyreindustryinsecondaryrawmaterials.•DevelopprocessestorecycleELTintoreusablerawmaterialsforthetyreindustry.Reducethetyreimpact(non-exhaustemissionstoimproveairqualityandexteriornoise)Improvingthewearperformanceisonewaytoreducethewearparticlesemissionsbutthereareotherimportantelementstobetakenintoaccount,suchastheroadsurface,drivingstyle,trafficflow,vehicledesignandweight.TheimpactofTRWP(TyreandRoadWearParticles)isnotyetfullymeasuredandunderstood.•CharacterisemorepreciselyTRWP(composition,quantify,biodegradabilityetc.);•AdapttyreconceptiontolowerimpactofTRWP.Reducingthetyrenoisegenerationcorrespondtotheexpectationsofthecityinhabitants.Developsustainableroads(alsorelevantforInfrastructureaspects)Roadsareusuallymadefromfossilrawmaterials.ELT(EndofLifeTyre)granulatescanbepartofroadformulation,butregulationsdifferfromcountrytocountry(allowedinUS,AustraliayetforbiddenintheEU).Roadcharacteristicshaveanimpactonalltyreperformance(rollingresistance,grip,noise,wearetc.)•Workonroadformulationtoimprovetyreandroadperformance•DemonstratethebenefitofELTgranulatesintoroadformulationtochangeEUregulation•Improveroadformulationtotransferapartoftyreperformance(e.g.bettergripcomingfromroadwouldallowtofocusmoreonrollingresistanceonthetyreside);•Improvetheroadendurancetolimittheimpactonthetrafficwhenamaintenanceisneeded.Developnewtyresconceptadaptedtonewusages(urbanfleet,newtypeofmobility)AchievingambitiousobjectivesintermofenvironmentgoalsandCO2reductionmayrequirecompleterethinkingofthetyredesignandmanufacturing:•Developmentofnewtyreconcepts:airless,3Dprintingoftreadsetc.;•Developcomplementarymicro-mobilitysolutionsassociatedtonewtypesof‘’tyretype’’solutions.DeveloptyretelematicsThetyreistheonlyvehiclecomponentincontactwiththeroad.Sensorsintyreswillenablecrucialfunctionalityandservicesforsafety,predictivemaintenance,autonomousvehiclebehaviouretc.•Developsensorsaroundtyresandassociatedmobilityservices(predictivemaintenanceandtyrehealth);www.ertrac.orgPage151of169FinalVersion•Developnewtypesofsmartmaterial.DevelopinnovativeandefficientmanufacturingprocessesAsaconsequenceofthenewuses,dedicatedspecifictyreswillinduceevenmorediversityandsmallseriesproductionvolumes.Thiswillaffectthecompetitivenessoftheexistingfactories.Knowingthattyresperformanceandmanufacturingprocessesarecloselylinked,itisnecessarytodevelopinnovativemanufacturingprocessesforthosenewtyres,takingintoaccounttherangeofdiversitywhilstminimisingenergyconsumption.•Developnewprocesstotakeintoaccountmorediversityandsmallseries,toensurecompetitivenessoftheexistingfactoriesandtoreducetheirglobalenvironmentalfootprint;•Developalternativeprocessestominimiseenergyconsumption.DevelopsimulationSimulationoftheglobalsystemofmobilityiskeytoachievetheglobalCO2emissionstargets.Theecosystemissocomplexthatmakingtherightdesignchoicesshouldbesupportedbyasimulationapproach.Simulationiskeytospeeding-upandimprovingconception,eitheratacomponent(tyre)levelorasystemlevel.Furthermore,withnewtypesofmobilitysolutions(e.g.automatedvehicles),simulationallowstolimitthenumberoftestswhilestillconsideringallpossiblescenarios.Scenariosrelated,asanexample,toemergencymanoeuvre,brakingbutalsoCO2emission.•Developsimulationattyreandsystemlevel.Technologiestoreducebrakedustparticles:•Developtheuseofbrakedustparticlefilters(activeand/orpassive);•Enhancetheperformanceofregenerativebraking(forxEVs)tofurtherreducetheuseoffoundationbrakes;•Re-considertheusageofdrumbrakes(whereacceptable);•Furtherdevelopmentoflowabrasioncomponents;•DevelopsmartbrakingstrategiesforxEVs;•Enhancetherecyclingand/orreusageofrawmaterials.Technologiestoreduceparticleemissionwhenusingconductiveelectrifiedroadsystems:•Researchonthemechanismsand/ormitigationoftheenvironmentalimpactfromtheabrasionofslidingcontactmaterials(e.g.copperfromcatenarysystems).www.ertrac.orgPage152of169FinalVersion6.3RecommendationsforInfrastructureEnhancingandfacilitatingresearchandstudiesthatassesstheeconomicsbehindtheEVcharginginfrastructurewouldprovidesignificantsupporttogovernmentsandregulators,forinstancewhentheyhavetodefinehowtostructuretheelectricitybillortodesignspecialsubsidiesortaxdiscounts.Moreinformationregardingtheperformanceofdifferenttypesofbiofuelsandelectro-fuelsincurrentandfuturevehicletechnologiescouldhelpensurethebestandmosteconomicselectionofrenewablecomponents.Sinceservicestationtanksandpumpsarefrequentlydifficulttoretrofit,logisticsandmarketscale-upbecomeincreasinglydifficultifnewengineconfigurationsareintroducedtothemarketrequiringaspecificfuelthatisnotroutinelyavailableattheservicestation.Betterintegrationandoptimisationoffuel,engineandvehiclealsorequiresthedevelopmentofrobuststandardsforliquidandgaseousblends.6.3.1RecommendationsforroadsAdditionalresearchrelatedtoElectricRoadSystemsInfrastructurewouldbeneededon:•Roadconstructiondurability;-Moreresearchisneededonwhatwillhappenwiththedurabilityoftheroadduringacceleratedloading,whentherearematerialsembeddedintheroadthathavedifferentcharacteristicsthantheroad(allembeddedtechnologiesincludingallinductivetechnologies).-Moreresearchisneededtoassessthedurabilityofacatenarysystemunderahighnumberofpantographcrossingsandtheirdynamics,underextremeweatherevents(storms,strongwind,iceandsnowetc.),roadworksrequiringdumptrucks,emergencyrescue,themaintenanceandthevisualacceptance.-Apotentialsolutionforbothsystemscouldbeforprefabricatedpavementsurfacesintegratedwithdynamicchargingchannelsandconduitstoconnecttotheelectricitysupply.Thiscouldextendthelifetimeofthepavementandensuretheperformanceofthedynamicchargingsystem,however,theresolutionoftheknownproblemsassociatedwithprefabricatedroadsurfaces,e.g.transversejoints,willalsobeessential.-Itisnotinvestigatedwhatimpactroadsideinstallationswillhaveontheroadsurface;roadsurfacedamagemightbegeneratedbyinstallationstooclosetotheroad.Furtherinvestigationsareneededtounderstandhowsuchinstallationsimpacttheslopestabilityand,subsequently,theroaddueto,forinstance,vibrationsfromwindorpassingvehicles,andhowsuchrisksmightincreasewithincreasedamountofprecipitationinachangedclimate.-Thedifferencesbetweenstandardsforroadsandstandardsfromtheelectrificationfieldneedtobefurtherinvestigated,therecouldbedifferencesbothwhenitcomestoconstructionanduseofthesystems.-Howtheinstallationprocedurescanbeoptimised(regardingallelectrifiedroadtechnologies)to-causeaslittleimpactontrafficaspossibleduringtheinstallationphase;-beingabletomakeadjustmentalreadyintheinstallationphasetomaketheelectrifiedroadsmoresustainableinthefutureandtherebyreducetheamountofmaintenanceoperations.-Theeffectsofambientclimateandtemperatureneedfurtherstudies.Forexample:-Snowontheroadcouldhaveanimpactonthepositioningofthevehicles(throughADAS)thusinterferewiththeproperconnection,ifADASisusedbytheERSvehiclewhenconnecting.-Snowandicemayhaveanimpactoncatenaries(overweight).However,neitherthecatenariesnorrailsinpavementwouldnotbeaffectedtoomuchbyiceandsnowaslongasthetrafficflows;ifthetrafficisstopped,itisnotanissue.Inductivesolutionsmaynotbeimpacted.www.ertrac.orgPage153of169FinalVersion-ThelargetemperaturevariationbetweenaNordicWinterandasouthernEuropeanSummercouldhaveaneffectonbothmaterialandelectronics.Forexample,hightemperaturesmaylimitthepowerdelivered.-Researchmayberequiredformethodstoisolatethedifferencesinthermalexpansionandcontractionofthemetalrailorinductivecoilandthesurroundingasphaltorconcrete,shouldexpansionjointsbeinsufficient.-Researchisrequiredformethodstothermallyisolateembeddedelements,shouldthoseelementsincreasethetemperatureofsurroundingtemperature-sensitivepavingmaterials.•Roadmaintenance(alldynamicchargingtechnologies);-Foralldynamicchargingsystems,therewillbetwomajorimplicationsforthemaintenanceregime.Firstly,methodsforstandardmaintenancewillneedtoberevisedandtheequipmentmustbeadaptedtoavoiddamagetothechargingsystem,throughactivitiessuchasresurfacing.Secondly,therewillbeadditionalmaintenancerequirementsassociatedwiththechargingsystemitself,rangingfromtestingforcurrents,performanceofthesystems,cleaning(e.g.leavesintherail,removingiciclesfromoverheadcantileversorcables).-Foralldynamicchargingsystemstheimpactofwintermaintenance(e.g.snowploughingandsalting)willneedtobeunderstoodandoptimisedandpossiblyamended.-Foralldynamicchargingsystems,therewillbeadditionalmaintenanceinspections.-Regularmaintenanceoperationsontheroadandintheroadsideareaswillbeneededandaffectedbyhavingroadsideinstallations.-Forallsystems,therewillbetrafficmanagementrequirementsandlaneclosures;systemsshouldbedevelopedtoundertakemaintenanceofthesystemsasquicklyandremotelyaspossible.-Forallsystems,therewillneedtobesignificantstafftrainingandstandardsasroadworkersarenotfamiliarwithworkinginandaroundhighvoltageinstallations.-Costestimationsareneededonhowmaintenanceactivitieswillbeaffectedbydynamicchargingsystemsandthechangesmadetomaintenanceactivities.•Impactonenvironment,naturalandculturallandscape;-Allsystemswillhavesomeroadsideinfrastructure,suchascontrolboxesandconnectionpoints.Systemstothesideoftheroadandabovetheroad,inparticular,willhavegreatervisualimpactwhichmayrestricttheiruseincertainsituations.Researchshouldbeundertakentominimisetheimpact,e.g.throughusingmaterialsthatenablethefunctionwithalowervisualprofile,orotherwiseimprovetheaestheticimpacts.ResearchshouldbeundertakentodeterminetheamountsofERSrequiredforgiventrafficloads,todetermineifitisneededconstantlyforheavilyusedmotorwaysoracertainpercentageoftheroutelengthforotherroads.Thiscouldenablevisuallyintrusivesystemstobesitedaccordingtolocallandscapeconsiderations.-Moreresearchisneededonthewearofthesystemmostimportantlytheoverheadconductivetechniques.Thedifferencetotherailwayisthatparticlescomingfromaboveonaroadwillbespreadingontheroadorintheairabovetheroad.Thepotentialuseofthesystemwillbemorefrequentthanthatoftherailwayandpeoplewilltravelontheroads.Thesequestionswillbeveryimportanttoinvestigatefurther.Conductiverailtechnologieswillalsogenerateparticles.Acceleratedtestsareneeded,thespreadingdistancefromtheroadisimportant.-InvestigationonEMFemissionfromthewholesystem,shouldfollownewEUdirectives.Theeffectsonhumansarenotsufficientlyinvestigatedatthistime.InvestigateEMCand/orEMIstandardsthatarespecifictoERS-road-vehicle-humaninteraction.•ResearchthepotentialextensionofERStoawholesystemapproach,tousetheroadaspartoftheenergytransmissionnetwork.Alsoseektointegrateenergyharvestingfromtheroadsideand/orinfrastructureintothisandassessthebusinesscasewiththeseareasincluded;•Betterunderstandingtheefficiencylimitsoftheground-inductivecomparedtoground-conductivedynamicchargingsystems;www.ertrac.orgPage154of169FinalVersion•Legalimplication(obstaclesandopportunities)intheareasofroadlawandelectriclaws,andtheimpactontheroadplanningprocess;-DevelopcommonEuropeanstandardsforelectrifiedroadsystemstomaximiseeconomiesofscale,aswellasthechancetosettheglobalstandard.•Safetyimplications;-Understandhowemergencyvehicles,includinghelicopters,canretainaccesstotheroad.-Understandhowsecondary,exceptionalusesofroad,e.g.emergencyaircraftlanding,isaffected.-Understandtheskidresistance(forallvehiclesbutparticularlymotorbikes)whencrossingtherail(s).110ResearchrelatedtoRoadConstructionshouldbeconsideredforthefollowingareas:•Improvedroadmixesforsmooth,lowrollingresistanceandlong-liferoads;-Determinewhichparametersandindiceshavethemostimpactonenergyefficiencyandfuelconsumption.-DeterminehowIRI,MPDandmegatexturecontributestotheoverallenergyefficiencyonroadsforallvehicletypes.-Determinetheactualrelationshipbetweentrafficspeedandroadcondition.Researchhasshowndecreasedspeedswithmoreunevenroads(lessfuelconsumption).-Longtermfunctionalrequirementsbasedonenergyconsumptiononnewlybuildroads.-Balancebetweensafety,lowtextureandamaintaineddurability.-ResearchhowimprovingIRI,MPDandmegatexturecontributesasamaintenanceparameterservingtoretainroadenergyefficiencyatahighlevelthroughouttheentirelifespan.•Studieshaveshownthatimprovedmethodsforroadconstructionandmaintenance,assistedbythenewrangeofsmartanddigitaltechnologiesfuelledbybigdata,machinelearning,artificialintelligence,blockchain,internetofthings,etc.cansignificantlycontributetoincreasetheefficiencyandqualityateverystageoftheprocess,fromtheproductionplant,transportandon-sitepavingoperations,tothecontinuousmonitoringanddecisionmakingduringtheroadservicelife.However,moreneedstobedoneinthisarea;•DevelopandimplementastandardorlabellingofroadqualityforenhancedenergyconsumptionacrossEuropetocollectivelyimproveanddocumentCO2savingpotential;•Increaseduseofrecycledmaterialandbio-basedbinderstoreducethecarbonfootprintoftheroad;•Considerpotentialforresearchintocarbonabsorbingsurfacessoroadsarecarbon-neutralorcarbonpositive,fromaconstructionpointofview,overtheirlifetime;•InvestigateimpactsofenhancedroadefficiencyspecificallyforEVs;•Canadjacentroadfurnitureand/orvegetationbeimplementedasanefficientmeanofenhancingenergyefficiencybyloweringroadwindgusts,andcontributetoimprovingroadaesthetics?;•Furtherinvestigationintotheuseofalternativefuels(e.g.,bio-binders)toreplacestandardbitumeninroadconstruction;•Researchshouldbeundertakenontheuseofalternativefuelsandpowertrainsinconstructionmachinery/non-roadmachinery,takingintoaccountcurrentandfutureemissionstandards.6.3.2RecommendationsfortheenergysupplyinfrastructureResearchneedsingeneralrelatedtotheenergysupplystructurearenotedhere:•Europeanstandardisationofchargingeconomyanduseinterfaces(billing,taxesetc.);•Fast-charginginfrastructure(e.g.forsolid-statebatteries)withhigherpower(towardsmegawatt);•AEuropeanstrategyforenergypolicyanddistributionrelatedtoroadtransport;110SomestudieshavebeencarriedoutinFranceononetechnology,suggestingnolossofadhesion,butmoreworkisneeded.www.ertrac.orgPage155of169FinalVersion•Internationalstandardizationforinformationexchangeinthechargingvaluechain(e.g.betweenCPOandEMSP);•Infrastructureautomatedchargingsolutions;•Gridbalancingandsmartcharging(V2Getc.);•Localenergystorageconceptstohandlepeakpowerneed;•Sectorcouplingandsynergieswithotherindustriesandenergysectorstocaptureexcessofenergy;•Standardsforliquidandgaseousfuels,includingalternativefuelcomponents,withinthegrid;•Adaptionofthegassupplygridtohydrogen.Table29.ResearchneedsforInfrastructurewww.ertrac.orgPage156of169FinalVersion6.4RecommendationsfromtheSystemPerspectiveSomeresearchneedswereidentifiedbytheERTRACCO2EvaluationGroup,followingtheirstudyfor2050:•Howtoenablefleetmixchangebyimprovingpowertraintechnology:cost,range,functionalityetc.;andadaptinginfrastructuretechnologyandconcepts.•HowtorealisetheefficiencyimprovementsbyMeasureA:Vehicle;MeasureB:Trafficconditions;andMeasureC:TrafficReductionTechnologies.•BesideRoadTransport:–Howtorealiserenewableelectricitygenerationcapacity(insideandoutsideofEurope);–HowtorealisenetGHG-neutralH2andfuelproduction(insideandoutsideofEurope);–HowtorealisethetechnologyandcapacityofCCSandDAC;–Howtodeterminetheavailabilityofrawmaterialsandsustainablefeedstocks(appraisedinalife-cycleanalysisperspective).However,specificallyitwasnotedthatsystemoptimisationcannotbebasedonanextremescenarioapproach.Furtherresearch,innovationanddevelopmentworkwillbeneededtoassessandestablishtheoptimalsolutions,onthebasisofvariouscriteria.Suchcriteriawereidentifiedas:•Energyproductionandstoragecapacity;•LifeCycleAssessment(LCA)toaccountfortheemissionsandenergyrequiredforinfrastructureandvehicleproduction;•Investmentsininfrastructureandenergyproductionfacilities;•Costofenergyproductionanddistribution,aswellasvehicletechnologydevelopment;•Landuse,wateruseandotherresourcesneeded;plustheirallocationbetweendifferentsectors•Differentlocationsforenergyproduction(EUorMENA-Region);•Customeracceptanceofspecificvehicletypesandfuels;•TheacceptanceofCCS.Furthermore,researchneedsfromotheraspectswerederived,forexample:•Determinationofthebalancebetweentechnicalandsocietalmatters,theirallowableratesofchange;•Societalacceptance,givenfuturescenarios,ofothersourcesofdecarbonisedelectricity,energy,suchasnuclearpowercomparedtolongertermissues(e.g.wastemanagement);•Systemsecondordersensitivities,ratesofchangepossible,andtheratesofchangeofthesethatareacceptable;•SocietalTCOaspectsofandsolutionsandpathwaysthereto.Inaddition,thereweresomecaveats,whichimpliedfutureresearchneeds:•Thestudyexploreddifferentcornerscenariosbasedonatemporallystaticfuelandfleetmodellingexercise;•Theanalysisdoesnotincludedynamicmodellingorprediction;theresultsoftheanalysisshouldbeconsideredasestimatesforcomparativepurposes;•Theanalysisdidnotdrawconclusionsonfuelandelectricityavailability,competitionwithothersectorsdemand,economics,societalacceptance,especiallythefundamentalsofsupplyversusdemand.Consideringtheusecaseassessment,thefollowaspectswereidentified.Thecommuterin2030andurbandeliveryin2030:thefollowingresearchneedsand/orquestionswereidentified:•Forenergycarriers,sincethisismostlylikelytobeaBEVwithlimitedenergystorage,whataretheimplicationsofandforfast,smartchargingwiththisusage;howmightthereliability,durabilityoftheenergycarrier(thebattery)beimprovedinthisusecase,andatwhatcost?www.ertrac.orgPage157of169FinalVersion•Forthevehicleandpowertrain,howmightthisusagechangethevehicleconcept,hencethepowertrainarchitecture?•Fortheinfrastructure,issufficientlowpowerchargingavailableattheappropriatelocations(e.g.junctionswithothertransportmodes,workplaces,leisurevenuesetc.)andarethesesmartenoughtooptimisetheenergymanagementforthevehicleandthetransportsystem?•And,forsocietyingeneral,“howwillthevehicleconceptschangeovertime?”,“howwilltheirsafety,theircomfortetc.bemaintained?”,“whatwillbetheimpactsoftheuseandownershipofsuchvehicleswithCCAMdevelopments?”,“whatwillbethesubsequentimpactonmobilitychoices,modeusageintensities,socio-economicaspectsofmobility?”.Finally,“whatrateofchangeintheseaspectswillbeacceptableinthisusage?”.Deliveryin2030,butthistimewithadifferentvehiclepowertrain,thatisaPHEV,thefollowingchangeinresearchneedswasidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,sincethisistobeaPHEVwithlimitedenergystorage,whataretheimplicationsofandforfast,smartchargingwiththisusage;howmightthereliability,durabilityoftheenergycarrier(thebattery)beimprovedinthisusecase,andatwhatcost?Retaining,now,thePHEVarchitecture,butconsideringthelongerone-waytripin2030,forfamiliesordeliveriesbetweenurbancentres,thefollowingresearchneedsand/orquestionswereidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,“howmightthesupplyandshareofnet-zerocarbonenergycarriersbemostrapidlyincreased?”•Forthevehicleandpowertrain,“howmightthechoiceofZErangebesegregated?”•Fortheinfrastructure,“howmightthesupplyofnet-zerocarbonenergycarriersbeprioritised?”•And,forsocietyingeneral,“whatpotentialfutureservices(e.g.relatedtoSOCmanagementorcomfortversusenergymanagement)mightbeofferedtothesevehicles?”.Consideringlongdistancecommercialvehicleoperationin2030,thefollowingresearchneedsand/orquestionswereidentified,beyondthosepreviouslyrecorded:•Forenergycarriers,“howquicklyanddenselycanfastcharging,hydrogenandnet-zerocarbonhydrocarbonliquidfuelrefuellingcapabilitiesbeachieved?”•Forthevehicleandpowertrain,“whatarethelimitsoffuturepowertraincomponentreliability,durabilityandsafety?”,“whatarethelimitsforthegravimetricandvolumetricpowertrainarchitecturesandhowmightregulationbedevelopedtorecognisethiswhilststillenablingimprovementsinoperationalefficiencyandreductionsinitscarbon-intensity?”.•Fortheinfrastructure,is“whatopportunitiesaretherewithindepot,forcharging,refuelling,energycarrierconversionandsmartenergymanagement?”www.ertrac.orgPage158of169FinalVersionTable30.ResearchneedsfromtheSystemPerspectivewww.ertrac.orgPage159of169FinalVersion7Appendices7.1DefinitionsInthissection,somerelevanttermsusedinthedocument,whichhavebeenpreviouslydefinedinotheractivities,aregivenhereforreference(listedalphabetically).CO2neutralityorcarbon-neutralityTechnicalprocesswithCO2emissionsbutcompensatedbyacarbonremoval,offsettingmechanism(e.g.growthofbiomass,CarbonCaptureUseandStorage(CCUS),DirectAirCapture(DAC)etc..),knowingthatthecarboncannotcomefromfossilresources(e.g.thecarbonisderivedfromrenewablebiologicalresourcesortheatmosphere).ClimateneutralityEmissionslevelsallowingstableconcentrationlevelsofGHGintheatmosphere.(GHGemissionsfromhumanactivities)+(GHGemissionsfromcarbonsinks)=0FuelsRenewablehydrocarbonfuelsChemicalenergyvectorsorcarriers(suchasadvancedbiofuels,e-fuelsetc.)tobeusedinpowertrains,producedfromrenewableresourceswithoutusingfossilresources.Combinationsofbiofuelsande-fuelswillalsofallintothiscategory.AdvancedbiofuelsRenewablefuelproducedfrombiomass(biofuelfromfoodorfeedcropsisexcluded).Renewablee-fuelsHydrocarbonstobeusedincombustionengines,producedfromwater,CO2andrenewableelectricityonly.TheCO2isprovidedbyclosedcarboncyclessuchasdirectaircapture(nofossilresources).Renewablenon-hydrocarbonfuelsChemicalenergyvectorsorcarriers(hydrogen,ammoniaetc.)tobeusedinpowertrains,producedfromrenewableresourceswithoutusingfossilresources.GHGneutralityTechnicalprocesswithGHGemissionsbutcompensatedbyaGHGremoval,offsettingmechanism(e.g.growthofbiomass,CarbonCaptureUseandStorage(CCUS),DirectAirCapture(DAC)etc.),knowingthatthecarboncannotcomefromfossilresources(e.g.thecarbonisderivedfromrenewablebiologicalresourcesortheatmosphere).DecarbonisationIsapartoftheprocessofmovingtowardsGHGneutrality.www.ertrac.orgPage160of169FinalVersionVehicles111ConventionallypoweredvehiclesConventionalvehiclesuseliquidfuels,fromfossilorrenewableorigin(typicallydieselandpetrol)topoweraninternalcombustionengine(ICE).Bothcompressionignition(‘Diesel’)andsparkignition(‘petrol’)enginesconvertfuelintoworkviacombustion,withthemaindifferencebeingthewaythecombustionprocessoccurs.AlternativelypoweredvehiclesAlternativelyPoweredVehicles(APVs)arevehiclespoweredbytechnologiesalternativeto,orsupplementalto,conventionalinternalcombustionenginesusingfossilfuels.ThemaintypesofAPVs,andhowtheydifferfromeachother,areexplainedbelow:ElectricallyChargeableVehiclesElectricallychargeablevehicles(ECVs)includefullbatteryelectricvehiclesandplug-inhybrids,bothofwhichrequirerecharginginfrastructurethatconnectsthemtotheelectricitygrid.•Batteryelectricvehicles(BEVs)arefullypoweredbyanelectricmotor,usingelectricitystoredinanon-boardbatterywhichischargedbypluggingintotheelectricitygrid.•Plug-inhybridelectricvehicles(PHEVs)haveaninternalcombustionengineandabattery-poweredelectricmotor.Thebatteryisrechargedbyconnectingtothegridaswellasbytheon-boardengineand/orregenerativebraking.Dependingonthebatterystateofcharge,thevehiclecanrunontheelectricmotorand/ortheinternalcombustionengine.FuelcellelectricvehiclesFuelcellelectricvehicles(FCEVs)arealsopropelledbyanelectricmotor,buttheirelectricityisgeneratedwithinthevehiclebyafuelcellsystemthattypicallyusescompressedhydrogen(H2)plusoxygenfromtheair.So,unlikeECVs,theyarenotrechargedbyconnectingtotheelectricitygrid.Instead,FCEVsrequirededicatedhydrogenfillingstations.HybridelectricvehiclesHybridelectricvehicles(HEVs)haveaninternalcombustionengine(typicallyrunningonpetrolorDiesel)andabattery-poweredelectricmotor.Electricityisgeneratedinternallyfromregenerativebrakingorduringcruisingfromthecombustionengine,soHEVsdonotneedrecharginginfrastructure.Thehybridisationlevelrangesfrommildtofull.•Mildhybridelectricvehiclesarepoweredbyaninternalcombustionengine,butalsohaveabattery-poweredelectricmotorthatsupportstheconventionalengine.Thesevehiclescannotbepoweredbytheelectricmotoralone.•Fullhybridelectricvehiclesarepoweredbybothanelectricmotorandacombustionengine,eachofwhich(ortogether)canpowerthewheels.xEVTogetherECVandHEVareknownasbytheabbreviationxEV.NaturalgasvehiclesNaturalgasvehicles(NGVs)runoncompressednaturalgas(CNG)orliquefiednaturalgas(LNG),thelattermainlybeingusedforcommercialvehiclessuchastrucks,theformerforpassengercars.NGVsarebasedonmaturetechnologiesanduseinternalcombustionengines.Dedicatedrefuellinginfrastructureisrequired.Recentlygasvehiclesrunningonhydrogeninsteadofnaturalgasarebeing111ACEA’sreport:MakingtheTransitiontoZero-EmissionMobility,2019.https://www.acea.be/uploads/publications/ACEA_progress_report_2019.pdfwww.ertrac.orgPage161of169FinalVersionconsideredasanoptionforCO2-neutralmobility.Thesevehiclesshouldbeconsideredindependentlyfromtheirfuelproductionpath,whichmayinvolverenewableorfossilsources.Zeroemissionvehicles(ZEV)Thesearevehicleswhichareconsideredtohavezerotailpipeemissions.ZeroemissioninurbanareasAllvehicleswithlocalzerotailpipeemission,thatisBEV,FCEVandPHEVinamandatorye-mode.NetzeroemissionTherearestillsometailpipeemissionsbuttheresultantimpactforNature(includinghumanbeings)isnegligiblegivencompensationactivities.ThistermisoftenusedonlyinrelationtoCO2emissionsbutisapplicabletoalltailpipeemissions,howeverthetermZIE,below,isperhapsmoreprecisethereto.ZeroImpactEmissions(ZIE)Thesearediscussedanddefinedin“WhatareZero-ImpactEmissionandhowcantheybeachievedinroadtransport?”,TransportationResearchPartD,102(2022)103123.TheaveragefleetemissionsrequiredtoachieveZIE,asgiveninthisreference,rangefrom6mg/kmto33mg/kmNOx,foravarietyofdifferentroadoperationconditions.ThedefinitionsfromDirective2009/72/ECmayapply,specificallythefollowing:DistributionSystemOperatorMeansanaturalorlegalpersonresponsibleforoperating,ensuringthemaintenanceofand,ifnecessary,developingthedistributionsysteminagivenareaand,whereapplicable,itsinterconnectionswithothersystemsandforensuringthelong-termabilityofthesystemtomeetreasonabledemandsforthedistributionofelectricity.TransmissionSystemOperatorMeansanaturalorlegalpersonresponsibleforoperating,ensuringthemaintenanceofand,ifnecessary,developingthetransmissionsysteminagivenareaand,whereapplicable,itsinterconnectionswithothersystems,andforensuringthelong-termabilityofthesystemtomeetreasonabledemandsforthetransmissionofelectricity.AsmaythedefinitionsfromDirective2018/2001from11thDecember2018,suchas:AdvancedbiofuelsMeansbiofuelsthatareproducedfromthefeedstocklistedinPartAofAnnexIX.AgriculturalbiomassMeansbiomassproducedfromagriculture.BiofuelsMeansliquidfuelfortransportproducedfrombiomass.BiogasMeansgaseousfuelsproducedfrombiomass;21.12.2018ENOfficialJournaloftheEuropeanUnionL328/103.BiowasteMeansbiowasteasdefinedinpoint(4)ofArticle3ofDirective2008/98/EC.www.ertrac.orgPage162of169FinalVersionBiomassMeansthebiodegradablefractionofproducts,wasteandresiduesfrombiologicaloriginfromagriculture,includingvegetalandanimalsubstances,fromforestryandrelatedindustries,includingfisheriesandaquaculture,aswellasthebiodegradablefractionofwaste,includingindustrialandmunicipalwasteofbiologicalorigin.EnergyFromRenewableSourcesorRenewableEnergyMeansenergyfromrenewablenon-fossilsources,namelywind,solar(solarthermalandsolarphotovoltaic)andgeothermalenergy,ambientenergy,tide,waveandotheroceanenergy,hydropower,biomass,landfillgas,sewagetreatmentplantgas,andbiogas.FoodandfeedcropsMeansstarch-richcrops,sugarcropsoroilcropsproducedonagriculturallandasamaincropexcludingresidues,wasteorligno-cellulosicmaterialandintermediatecrops,suchascatchcropsandcovercrops,providedthattheuseofsuchintermediatecropsdoesnottriggerdemandforadditionalland.ForestbiomassMeansbiomassproducedfromforestry.Ligno-cellulosicmaterialMeansmaterialcomposedoflignin,celluloseandhemicellulose,suchasbiomasssourcedfromforests,woodyenergycropsandforest-basedindustries'residuesandwastes.Lowindirectland-usechange-riskbiofuels,bioliquidsandbiomassfuelsMeansbiofuels,bioliquidsandbiomassfuels,thefeedstockofwhichwasproducedwithinschemeswhichavoiddisplacementeffectsoffoodandfeed-cropbasedbiofuels,bioliquidsandbiomassfuelsthroughimprovedagriculturalpracticesaswellasthroughthecultivationofcropsonareaswhichwerepreviouslynotusedforcultivationofcrops,andwhichwereproducedinaccordancewiththesustainabilitycriteriaforbiofuels,bioliquidsandbiomassfuelslaiddowninArticle29.RecycledcarbonfuelsMeansliquidandgaseousfuelsthatareproducedfromliquidorsolidwastestreamsofnon-renewableoriginwhicharenotsuitableformaterialrecoveryinaccordancewithArticle4ofDirective2008/98/EC,orfromwasteprocessinggasandexhaustgasofnon-renewableoriginwhichareproducedasanunavoidableandunintentionalconsequenceoftheproductionprocessinindustrialinstallations.Renewableliquidandgaseoustransportfuelsofnon-biologicaloriginMeansliquidorgaseousfuelswhichareusedinthetransportsectorotherthanbiofuelsorbiogas,theenergycontentofwhichisderivedfromrenewablesourcesotherthanbiomass.ResidueMeansasubstancethatisnottheendproduct(s)thataproductionprocessdirectlyseekstoproduce;itisnotaprimaryaimoftheproductionprocess,andtheprocesshasnotbeendeliberatelymodifiedtoproduceit;L328/104ENOfficialJournaloftheEuropeanUnion21.12.2018.WasteMeanswasteasdefinedinpoint(1)ofArticle3ofDirective2008/98/EC,excludingsubstancesthathavebeenintentionallymodifiedorcontaminatedinordertomeetthisdefinition.www.ertrac.orgPage163of169FinalVersionReferencemightalsobemadetothePIARCRoadDictionary,seehere:https://www.piarc.org/en/activities/Road-Dictionary-Terminology-Road-Transportwhichhasdefinitionsforsome16,300conceptsinEnglishandFrench,aswellassynonymsforsomeothercountriesorlanguages.www.ertrac.orgPage164of169FinalVersion7.2AbbreviationsTerminologyACAlternatingCurrentACIAdvancedCompressionIgnitionengineADAnaerobicDigestionADASAdvancedDriverAssistanceSystemsAECAlkalineElectrolysisCellAIArtificialIntelligenceAQAirQualityATSAftertreatmentSystemBCBlackCarbonBECCSBio-EnergywithCarbonCaptureandStorageBEVBatteryElectricVehicleBMSBatteryManagementSystemBoPBalanceofPlantBtLBiomasstoLiquidBTMSBatteryThermalManagementSystemBWRBoilingWaterReactorCCAMCooperativeandConnectedAutomatedMobilityCCSCarbonCaptureandStorage(System(s))CCUCarbonCaptureandUsageCHPCombinedHeatandPowerC-H2CompressedHydrogenCICompressionIgnitionCNGCompressedNaturalGasCPConstantPowerCPOChargingPointOperatorDACDirectAirCapture(ofcarbon)DCDirectCurrentDHEDedicatedHybridEngineDMEDiMethylEther(Ester)DNBEDi-n-ButyletherDRDemandResponseDSODistributionServiceOperatorEATSExhaustAftertreatmentSystem(s)ECEuropeanCommissionECUElectronicControlUnitECVElectricallychargeablevehiclesEDUElectricalDriveUnitEGRExhaustGasRecirculationEHSEnvironmental,HealthandSafetyELTEndofLifeTyresEMElectric(al)MotorEMCElectro-MagneticCompatibilityEMFElectro-MagneticFluxEMIElectro-MagneticInterferenceEMS(P)EnergyManagementSystem(Provider)EoLEndofLifeePTWElectricallyPoweredTwo(andThree)WheelersERSElectric(al/fied)RoadSystem(s)EVElectricVehiclewww.ertrac.orgPage165of169FinalVersionFAMEFattyAcidMethylEstersFCFuelCellorFuelConsumptionFCEVFuelCellElectricVehicleFFVFlex-FuelledVehiclesGHGGreenhouseGas(es)GRLG1Remotenaturalgasliquefiedatsource,LNGseatransport,distributionbyroadasLNG,useasLNGinvehicleGSEAsinairportGSEH2-ICEHydrogenfuelledInternalCombustionEngine(alsoH2ICE)HDHeavy-DutyHDVHeavy-DutyVehiclesHE-ERSHighlyElectrifiedElectricRoadSystemscenariointheERTRACCO2studyHE-HHighlyElectrifiedincludingHydrogenscenariointheERTRACCO2studyHE-NMCHighEnergyNickelManganeseCobaltHEVHybridElectricVehicleHFHighFrequencyHiLHardwareintheLoopHOVHeatofVaporisationHRSHydrogenRefuellingStation(s)(System(s))HTLHydrothermalliquefactionHVHighVoltageHVOHydrogenated(hydrotreated)VegetableOil(s)HWHardwareHybHybridscenariointheERTRACCO2studyICEInternalCombustionEngineILUCIndirectLandUseChangeIRIInternationalRoughnessIndexKPIKeyPerformanceIndicatorLBMLiquifiedbio-methaneLCALifeCycleAssessment(Analysis)LCOELevelizedCostofEnergyLDLight-DutyLDVLight-DutyVehicles(orVans)LHVLowerHeatingValueL-H2LiquifiedHydrogenLNGLiquifiedNaturalGasLPGLiquidPetroleumGasLSMLiquidSyntheticMethaneMCCIMixing-ControlledCompressionIgnitionEngineMENAMiddleEast,NorthAfricaMPDMeanProfileDepthMTBEMethyl-Tertiary-ButylEtherMTHFMethylTetraHydroFuranNMCNickelManganeseCobaltOBCOn-BoardCharger(Charging)OBDOn-BoardDiagnosticsOBMOn-BoardMonitoringOEMOriginalEquipmentManufacturerOMEOxyMethylenedi-methylEtherPxPositioninthepowertrainoftheelectricalmachine,e.g.P0,P2etc.,wherexisanumber.P2XPowertoX,whereXisanenergycarrierPAHPolyaromaticHydrocarbonswww.ertrac.orgPage166of169FinalVersionPCPassengerCarPCBPrintedCircuitBoardPEProtectiveEarthPEMProtonExchangeMembranePEMCProtonExchangeMembraneCellPEVPlug-inElectricVehiclePHEVPlug-inHybridElectricVehiclePLCProgrammableLogicControllerPLMProduceLifecycleManagementPMParticulateMatterPMPParticleMeasurementProgrammePNParticleNumberPtGPowertoGasPTTPre-Treatment(ofbiomass)PVPhotovoltaicPWHRPressuriseHeavyWaterReactorsPWMPulseWidthModulatedR&DResearchandDevelopmentR&IResearchandInnovationRDERealDrivingEmissionsREDRenewableEnergyDirectiveRExEVRangeExtendedElectricVehicle,wherexdenominatestherangeextendertypeREESSRangeExtendingElectricalSub-SystemRESRenewableEnergySystem(s)RONResearchOctaneNumberRWGSReverseWater-gasShiftSCRSelectiveCatalyticReductionSISparkIgnitionSIASecondaryInorganicAerosolSMRSteamMethaneReformingSNGSyntheticNaturalGasSOASecondaryOrganicAerosolSoCStateofChargeSOECSolidOxideElectrolyserCellSoHStateofHealthSoXStateofX,whereXisacharacteristicSWSoftwareTCOTotalCostofOwnershipTEATechno-EconomicAssessmentTECHAclimatechangemitigationscenarioTGThermalGasificationTHCTotalHydrocarbonsTIPTyreIndustryProjectTMFBTailor-MadeFuelsfromBiomassTMSThermalManagementSystemTOUTimeofUseTRLTechnologyReadinessLevel(seebelow)TRWPTyreandRoadWearParticlesTSOTransmissionServiceOperatorTTWTanktoWheel(alsoTtW)TWCThreeWayCatalystV1GElectricityflowfromvehicletogridwww.ertrac.orgPage167of169FinalVersionV2GVehicletoGrid(bi-directionalelectricityflow)V2XVehicletoX,whereXis,e.g.,anothervehicleorinfrastructureVOCVolatileOrganicCompoundsWLANWirelessLocalAreaNetworkWLTPWorldLight-dutyharmonisedTestProcedureWPTWirelessPowerTransferWTTWelltoTank(alsoWtT)WTWWelltoWheel(alsoWtW)xMSManagementSystemofX,whereXisavariableparameterZIEZeroImpactEmissionOrganisationsBEPABatteriesEuropeanPartnershipAssociationBMVIGermanMinistryfortheEconomy(BMWi)DFSDeutscheForschungsgemeinschaftDOEDepartmentofEnergyEBAEuropeanBiogasAssociationECEuropeanCommissionEPAEnvironment(al)ProtectionAgencyETIP.SNETEuropeanTechnologyandInnovationPlatform“Smartnetworkforenergytransition”EUEuropeanUnionEUCAREuropeanCouncilforAutomotiveR&DFCHJUFuelCellandHydrogenJointUndertakingIATAInternationalAirTransportAssociationICCTInternationalCouncilonCleanTransportationIEAInternationalEnergyAgencyIECInternationalElectrotechnicalCommissionIMDGInternationalMaritimeDangerousGoodsIMOInternationalMaritimeOrganisationIPCCIntergovernmentalPanelonClimateChangeJECJRCEUCARConcaweJRCEuropeanCommission’sJointResearchCentreRGRARevuegénéraledesroutesetdel'aménagementSAESocietyofAutomotiveEngineersWBCSDWorldBusinessCouncilofSustainableDevelopmentTechnologyReadinessLevels112WhereTRLismentioned,thefollowingdefinitionsapply,unlessotherwisespecified:TRL1basicprinciplesobservedTRL2technologyconceptformulatedTRL3experimentalproofofconceptTRL4technologyvalidatedinlabTRL5technologyvalidatedinrelevantenvironment(industriallyrelevantenvironmentinthecaseofkeyenablingtechnologies)TRL6technologydemonstratedinrelevantenvironment(industriallyrelevantenvironmentinthecaseofkeyenablingtechnologies)TRL7systemprototypedemonstrationinoperationalenvironmentTRL8systemcompleteandqualifiedTRL9actualsystemproveninoperationalenvironment(competitivemanufacturinginthecaseofkeyenablingtechnologies).112https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdfwww.ertrac.orgPage168of169FinalVersion7.3ReferencesperChapter7.3.1Chapter1[1.1]TheERTRACTimelinedocument[1.2]“Well-to-WheelsScenariosfor2050CarbonNeutralRoadTransportintheEU”,Krauseetal.,2022,tobepublishedinthejournal“Fuels”or“TechnicalScenariosfortheDecarbonisationofRoadTransportfromaWelltoWheelsPerspective”,NeugebauerandEdwards,22ndInternationalStuttgartSymposium,March2022.[1.3]The2Zero,CCAM,theBatteriespartnership,theHydrogenPartnershipSRIA.[1.4]ERTRAC2050Vision7.3.2Chapter2[2.1]ETIPSNETVision2050Figure3[2.2]RenewablePowerGenerationCostsin2018,IRENA[2.3]EuropeanCommission(2017)“Energystorage–theroleofelectricity”[2.4]ACleanPlanetforall—AEuropeanstrategiclong-termvisionforaprosperous,modern,competitiveandclimateneutraleconomy(COM(2018)773final),28November2018[2.5]Eurostat(2000,2015][2.6]PRIMES[2.7]EEAreport05/2019–QualityandgreenhousegasintensitiesoftransportfuelsintheEUin2017[2.8]Renewabledieselplantmap,ArgusConsultingServices,updatedMarch2021.[2.9]Kremeretal,“OptimizingDieselCombustionBehaviourwithTailor-madeFuelsfromBiomass”.9thTAEInternationalColloquiumonFuels,01/2013,Esslingen,Germany[2.10]IRENARENEWABLEPOWERGENERATIONCOSTSIN2018[2.11]SustainablebiomassavailabilityintheEU,to2050,C.Panoutsou,ImperialCollegeLondonforConcawe,2021.https://www.concawe.eu/wp-content/uploads/Sustainable-Biomass-Availability-in-the-EU-Part-I-and-II-final-version.pdf[2.12]Concawereport14/19:Roleofe-fuelsintheEuropeantransportsystem–Literaturereview.https://www.concawe.eu/wp-content/uploads/Rpt_19-14.pdf[2.13]ConcaweReviewVolume28,Number1,October2019[2.14]FrontierEconomics,2018[2.15]Shell,2018e[2.16]EBA–StatisticalReport2019[2.17]EnergyTransitionsCommission(2018)[2.18]HydrogenEuropeowncalculations,basedonMcKinsey,HydrogenRoadmapEurope(2019)[2.19]Navigant–GasforClimate(2019)andCERRE–FutureMarketsforRenewableGasesandHydrogen(2019)https://www.gasforclimate2050.eu/files/files/Navigant_Gas_for_Climate_The_optimal_role_for_gas_in_a_net_zero_emissions_energy_system_March_2019.pdfhttps://www.cerre.eu/publications/future-markets-renewable-gases-and-hydrogen[2.20]ETIPSNETWG3WhitePaper[2.21]Vision2050.IntegratingSmartNetworksfortheEnergyTransition:ServingSocietyandProtectingtheEnvironment.ETIP-SNET,publ.2018[2.22]ECDirectorate-GeneralforMaritimeAffairsandFisheries:MarketStudyonOceanEnergywww.ertrac.orgPage169of169FinalVersion7.3.3Chapter4[4.1]http://ri.diva-portal.org/smash/get/diva2:1301679/FULLTEXT01.pdf[4.2]https://www.isi.fraunhofer.de/content/dam/isi/dokumente/cce/2018/PolicyPaper_climate-friendly-road-freight-transport.pdf[4.3]https://europeanclimate.org/content/uploads/2019/11/6-09-2019-trucking-into-a-greener-future-summary-report.pdf[4.4]EuropeanClimateFoundation.Low-carboncarsinEurope.Asocio-economicassessment[4.5]Iberdrola“InvestorsDay”,2018[4.6]https://www.elaad.nl/uploads/files/EV_related_protocol_study_v1.1.pdf[4.7]InnovationOutlook–SmartChargingforelectricvehicles(IRENA),Figure36[4.8]EuropeanClimateFoundation.Low-carboncarsinEurope.Asocio-economicassessment[4.9]DGTAXUDTaxationTrendsintheEuropeanUnion[4.10]FuelCellandHydrogenObservatory[4.11]http://www.ectp-ceu.eu/images/stories/PDF-docs/TCPA_SPECIAL_ExpertP_Giuseppe%20Inturri%20and%20Matteo%20Ignaccolo.pdf[4.12]“Evolution.ElectricvehiclesinEurope:gearingupforanewphase?”AmsterdamRoundtableFoundationandMcKinsey&Company,TheNetherlands(April2014)[4.13]Donada,C.andAttias,D.(2015)‘Foodforthought:whichorganisationandecosystemgovernancetoboostradicalinnovationintheelectromobility2.0industry?’,Int.J.AutomotiveTechnologyandManagement,Vol.15,No.2,pp.105–125[4.14]Madina,Carlos,InmaculadaZamora,andEduardoZabala."Methodologyforassessingelectricvehiclecharginginfrastructurebusinessmodels."EnergyPolicy89(2016):284-293.[4.15]https://www.edsoforsmartgrids.eu/wp-content/uploads/EDSO-paper-on-electro-mobility-2.pdf[4.16]ELECTRICVEHICLESANDTHECALIFORNIAGRID,NEXT10,JULY2018.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱