中国脆弱生态系统恢复优秀案例(英文版)--联合国环境规划署VIP专享VIP免费

© 2022 United Nations Environment Programme
ISBN No: 978-92-807-3996-1
Job No: DEP/2494/NA
This publication may be reproduced in whole or in part and in any form for educational or non-prot services without special
permission from the copyright holder, provided acknowledgement of the source is made. The United Nations Environment
Programme would appreciate receiving a copy of any publication that uses this publication as a source.
No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in
writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose
and extent of the reproduction, should be addressed to the Director, Communication Division, United Nations Environment
Programme, P. O. Box 30552, Nairobi 00100, Kenya.
Disclaimers
The designations employed and the presentation of the material in this publication do not imply the expression of any opinion
whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory or city or
area or its authorities, or concerning the delimitation of its frontiers or boundaries.
Some illustrations or graphics appearing in this publication may have been adapted from content published by third parties
to illustrate the authors’ own interpretations of the key messages emerging from such third-party illustrations or graphics.
In such cases, the material in this publication does not imply the expression of any opinion whatsoever on the part of United
Nations Environment Programme concerning the source materials used as a basis for such graphics or illustrations.
Mention of a commercial company or product in this document does not imply endorsement by the United Nations
Environment Programme or the authors. The use of information from this document for publicity or advertising is not
permitted. Trademark names and symbols are used in an editorial fashion with no intention on infringement of trademark or
copyright laws.
The views expressed in this publication are those of the authors and do not necessarily reect the views of the United
Nations Environment Programme. We regret any errors or omissions that may have been unwittingly made.
© Maps, photos and illustrations as specied
Suggested citation
United Nations Environment Programme (2022). Good Practices on Vulnerable Ecosystem Restoration in China. Nairobi.
Production
United Nations Environment Programme (UNEP) and United Nations Environment Programme-International Ecosystem
Management Partnership (UNEP-IEMP)
IIIGood practices on vulnerable ecosystem restoration in China
The United Nations Environment Programme (UNEP) would
like to thank the lead and contributing authors and the project
coordination team for their contribution to the development
of this report.
Authors and reviewers contributed in their individual
capacities and their aliations are only mentioned for
identication purposes.
AUTHORS (listed in alphabetic order)
Chao Fu, UNEP-International Ecosystem Management
Partnership
Guoqin Wang, UNEP-International Ecosystem Management
Partnership
Haifan Huang, UNEP-International Ecosystem Management
Partnership
Jiaqiang Lei, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences
Jingshu Wei, Research Center for Eco-environmental
Sciences, Chinese Academy of Sciences
Junguo Liu, North China University of Water Resources
and Electric Power and Southern University of Science and
Technology
Linxiu Zhang, UNEP-International Ecosystem Management
Partnership
Li Li, UNEP-International Ecosystem Management Partnership
Maierdang Keyimu, Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences
Xiufang Xu, Wushen Banner Forestry Bureau, Inner Mongolia
Yongfei Bai, Institute of Botany, Chinese Academy of
Sciences
Yang Wang, Institute of Botany, Chinese Academy of
Sciences
Yuehan Dou, Southern University of Science and Technology
Zongshan Li, Research Center for Eco-Environmental
Sciences, Chinese Academy of Sciences
REVIEWERS (listed in alphabetic order)
Andrea Hinwood (UNEP), Arthur Hanson (International
Institute for Sustainable Development), Bojie Fu (Beijing
Normal University, China), Jian Liu (UNEP), Kirit Avishek
(Birla Institute of Technology, India), Larry L Bowman (Yale
University, USA), Mirey Atallah (UNEP), Stephen Murphy
(Missouri Botanical Garden, USA), Susan Mutebi-Richards
(UNEP), Xiubo Yu (Chinese Ecosystem Research Network,
China), Yu Liu (Institute of Geographic Sciences and Natural
Resources, Chinese Academy of Sciences, China)
EDITORS
Guoqin Wang (UNEP-International Ecosystem Management
Partnership/Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences),
Linxiu Zhang (UNEP-International Ecosystem Management
Partnership)
SECRETARIAT AND PROJECT COORDINATION
Kerstin Stendahl (UNEP), Chao Fu (UNEP-International
Ecosystem Management Partnership/Institute of
Geographic Sciences and Natural Resources Research,
Chinese Academy of Science)
LANGUAGE EDITING
Strategic Agenda
DESIGN AND LAYOUT
Beijing Unique Business Co. Ltd
THANKS ALSO TO:
UNEP: Irene Chuma, Sari Sherman and Bakhita Amondi
Oduor
UNEP-IEMP team: Qinghe Qu, Li Li and Jialin He
FINANCIAL AND ORGANIZATIONAL SUPPORT
The case studies highlighted in this report were possible
thanks to the partial nancial support provided by the
Chinese Academy of Science through the ‘Strategic Priority
Research Program of the Chinese Academy of Sciences
(Grant ID: XDA20010303)’ and the Ministry of Science and
Technology, China through the National Key R&D Program of
China (Grant ID: 2018YFE0106000).
The UNEP would like to thank Dr. Cong Wang for coordinating
the information collection and project of the Science and
Technology Service Network Initiative under the Chinese
Academy of Sciences (Grant ID: KFJ-STS-ZDTP-036) and
International Partnership Programme of the Chinese
Academy of Sciences (Grant ID: 121311KYSB20170004).
Our special appreciation goes to the scientic community of
the Chinese Ecosystem Research Network, who contributed
decades of ground-level experience of ecosystem restoration
in the harsh environment of vulnerable regions. Without
these long-term, site-based experiments, monitoring,
research and adaptive management, the cases presented in
this report would not have been possible.
The UNEP would like to acknowledge the support from
the team of UN Decade on Ecosystem Restortation
2021-2030. This report is also expected to contribute
to the implementation of the UN Decade on Ecosystem
Restortation 2021-2030.
Acknowledgements
©2022UnitedNationsEnvironmentProgrammeISBNNo:978-92-807-3996-1JobNo:DEP/2494/NAThispublicationmaybereproducedinwholeorinpartandinanyformforeducationalornon-profitserviceswithoutspecialpermissionfromthecopyrightholder,providedacknowledgementofthesourceismade.TheUnitedNationsEnvironmentProgrammewouldappreciatereceivingacopyofanypublicationthatusesthispublicationasasource.NouseofthispublicationmaybemadeforresaleoranyothercommercialpurposewhatsoeverwithoutpriorpermissioninwritingfromtheUnitedNationsEnvironmentProgramme.Applicationsforsuchpermission,withastatementofthepurposeandextentofthereproduction,shouldbeaddressedtotheDirector,CommunicationDivision,UnitedNationsEnvironmentProgramme,P.O.Box30552,Nairobi00100,Kenya.DisclaimersThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry,territoryorcityorareaoritsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.Someillustrationsorgraphicsappearinginthispublicationmayhavebeenadaptedfromcontentpublishedbythirdpartiestoillustratetheauthors’owninterpretationsofthekeymessagesemergingfromsuchthird-partyillustrationsorgraphics.Insuchcases,thematerialinthispublicationdoesnotimplytheexpressionofanyopinionwhatsoeveronthepartofUnitedNationsEnvironmentProgrammeconcerningthesourcematerialsusedasabasisforsuchgraphicsorillustrations.MentionofacommercialcompanyorproductinthisdocumentdoesnotimplyendorsementbytheUnitedNationsEnvironmentProgrammeortheauthors.Theuseofinformationfromthisdocumentforpublicityoradvertisingisnotpermitted.Trademarknamesandsymbolsareusedinaneditorialfashionwithnointentiononinfringementoftrademarkorcopyrightlaws.TheviewsexpressedinthispublicationarethoseoftheauthorsanddonotnecessarilyreflecttheviewsoftheUnitedNationsEnvironmentProgramme.Weregretanyerrorsoromissionsthatmayhavebeenunwittinglymade.©Maps,photosandillustrationsasspecifiedSuggestedcitationUnitedNationsEnvironmentProgramme(2022).GoodPracticesonVulnerableEcosystemRestorationinChina.Nairobi.ProductionUnitedNationsEnvironmentProgramme(UNEP)andUnitedNationsEnvironmentProgramme-InternationalEcosystemManagementPartnership(UNEP-IEMP)IIIGoodpracticesonvulnerableecosystemrestorationinChinaTheUnitedNationsEnvironmentProgramme(UNEP)wouldliketothanktheleadandcontributingauthorsandtheprojectcoordinationteamfortheircontributiontothedevelopmentofthisreport.Authorsandreviewerscontributedintheirindividualcapacitiesandtheiraffiliationsareonlymentionedforidentificationpurposes.AUTHORS(listedinalphabeticorder)ChaoFu,UNEP-InternationalEcosystemManagementPartnershipGuoqinWang,UNEP-InternationalEcosystemManagementPartnershipHaifanHuang,UNEP-InternationalEcosystemManagementPartnershipJiaqiangLei,XinjiangInstituteofEcologyandGeography,ChineseAcademyofSciencesJingshuWei,ResearchCenterforEco-environmentalSciences,ChineseAcademyofSciencesJunguoLiu,NorthChinaUniversityofWaterResourcesandElectricPowerandSouthernUniversityofScienceandTechnologyLinxiuZhang,UNEP-InternationalEcosystemManagementPartnershipLiLi,UNEP-InternationalEcosystemManagementPartnershipMaierdangKeyimu,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciencesXiufangXu,WushenBannerForestryBureau,InnerMongoliaYongfeiBai,InstituteofBotany,ChineseAcademyofSciencesYangWang,InstituteofBotany,ChineseAcademyofSciencesYuehanDou,SouthernUniversityofScienceandTechnologyZongshanLi,ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciencesREVIEWERS(listedinalphabeticorder)AndreaHinwood(UNEP),ArthurHanson(InternationalInstituteforSustainableDevelopment),BojieFu(BeijingNormalUniversity,China),JianLiu(UNEP),KiritAvishek(BirlaInstituteofTechnology,India),LarryLBowman(YaleUniversity,USA),MireyAtallah(UNEP),StephenMurphy(MissouriBotanicalGarden,USA),SusanMutebi-Richards(UNEP),XiuboYu(ChineseEcosystemResearchNetwork,China),YuLiu(InstituteofGeographicSciencesandNaturalResources,ChineseAcademyofSciences,China)EDITORSGuoqinWang(UNEP-InternationalEcosystemManagementPartnership/InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofSciences),LinxiuZhang(UNEP-InternationalEcosystemManagementPartnership)SECRETARIATANDPROJECTCOORDINATIONKerstinStendahl(UNEP),ChaoFu(UNEP-InternationalEcosystemManagementPartnership/InstituteofGeographicSciencesandNaturalResourcesResearch,ChineseAcademyofScience)LANGUAGEEDITINGStrategicAgendaDESIGNANDLAYOUTBeijingUniqueBusinessCo.LtdTHANKSALSOTO:UNEP:IreneChuma,SariShermanandBakhitaAmondiOduorUNEP-IEMPteam:QingheQu,LiLiandJialinHeFINANCIALANDORGANIZATIONALSUPPORTThecasestudieshighlightedinthisreportwerepossiblethankstothepartialfinancialsupportprovidedbytheChineseAcademyofSciencethroughthe‘StrategicPriorityResearchProgramoftheChineseAcademyofSciences(GrantID:XDA20010303)’andtheMinistryofScienceandTechnology,ChinathroughtheNationalKeyR&DProgramofChina(GrantID:2018YFE0106000).TheUNEPwouldliketothankDr.CongWangforcoordinatingtheinformationcollectionandprojectoftheScienceandTechnologyServiceNetworkInitiativeundertheChineseAcademyofSciences(GrantID:KFJ-STS-ZDTP-036)andInternationalPartnershipProgrammeoftheChineseAcademyofSciences(GrantID:121311KYSB20170004).OurspecialappreciationgoestothescientificcommunityoftheChineseEcosystemResearchNetwork,whocontributeddecadesofground-levelexperienceofecosystemrestorationintheharshenvironmentofvulnerableregions.Withouttheselong-term,site-basedexperiments,monitoring,researchandadaptivemanagement,thecasespresentedinthisreportwouldnothavebeenpossible.TheUNEPwouldliketoacknowledgethesupportfromtheteamofUNDecadeonEcosystemRestortation2021-2030.ThisreportisalsoexpectedtocontributetotheimplementationoftheUNDecadeonEcosystemRestortation2021-2030.AcknowledgementsIVGoodpracticesonvulnerableecosystemrestorationinChinaCASChineseAcademyofSciencesCERNChineseEcosystemResearchNetworkCNYChineserenminbiGPSGlobalPositionSystemIMGERSInnerMongoliaGrasslandEcosystemResearchStationIPBESIntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServicesRCEESResearchCenterforEco-EnvironmentalSciencesRSRemoteSensingSTEREStepwiseecologicalrestorationtheoryUNDecadeUnitedNationsDecadeonEcosystemRestorationUNEPUnitedNationsEnvironmentProgrammeUNEP-IEMPUnitedNationsEnvironmentProgramme-InternationalEcosystemManagementPartnershipXIEGXinjiangInstituteofEcologyandGeographyAbbreviationsVGoodpracticesonvulnerableecosystemrestorationinChinaTableofContentAbbreviationsIVForewordVIIIntroductionVIIICase1.Establishingperennialartificialgrasslandindegradedareas01Case2.Arotationalmowingsystemfornaturalgrasslands06Case3.Restorationofdegradedgrasslandusingbiophysicalmethods10Case4.Naturalregenerationofsandylandsattheecologicaltransitionzone16Case5.Couplingagriculturalcropsandlivestockrearingatirrigatedfarmlands20Case6.Ecologicalrestorationinmountaingullyareasforsoilandwaterconservationandpovertyreduction25Case7.EcologicalorchardsinslopedrylandareasofChina30Case8.Buildingstonediketerracesinrocky,mountainousareasforagriculturedevelopment35Case9.Plantingdesertginsengasanewlivelihoodalongthedeserthighway41Case10.EcologicalrestorationofYongdingRiverinChina47Conclusion53VIGoodpracticesonvulnerableecosystemrestorationinChinaVIIGoodpracticesonvulnerableecosystemrestorationinChinaForewordHealthyecosystemssupportalllifeonEarth.TheglobalcalloftheUNDecadeonEcosystemRestorationtoreviveecosystemsworldwideforthebenefitofpeopleandnaturehasbeenrespondedtobymanynations,internationalinitiativesandcivilsocieties.ThegoalofthisUNDecadeonEcosystemRestorationistobuildastrongglobalmovementthatseekstopromoteecosystemrestorationeffortsandcreatethousandsofinitiativesontheground.TheseeffortsareparticularlyimportantintheGlobalSouth,wherebetterpolicyplanning,enhancedcapacity,well-testedtechnologyandscience-basedandtraditionalknowledgeforecosystemrestorationremainunderdeveloped.TheecosystemrestorationeffortsofChinahavebeenwidelyrecognizedbytheglobalcommunity.Overthepastfewdecades,ithasundertakenremarkableengineeringprojects,suchastheGrainforGreenProgrammein23provincesandtheThree-NorthShelterbeltProjectinaridandsemi-aridregionsofChina.Chinesescientists,particularlythoseoftheChineseEcosystemResearchNetwork(CERN)oftheChineseAcademyofSciences(CAS),aredevotedtolong-termecologicalmonitoring,researchanddemonstrationintheseregions.TheyhavegainedrichexperiencesinvulnerableecosystemrestorationandmanagementinChina.ThisreportwaspreparedbyateamofresearchersfromtheUnitedNationsEnvironmentProgramme-InternationalEcosystemManagementPartnership(UNEP-IEMP)andseveralresearchinstitutesoftheProfessorBojieFuCo-ChairofUNEP-IEMP’sScienceAdvisoryGroupCAS.Itincludesintegratedmanagementapproaches,science-basedknowledgeandsocioeconomicaspectsofvulnerableecosystemrestorationtoshareknowledgeandpracticesonrestoringandmanagingvulnerableecosystemsinChina.Theseecosystemsincludedeserts,degradedgrasslands,sandylandsintheagriculture-pasturetransitionarea,drylands,mountaingullyareasandurbanrivers.Thecasestudiesontherestorationoftheseecosystemsputlocallivelihoodsandcommunitydevelopmentatthecoreofintegratedecosystemmanagementapproaches.Weexpectthisreportwillbeusedasatechnicalreferenceforlocalpractitioners,civilsocieties,policymakersandgovernmentofficialswithinasimilarcontext.Werecommenddevelopingthecapacitiesoflocalmenandwomentoensuretheycanbeeffectivelyinvolvedtorestorevulnerablelocalecosystems.VIIIGoodpracticesonvulnerableecosystemrestorationinChinaEfficientandsustainableecosystemrestoration,complementedbyecosystemconservation,isuniquelyabletomakemajorcontributionstoall17SustainableDevelopmentGoals(InternationalResourcePanel2019).Inthiscontext,theUnitedNationsGeneralAssemblyproclaimed2021–2030tobetheUnitedNationsDecadeonEcosystemRestoration(UNDecade).UnitedNationsMemberStatesarecommittedtosupportingtheUNDecadebybuildingnewmomentumforecosystemrestorationglobally,scalingupexistingecosystemrestorationefforts,raisingawarenessoftheimportanceofconservationandrestoration,andbuildingsynergies.TheUnitedNationsEnvironmentProgramme(UNEP)andtheFoodandAgricultureOrganizationoftheUnitedNationsaretheleadagenciesimplementingtheUNDecade.Theirrolewillbecatalytic,facilitatingcollaborationbetweendiversestakeholders,leveragingfundingandprovidinginformation(UnitedNations2020).Ecosystemrestorationincludesrestoringconvertedlandsbackintohealthyecosystemsandrestoringdegradedecosystems(IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices[IPBES]2018).Restoringecosystemsincreasesthesupplyandqualityofecosystemservicesovertime,contributingtowardsdesiredoutcomessupportingnationalsustainabledevelopmentpriorities,includingendingpoverty,conservingbiodiversity,combatingclimatechangeandimprovinglivelihoodsforeveryone,everywhere(UnitedNations2020).StudiesfromAsiaandAfricaindicatethatthecostofinactioninthefaceoflanddegradationisatleastthreetimeshigherthanthecostofaction(IPBES2018),aslessdevelopedcountriesaremoredependentonecosystemservicesfortheirdailysupply.Ofthe10significantecologicalproblemsassociatedwithecosystemdegradationidentifiedinChinabyCuietal.(2021),decreasedresource-carryingcapacityisoneofthemostcommonissues.The2018IPBESreportalsoshowedthatthenetprimaryproductivityofecosystembiomassandagricultureispresentlylowerthanitwouldhavebeenundernaturalstateon23%oftheglobalterrestrialarea,amountingtoa5%reductionintotalglobalnetprimaryproductivity.Inthiscontext,enhancingtheessentialecosystemgoodsandsupplyservicesthroughlarge-scalerestorationremainsahighpriorityformostdevelopingcountries.ArecentstudybyChen(2019)showedthatChinaaloneaccountedfor25%oftheglobalnetincreaseinleafareabetween2000and2017,withonly6.6%oftheglobalvegetatedarea,andhumanland-usemanagementisanimportantdriverofsuchgreening.Thisismainlythankstokeyecologicalrestorationprogrammes,suchastheThree-NorthNaturalForestandGrainforGreenprogrammes,withsignificantinvestmentfromtheChineseGovernment.Between2006and2015,214keyecosystemrestorationtechnologieswererecordedinChina.Afforestation,soilandwaterconservation,andcontourhedgerowsystemswerethebestreceivedtechnologiesonthegroundandweremostoftenscaledup.AlthoughtherehavebeenmanyecologicalrestorationprojectsinChina,anecologicalrestorationdatabasehasnotyetbeenestablished(Cuietal.2021).Relatedgoodpracticesandlessonslearnedcouldbesharedfurther.TherearemanystakeholdersinvolvedinrestorationinChina.TheCERN,foundedin1988andledbytheCAS,isonesuchstakeholder.Ithasconductedcontinuousexperimentsandmonitoringofthehydrological,pedological,atmosphericandbiologicalelementsoftypicalecosystemstomeetscientificresearchandsocietalneeds(Lietal.2015).TheCERNiscommittedtoexploringthedevelopmentpathsofoptimizingecosystemstructureandfunctionwhileensuringhumanwell-being.Manyecologicalfieldstationslocatedinvulnerabledrylandswereestablishedbefore1988tomeetsocioeconomicneeds,forexample,protectingtherailwayfromwindandsand,improvingtheproductivityoflow-yieldagriculturalareasandrestoringvegetation(Zhao,YuandXu2021).AsafoundingmemberoftheInternationalLong-TermEcosystemResearchNetwork,CERN’sexperiencesofecosystemrestorationandlong-termmonitoringandresearchoverthepastthreedecadesareinvaluabletotheworld.Toaddressglobalrestorationbarrierstotechnicalcapacity,scientificresearchandpublicawareness,boththeIPBES(2018)andtheUNDecadestrategy(UnitedNations2020)identifiedpathwaystostrengthentheIntroductionIXGoodpracticesonvulnerableecosystemrestorationinChinaroleofscience,indigenousknowledgeandtraditionalpractices,applybesttechnicalknowledgeandpractice,andinvestinlong-termresearch.Inthiscontext,theUNEP-IEMP,togetherwithChinesescientists,compliedrelevantgood-practicecasestudiesonecosystemrestorationinChina.Theselectedcasestudiespresentdifferentvulnerableecosystems,includingdeserts,degradedgrasslands,sandylandsintheagriculture-pasturetransitionarea,drylands,mountaingullyareasandurbanrivers.MostofthesecasesarebasedonmajorecosystemrestorationprogrammesinitiatedbytheChineseGovernmentinthepastthreedecades,includingtheThree-NorthNaturalForest,theGrainforGreenprogrammeandtheBeijing-TianjinSandstormControlProgramme.Thecasespresentedhavethereforebeenthoroughlytestedandareregionallyrepresentative.Notingthatrestorationissite-specificanddrivenbythelocalecologicalandsocioeconomiccontext,thereportprovidesnotonlyspecificinterventionapproachesandtechniquesandrestorationoutcomesbutalsocost-benefitanalyses,relatedpolicycontextsandtheirpotentialapplicationscopeandlessonslearned.TheScienceandTechnologyServiceNetworkInitiativecontributedgreatlytothisreport.SponsoredbytheCAS,itaimstoprovideeasyaccesstoscience-technologyservicesforsustainablesocioeconomicdevelopmentthroughjointdemonstrationsandcapacity-buildingwithlocalcommunitiesandprivatesectors.Basedonsuccessfulupscalingprojectsunderthisinitiative,41ecologicalrestorationcasesinthekeyecologicallyvulnerableregionswereselectedandsummarized(Wangetal.2019).Fromthose41,thisreportselected10goodpracticesbasedontherepresentativenessofthevulnerableecosystemtypes,technologytransferability,scientificbases,localknowledgeandbuy-inandcost-effectiveness.ThisreportispartoftheUNEPClimate,EcosystemsandLivelihoodsflagshipprogramme,whichisthe10-yearstrategyofUNEP-IEMPaimedatimprovinglivelihoodsthroughecosystemrestorationandconservationforbetterecosystemservicedeliveryinachangingclimate.SincethisflagshipprogrammeisthemajorSouth-SouthcooperationinitiativebetweentheUNEPandtheChineseGovernment,sharingChineserestorationexperiencesisagoodwayofpromotingSouth-SouthcooperationunderboththeUNDecadeandtheUNEPStrategyforSouth-SouthandTriangularCooperation.ThisreportisexpectedtocomplementtheEcosystemRestorationPlaybookbyprovidingmoretechnicalreferencesforinterventionsonthegroundindifferentecosystemtypes.Sincemostofthecasesselectedarecost-effectiveandthoroughlytestedinChina,thereportwillguidereadersontheshort-andlong-termbenefitsofrestorationandstimulatemorescalingup.ItwillalsoprovideinputfortheTaskForceledbytheFoodandAgricultureOrganizationoftheUnitedNations,collatingbestpracticesonecosystemrestoration.References◊Chen,C.,Park,T.,Wang,X.,Piao,S.,Xu,B.,Chaturvedi,R.K.etal.(2019).ChinaandIndialeadingreeningoftheworldthroughland-usemanagement.NatureSustainability2,122-129.https://doi.org/10.1038/s41893-019-0220-7.◊Cui,W.,Liu,J.,Jia,J.andWangP.(2021).TerrestrialecologicalrestorationinChina:Identifyingadvancesandgaps.EnvironmentalSciencesEurope33,123.https://doi.org/10.1186/s12302-021-00563-2.◊IntergovernmentalScience-PolicyPlatformonBiodiversityandEcosystemServices(2018).TheIPBESAssessmentReportonLandDegradationandRestoration.Bonn,Germany.https://digitallibrary.un.org/record/3794559.◊InternationalResourcePanel(2019).LandRestorationforAchievingtheSustainableDevelopmentGoals.AnInternationalResourcePanelThinkPiece.Nairobi,Kenya:UNEP.https://www.resourcepanel.org/reports/land-restoration-achieving-sustainable-development-goals.◊Li,S.,Yu,G.,Yu,X.,He,H.andGuo,X.(2015).AbriefintroductiontoChineseEcosystemResearchNetwork(CERN).JournalofResourcesandEcology6(3),192-196.https://doi.org/10.5814/j.issn.1674-764x.2015.03.009.◊Liu,J.,Cui,W.,Tian,Z.,Jia,J.(2020).Theoryofstepwiseecologicalrestoration.(inChinese).ChineseScienceBulletin66(9),1014-1025.https://doi.org/10.1360/TB-2020-1128.◊UnitedNations(2020).TheUnitedNationsDecadeonEcosystemRestorationStrategy.ERDStrat.pdf(unep.org).◊Wang,C.,Wu,X.,Fu,B.,Han,X.,Chen,Y.,Wang,K.etal.(2019).Ecologicalrestorationinthekeyecologicallyvulnerableregions:Currentsituationanddevelopmentdirection.(inChinese).ActaEcologicaSinica39(20),7333-7343.https://www.ecologica.cn/html/2019/20/stxb201909051848.htm.◊Zhao,W.,Yu,X.andXu,C.(2021)Social-ecologicalsystemmanagementindrylands:experiencesfromChineseEcosystemResearchNetwork.CurrentOpinioninEnvironmentalSustainability48,93-102.https://doi.org/10.1016/j.cosust.2020.11.006.01GoodpracticesonvulnerableecosystemrestorationinChinaCase1.EstablishingperennialartificialgrasslandindegradedareasBriefOverviewHereweintroduceanecosystemmanagementapproachaimedatrevitalizingdegradedgrasslandsbysowingperennialforagespecies(Figure1.1).Itwasdevelopedbasedonextensivelong-term,site-basedresearchconductedwithintheInnerMongoliaGrasslandEcosystemResearchStation(IMGERS)oftheCAS.Thisapproachisapplicabletoareaswithannualprecipitationgreaterthan280mmorareaswithaccessiblegroundwater,includinghillylowlandswithfertilesoilsandsufficientprecipitationsuitableforplantingartificialgrasslandandabandonedflatfarmlandsthatcanbeconvertedtoirrigatedartificialgrassland.Thisapproachshouldbeusefulandofinteresttothoseworkinginthegrasslandmanagementandlandresourcesectorsforfurtherupscaling.02GoodpracticesonvulnerableecosystemrestorationinChina1.BackgroundInaridandsemi-aridareasofChina,grasslandagricultureisconstrainedbythelowproductivityanddegradationofnaturalgrasslandsandthelimitedscaleandstabilityofartificialgrassland(Bai,PanandXing2016).Managingartificialgrasslandsisessentialforrestoringdegradedgrasslands,ensuringforageproductionforlivestockanddevelopingarobustlocalindustrywithinpastoralareas.Inthiscontext,theIMGERShasbeendevelopinganapproachtoestablishperennialartificialgrasslandssincetheearly2000s.Thisapproachisbasedonnichetheory,plantcompensationandplantcommunitysuccessiontheory.Themodelcoversaseriesoftechnicalsolutions,includingsiteselectionandpreparation,species/varietyselection,sowingtechnique,fieldmanagementandharvesting.2.TheinterventionapproachandimplementationplanThecorepartofthisinterventionapproachistheselectionofperennialforagespeciesandvarieties.Thefoursuggestedcombinationsofspecies,asshowninFigure1.2,include:1)long-andshort-livedforagespecies;2)deep-andshallow-rootedforagespecies;3)leguminousandgramineousforagespecies;and4)drought-tolerantandhygrophilousforagespecies(BaiandWang2017).Combininglong-andshort-livedforagespeciescanmakethetotalforageyieldmoresustainable.Forexample,wecombinedRhizomegraminoidandCaespitosegraminoidatoneplantationsite.Thisstrategysolvesthekeyissuessurroundinglowgrassyieldintheearlystagesofsuccessionandseriousdegradationinthelaterstages.Thenegativeimpactsofweedsonperennialforagespeciesduringtheearlyplantingseasoncanbeeffectivelycontrolled,andcertaingrassyieldscanbemaintainedintheyearofsowing.Assuch,thisenhancesthesustainableutilityofartificialgrasslands.Combiningdeep-andshallow-rootedforagespeciescanleveragethecomplementaryrolesofdifferentforagevarietiesintermsofwaterusage.Likewise,combingnitrogen-fixingandnon-nitrogen-fixingspeciesisknowntoenhancenutrientutilization.Combined,thesestrategiesleadtothehighlyefficientuseofbothwaterandsoil-nutrientresourcesandimprovestheoveralleconomicbenefit.Combiningdrought-tolerantandhygrophilousvarietiescanmaintainforageyieldduringbothwetanddryFigure1.1High-yieldperennialartificialgrasslandindegradedareasestablishedbyIMGERSin2000Source:IMGERS,CAS03GoodpracticesonvulnerableecosystemrestorationinChinaMoreforageyieldinthe1styearandlessdegradationlaterCombininglong-andshort-livedforagespeciesHigherefficiencyofwaterandnutrientuseCombiningdeep-andshallow-rootedforagespeciesControlweedsimpacttoplantedseedlingsCombiningleguminousandgramineousforagespeciesReduceforageyielddifferencesbetweendryandwetyearsAdoptnativeforagevarietieswithstrongresilienceCombiningdrought-tolerantandhygrophilousvarietiesImprovethenutrientvalueandqualityofforageFigure1.2Schematicdiagramofdevelopingaperennialartificialgrasslandbycombiningdiversespeciesyears.Thisenhancesthestabilityandoverallyieldofartificialgrasslandsaffectedbyunpredictableextremeweather.Selectingtargetedforagespeciesandvarietiesmakesitpossibletotailorgrasslandspecies’compositiontomaximizespecies’adaptabilitytospecificeco-environmentalconditions.Thisstrategythusenhancesdroughtresistanceandoverwinteringsurvivalratesandhelpstoavoidecologicaldisastersinducedbyalienspeciesinvasionsandextremeweather.Besidesspeciesselection,applyingdifferentmanagementpracticesisalsocrucialtoestablishingartificialgrasslandscost-effectivelyandforimprovingforagequalityandutilizationrate(Figure1.3).Advisablemanagementpracticesincludecompactionduringthesowingprocess,precisefertilizerandwaterapplication,weedingandpestcontrolduringtheploughingstage,mechanizedmowingandgrasscompactingandmicrobialfermentationduringharvesting.Theappropriatesowingperiodshouldbedeterminedaccordingtoclimaticconditionsandsoilmoisture.ThesowingperiodfortypicalgrasslandareasinInnerMongoliaisgenerallyfromJunetoJuly(Lietal.2000).Thesowingdepthisgenerally2–3cm,butitcanbeslightlydeeper,reachingabout3–5cmforlargeseeds.Inourexperimentin2015intheWulagaiManagementAreaofInnerMongolia,wesoweddifferentvarietiesofannualandperennialforagesusingtheabove-mentionedmethodstoestablishaperennialartificialgrasslandofbothleguminousandgramineousforagespecies.Aprecisionsowingmachinewasusedwithasowingrowspacingof20cmandasowingdepthof4–5cm.Fertilizer(N:P2O5:K2O=12:18:15)wasappliedat300kg/ha.Threeplantingoptionswereusedinthisexperiment:Option1–AvenanudaL.andViciasativaL.;Option2–AvenanudaL.,ElymusnutansGriseb.,BromusinermisLeyss.,Leymuschinensis(Trin.)TzvelandMedicagosativaLinn.(Aohan);andOption3–millet,ElymusnutansGriseb.,BromusinermisLeyss.,Leymuschinensis(Trin.)TzvelandMedicagolupulinaL.Additionalfertilizerwasappliedduringtherainyseason,whichcoincidedwithrapidplantgrowth.Grasseswerethenharvestedusingmowingandgrass-compactingmachinery,withstemsandleavesdriedsynchronously.Figure1.3DemonstrationmanagementpracticesofperennialartificialgrasslandindegradedareasinWulagaiManagementArea,InnerMongoliaSource:IMGERS,CAS04GoodpracticesonvulnerableecosystemrestorationinChina3.RestorationoutcomesSince2000,thisapproachhasbeenexpandedacrossXilingolinInnerMongolia,andbothlocalherdersandlocalgovernmentshavefullyrecognizeditsbeneficialeffects(Figure1.4).Since2015,thisapproachhasbeenusedinabandonedfarmlandsintheWulagaiManagementAreaofInnerMongoliawithina1,200mu1(80ha)grassland.Inthefirstyearofsowingduringtheexperiment,theyieldofOption1washighest,whileperennialgrassesinOptions2and3germinatedlateinthefirstyearaftersowing,andtheplantsgrewmoreslowly.Thisaffectedtheiroverallyieldinthefirstyear.TheyieldofnaturalgrasslandsintheWulagaiManagementAreawasabout185kg/mu(2,775kg/ha),andtheyieldofthethreeartificialgrasslandsafterthesecondyearreached336–800kg/mu(5,040–12,000kg/ha),whichwas1.8–4.3timesthatofthenaturalgrasslands.Together,wefoundthatsuchartificialgrasslandcanincreasegrasslandproductionandenhanceecosystemfunctions.Ourresultsshowedthatafterapplyingthismanagementapproach,forageyieldincreasesby5–10timesthatofnaturalgrasslands.Furthermore,suchapproachescanleadtoforageyieldthatis10–20timesgreaterthanthatofdegradedgrasslandsandabout50timesthatofseverelydesertifiedgrasslands(Du2006).Thismeansthatplantingonehectareofartificialhigh-yieldgrasslandwithmixedsowingcanhelprestore10hectaresofdegradedgrasslandsand50hectaresofseverelydesertifiedgrassland.Comparedwiththesinglesowingofoneforagespecies,thecombinedsowingoffourspeciescansignificantlyimproveecosystemresilienceand,inturn,enhancetheyieldofartificialgrasslands.Wherelatespringfrostoccurs,theoverwintersurvivalrateofsingle-speciesartificialgrasslandisverylow.Ourdemonstrationsiteswithmixedspeciesshowedmuchhighersurvivalrates.Fromagenderperspective,thispracticehadpositiveimpactsonwomen.Withecosystemrestoration,bothmenandwomenreceivedpositivehealthandeconomicbenefits.Withestablishedperennialartificialgrasslandsusingstandardizedmachinery,womenshouldbelessexposedtounfavourableoutdoorworkingconditionsandabletoturnmoretointensiveindooranimalhusbandrywork.4.DemonstrationandupscalingSince2015,thismixed-plantingapproachforperennialartificialgrasslandhasbeenpromotedanddemonstratedonalargescaleinseveralcountiesofXilingol,includingtheWulagaiManagementArea,XiwuandZhenglan,withatotalareaofmorethan2,000mu(133ha).Figure1.4RestoredlandscapethroughperennialartificialgrasslandinInnerMongoliaSource:IMGERS,CAS1MuisatraditionalunitoflandareainChina.15mu=1hectare.05GoodpracticesonvulnerableecosystemrestorationinChina5.EstimateofinvestmentandinvestmentpaybackperiodTheinitialinvestment,annualforageyieldandnetincomeinthesecondyearforOptions1,2and3areshowninTable1.1,basedontheaveragemarketpriceofhay(1.2CNY/kg)inrecentyears.Thisindicatesthattheperennialmixed-sowingoptioncangenerateabetterincomeandprovidehigh-qualityforagewhileensuringmoresustainablegrasslandmanagementpractices.ItisexpectedthattheinvestmentforOptions1and2willbepaidbackin1–2years.Table1.1Investmentandincomeinthesecondyearofthethreeperennialmixed-sowingoptions(Unit:CNY/mu)Option1Option2Option3Initialinvestment285250236Forageyieldincomes528396240Annualnetincomes2431464References◊Bai,Y.,Han,X.,Wu,J.,Chen,Z.andLi,L.(2004).EcosystemstabilityandcompensatoryeffectsintheInnerMongoliagrassland.Nature431,181-184.https://doi.org/10.1038/nature02850.◊Bai,Y.,Pan,Q.andXing,Q.(2016).Fundamentaltheoriesandtechnologiesforoptimizingtheproductionfunctionsandecologicalfunctionsingrasslandecosystems.(inChinese).ScienceChinaPress61(2),201-212.https://www.researchgate.net/publication/293042575.Fundamentaltheoriesandtechnologiesforoptimizingtheproductionfunctionsandecologicalfunctionsingrasslandecosystems(researchgate.net).◊Bai,Y.andWang,Y.(2017).Long-termecologicalresearchanddemonstrationssupportprotectionandsustainablemanagementofgrasslandecosystems.(inChinese).BulletinofChineseAcademyofSciences32(8),910-916.https://bulletinofcas.researchcommons.org/cgi/viewcontent.cgi?article=1696&context=journal.◊Du,Q.(2006).SustainableDevelopmentStrategyofChinesePrataculture.(inChinese).Beijing:ChinaAgriculturePress.◊Li,L.,Chen,J.,Han,X.,Zhang,W.andShao,C.(2000).Typicalsteppeecosystem.InGrasslandEcosystemsofChina:ASynthesisandResume.Germany:SpringerSingapore.Chapter7.193-248.https://www.researchgate.net/publication/345122561_Typical_Steppe_Ecosystem.FurtherinformationContact:ProfessorYongfeiBai,InstituteofBotany,CASEmail:yfbai@ibcas.ac.cn6.ChallengesandpotentialissuesAlthoughtheyieldofartificialgrasslandswashigh,theproductionsustainabilityfordifferentannualprecipitationsremainsunclear.Inaddition,theincreasedyieldisbasedonagreaternutrientandwateruptake.Thisneedstobestudiedinmoredetailfromtheperspectiveofwaterandnutrientcycling.Understandinghowtomaintainthesoilfertilityandlong-termproductionofartificialgrasslandsisthusanimportantareaoffutureresearchanddebate.Therearethreemainpotentialtechnicalissuesforscalingupsuchpractices.Firstly,weneedtodetermineareasonableratioofartificialgrasslandaccordingtotheoverallhabitatofgrasslandareastomeettheregionaldevelopmentrequirementwhileconservingtheremainingnaturalgrassland.Secondly,thescience-baseddesignofartificialgrasslandaccordingtothewaterandheatsupplycanensureitslong-termsustainability.Lastbutnotleast,thelocalcommunitymusttransformtheirbehaviourfromatraditionalanimalhusbandrymodeltoamoreintensivemodel(Bai,PanandXing2016).7.ProspectsforcommercialtransformationandpromotionoffindingsOurstudyshowsthatplanting10%ofanareawithartificialgrasslandcanensuretheconservationoftheremaining90%ofnaturalgrassland(Bai,PanandXing2016).TheapproachdiscussedabovecanbeusedatalargescaleinthenortherngrasslandareasofChina,whereitprovedtobecost-effective.Ourstudy,baseda24-yearexperimentonInnerMongoliagrassland,showedthatundisturbedmaturesteppeecosystemsseemtoculminatewithhighbiodiversity,productivityandecosystemstabilityconcurrently(Baietal.2004).Establishingperennialartificialgrasslandprovidesaneffectivemeanstobalancethetrade-offbetweenecologicalfunctionsanddevelopmentconcernsinnortherngrasslandareasofChina.Becausetheseareasaretypicalofmanygrasslandregionsacrosstheglobe,thesefindingshavebroadimplicationsoutsideofnorthernChina.Assuch,theyhavealreadyattractedtheattentionofgovernmentbodiesandpractitionersinterestedinsustainingsuchgrasslandecosystems.06GoodpracticesonvulnerableecosystemrestorationinChinaCase2.ArotationalmowingsystemfornaturalgrasslandsBriefOverviewThischapteraimstointroduceamoresustainablerotationalmowingsystemformanagingregularlymowednaturalgrasslandecosystems.Thesustainablemowingsysteminvolvesrotationallyreservingsomegrasslandareastoconservenutrients,waterandaseedbank.Itwasdevelopedbasedonextensivesite-basedresearchconductedbytheIMGERS.Thismanagementapproachspecificallyappliestomowednaturalgrasslandsinsemi-arid,semi-humidandhumidareasofInnerMongolia,China.However,ourresultsarelikelyapplicabletoothersimilarecosystemswiththefollowingconditions1)generallyflatterrainwithaslopeoflessthan15°;2)landthatisfreeofstonesandshrubs,3)experienceswithmechanizedoperationssuchasmowing;and4)anaveragegrassheightofatleast35cmandoverallcoverageofnolessthan50%.Ecosystemsthatdonotmeetthesecriteriaarelikelynotsuitableformechanicalharvesting,oritwouldnotbecost-effectivetodoso.Thisapproachshouldbeusefulandofinteresttothoseworkingingrasslandandlandresourcesmanagementsectorsforupscaling.07GoodpracticesonvulnerableecosystemrestorationinChinaFigure2.1.RotationalmowingapproachinWulagaiManagementArea,InnerMongolia,China.Source:IMGERS,CAS1.BackgroundInnerMongoliahas87millionhaofnaturalgrasslandthatmakesupalargepartoftheEurasianSteppe—thelargestcontiguousbiomeintheworld(WuandLoucks1992).Significantincreasesinthenumbersoflivestockandpastoralisthouseholds(11-and9-fold,respectively)overthepast60yearshavecausedvariouslydegradationinthemajorityofgrasslandsinInnerMongolia(78millionha),jeopardizingthelivelihoodsof24millionhumaninhabitants(Briskeetal.2015).Apartfromgrazing,clippingisanothermanagementpracticecommonlyusedbylocalinhabitantsforhaymaking(Zhongetal.2017).Haymakingareasareinrelativelygoodconditionduetograzingexclusionbutarefacingacontinuouslossofnutrientsintheharvestedbiomass(Schönbachetal.2011).InthestudyregionintheWulagaiManagementAreainInnerMongolia,mowingisgenerallyconductedyearly,whichremovesnutrientswithouteffectivelyreplacingthem.Thisdestroysthebalanceofnutrientsandcausesgrasslanddegradation.Yearlymowingalsoaffectsthedensityofseedsinthesoilseedbankandreducesthenumberofviableseeds.Leavingcertaingrasslandsfreefrommowinginarotationalmanagementsystemhelpspreservewater(orsnowinwinter)andtheseedbank.Furthermore,duringrotationalmowing,fertilizationcanbeappliedtosupplementsoilnutrientloss,whichwillhelppromotethelong-termsustainabilityofthesesystems.2.TheinterventionapproachandimplementationplanThisinterventionmainlyreferredtotheTechnicalRegulationForRotationalMowingOnNaturalGrassland(GB/T27515-2011)releasedbytheChineseGovernmentin2011.ArotationalmowingsystemwasappliedintheWulagaiManagementAreainInnerMongoliain2016.Twonaturalgrasslandswereselectedformowingtreatments,eachwithanareaofabout33ha.Thesuggestedwidthoftheunmowedgrassareais15–30m.Thisallowsforconvenientmechanizedoperationsandtheeffectiveecologicalconservationofnutrients,waterandviableseedsrotationally.Thedirectionofmowingshouldbeperpendiculartotheprevailingwinddirectioninwinter.Thisstrategyisconducivetospreadingthesnowandseeds,sothemowedgrasslandwillbenefitfromtheaccumulatedsnowandpreservetheseedbankoftheunmowedareas.Inourtheoryfordesigningthisintervention,theexactwidthofthegrassbeltisdeterminedaccordingtotheintendedtermofthemanagementplan,asshowninFigure2.2.Theplannedterm(forexample,Nyears)foronerotationalmanagementcycledeterminesthepercentageforconservation(1/Nforunmowedareasand(N-1)/Nformowedareas)eachyear.Forexample,fora5-yearrotationalmanagementcycleexperimentcovering100metres,themowingbeltwidthshouldbe80metresandtheunmowedrestorationrotationbeltwidth20metres.Thismeansthateach1/5ofthegrasslandwouldhaveoneyearofconservationinthe5-yearrotationalcycle.Theresidualstubbleheight(vegetationheightafter08GoodpracticesonvulnerableecosystemrestorationinChinaYear1Year2Year3Year4Year580mmowedbelt20munmowedbelt75mmowedbelt25munmowedbelt67mmowedbelt33munmowedbeltYear1Year2Year3Year4Year1Year2Year3Figure2.2.Schematicoftherotationalmanagementstrategyingrasslandsclipping)isthemostdirectindicatorofmowingintensity.Stubbleheightsduringharvestingaffectforageyieldandquality,regenerationandoverwinteringsurvivalrate.Inhayproduction,yieldisoftenhinderedduetorelativelyhighstubble.However,tooshortstubbleoftenleadstotherootcrownsfreezinginnorthernareasofChina,whichresultsinadecreaseintheoverwintersurvivalratethefollowingyear,incurringhugeeconomiclosses.Inourstudy,thesuggestedsuitableresidualstubbleheightofwarmgrasslands,lowlandmeadowsandswamps,andmowedgrasslandsissuggestedtobenolessthan12cm,9cmand7cm,respectively.Thesuggestedmowingtimevariesaccordingtotheclimatecharacteristicsofdifferentregions,aswellasthestructureofthegrasslandcommunity.Forexample,mowedgrasslandscontainingStipacapillataasthedominantspeciesshouldbemowedbeforetheformationofawns,whileArtemisiasp.-dominatedgrasslandsshouldbemowedafterthefirstfrost.Atthelatest,mowingshouldoccuronemonthbeforetheendofthegrowingseason.3.RestorationoutcomesOurexperimentsinrecentyearshaveshownthatsnowthicknessintheunmowedbeltreached19.2–22.5cm,whichwas2–2.5timesthatofthemowedbelt.Inaddition,theaveragesoilmoistureoftheunmowedbeltinspringwas23.6%,comparedwith15.15%inthemowedbelt.Asimilarlong-termstudybetween2003and2011attheIMGERSshowedthat,duringthegrowingseason,ascomparedtounmowedplots,mowedgrassland’ssoilmoisturewas47.5%lower(Shaoetal.2012).Theheavilymowedplots’soilsurfacetemperaturewas7.4°Chigheratmiddayand2.2°Cloweratpredawn,witha4.2°Cgreaterdiurnalsoiltemperaturerangeat2cmdepthcomparedtotheunmowedplots(Shaoetal.2012).Theabsenceofmowingmightalleviatethestressofhightemperaturesanddroughtduringthehotanddryperiods,leadingtovegetationthatishighlyresistanttoenvironmentalchanges.Anothersix-year(2012–2018)fieldexperimentexaminedtheresponsesofsoilseedbanksandplantcommunitiestoanannualmowingsystemattheInnerMongoliagrassland.Investigatingseedrichnessat0–10cmdepthsoilshowedthatcomparedtoano-mowapproach,themowingpracticesuppressed0.4speciesandforbseeddensityby208.0m−2andplantcoverby11.5%(Miaoetal.2020).4.DemonstrationandupscalingBetween2016and2019,rotationalmowingwasimplementedintheWulagaiManagementArea,inatotalareaofabout66ha.ThisstrategyisapplicabletomanymanagednaturalgrasslandsinthecentralandeasternpartsofInnerMongoliaandbeyond.5.EstimationofinvestmentandinvestmentpaybackcycleSincethisisamanagementpracticeadjustment,thereisnoadditionalinvestment.Instead,thereisaslightdecreaseinmechanizedoperationsandlabourcosts.However,thisalsodecreasesherderincome09GoodpracticesonvulnerableecosystemrestorationinChinaReferences◊Briske,D.D.,Zhao,M.,Han,G.,Xiu,C.,Kemp,D.R.,Willms,W.etal.(2015).StrategiestoalleviatepovertyandgrasslanddegradationinInnerMongolia:Intensificationvsproductionefficiencyoflivestocksystems.JournalofEnvironmentalManagement152,177-182.https://doi.org/10.1016/j.jenvman.2014.07.036.◊Miao,R.,Guo,M.,Ma,J.,Gao,B.,Musa,A.,Miao,Y.etal.(2020).ShiftsinsoilseedbankandplantcommunityundernitrogenadditionandmowinginanInnerMongoliansteppe.EcologicalEngineering153(15),1-8.https://doi.org/10.1016/j.ecoleng.2020.105900.◊Schönbach,P.,Wan,H.,Gierus,M.,Bai,Y.,Müller,K.,Lin,L.etal.(2011).Grasslandresponsestograzing:effectsofgrazingintensityandmanagementsysteminanInnerMongoliansteppeecosystem.PlantandSoil340,103-115.https://doi.org/10.1007/s11104-010-0366-6.◊Shao,C.,Chen,J.,Li,L.andZhang,L.(2012).EcosystemresponsestomowingmanipulationsinanInnerMongoliasteppe:Anenergyperspective.JournalofAridEnvironments82,1-10.https://doi.org/10.1016/j.jaridenv.2012.02.019.◊Wu,J.andLoucksO.(1992).Xilingele.InGrasslandsandGrasslandSciencesinNorthernChina.NationalResearchCouncil(ed.).Washington,DC,USA:NationalAcademyPress.Chapter4.67-84.https://nap.nationalacademies.org/read/1942/chapter/8.◊Zhong,L.,Zhou,X.,Wang,Y.,Li,F.,Zhou,S.,Bai,Y.etal.(2017).MixedgrazingandclippingisbeneficialtoecosystemrecoverybutmayincreasepotentialN2Oemissionsinasemi-aridgrassland.SoilBiologyandBiochemistry114,42-51.https://doi.org/10.1016/j.soilbio.2017.07.002.andprovideslessforageproductionintheshortterm.Whenfertilizerisappliedduringmowing,theadditionalcostisaround750CNY/ha.Duetotheshort-termnatureofthisstudy,thereisnodataforalong-termcost-benefitanalysis.Itisestimatedthatherders’incomewillincreaseafteronerotationalcycle(3-5years).6.ChallengesandpotentialissuesOneofthepotentialissuesforupscalingliesinhowherdersperceivetrade-offsbetweentheshort-andlong-termbenefitsofrotationalmowing.Thisapproachwillincreasethetotalandaverageperunitforageyieldinthelongterm.However,intheshortterm,incomewilllikelydecreaseduetoreducedharvestingfromunmowedbelts.Still,furtherexperimentsarerequiredtotesttheeffectivenessofrotationalmowingoperationsunderavarietyofecologicalconditions.Todothis,thegovernmentorlocalcivilsocietiesneedtoestablishamanagementmechanism(suchasaneco-paymentandmonitoringsystem)intheearlystagesofsuchprojectstosupplementtheincomesoflocalherders,aswellasdevelopawarenessandcapacityforsuchimplementation.Sharingnewknowledgewithbothwomenandmenandbuildingtheircapacitiesinimprovedmanagementofgrasslandsarecriticalingredientsindrivingenvironmentalsustainabilityandlivelihoodimprovements.Theentirelocalcommunityisexpectedtobenefitfromthisinterventioninthelongerterm.7.ProspectsforcommercialtransformationandpromotionoffindingsAccordingtotheofficialwebsiteoftheInnerMongolianGovernment,thetotalareaofmowednaturalgrasslandsinXilingolin2018was2.23millionha,accountingfor67.1%ofthetotalareaofmowedgrasslands.Theunmowedbeltsreservedforrestorationcovered63,600ha,anincreaseof25,800hacomparedto2017.Thisaccountsforonly4.25%oftheactualmowedgrasslandarea.Despitetheseimprovements,theproportionofrestorationrotationbeltsinmowedgrasslandsremainslow.Therefore,significantareasofgrowthremainforpromotingthisapproachthroughoutInnerMongolia.Between2018and2021,somecountiesinInnerMongoliareleasedgovernmentregulationsfornaturalgrasslandmanagement,requiring20–25%ofanareatobereservedrotationallyoratleast7%areareservedforseedbanksifgrasslandhabitatdoesnotallowrestrictedrotationalmowing.Thisregulationissupportedbythegovernmentmonitoringsystemandpaymentfortheecosystemserviceprogramme,allowingforbetterup-scalingourinterventionwithinInnerMongolia.ByreferringtotheChineseNationalTechnicalRegulationForRotationalMowingOnNaturalGrassland(GB/T27515-2011),thisapproachcouldalsobeappliedelsewhere.FurtherinformationContact:YongfeiBai,InstituteofBotany,CASEmail:yfbai@ibcas.ac.cn10GoodpracticesonvulnerableecosystemrestorationinChinaCase3.RestorationofdegradedgrasslandusingbiophysicalmethodsBriefOverviewThischapterintroducesagrasslandrestorationpracticeusingbiophysicalmethodsintheHunshandakesandyregioninChina.ItwasdevelopedbytheIMGERSbasedonover20yearsofresearchandexperiments.Theinterventionswerebasedonthedifferentlandtypes(etchingpits,steepandgentleslopes,inter-duneflatlandsandlowlands).Theyintroducedissue-basedcomprehensiverestorationapproaches,suchasengineeringmeasures,physicalsandbarriers,plantingandnaturalrestoration(Fig.3.1).Thisapproachwasupscaledthroughpublicandprivatepartnershipsbyengagingmultiplestakeholders.Thiscanbeusedasareferencebythegrasslandmanagementsectors.11GoodpracticesonvulnerableecosystemrestorationinChinaFigure3.1Comparisonofchangesbeforetherestorationin2015(a,b,c)andaftertherestorationin2016(d,e,f),in2018(g,h,i)and2019(j,k,l)Source:IMGERS,CAS1.BackgroundChinahasagrasslandareaofnearly4millionkm2,approximately41.7%ofthetotalterrestriallandmass,3.2timesthatofdomesticcropland,and2.5timesthatofdomesticforest(Du2006).Ninetypercentofthatgrasslandareaisshowingsomeformofdeterioration,and60%ofthatisfacingseveredeterioration(AkiyamaandKawamura2007).Thispotentiallyaffects400millionpeople,andthedirecteconomiclossisestimatedat54billionCNYperannum(AkiyamaandKawamura2007).Forcenturies,therangelandsofnorthernChinahaveprovidedforageforlivestock,buttheyarealsofacingdegradation.Anthropogenicactivities,particularlythosecausedbyunfitrangelandmanagementpoliciesandoutdatedmanagementpractices,ontopofaridclimaticconditions,havebeenthemajorcausesofrangelanddeteriorationinaridareasofNorthernChina.DuetotheecologicalchallengesfacingtheChinesepastureindustry,theCASsetuptheIMGERSin1979toexploresustainablerangelanddevelopmentandmanagementschemes.TheIMGERSsitsintheXilinriverbasin,arepresentativetemperategrasslandinChina.TheIMGERSisacrucialCERNstationandhasdedicatedthelast40yearstostudyingkeyissuesvitaltonationalandglobalecosystemdevelopment.Manyofitsresearchfindingshavebeensuccessfullyadoptedinrangelandconservationandhaveseenbothecologicalandeconomicbenefits.12GoodpracticesonvulnerableecosystemrestorationinChinaFigure3.2RestorationprocedurescarriedoutforvariouslandtypesintheHunshandakesandyregion2.Theinterventionapproach,implementationplanandrestorationoutcomesOnesuchexampleisarangelandrecoveryprogrammecarriedoutintheHunshandakesandyregion.TheHunshandakeregionisinthecentralpartofInnerMongolia.Occupyinganareaof52,000km2withanaverageelevationof1,100m,itisoneofthe10largestsandylandsinChinaandthenearesttothenation’scapital.StudiesintheHunshandakeregionshowedthatthedunesandetchingpitsconstituteapproximatelyone-thirdofthetotalareaandrequireactiverestoration.Theremainingtwo-thirdsconsistofinter-duneflatlandsandlowlands,wheresomevegetationisstillintact,andthesoilseedbankhasbeenpartlypreserved.Theselandtypescanbetreatedwithprohibitedorintermittentgrazingprocedures,utilizingnaturalsuccessiontorecovervegetation.Afteranextendedperiodofresearch,amanagementschemewasimplementedintheregionin2015thatcanbedescribedasone-thirdactivemanagement,two-thirdssealed-offnaturalrestoration,whichwasveryeffective(Fig.3.1).TheoverallinterventionapproachbasedonthedifferentlandtypesisshowninFigure3.2.Firstly,theactivemanagementofetchingpitsinvolvesflatteningthemusingengineeringmeasures(Fig.3.3)andthencreatingphysicalsandbarrierscombinedwithrevegetation.ThephysicalbarriersweremadeusingPhragmitescommunisreedstrawsburiedinthegroundindiamondformations.Mixedannualandperennial,deep-andshallow-rootedseedswereusedforrevegetation.Theannual/perennialcombinationmatchesfastrevegetationwithsubsequentlong-termcolonization,whilethedeep/shallow-rootcombinationmatchesvariedwaterrequirementlevelstominimizeriskfromdrought.Restorationprocedureshaveprovenusefuljustoneyearafterimplementation(Fig.3.1,Fig.3.3).Figure3.3Flatteningofetchingpitsusingengineeringmeasures(Source:IMGERS,CAS)Source:IMGERS,CASLandtypeApproachGoalMechanicalflatteningAlleviatewinderosion,promotegerminationEtchingpitGrid(biological+physical)Formsandbarrier,promotegerminationSlopeArtificialreseedingQuickrevegetationFlatlandSealed-offPromotenaturalrestoration13GoodpracticesonvulnerableecosystemrestorationinChinaSecondly,forsteepslopes,physicalsandbarrierswerefixedtotheground,inwhichmixedvegetationwasplanted(Fig.3.4).Additionalfixturewasneededinextremelywindyseasonstopreventerosion.Forgentleslopes,biologicalsandbarrierswerecreatedusingshrubssuchasdesertwillow(Salixpsammophila),Hedysarumlaeveandsandsagebrush(Artemisiadesertorum).Mixedvegetationwasplantedinsidethebarrierswithreedstrawsfixedontoptoblocktheexcessivewind.Restorationoftheselandtypesalsoprovedusefulafteroneyear(Fig.3.1,Fig.3.4,andFig3.5).Thirdly,sealed-offorfencednaturalrestorationwasappliedtotheinter-duneflatlandsandlowlands,whichemphasizestheself-colonizingabilitiesofthesurvivingseedandvegetation.Additionalre-seedingwasdoneinareaswithsuboptimalvegetation.Visiblechangesinvegetationcoveragecouldbeseenin4years(Fig.3.1).Resultsindicatethatwithinthreeyearsoftherestorationpractices,terrainswithetchingpitsandmovablesandduneswerenoticeablyimproved.Addingsubsequentself-sustainingvegetationaftertheinitialtreatmentsuccessfullymaintainedgroundcover.Aftertwoyearsofrestoration,thevegetationrecoverywashighlysuccessfulintheprojectareas.Evenduringthe2016drought,theseareasstilldemonstratedabundantvegetation.Asidefromtheecologicalbenefits,theserestorationtrialsprovideempiricalevidenceanddataforthenation’srestorationprojectsinotherrangelandsandsandy-regions.Prominentgovernmentofficialsatvariouslevelshavevisitedonmanyoccasionstoseetherestorationresultsandhavespokenhighlyoftheproject.3.DemonstrationandupscalingIn2015,thededicatedresearchteamintheIMGERSinitiatedtheexperimental“1/3restorationand2/3recovery”programme.Theinitialtrialareacovered15,000haintheHunshandakesandyregionwheretheIMGERSwaslocated.Followingthissuccessfuldemonstration,theIMGERScontinuedcooperatingwiththeInnerMongoliaM-GrassEcologyandEnvironmentCompanyandtheWulagairegionalgovernment–theXilingolLeagueofInnerMongolia–torestoredegeneratedgrasslandinXilingol,adaptingtherestorationprogrammetomorethan2,000haofsandyland.TherestorationprogrammewassupportedbytheMinistryofScienceandTechnologyofChina(undertheComprehensiveRestorationofDesertificationAreaproject,2012BAD16B00).TheIMGERSsupervisedtheexecutionofthesubprojectrangelandrecoveryprogrammeintheHunshandakesandyregion.Basedontheprogramme,theIMGERShasbeenabletoduplicatetherecoverypracticeinmultiplecountiesinXilingol.Thelocalgovernment/leagueandtheherderswerethemostimportantstakeholdersintherestorationprogramme.Throughouttherestorationproject,theprojectmanagementteamleasedrangelandfromthelocalherderstoensuretheirbasicinterests.Meanwhile,theprojectteamofferedlabourcontracts,managementopportunitiesandtechnologytrainingFigure3.4Conditionsofsteepslopesbefore(left)andafter(right)restorationSource:IMGERS,CAS14GoodpracticesonvulnerableecosystemrestorationinChinatothelocalcommunity,buildinguplocalcapacitiesandensuringtheircontinuousparticipationintherestorationprocess.TheIMGERScooperatedcloselywiththeInnerMongoliaM-GrassEcologyandEnvironmentCompanyinresearchandtechnologytransfer,andwasfurtherenabledbythecompany’shumanresourcesandrangelandmanagementexperiences.Thelocalgovernmentalsohasastronginterestinecologicalrestorationandthedevelopmentofagreeneconomy.ThecombinedeffortoftheserelevantpartiesmadethedeterioratedgrasslandrestorationprojectinXilingolpossible.4.ChallengesandpotentialissuesThemostprominentobstacletherestorationprojectfacedwasthetechnologicaladjustmentoftherevegetationpracticestoaccommodatedifferentconditionsindifferentareas.Forexample,desertwillowbranchesinitiallyhadverylowsurvivalratesandcausedproblemswhenconstructingsandbarriers.TheIMGERSconductedextensivegreenhouserootingandwinter-storageexperimentstoimproveitsfield-survivalrate.Acontinuousandlarge-scalerestorationeffortwouldrequirelargequantitiesofdesertwillowbranches,butthecurrentmassharvestbasedoncuttingandsubsequenttransplantationmayhaveunfavourableeffectsontheecosystem.TheIMGERShasstartedexperimentingwithtissueculturetechniquestoachievelarge-scaledesertwillowproductionandalleviatedetrimentalimpactsontheecosystem.Anotherlessonlearnedfromtherestorationpracticesisthatsubsequentprotectionandmanagementarejustasimportantastheinitialconstruction,especiallyincasesofdesertificationwherecontinuousdeteriorationisofconcern.Figure3.5Conditionsofgentleslopesbefore(near)andafter(far)restoration(Source:IMGERS,CAS)Source:IMGERS,CAS15GoodpracticesonvulnerableecosystemrestorationinChina5.ProspectsforcommercialtransformationandpromotionoffindingsThesandy-arearestorationprojectdemonstratedintheHunshandakeregionisnotonlysuccessfulincontrollingdesertificationprocessesbutalsohighlyeconomicallyefficientasitreliesheavilyonnaturalsuccessionandlessonhumaninput.Theideaofutilizingecologicalnichetheoryandbiologicalcomplementationtogenerategroundvegetationthatreliesonsemi-naturalsuccessionconsiderablybenefitson-siteecologicalrestorationandenhancesthevegetativecommunity’sstabilityandresiliencetonegativedisturbances.Thecoreprinciplebehindtherestorationprocesscanbeturnedintosite-specificrestorationpracticessuitableforregionalrequirements.FurtherinformationContact:YongfeiBaiandYangWang,InstituteofBotany,CAS;IMGERSLiLi,InstituteofGeographicSciencesandNaturalResourcesResearch,CASEmail:yfbai@ibcas.ac.cn,yungwang@ibcas.ac.cn,li.li@unep-iemp.orgReferences◊Akiyama,T.andKawamura,K.(2007).GrasslanddegradationinChina:Methodsofmonitoring,managementandrestoration.GrasslandScience53(1),1-17.https://doi.org/10.1111/j.1744-697X.2007.00073.x.◊Du,Q.(2006).SustainableDevelopmentStrategyofChinesePrataculture.(inChinese).Beijing:ChinaAgriculturalPressAlthoughtheinitialrestorationandconstructionintheHunshandakeregionaredependentonnationalandregionalfunds,thecontinuedmanagementofthesitesrequireslittleinput.Theon-siterestorationpracticesaremostlyperformedbythelocalcommunitiesandindustrieswithguidancefromtechnologicaladvisers.Successfulrestorationandpreventionofdesertificationconsiderablybenefitslocalcommunities,especiallythelivelihoodsofthosewhorelyonrangelandproductivity,suchasherdersandlivestockindustries.Thecontinuousparticipationoflocalstakeholdersisthusguaranteed.Ensuringthateconomicbenefitsreachbothlocalwomenandmeniscrucial.Empoweringwomenthroughrelatedrestorationactivitiesensuresthattheyareincludedinproductivework,furtherreducingthegendergapandleadingtoprogresstowardsenvironmentalsustainability.16GoodpracticesonvulnerableecosystemrestorationinChinaCase4.NaturalregenerationofsandylandsattheecologicaltransitionzoneBriefOverviewInthischapter,weintroduceanecosystemmanagementapproachtodevelophuman-assistednaturalregenerationindegradedsandylandswhileenhancinglocalalternativelivelihoodswithlivestockfarmsinthesemi-aridandaridareasofanecologicaltransitionzone.ThelocalForestryBureauinInnerMongolia,China,developedthisapproachbasedonlong-termlocaltraditionalpracticesandlong-termresearchintheMuUsDesert,China.Theapproachisapplicabletobothdegradedaridandsemi-aridecozonesthatutilizeirrigationforagriculturalandlivestockdevelopment.Thisecosystemmanagementapproachshouldbeusefulandofinteresttothoseworkingintheagriculture,forestryandlivestocksectors.17GoodpracticesonvulnerableecosystemrestorationinChinaFigure4.1.Before-aftercomparisonofnaturalregenerationwithfencingintheMuUsDesertSource:ForestryBureauinInnerMongolia,China1.BackgroundLocatedinthetransitionalzonebetweenagriculturalfarmingandanimalgrazinginthesouthernOrdosPlateau,theMaowusuSandyLand(MuUsDesert)isborderedbytheKubuqi(Hobq)DeserttothenorthandtheYellowRivertotheeastandwest.Itisoneof12majordunefieldsinnorthernChinaandbelongstothe‘sandylands’,withanareaof32,100km2(Yang,LiandConacher2012).Researchshowsthatatotalof1,680km2ofsandylandsaffectedbydesertificationweremanagedduring1990–2017intheMuUsDesert.Thiscanbedividedintothreestagesofdesertification:development(1990–2000),rapidreversal(2000–2010),andstablereversal(2010–2017)(Hanetal.2020).Theenvironmentalprotectionpoliciesandhumaneffortsdesignedtopreventandcontroldesertification,togetherwiththewarmeranddryerclimate,playedanimportantroleinreversingdesertification(Hanetal.2020).OurstudyareaWushenispartofthehinterlandsoftheMuUsDesert,withclimateshiftsacrossanarid/semi-arid/humidregion.Thenaturalvegetationisdominatedbysand-tolerantplants,suchasArtemisiaordosica.Duetothecombinedimpactsofclimatechangeandovergrazing,thenaturalvegetationissignificantlydegraded.OurapproachispartoftherestorationeffortsintheMuUsDesertaimedataddressinggrasslanddegradation.Theapproachusedprimarilyinvolveshillside(i.e.sandyland)fencingandgrazingprohibition,supplementedbysomegrasslandrestorationmeasures,withtheaimofrestoringtheoverallgrasslandvegetation.Meanwhile,livestockrearingisenhancedthroughvegetationrestoration.2.TheinterventionapproachandimplementationplanThisapproachiscomposedoffoursteps:(1)siteselectionfornaturalrestorationbyfencing;(2)fencingmethods;(3)measuresfornaturalregenerationandafforestation;and(4)developingalternativelivelihoods.Step1.Selectionofplotsforfencing:Toensureeffectivenaturerestoration,thesitemusthaveacertaincapacityfornaturalregeneration.Plotswithmorethan7,500evenlydistributedshrubs/hawereselectedasnaturalrestorationsites.Siteconditionsvariedconsiderably,especiallyintermsofhumandisturbance,existingplantcommunity,vegetationsuccessionstageandsoilseedbank.Thesefactorsimpactnaturalrestorationspeedandresults.Thetwomajortypesofvegetationselectedforourstudywereshrubsandgrasswithsparseshrubs.Step2.Fencingmethods:Fullfencingwithinthefirst3–5yearsofrestorationisrecommended,followedbysemi-fencingandrotationalfencingafterwards,varyingaccordingtothesiteconditionsandnaturalregenerationcapacity.Step3.Human-assistednaturalregenerationandafforestationmeasures:Sincemostoftheplotsusedforfencinghillsidesarecharacterizedbypoorhabitatandvegetationcoverage,naturalrestorationwilltaketimetomakeanimpact.Therefore,wealsointroducedhuman-assistedmeasurestopromotenaturalregeneration.Afforestation,fencing,aerialsowing,branchburyingandshrubandgrassplantingwere18GoodpracticesonvulnerableecosystemrestorationinChinaimplementedtosupporttheoverallgoalofdegradedlandrestoration.Step4.Developingalternativelivelihoods:Greateffortsweremadetopromotelivestockfarming.Forageprocessingsiteswerecommonlyestablishedinhigh-qualitygrasslandsandforestedareas.Livestockfarming,rotationalgrazingandseasonalgrazingbyecozonearealsocommonlyimplementedinthisregion.Inaddition,thelivestockstructurewasadjustedandoptimizedtoincreasetheproportionoffemalelivestock.3.RestorationoutcomesAfterfencingthehillsidestoprohibitgrazing,naturalregenerationsoonfollowed,withscatteredplantspeciesspreadingrapidly.Thisshowsthatfencingclearlyplaysapositiveroleinrestoringvegetationandsandfixation.Inthethreeyearsfollowingtheintroductionofthegrazingprohibition,thevegetationcoveragecontinuedtoincreasefrom15%to25.2%,29.23%and31.04%,respectively.Inareasleftopenforgrazing,vegetationcoveragedecreasedto13.04%,9.62%and6.89%overthesameperiod.Aftertwoyearsofgrazingprohibition,thebiomassandseedlingregenerationofSalixcheilophilaincreasedsignificantly.Likewise,theaverageplantheightandcanopywidthofthisspeciesincreasedby135%and143%,respectively.Thenumberofone-year-oldSalixcheilophilaseedlingswasninetimesgreaterthanthatobservedinthecontrolledarea.Similarly,theaverageplantheightandcanopywidthofCaraganakorshinskiiincreasedby296%and143%,respectively,andthenumberofone-year-oldseedlingswas4.41timesgreaterthaninthecontrolledarea.TheaverageplantheightandcanopywidthofArtemisiadesertorumincreasedby81%and100%,respectively.Thenumberofone-year-oldArtemisiadesertorumseedlingswas4.5timesgreaterthaninthecontrolarea.ThenumberofArtemisiadesertorumandAgriophyllumsquarrosumincreasedsignificantlyafterfencing.Similarly,PsammochloavillosaandSophoraalopecuroidesgrewrapidlyandexpandedinclusters.ThedensityofAgriophyllumsquarrosumindividualsgrewfrom18plants/m2to44plants/m2.Likewise,thedensityofPsammochloavillosaincreasedfrom0.29plants/m2to5.07plants/m2,andthedensityofArtemisiadesertorumincreasedfrom4plants/m2to18plants/m2.ThisinterventionhadapositiveimpactonwomenintheregionbydevelopingalternativelivelihoodsandFigure4.2.DemonstrationoflivestockfarmingasanalternativelivelihoodintheMuUsDesertSource:ForestryBureauinInnerMongolia,China19GoodpracticesonvulnerableecosystemrestorationinChinaindoorlivestockfarmsandreducingexposuretolanddegradationanddesertification.4.DemonstrationandupscalingThisapproachwastestedprimarilyinWushenandwaslaterexpandedtoanother3,000hasurroundingtheMuUsDesert.IntheareaswhereSabinavulgarisandSalixcheilophiladominated,brancheswereburiedtopromotenaturalregeneration.Thismethodwasusedtorestore4haofSabinavulgarisand45haofSalixcheilophila.Replantingofforestandartificialgrasslandswascarriedoutwithingoodhabitats(withagoodwaterandenergysupplyandfertilesoil).Afforestationandgrasssowingwereimplementedinmovingsandylandsatalargescale.Inthepastfiveyears,133.33haofafforestation,100haofaerialseeding,33.33haofhuman-assistedseedingand120haofsandbarriershavebeenundertaken.5.EstimationofinvestmentandinvestmentpaybackperiodItisestimatedthattheannualprofitfromraisingonesmall-tailedsheepasanalternativelivelihoodisabout1,200CNY($180)forthelocalcommunityforanexpectedinitialinfrastructureinvestmentofabout400CNY($60)plusanannualinvestmentforgrassforageof300CNY($45).This500CNY($75)netprofitfromeachsmall-tailedsheepcanprovidesomeincentiveforlocalcommunitiestoadoptnaturalregenerationpractices.Meanwhile,forthefirstyear,around170,000CNYofinitialinvestmentisrequiredtobuildamedium-sizedlivestockfarmwith100sheepandanaturalecosystemregenerationsystem.Tobreakthisdown,itwouldrequire1,000muofgrasslandtosupport100small-tailedsheep.Itwouldthencostaround100CNY/mtoconstructfencesinthegrasslands,resultinginatotalinvestmentof100,000CNY.Replantingandgrasslandmanagementcosts30CNYpermu,withatotalannualinvestmentof30,000CNY.Additionally,about40,000CNYisneededtoconstructmedium-sizedlivestockfarmsandothernecessaryinfrastructuretosupport100sheep.Itisexpectedthatin2–3years,theaforementionedinvestmentwillbepaidbackthroughthealternativelivelihoodofraisingsmall-tailedsheep.Inaddition,byplantingSalixcheilophila,localfarmersgotgovernmentsubsidiesof100CNY/mu,andSalixcheilophilabiomasscanbesoldat160-180CNY/t.6.ProspectsforcommercialtransformationandpromotionoffindingsTheMuUs,KubuqiandUlanBuhDesertsandtheYellowRiverIrrigationAreasaretypicalecozonesusedforagricultureandlivestockgrazing.However,theseecosystemshavebecomehighlyfragileduetoincreasedhumanactivities.Animalhusbandryintheregionisoneoftheprimaryincomesourcesforfarmersandherders.Fencing,grazingprohibition,assistedplanting,livestockfarmandlivestockstructuraladjustmentarerecommendedkeyactions.Meanwhile,somegovernmentfinancialsupportforinitialinvestmentisrequired.Thisapproachisapromisingprospectforsandfixationandnaturalrestorationwhileimprovingthelivelihoodsoflocalinhabitants.References◊Han,X.,Jia,G.,Yang,G.,Wang,N.,Liu,F.,Chen,H.,etal.(2020).SpatiotemporaldynamicevolutionanddrivingfactorsofdesertificationintheMuUsSandyLandin30years.ScientificReports10.https://doi.org/10.1038/s41598-020-78665-9.◊Yang,X.,Li,H.andConacher,A.(2012).Large-scalecontrolsonthedevelopmentofsandseasinnorthernChina.QuaternaryInternational250,74-83.https://doi.org/10.1016/j.quaint.2011.03.052.FurtherinformationContact:XiufangXu,WushenForestryBureau,InnerMongoliaPhone:+86-477-758199120GoodpracticesonvulnerableecosystemrestorationinChinaCase5.CouplingagriculturalcropsandlivestockrearingatirrigatedfarmlandsBriefOverviewCouplingagriculturalcropsandlivestockwasdevelopedasanalternativeapproachforirrigatedcroplands,introducinglivestockrearingtopromotebetterresourceefficiencyandincome.Theinterventionapproachincludedtwocomponents:1)introduceadual-cropsystemofgrainandgrass,insteadofthetraditionalone-cropsystem,togetherwithimprovedgrass-plantingmethods;2)introducelivestockrearingtocouplewiththeplantingsystemandenhanceoneanother.Thisapproachisapplicabletosemi-arid,semi-humidandhumidplainareas.Thisshouldbeusefulandofinteresttothoseworkingineco-agriculturaleconomies,thelivestockindustryandabroadspectrumoflandresourcesectors.21GoodpracticesonvulnerableecosystemrestorationinChinaFigure5.1.LandscapeintheLoessPlateauwithanimalhusbandrysurroundedbyplantationPhotosource:CongOu1.BackgroundInthedrylandagriculturalareasofnorthernChina,thecurrentcroppingsystemconsistsprimarilyofplantingsystemsthatuseasinglecropperyear.Inthewinter-cropplantingarea,thereare90–120daysinsummerwhenthelandhasnocropsgrowing,yetitconsumes25%ofthetotalannualprecipitation.Inthespring-cropplantingarea,thereareapproximately200daysinthewinterwhenthelandhasnocropsgrowing,yetitconsumes27%ofthetotalannualprecipitation.Thisisawasteoflandandwaterresources.Conservationaltillingorsoilcoveringpracticescanreducesomesoilwaterloss,butwaterwasteremainshigh.Inthecontextofclimatewarming,thenorthernclimate-basedboundariesofthedoublecroppingsystemhavemovedsignificantlynorthwardandwestwardintheLiaoning,Hebei,Gansu,ShaanxiandShanxiProvincesofChina(Gaoetal.2019).ThisprovidesmoreopportunitiesforareasofnorthernChinatomakemoreeffectiveuseofnaturalresourcesbyadjustingtheircroppingsystems.LivestockproductionisunevenlydistributedinChina(Zhangetal.2019).Itisconcentratedinafewregions,andconsequently,manure-nutrientexcretionexceedsthenutrientuptakecapacityoflocalcroplandintheseregions.Unevendistributionoflivestockproduction,inparticularhighlivestockdensitynearurbanareas,mayleadtoahighproportionofthepopulationbeingexposedtomultiplepollutantsintheairandwatercourses(Bai2022).Toaddresstheseissues,couplingcropsandlivestockmanagementcanbeapracticalalternativeapproachforthedrylandagriculturalareasofnorthernChina.Forexample,grasscanbesowedinthenon-cropseasonformorelivestockrearing,andlivestockmanurecanbeusedasacropfertilizerandfeedstockforotherlivestockandpoultry.Nutrientsthuscyclebetweenanimalsandplantssothattheycanbemoreadequatelyabsorbedandutilizedbytheentireecosystem.Thiscansolvetheproblemofmanurepollutionfromthelivestockindustry,reduceproductioncostsandimprovequality,henceincreasingoverallsustainability.22GoodpracticesonvulnerableecosystemrestorationinChina2.Theinterventionapproach,implementationplanandrestorationoutcomesFigure5.2showstheinterventionapproachusedinourcasestudyandhowcropplantingandlivestockrearingenhanceoneanother.Theinterventionapproachincludestwomaincomponents:1)introducingadual-cropsystemofgrainandgrass,insteadofthetraditionalone-cropsystem,togetherwithimprovedgrass-plantingmethods;2)introducinglivestockrearingtocouplewiththeplantingsystemtoenhanceoneanother.2.1Promotingandexperimentingwithadual-croppingsystem,andtheirrestorationoutcomesWesoughttodeterminethefeasibilityofadual-croppingsysteminsemi-aridareas.Todothis,weexaminedtwocroppingsystemdesigns:1)awinterwheatwithasummercropand2)anoverwinteringforagewithaspringsowingcrop.Thefirstdesignwascarriedoutusingmultiplesowingsofcorn,soybeans,milletandAmaranthusspp.insummer,followingthewinter-wheatharvesting.Ourexperimentsshowedthatadditionalsummercropscansignificantlyimprovelandproductivityandwaterutilization.Inparticular,summercropssuchassoybeansandmaizecaneveninduceanincreasedyieldofwinterwheat.Meanwhile,thedual-cropsystemused28.7mmmorewaterthantheone-cropsystem.Intheseconddesign,wesowedwinter-ryegrassduringthecrop-freewinterperiod,followedbytheusualautumn-harvestcropslikemaize.Thelandproductivitywasupto49.7%higherthanthemaizemonoculturesystem,whileitconsumed101.5mmmorewater.2.2Improvinggrass-plantingmethodsAfterthreeyearsofexperiments,asetofapproachestoimprovegrassplantingwasdeveloped,consistingofthefollowingfouraspects:selectingsuitablegrassspecies,improvinggrass-plantingmethods,sowingamixofdifferentforageandcropspecies,andsowingdrought-resistantspecies.Inourstudies,alltheseaspectsresultedinhigherecosystemproductivity,efficientwateruse,effectivelandresourcesuseandmoredroughtresilience.Regardingsuitablegrassspeciesselection,54herbvarietieswereintroducedandtested.Amongthem,11specieswithgooddroughtresistance,fastgrowthandhighyieldwereselectedaftertwoyears.Amongthebest-performingspecies,Cichoriumintybushadthehighestfreshgrassyieldof77,983kg/ha,followedbythelegumesAstragalushonghenensisandOnobrychisviciifolia,whichyielded61,552kg/haand30,297kg/ha,respectively.TheproductionofMedicagosativaL.rangedfrom29,697kg/hato21,622kg/ha,whilethatoftheGramineaeforageBromusDukangandBromusinermisL.rangedfrom25,567kg/hato20,232kg/ha.Grass-plantingmethodswereoptimizedfordifferenttopographies.Forareascontainingagentleslope(≤10°)andabandonedfarmland,itisrecommendedtocompleteploughinginautumn,followedbyplantingMedicagoonshady(north-east)slopesandOnobrychisviciifoliaonsunny(south)slopesinspring.Inthesecondyear,thecoverageofthissowedgrasslandcanreach100%andaheightof60–80cm.Freshgrassyieldinthisscenariocanreach37,500kg/ha.Forgrasslandsonslopessteeperthan15°,itisrecommendedthatgrassesareplantedaccordingtothecontourinterval.Werecommenddiggingtomakea0.8–1.0m-wideflatareaalongthecontourFigure5.2.CoupledcyclebycombiningcropplantingandlivestockrearingManureAgricultureresidualandforageImprovedlivestockvarietyLivestockfast-growingmethodsLivestockrearingbasedagricultureproductionDualcropsystemofgrainandgrassImprovedgrassplantingmethods23GoodpracticesonvulnerableecosystemrestorationinChinalineforplantinggrassspeciesinthefirstyear,whileadistanceof1.0–1.5mshouldbekeptinbetweentwoplantingbelts.Forbrokenterrain,fish-scalepitscanbedug,whereseedsshouldbesowninthefollowingspring.Onsouth-facingslopes,Astragalusadsurgensismostcommonlycultivated,whileMedicagosativaismorecommononshadyslopes.ThisspeciescanalsobemixedwithLespedezabicolorandCaraganakorshinskii,especiallyifgrazingisrestrictedforhalfayearaftersowing.Inthesecondyear,thecoverageofthesegrasslandswas85.2%,withafreshgrassyieldof18,450kg/ha.Inareaswithheavyrainfallormountainousareaswiththicksoillayers,grasseslikeAstragalusadsurgenscanbesownduringtherainyseason.Inthesecondyearaftersowing,thevegetationcoverageratereached79.8%,and11,550kg/haoffreshgrasswasproduced.Mixedsowingofleguminousandgramineousspeciesisrecommended.Ourresultsshowthatthiscansignificantlyimprovetheoverallyieldandqualityofforage.Thebestratioofleguminousandgramineousforagesis2:1.Thisstrategyresultedinproduction7.3%higherthanthatofsinglesowingwithoneleguminousspeciesand74.5%higherthanthatofsinglesowingwithonegramineousspecies.Withregardstodrought-resistantsowing,ourresultsindicatedthatindryyears,mulchingwithstrawcanovercomedrought-associatedproblemsonbarrenslopeland.Forexample,coveringdrylandsdominatedbyCoronillavariawithstrawcanhelpthegrasssproutthreedaysearlierthaninnon-mulchedbarrenfieldsandcanincreasethegerminationrateby38%.Thisapproachhasbeenusedinanareaof200ha.Plantedgrasslandsonoriginalcroplandcanproduceyieldsofover37,500kg/ha,whiletheyieldofsowedgrasslandsontheseoriginalgrasslandscanreach12,000-18,000kg/ha.Thecrudeproteincontent,crudefatcontentandcrudeashcontentsofimprovedgrasslandswereestimatedtobe13.4%,2.4%and8.3%,respectively,whichwere8.3%,0.2%and2.1%higherthanthosefromoriginalgrasslands.Thecrudefibrecontentwasreducedby9.1%,andthesurfacerun-offandlanderosionwerereducedbyupto21.6%and26.3%,respectively.2.3IntroducinglivestockrearingtocouplewiththeplantingsystemInthiscase-studyareawithasemi-aridclimate,forageproductionisabundantinsummerandfallsinwinter.Inthiscontext,weintroducedfast-growinglambstomatchwiththeforageproductiontime.Themainaimsweretocrossbreedandimprovelivestockvarietiestoincreasemeatproductivityandshortenthelivestockrearingperiod.Thisincludedintroducingnon-nativesheepsuchasDorsetandSuffolksheepandcrossbreedingthemwithnativesheep.Accordingtothephysiologicalandnutritionalneedsofthelivestock,twokindsofsheep-feedadditivesandthreekindsofrabbit-feedadditiveswereappliedforexperimentalobservation.Thisensuredtheproductivityofthelivestocksector,andthattheforagewasconsumedinamoreefficientway.Italsocreatedmorejobopportunitiesforwomenworkingathome.3.DemonstrationandupscalingThisapproachhasbeenexperimentedwithinanareaof200hainChina,mainlywithintheLoessPlateau.Makingfulluseoflandresourcesbycouplingagricultureandlivestocksectorsallowsforintegratedeconomic,Figure5.3.a)chippedcropresiduesasforage,b)sheepfedbycropresiduesandplantedgrassPhotosource:YuruiLiab24GoodpracticesonvulnerableecosystemrestorationinChinaecologicalandsocialsustainabilityandpromotessustainableandstableruraldevelopment.Meanwhile,combiningcropsandlivestockcanhelppromotethedevelopmentofcommunity-basedenterprises.Suchenterprisesareengagedinprocessingagriculturalandpoultryproducts,establishinganintegratedeco-farmsystemandcreatingorganicfertilizers,thusboostingtheruraleconomy.4.EstimateofinvestmentandinvestmentpaybackperiodThefollowingisanestimatebasedonamixedcropandlivestockproject.Thetotalcostofthesmall-scaleprojectwas100,000CNY,including33,000CNYforpurchasingcalves,lambsandyoungmedicinalearthworms;27,000CNYfortransportingrawmaterialssuchascropstraw,fertilizersandforage;35,000CNYforthesalariesofpeopleengagedinagriculturalproductionandmanagementofforageprocessingetc.;and5,000CNYfortechnicaltraining.Itisexpectedthatinthreeyears,suchsmallinvestmentsatthehouseholdlevelwillbepaidbackbylivestock-basedbenefits.5.ProspectsforcommercialtransformationandpromotionoffindingsThiskindofdual-croppingsystemcanbeexpandedduetoclimatewarming.Theyieldofthedual-croppingsystemisprojectedtoincreaseby11.6–86.2%withdifferentirrigationsinnorthernChina(Gaoetal.2019).WiththewatershortageinnorthernChina,multiple-croppingpracticesthatincludeinnovativewater-savingtechniquesandbreedingtechnologieswillneedtobedeveloped.Recentresearchindicatesthatrelocatinglivestockclosertocroplandscouldincreaseopportunitiesformanurerecyclingandreducetheneedforsyntheticfertilizer,facilitatingnitrogenpollutionabatementandreducingtheimpactsofnitrogenpollutiononhumanhealth(Gu2022).Baietal.(2022)demonstratedthatrelocatingone-thirdoflivestockinChinatomatchthedistributionofcroplandswouldreducemanurenitrogenpollutionbytwo-thirdsandhalvethenumberofpeopleexposedtohighNH3emissionsfrommanure.Relocatingtwo-thirdsoflivestockcouldfurtherreduceNH3exposurefor90%ofthepopulationofChina(Baietal.2022).Thiskindofcoupledlivestock-croplandsystemhasgreatpotentialtosupporttheimplementationoftheUnitedNationsEnvironmentAssemblyResolutiononSustainableNitrogenManagement(UNEP./EA.5/Res.2).Foreffectiveimplementation,anewcoupledlivestock-croplandsystemmustincreaseagriculturalproductivityandfarmerincomebyincreasingthesizeoffarmandcroppingsystems(Gu2022).Fromacommunityperspective,thisapproachcanhelpguidelocalfarmerstomeetmarketdemandandadjusttheiragriculturalproductionsystemwhileincreasingtheirincome.Comparedwithtraditionalmodelsthatseparatecropsandlivestock,thisalternativeapproachcanhelpimprovetheenvironmentbysavingfertilizerandwaterandoptimizingoverallresourceallocation.Inaddition,theapproachpromotesupscalingofnewtechnologiesandproducts,increaseslocalresidents'incomes,nourishescommunity-basedenterprisesandestablishesafavourablesocioeconomicdevelopmentpractice.Therefore,itisanimportantapproachforpromotingthesustainablegrowthoftheruraleconomy.Assuch,thisapproachprovidesmanyopportunitiesforbothcommercializationandenvironmentalsustainability.FurtherinformationContact:ZongshanLi,MaierdangKeyimu,RCEES,CASEmail:zsli_st@rcees.ac.cnReferences◊Bai,Z.,Fan,X.,Jin,X.,Zhao,Z.,Wu,Y.,Oenema,O.,etal.(2022).Relocate10billionlivestocktoreduceharmfulnitrogenpollutionexposurefor90%ofChina’spopulation.NatureFood3,152-160.https://doi.org/10.1038/s43016-021-00453-z.◊Gao,J.,Yang,X.,Zheng,B.,Liu,Z.,Zhao,J.,Sun,etal.(2019).EffectsofclimatechangeontheextensionofthepotentialdoublecroppingregionandcropwaterrequirementsinNorthernChina.AgriculturalandForestMeteorology268:146-155.https://doi.org/10.1016/j.agrformet.2019.01.009.◊Gu,B.(2022).Recouplinglivestockandcrops.NatureFood3,102-103.https://doi.org/10.1038/s43016-022-00466-2.◊Zhang,C.,Liu,S.,Wu,S.,Jin,S.,Reis,S.,Liu,H.andGu,B.(2019).RebuildingthelinkagebetweenlivestockandcroplandtomitigateagriculturalpollutioninChina.Resources,ConservationandRecycling144,65-73.https://doi.org/10.1016/j.resconrec.2019.01.011.25GoodpracticesonvulnerableecosystemrestorationinChinaCase6.EcologicalrestorationinmountaingullyareasforsoilandwaterconservationandpovertyreductionBriefOverviewThiscasestudyservestointroduceaneffectivemulti-objectivetree-plantingapproach,mainlytoimprovelocallivelihoodsandecologicalfunction.ThisworkispartoftheGrainforGreenProgrammeintheLoessPlateauofChina,oneofthelargestecologicalconstructionprogrammesintheworld.Ithasbeensuccessfullyappliedinrivervalleys,plains,hillyandgullyareasandsoilandwaterconservationareas.Itisrecommendedforsimilarlandscapeareasrequiringrestorationandfortheagriculture,forestry,andlandresourcessector.26GoodpracticesonvulnerableecosystemrestorationinChinaFigure6.1.Comparisonbefore(1990s)andafter(2010s)afforestationthroughtheGrainforGreenProgrammeintheLoessPlateauofChinaPhotosource:IGSNRR,CAS1.BackgroundTheLoessPlateauofChina,locatedincentralChina,isthelargestanddeepestloessdepositintheworld,coveringanareaof640,000km2(Fuetal.2017).Itischaracterizedbyacontinentalmonsoonclimatewithanaverageannualprecipitationof400mm,whichmainlyfallsinJulyandAugustatrelativelyhighintensity.Mostoftheplateauislocatedinasemi-aridzone,basedonthearidityindex.Itspredominantsedimentislooseloess.Asaresultofthousandsofyearsofanthropicimpact,theLoessPlateausuffersfromsoilerosion,landdegradation,naturaldisastersandextremepoverty(Fuetal.2017).Inaddition,rivererosion(orflowingwatererosion)makestheterrainfragmented,formingnumerousgullies.Carriedbyflowingwater,alargeamountofsoilhasaccumulatedinarelativelyflatareatoformrivervalleysandplains,severelydamagingthesurfacevegetationandecosystems.Giventheseadverseconditionsandthelocalsocioeconomicdevelopmentcontext,wesuggestedthistree-plantingpracticetoincreaselocalgreenery,improvelivelihoodsandreducepoverty.Thistreeplantingisadaptedtolocalconditionsanddesignedtoalleviatesoilloss,improveecosystemfunction,boostforestrydevelopmentandsupportincomeincreasesforfarmersandforesters.Thisendeavourisexpectedtoachievethegoalof“identifyingthelanduserightsrelatedtomountains,restoringlandwithtrees,andsettlingpeopleinpeaceandcontentment.”2.InterventionapproachandimplementationplanOurinterventionsarebasedontheGrainforGreenProgrammeintheLoessPlateauofChina,whichisbackedstronglybygovernmentpoliciesonafforestationandpovertyreduction.Meanwhile,differentresearchinstitutions,localgovernmentsandtheirpartnersworktogetherwithcommunitiestodevelopandimplementtechnicalapproachesandmethods.2.1AfforestationpolicyforpovertyreductionIn2018,theChineseGovernmentissuedtheWorkPlanofEco-povertyAlleviationaimedatreducingruralpovertybyimplementinganewroundofecologicalconstructionprogrammes.TheGrainforGreenProgramme,oneofthelargestecologicalconstructionprogrammesintheworld,isreconsidered27GoodpracticesonvulnerableecosystemrestorationinChinaandincludedintheworkplan’stasks(Wuetal.2021).Thisstrategyisimplementedthroughfourkeymeansusedinecologicalprogrammesforpovertyreduction,including1)paymentforecosystemrestorationprojectparticipation;2)stablewagethroughecologicalpublicwelfareposts;3)incomethroughecologicalindustries;and4)incomethroughpoliciessuchaseco-compensation,makingitamorepowerfulpolicyinstrumenttosupportsuchpractices.Localgovernmentsimplementedthiskindofafforestationpolicythroughtheprocurementoftree-plantingservices.Inparticular,governmentsformulatedplansandstandards,whileafforestationcooperatives,80%ofwhichconsistedoflow-incomehouseholds,signedcontractsfortreeplantingonassignedlands.Onceafforestationresultspassreview,theGovernmentwillalsoprocureforestmanagementtasksintheformofsocialservices.Thispromotesmulti-levelparticipatorytreeplantingandafforestationbylow-incomehouseholdsandincreasestheirincomestability.Thedemonstrationzoneadoptedaneco-povertyalleviationapproachwithfivemeasures:returningfarmlandtoforests,ecosystemmanagement,ecosystemconservation,economicforestqualityandproductivityimprovement,andforestryindustry-basedpovertyalleviation.Thisenabledtheforestrydevelopmenttobetransformedfromasimpleecologicalendeavourtoacloseintegrationofecologicalconservationandpovertyalleviation.2.2Afforestationmethodsformultipleobjectives2.2.1Multi-speciesselectionandnurseryTomeetthemultiplegoalsofecosystemservicesstability,povertyreductionandlocalindustrydevelopment,ourafforestationapproachintegratedtheseobjectivesthroughscience-basedspeciesselection.ThekeyspeciesselectedforafforestationincludedPinussylvestrisandHippophaerhamnoidesLinn.2.2.2PreparelandforafforestationandsoilandwaterconservationPreparinglandinadvanceisanimportantprocessforincreasingthesurvivalrateofvegetationandimprovingthehabitatforyoungtrees.Inourcontext,combiningafforestationwithwaterandsoilconservationengineeringisthemostsynergisticapproach.Specifically,wepreparedlandoneortwoquartersaheadofafforestationusingtwoapproaches,namelyhorizontaltrenchesandfish-scalepits.Practiceshaveshownthatsuchlandpreparationcanaccumulatewaterresources,increasesoilmoisturecontentandfertility,killinsectpests,reducesoil-bornediseasesandimprovethelightandventilationconditionsofforestland.Ahorizontaltrenchshouldbeconstructedalongthecontourlinewiththefollowingdimensions:0.8–1.2mwideatthetop,0.5mwideatthebottom,0.6–0.7mdeepand2–3mlongwith3–5mspacingbetweentheupperandlowertrenchesand0.3–0.5mspacingbetweentheleftandrighttrenches.Backfillingthetopsoilisessential,andasoilridgeshouldbebuiltaroundtheditch.Theridgeshouldbe0.4mhigh,0.9mwideatthetop,and0.8–1mwideatthebottombeforethesoilistamped.Thefish-scalepitshouldbe0.8mlongand0.5–0.6mdeep,withahalf-moon-shapedsoilridgebuiltunderthepits.Pitsshouldbe2–3mapart.2.2.3SeedlingplantingWhenseedlingsareplanted,theiryoungrootsystemsarevulnerable.Inordertomitigateseedlingmortality,robustseedlingsmustbeselected.High-qualityseedlingsthathavewell-developedrootsystemsandstrongdroughtresistancewillincreasethesurvivalrateofafforestation.Seedlingsshouldbeplantedshortlyafterliftingtoreduceevaporationofwaterfromtherootsystem.Seedlingsthathaveundergonetemporaryplantingandlong-distancetransportationshouldbeimmersedinwaterfor24hourspriortoafforestation.Ifwaterlossissubstantial,soakingtimecanbeextendedto2–3days.Whenseedlingsareplanted,thefollowingthreemethodshavebeentestedandarerecommendedaccordingtothelocalenvironmentalconditions.-Plantingmethod1:SoilandwaterconservationplantingSeedlingsaregenerallyplantedinspringandtherainyseasons.Itisrecommendedtochoose3-or4-year-oldseedlingswitharobustcontainerormycorrhizalseedlings.Forexample,2-year-oldseedlingsarepreparedwithnutrientmycorrhizalsoilinbags,andtheymaybekeptfor1to2growingseasonsinacontainerbeforeplanting.Whenplanting,ensure28GoodpracticesonvulnerableecosystemrestorationinChinathatseedlingsarelifted,transportedandplantedinacoordinatedwaythatensurestheygetenoughmoisture.Takeoffthecontainerbagimmediatelybeforeplantingtheseedlingsandensurethattheseedlingsareinclosecontactwiththenutrientsoilwhentakenout.Plantingstepsinclude1)diggingholesinthehorizontalditch;2)plantingseedlingsagainsttheditchwall;3)maintainingtherootsystemnaturally;and4)refillingthesoilandtreadingdowntheeartharoundtheroot.InsteadofplantingapurePinussylvestrisforest,PinussylvestrisandHippophaerhamnoidesLinncanbemixedwhenplanting.-Plantingmethod2:filmmulchingFilmmulchingisalsoaneffectiveafforestationtechniquetoimprovethesurvivalratesofseedlings.Theimplementationstepsareasfollows:1)cutaslitalongonesideofthefilmtowardsthecentre;2)maketheplantinghole(treepit)intoashallowpot-bottomshapewiththeedgeoftheholeslightlylowerthantheground;3)mulchtheseedlingswiththefilmafterplantingtomaketheseedlingstemspassthroughthecentreofthefilm;and4)usesoiltocompactthesurroundingsofthefilmandtheslit.Thecoveringsoilshouldbeabout4cmwideandthick.Thesoilbetweentheseedlingstemsandthemulchingfilmshouldbeslightlythicker(~6cm)sothatthefilmhasnovoidsandvents,forminganinvertedumbrellashape,whichallowsrainwatertoflowintotheseedlingsoilasquicklyaspossible.Thismulchingtechniqueincreasessoiltemperature,preventsevaporationandreducesweeds.-Plantingmethod3:stem-cuttingDuetothewindy,dryspring,lowtemperatureandlowlignificationofthebranchtipsofmostplantedseedlings,thesurvivalrateofnewlyplantedseedlingsisverylowwithhighevapotranspirationandweakrootfunctioning.Hence,wesuggeststem-cuttingtoreducethetranspirationoftheabovegroundpartofthetrees,promotethegrowthofundergroundlateralrootsandeffectivelyimprovethesurvivalrateofplantations.Theheightforcuttingisgenerallynotmorethan10–15cm,and20–30cmissuitableformountainapricotsandmountainpeaches,whichisgoodfortreeshapeandearlyfruiting.However,thisisnotadvisedforcashtreespecies.Forconiferoustrees,especiallyChinesepine,cuttingstemsmaydestroytheseedlinggrowthtipsandcausethemtostopgrowing.Precautionsforstem-cuttingafforestationare:1)donotbreakthestemsbypullingthebarkwhencutting,soasnottoaffectgerminationandgrowth;2)leavethesoilpilearoundthestemandensurestemsare2–3cmabovethegroundtoavoidairdrying.Thesoilpileisremovedonlyafternewleavesbreakoutfromthesoil.Alternatively,soilpilescanberetainedyear-round,whichcandelaybuddingtimeandpreventherbivoresfromgnawingontheyoungtrees.2.2.4YoungforestmanagementToconserveallnewlyplantedyoungtrees,strictenclosuresshouldbeusedtopreventdestructionbyhumansandanimals.Whiletreesareyoung,legumepasturescanbeplantedbetweentheupperandlowerhorizontaltrenchestoachieveshort-termbenefitswhileimprovingsoilfertilityandpromotingforestgrowth.3.RestorationoutcomesTheserestorationpracticeshavebeencontinuouslypromotedandappliedwidelyinthesoilconservationandwaterstorageareainLinfen’shillyandgullyregionoftheLoessPlateau(Fig.6.1).Soilerosionintensityintherivervalleysandplainsismuchlessintenseaftertheseintegratedinterventions.Sincetheimplementationofthisapproach,forestshavedevelopedinthegullyareas.Forestcoverage,annualprecipitationandtherelativehumidityoftheairhaveincreased.Low-incomehouseholdswereemployedtoimplementecologicalconservationmeasures,including2,727forestrangers,2,558ecologicalforestrangersand559youngseedlingguardians.Toimproveecosystemmanagement,515professionalafforestationcooperativeshavecompleted307,300muofafforestationtasksthroughbidding.4.DemonstrationandupscalingThankstotheGrainforGreenconservationprogramme’sefforts,46,000muoflandwasreturnedfromfarmlandtoforestsinoneyear.Thusfar,365,800muhasbeenafforested.Throughtheimplementationofaneconomicforestqualityandproductivityimprovementproject,103,000muofcashforestwasrealizedfor2017,inadditionto198,000muof29GoodpracticesonvulnerableecosystemrestorationinChinaHippophaerhamnoidesLinnforesttransformation.Theforestryindustry-basedpovertyalleviationprojectfocusedon210,000muofHippophaerhamnoidesLinnforestinshallow,hillyareasin11counties.5.EstimateofinvestmentandpaybackperiodToimplementtree-plantingprojects,thecostoflabourisabout800CNY/mu/day.Exceptforlookingaftertheseedlingsattheearlystage,thereisbasicallynoneedforfurtherlabour.Meanwhile,afforestationwillhelpcreatejobs,forestcoverageandeconomicoutput.Itisexpectedthatin5–6years,theseinitialinvestmentswillbepaidbackbyincomefromnewlivelihoods.6.ProspectsforcommercialtransformationandpromotionoffindingsThisintegratedapproachhasgreatlyimprovedtheecosystemfunctioninthedemonstrationarea,reducedsoilerosion,increasedlocalresidents’incomeandestablishedaprovenapproachforsocialandeconomicdevelopment.Thus,thisinitiativehaspositiveprospectsforcommercialtransformationandpromotion.In2020,theChineseGovernmentreleasedtheMasterPlanforNationalKeyEcosystemProtectionandRestorationMajorProjects(2021–2035),whichindicatedthatforestcoveragewillincreaseto26%oftheterrestrialareaofChina,and56.4millionhectaresofdegradedlandwillbenewlytreatedinthenext15years(Sino-GermanEnvironmentalPartnershipII,2020).ThisMasterPlanprovidesnewopportunitiesforgovernment-supportedrestoration,asitskeyprojectscoverthemainecologicalregionsoftheYellowRiver,includingtheecologicalbarrieroftheLoessPlateau.Sharingknowledgeandbuildingthecapacitiesoflocalmenandwomenisconsideredcrucialforprogresstowardsenvironmentalsustainability.Includingwomeninfinancialinitiativeswillenablemoreempowermentforwomenwhoareheadsofhouseholds.WiththenationalWorkPlanofEco-povertyAlleviationpolicy,thisapproachcanbefurtherupscaledinChina.Scholarsalsosuggestedthateco-povertyalleviationmustactivatefarmers’utilizationoflandresourcesinwaysthatarebotheconomicallyeffectiveandecologicallyfriendly.Thefollowingfourprinciplesweresuggestedtosafeguardtheenvironmentandfostersustainablelivelihoods;1)reformtheruralcollectivepropertyrightssystemandensurefarmers’accessibilitytolandresources;2)capitalizerurallandresourcesbyestablishingnationalgeographicsignsandprovidingbrandedecologicalproducts;3)improvefarmers’abilityandskill,especiallytheyounggeneration;and4)establishamultipartygovernanceandbenefitsharingsystemforthesubsequentmanagementofecologicalprogrammes(Wuetal.2021).FurtherinformationContact:LIZongshan,RCEES,CASEmail:zsli_st@rcees.ac.cnReferences◊Fu,B.,Wang,S.,Liu,Y.,Liu,J.,Liang,W.andMiao,C.(2017).HydrogeomorphicecosystemresponsestonaturalandanthropogenicchangesintheLoessPlateauofChina.AnnualReviewofEarthandPlanetarySciences45,223-243.https://doi.org/10.1146/annurev-earth-063016-020552.◊Sino-GermanEnvironmentalPartnershipII(2020).Policysummaryonthe“MasterPlanforNationalKeyEcosystemProtectionandRestorationMajorProjects(2021-2035)”,11June.https://environmental-partnership.org/news/policy-summary-on-the-master-plan-for-national-key-ecosystem-protection-and-restoration-major-projects-2021-2035/.Accessedon20September2022.◊Wu,Z.,Dai,X.,Li,B.,Hou,Y.(2021).LivelihoodconsequencesoftheGrainforGreenProgrammeacrossregionalandhouseholdscales:AcasestudyintheLoessPlateau.LandUsePolicy111.https://doi.org/10.1016/j.landusepol.2021.105746.30GoodpracticesonvulnerableecosystemrestorationinChinaCase7.EcologicalorchardsinslopedrylandareasofChinaBriefOverviewTheLoessPlateauofChinaistheworld’slargestapple-producingregion,andover80%oftheorchardsareinrain-feddrylandareas(Pengetal.2017).Thiscasestudywasperformedtointroduceanecologicallysound,highlycost-effectiveorchardmanagementapproachinthedrylandsofChinatoovercomeissueslikewatershortage,lowyield,poorfruitqualityandlowcost-effectiveness.ThisapproachhasbeendevelopedandtestedthroughtheextensivepracticesoforchardmanagementinChina.Itsapplicationhasbeensuccessfulinareaswithanaverageprecipitationof450–550mm,andwerecommenditforafforestationandforconsiderationbypovertyalleviationsectors.31GoodpracticesonvulnerableecosystemrestorationinChinaFigure7.1.DemonstrationofappleorchardwithundercanopyVulpiamyurosplantationintheLoessPlateauregionPhotosources:RCEES,CAS1.BackgroundInthesemi-humidregionsofnorthernChina,excessiveandwidespreadapplicationofnitrogenandphosphorusfertilizersinappleorchardsimprovedappleyieldandqualitybutintensifieddeepsoildesiccationandrestrictedthestableandhealthydevelopmentoftheappleindustry(Gong,YanandWang2011).Desiccationofthedeepsoillayerunderdrylandappleorchardsisthemainrestrictingfactorforappleproductioninsuchregions(Pengetal.2017).Therefore,fruitproductioninsemi-aridareasofnorthernChinagenerallysuffersfromlowyield,poorqualityandlowcost-effectiveness.IntheLoessPlateauofChina,wedevelopedandtestedanecologicalorchardmanagementapproachfordrylands.Ourkeyobjectivesweretoincreasetheyieldperunitareaandimprovethequalityandcost-effectiveness.Weusedthefollowingkeytechniques:(1)enhanceherbaceousvegetationintheorchardandcontrolevaporationbycoveringthesoilsurfaceand(2)adoptmedium-densityfruittreesandrestrainedpruningtechnologytocontrolthequantityoffruitsandbranchesandreduceineffectiveevaporation.Ecologicalorchardsaredefinedasanysustainabledevelopmentproductionsystembasedonecologyandsystemsciences.Thisconceptwasderivedfromanorchardindustry-drivenconceptbutalsobenefitsfromecologicalsoundness,highcost-effectivenessandenergyandmaterialflowefficiency.Thistechniqueisestablishedthroughthescientificallocationofplant,animalandmicroorganismcommunitiesthroughthestrategicuseoflight,heat,water,soil,nutrientsandatmosphericresourcesintheorchard.2.InterventionapproachandimplementationplanBuildinganecologicalorchardbeginswithselectingexcellentvarietiesandgoodhabitatswithfertilesoil.Toachievethisgoal,wedevelopedanintegratedmanagementapproachfororchards,livestockandgrassland.Thisstrategyincludedimprovingsoilfertilitybyexpandingplanting,increasingsurfacesoilcoverofgrassandmulch,avoidingover-relianceonchemicalfertilizersandpesticides,andusinggrassandlivestockmanure.Theseecologicalorchardsadheretotheorganicpestcontrolstrategyandbenefitfromvariousagricultural,biologicalandintegratedpestcontrol32GoodpracticesonvulnerableecosystemrestorationinChinatechnologies.Thismanagementstrategyintegratesorchardrun-offmanagement,precisefertilization,post-harvestprocessingforcommercialization,processingandstorageoffruits,waterresourcemanagementandorchardandlivestockmanagement.Keytakeawaysformanaginganecologicalorchard,asshowninFigure7.2,include:(1)buildingnaturalgrassvegetation;(2)controllingtreeandbranchgrowth;and(3)adjustingfruittreemanagment.Tofullyutilizeexistingnaturalweedcommunities,effortsshouldbemadetoincreaselegumesto20–30%ofthecommunity,usingspeciessuchasMedicagosativaandLotuscorniculatusforgreenmanure.Grassshouldbecut5–7timesayeartomaintainitsheightat~15–20cmyear-roundwhileretainingfallenleavesandresidualgrasstoincreasecoverage.Medium-densitytree-plantingstrategiesshouldbechosentoreducetheproportionofmajorbranchesasmuchaspossible.Treecoverageoftheprojectedareashouldbelimitedto45–50%atthefullfruitingstage,whichrequiresbranchthinning,coring,twisting,retractingandremoval.Thesepruningmeasureslimitthetotalnumberofauxiliarybranchesto600,000~750,000/hm2andtheeffectivefunctionalleavestoabout690,000/hm2.Fruitnumbersshouldbelimitedto1/30~1/40ofthetotaleffectiveleaves.Thesecaretechniquesarefurthersupplementedbycoveringthefruitwithbags,reducingleaves,turningfruitstothelightandwateringduringperiodsofhighwaterdemand.3.Restorationoutcomes3.1SoilimprovementTheapproachoutlinedhereimproveswater-useefficiency.Comparedwithcurrentclean-tilledorchards,thesoil’swatercontentingrass-coveredorchardswas3.5%,2.4%,and3.4%higheratthe0–20,20–40and40–60cmsoillayers,respectively.Theorganicmattercontentofthe0–40cmsoillayerwas1.28%comparedto1.11%inclean-tilledorchards.Totalsoilnitrogenwas0.013%higher,andsoilavailablepotassiumwas9.1mghigherper100gofsoil.TheFe,CaandZncontentsweremuchhigherthanthoseinclean-tilledorchards.Soilbulkdensityinorchardscoveredwithgrassforfourconsecutiveyearsdecreasedby0.20g/cm3,andthepHfellfrom8.4to8.1comparedtocontrols.Comparedwithclean-tilledorchards,thetotalevapotranspirationoffruittreeleavesingrass-coveredorchardsdecreasedby42.6–74.4%.Treerootdistributionexpandedfrom20–60cmto20–80cm.Theweightofasinglefreshleafwas0.12ghigher,andthechlorophyllcontentincreasedby0.37mg/g.3.2Improvingpestcontrol,fruitqualityandincomeThenumberofnaturalenemiesofpests,suchasChrysopidaeandCoccinellaseptempunctata,increased3.7-and2.6-fold,respectively,comparedtoclean-tilledorchards.Incontrast,thenumberofpests,suchasmitesandaphids,decreasedby99.8%andFigure7.2.BriefoutlineoftheconceptofanecologicalorchardindrylandsSoilmanagementandundercanopygrassplantingSustainablequalityfruitproductionRestrainedpruningFruittreeplantingandmanagingmethodsLitterreturnedtothefield33GoodpracticesonvulnerableecosystemrestorationinChina94.7%,respectively.Theincidenceofappleringrotdiseaseandanthracnosefellby85.2%and76.8%,respectively.Averagefruitweight(216.7g),averagefruitdiameter(75.4mm),solublesolidscontentofthepulp(15.2%),totalabsorptiondegreeofanthocyanininthepeel(97.4/100cm2),andaverageyieldoffirst-classfruit(27,000kg/ha)allshowedimprovements.Theeconomicinput-outputratiooftheorchardcoveredwithgrasswas1:9.25,comparedto1:4.72foraclean-tilledorchard,increasingthenetincomeby1,338CNY/ha.3.3SoilandwaterconservationInterplantingherbaceousplantsinhillyorchardshasobviouseffectsonwaterandsoilconservation.Forageplantshaveahighrootbiomassthatiswidelydistributedcombinedwithahighabovegroundbiomassandcoveragerate.Forthisreason,forageplantsareexcellentatstabilizingsoils,whichcaneffectivelyslowrun-offvelocityandpreventerosion.WeplantedtheerectgramineousgrassDigitaria(SouthAfrica)ontheedgeoftheridgebecauseitisgoodattilleringandeasilyformsahedge.WesowedPaspalumnotatum,agrape-basedGramineae,ontheridgebecauseofitscharacteristicrootsystemthateffectivelypreventserosionwithareducedrun-offof57-76%(seeTable7.1).MethodoftreatmentsCoveragerate(%)Depthofsoilloss(mm)Reducedsoillossdepth(mm)Reducedsurfacerun-off(%)Baresoilexposed02.8~3.4//Grass-coveredundercanopy>800.92~1.121.88~2.2857~76Table7.1.SoilandwaterconservationeffectsofinterplantingforageplantsinhillyorchardsintheLoessPlateauregionFigure7.2.LandscapeofappleorchardsintheLoessPlateauregionPhotosources:IGSNRR,CAS34GoodpracticesonvulnerableecosystemrestorationinChina3.4SocialbenefitsBymakingfulluseofhillyresources,thepracticespresentedherehaveimprovedfarmers'qualityoflifeandincreasedtheiremploymentopportunities.Theyalsoimprovedfarmers’capacity,reducedthesurplusrurallabourforce,effectivelymitigatedemploymentpressure(includingjobsforwomen),anddevelopedsustainableeconomicgrowthinmountainousruralareas.4.Demonstration,upscalingandinvestmentpaybackperiodAtpresent,thismodeliswidelyusedintheLoessPlateau(Fig7.2).Thedevelopmentofecologicalorchardsispromisingbutisalsodependentonlocalnaturalconditions,climatecharacteristics,thebuy-inoflocalfruitfarmers,anddemandforfruitslocallyandinternationally.Itisestimatedthattheinitialinvestmentwillbecoveredin3years.5.ProspectsforcommercialtransformationandpromotionoffindingsTheWeibeiDrylandHighlandsofShaanxiareaprimaryapple-growingregionwithappleorchardscoveringaplantedareaofmorethan1.2millionha(Wang,WuandMeng2006).Inthisregion,morethan80%oftheorchardsarerain-fed—theyarenotirrigatedandarethussubjecttoseveresoilwaterover-consumptionmarkedbydeepsoildesiccation,soilimpoverishmentandlowfertility(Pengetal.2017).Theproductionmodeldescribedherehasgreatlyimprovedtheecosystemfunctionofthedemonstrationarea,reducedsoilerosion,increasedlocalresidents'incomeandsupportedsocialandeconomicdevelopment.Therefore,ithasahighpotentialforcommercializationandimprovementofmajorappleorchardareaswithanaverageprecipitationof450–550mm.FurtherinformationContact:LIZongshan,MaierdangKeyimu,RCEES,CASEmail:zsli_st@rcees.ac.cnReferences◊Gong,W.,Yan,X.andWang,J.(2011).Effectoflong-termfertilizationonsoilfertility.(inChinese).Soils43,336-342.10.13287/j.1001-9332.201703.027.◊Peng,X.,Guo,Z.,Zhang,Y.andLi,J.(2017).Simulationoflong-termyieldandsoilwaterconsumptioninappleorchardsontheLoessPlateau,China,inresponsetofertilization.ScientificRepots7.https://doi.org/10.1038/s41598-017-05914-9.◊Wang,J.,Wu,F.andMeng,Q.(2006).AnalysisonsoilmoisturecharacterofdryorchardonhillyandgullyregionsontheLoessPlateau.(inChinese).JournalofNorthwestForestryUniversity21(5),65-68.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=20090228726190971435GoodpracticesonvulnerableecosystemrestorationinChinaCase8.Buildingstonediketerracesinrocky,mountainousareasforagriculturedevelopmentBriefOverviewForthousandsofyears,terracinghasbeenoneofthemostimportantmethodsforpreventingsoilerosion,conservingwater,andincreasingagriculturalproduction(Dengetal.2021).China,Ethiopia,Indonesia,Italy,Japan,Nepal,Peru,thePhilippines,PortugalandSwitzerland,amongothers,haveextensiveterracedfarmlandareas(BarylaandPierzgalski2008).Here,weintroduceanapproachforbuildingstandardstonediketerracesinrocky,mountainousareastoenhancethesustainabilityofagriculturalproduction.ThisprotocolhasbeendevelopedthroughextensiveexperimentsintheLoessPlateau,China,overthepastthreedecades.ItisapplicabletoanyrockymountainousareasinthesouthernGansuProvince,China,andotherrockymountainousareasgloballywheretheslopeislessthan25degrees.Werecommendthisprotocolforsectorsrelatedtoagriculture,environmentalconservationandeconomicgrowth.36GoodpracticesonvulnerableecosystemrestorationinChinaFigure8.1.SlopefarmlandinLongnanCitybeforecomprehensivemanagement.Figure8.2.ViewsofstandardstonediketerracesaftercomprehensivemanagementinLongnanCityPhotosource:RCEES,CASPhotosource:RCEES,CAS1.BackgroundTerracesprovidemanyecosystemservices,includingthereductionofrun-offandsedimentbyover41.9%and52%,respectively,theimprovementofgrainyieldsandsoilmoisturecontentby44.8%and12.9%,respectively,andtheconservationofplantbiodiversityonalocalscale(Dengetal.2021).Althoughterracesareconsideredanadvisableandeffectivemeasureforsoilandwaterconservation,poorlydesignedterracescanhavenegativeeffects.Weietal.(2016)foundthatimproperlydesignedterracedsystemsareevenworsethannoterracingatall,andterracingfailuresmainlyresultfromagriculturalabandonment,inappropriatedesign,environmentallegislationandinsufficientknowledgeregardingdesign,constructionandmaintenancealternatives.Inthiscontext,itisimportanttoshareknowledgeofanddesignsforbuildingstandardterracesystemsforlarge-scaleengineeringprojects.37GoodpracticesonvulnerableecosystemrestorationinChinaTherocky,mountainousLongnanCityisinthesouth-westernGansuProvinceonthenorth-easternedgeoftheQinghai-TibetPlateau,China.Thisareaispartofthewarmtemperateandnorthernsubtropicalzoneandexhibitsanalpineandsemi-aridclimatewithanaveragetemperatureof6–15°C,and440–800mmprecipitation.Farmersarechallengedbyharshnaturalconditionsinthisrocky,mountainouslandscape,includingfrequentnaturalhazards(suchasfloodinganddrought),thinandpoorsoil,limitedproductivityandsparselandconnectivity.Soilerosionhasbeenaseriousissue.TerracedfieldsareessentialforagriculturalproductiontopromotetheeconomicandsocialdevelopmentoftheProvince.Here,webuiltstonediketerracesusingsandandgravelinlocaltrenchesaccompaniedbyprefabricatedconcrete.2.Theinterventionapproachandimplementationplan2.1DesignofstandardstonediketerracesCut-and-fillterracesareformed(seeFigure8.3).Byfillingareas,thearablelandcanbeexpanded,thusmakingitpossibletogrowcropsonalargescaleinhillyareas.Theridgesorembankmentsplayanimportantroleininterceptingrun-offandfieldwater.Butterracesarealsoatriskofcollapse;thehighertheterracewall,thegreatertheriskofcollapse(Dengetal.2021).Notethesurfacesoilisrolleddownwardtothenewlybuiltterrace,asindicatedbyFigure8.4.Figure8.3.SectionaldrawingofaterraceFigure8.4.SectionaldrawingofaterraceforthemanagementofsurfacesoilSource:Dengetal.202138GoodpracticesonvulnerableecosystemrestorationinChinaInourdemonstrationsiteinLongnanCityofZhouquCounty,weusedthefollowingdesignparameterstandardswherethemountainousfieldslopeisnomorethan25degrees.Theterracedfieldsareaminimumof8mwideand1muintotalarea.AsshowninthesectionaldrawinginFigure8.5,theterracewallheight(H)islessthan3.5mtoavoidtheriskofcollapse,theembankmentheight(Dh)is50cm,andtheembankmentwidth(D1)is40cm.Theouterslopeofthefieldridgeis65°.Theterraceandembankmentarebuiltbyrollingcompaction,withtheembankmentbiologicallyfixed.B1B22B22BβαD1D2DhHBLOriginalgroundsurfaceHereαrepresentstheoriginalslopegradient(°);βrepresentstheslopegradient(°)ofthenewlybuiltterracewall;Hrepresentstheheightoftheterracewall(m);BLrepresentswidthoftheoriginalgroundsurface(m);Brepresentsthegrosswidthofthefieldsurface(m);B1representsthenetwidthofthefieldsurface(m);D2representsthebottomwidthoftheembankment(m);D1representsthetopwidthoftheembankment(m);Dhrepresentstheheightoftheembankment(m).HereH=BLSinα,B=BLcosα,B2=Hctgβ,B1=B-B2=H(ctgα-ctgβ).Figure8.5.SectionaldrawingofthestonediketerracedesignusedinthedemonstrationsiteinLongnanCity,ZhouquCounty,ChinaTheaccessroadisdesignedtobe3mwide,withanarch-shapedsurface.Afterbeingtamped,thestructureshouldbeelevatedby0.2mcomparedtotheadjacentground.Thelongitudinalslopeofthepathdependsonthenaturalslopeofthetablelandsurfaceandisgenerallyaround1–3%.Thelongitudinalroadslopeinmountainousregionsisgenerally~10%andamaximumof15%.Theminimumplanecurveradiusofthemainroadatthetransitionsectionshouldbe15mandnolessthan8mfortheinternalpath.Theroadisflankedbywaterditches0.5mwideatthetop,0.2mdeepand0.3mwideatthebottom.2.2BuildsupportsystemsforterracesThesupportsystemforthesediketerracesshouldmainlyincludewater-interceptingditches,drainageditchesandreservoirs.Thewater-interceptingditchesshouldmostlyhaveatrapezoidalcrosssection,whilethewaterdrainageditchesanddiversioncanalsshouldhaverectangularcrosssections.Thereservoircanbeclosedoropened,equippedwithwaterinletsanddischargepipes,terracedridgesetc.andisusuallyroundorrectangularinshape.Thereservoirshouldalsohaveasedimentationtanktoblocksilt,whichmayberectangularorcirculardependingontheterrain.Thewidthofthereservoirshouldbe1.5–2.0timesthewidthoftheditchconnectedtoitandatleast50cmdeeperthantheditchdepth.2.3Transformationoflow-qualityterracesintostandardterracesThemainissuesencounteredwiththeexistinglow-qualityterraceswere1)narrowandunevenfields;2)weakridgesandlowutilizationrates;3)limited,poor-qualityroads;and4)improperplanningofdrainageditches,reservoirsandotherwaterstorageanddrainagefacilities.Alltheseissuesresultedin39GoodpracticesonvulnerableecosystemrestorationinChinapoorresilience,reducedcropproductionandpoorsoilwatercontrol.AstudybyDengetal.(2021)showedthatasterracesage,disadvantagesgraduallyemerge,includinginterferencewithwatercirculationandseriousenvironmentalproblemscausedbypoorlydesignedormismanagedterraces,wheretheaveragerun-offandsoillosscanbe1–5timesthatofwell-managedterraces.However,theselow-qualityterracescanbetransformedbyincorporatingsmallpatchesintolargepatches,restoringfieldsurfacesandstrengtheningridgestomakefulluseofgrowingareas.Thistransformativeprocessprovidesflatfields,producingmorestableridgesandsimplifyingoperations.Implementingthisapproachinthesemi-aridareaoftheLoessPlateausupportstheGrainforGreenprogramme’sobjectiveofimprovingoverallecosystemhealthbyreducingagriculturallandandexpandingforestandgrasslandsinslopes.Inthiscontext,transformingtheselow-qualityterracesintomorestandardterracesmaximizesyieldperlandunitandthereforehasgreatvaluefortheimplementationoftheGrainforGreenprogramme.Thisprocessalsohelpsminimizeproductionlossandsupportsstablegrainproduction.The“dual-croppingsystem”approachisrecommendedfornewterraces,inwhichkeyeconomiccropsareplantedinundisturbedtopsoil,andadaptive,resilientplantsareplantedinthenewlyrestructureddeepsoilstoimprovesoilcompositionandfertility.Asdualcroppingisnotyetcommonpracticeinthisregion,properinstructionandtechnicalassistancearerequiredtomitigateproblemsforlocalpractitionersduringthetransitionphase.Thesemethodsshouldalsobeintegratedwithlocalindustries,ruralarearevitalizationprogrammesandland-usetransitions.3.Restorationoutcomes3.1WaterandsoilconservationAfterslopefarmlandhadbeentransformedintostandardterraces,therun-offspeedwasreducedbyupto60%underthesamerainfallintensity,interceptedrainfallwas70–100mm,70–95%surfacerun-offwasintercepted,andrun-offsedimentcontentwasreducedby90–100%.Theconversionofslopefarmlandintoterracesconservedwater,reducedsoilerosionandincreasedgrainproduction.Theseeffectsalsohelpedtomeetnationalarablelandred-line2requirementswhilepromotingslopefarmlandreclamationandpreventingsoilerosion.3.2StrengthenedresilienceagainstdroughtandothernaturaldisastersStandardstonediketerraceshaveincreasedsoilmoisture,providingsubstantialprotectivebenefitsagainstdroughtandnaturaldisasters.Thisisduetoimprovedsoilstructureandorganicmattercontent,whichreducessurfacerun-offvelocity,therebyalleviatingfloodpressuredownstream.Additionally,terracesenabletheredistributionofwaterresourcestoimproveutilizationefficiencyandthusbuildbetterresiliencetodrought.3.3EnhancedregionalecosystemservicesTheecologicalbenefitsofagriculturalterraceconstructionarefourfold.Fromahydrosphereperspective,theconstructionofterracesgreatlyreducessurfacerun-offduringheavyrainfallandimprovessurfacerun-offutilizationefficiency.Fromapedosphereperspective,sedimentlossisreducedwhiledroughtresistance,soilmoisture,fertilityandsoilstructureandhealthareenhanced.Fromanaerosphereperspective,changesintheregionaltemperature,humidityandlightabsorptionhelpmoderatethemicroclimateandpreventotheragrometeorologicalhazards.Fromabiosphereperspective,thesephysicalparameterimprovementsallowplantstogrowfasterandthusincreaseforestandgrasscoverageinashorterperiod.3.4EconomicbenefitsTheeconomicbenefitsofdiketerracesincludetheimprovementofinfrastructureandsupportforruralagriculturedevelopment.AccordingtotheproductiondataprovidedbytheWuweiMunicipalSoilandWaterConservationStationandthestatisticsfromagriculturalandstatisticalauthorities,thebenefitofterracesiscalculatedper1haterraceandothercropvaluesareconvertedtowheat.Slopefarmlandwheatyieldwas2,370kg/ha,andterracefarmlandyieldwas3,300kg/ha.Theyieldimprovementwastherefore930kgperhectare.Annually,terracedfieldsincreasedyieldby320.85tonsintotal,improvinggrossoutput2TheChinesegovernmenthasanationalpolicywherethecountrymustretaina"redline",orminimum,of121.2millionhectaresofarableland.40GoodpracticesonvulnerableecosystemrestorationinChinavalueby1,395CNYperhectareandnetoutputvalueby1,350CNYperhectare.Overthecourseofthestudy,theannualnetoutputvalueacrosstheentireLiangzhouDistrictincreasedby465,800CNY.Theconstructionofterraceshasacceleratedtheregionaleconomy,helping256households(orabout768people)getoutofpoverty.4.DemonstrationandscalingTheimplementationofthisprojecthasbroughtconsiderableimprovementstotheinfrastructureoftheagriculturalsectorandtheregionalenvironment.Wealsosawincreasesinfoodproductionandreductionsinpoverty.Thecontinuedconstructionofterraceswillhelpincreasefarmers'economicincome,promotesustainableproductionandhelppeoplelivemoreprosperouslives.Additionally,womenarealsoinvolvedinrelatedagricultureactivitiesandprovidedwithfavourableworkingconditions,promotingprogresstowardsoverallsustainability.Atpresent,thecost-to-benefitratioofthesestonediketerracesislowduetodevelopmentdifficultiesandhighup-frontinvestment.Thetimetakentorecoupthisinvestmentissubstantial.Theseterraces,however,areverypromisingintherocky,mountainousareasofLongnanCity.5.EstimationofinvestmentandinvestmentpaybackperiodBuildingterracedfieldsinmountainousareasusingmachineryrequiresaninvestmentof3750CNY/mu,or$8395/ha(basedonthecurrentrateof6.7CNY=$1).Itisestimatedthatitwilltake40yearstogettheinitialinvestmentbackwithoutgovernmentsubsides.6.ProspectsforcommercialtransformationandpromotionoffindingsArablelandinLongnanrockymountainousareasinGansuProvinceisrepresentedby6%standardterrace,6%lowstandardterrace,and52%slopeorotherfarmland.Thereisstillgreatpotentialforupscalingstandardstonediketerraces.Duetoamplelight,heatandlucrativelocalindustries,therearelocalexamplesofplantingpotatoes,fullymulchedcorn,forestswithfruitproduction,cropsforChineseherbalmedicineandpastureonstandardterraces,whichcouldprovideevengreaterincometolocalfarmers.WhenWeietal.(2016)reviewedglobalterracepractices,theymadeafewrecommendationstobettermanageterracingpractices.First,thescientificcriteriaforterracingdesignsshouldbedevelopedandfollowed,includingtheassociatedenvironmentallegislations.Second,terracesneedtobebuiltinconjunctionwithotherwaterrecyclingtechniquesandfieldtreatments,suchasvegetationcoverandriserprotection,toensurethesecurityofterraces,theefficiencyofrainwaterharvestingandlandproductivity.Lastly,thereisanurgentneedtotransferknowledgeonterracingandsustainablelandmanagementfromacademiaandpolicymakerstolocalfarmers.Thepotentialdamageandrisksofagriculturalterracesshouldbebetterevaluatedtoprotecttheinterestsofbothfarmersandthegreaterwatershed.Specialfundsandeconomicsubsidiesforterracingshouldbeconsideredsofarmerswillmanagethembetter,whichmayhelpwiththegoalsofenvironmentalprotectionandlandsustainability.FurtherinformationContact:AssociateProfessorZongshanLiandAssistantProfessorJingshuWeifromRCEES,CASEmail:zsli_st@rcees.ac.cnReferences◊Deng,C.,Zhang,G.,Liu,Y.,Nie,X.,Li,Z.,Liu,J.etal,(2021).Advantagesanddisadvantagesofterracing:Acomprehensivereview.InternationalSoilandWaterConservationResearch9(3),344-359.https://doi.org/10.1016/j.iswcr.2021.03.002.◊Ma,L.,Mou,C.andZhang,X.(1998).Experimentalstudyofoptimumdesignandimplementationforrockridgeterrace.(inChinese).JournalofSoilandWaterConservation13(12),37-40.https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSB812.015.htm.◊Wei,W.,Chen,D.,Wang,L.,Daryanto,S.,Chen,L.,Yu,Y.etal.(2016).Globalsynthesisoftheclassifications,distributions,benefitsandissuesofterracing.Earth-ScienceReviews159,388-403.10.1016/j.earscirev.2016.06.010.41GoodpracticesonvulnerableecosystemrestorationinChinaCase9.PlantingdesertginsengasanewlivelihoodalongthedeserthighwayBriefOverviewThiscaseintroducesourecologicalrestorationeffortsinthesecondlargestshiftingdesertintheworld–theTaklamakanDesert.WhenwebuiltaprotectivehighwaygreenbeltalongtheTaklamakanDesert,wealsobroughtanewlivelihoodthroughdesertginseng,aChineseherbalmedicine.Theseeffortsandachievementsarebaseduponthelong-termappliedresearchoftheXinjiangInstituteofEcologyandGeography(XIEG),CAS,overthelastfewdecades.Desertginseng(CistanchedeserticolaandCistanchetubulosa,Fig.9.1)arerootparasitesthatliveoffplantedshrubs(HaloxylonammodendronandTamarixspp.)alongthehighwaygreenbelt,whichcanprovideawin-winsolutionwithecologicalandeconomicbenefitsthroughsustainableproductionandharvestingpractices.Thisapproachcanbeusedbydesertificationcontrolanddeserteconomydevelopmentsectorsandpractitioners.42GoodpracticesonvulnerableecosystemrestorationinChinaFigure9.1IrrigationofCistanche–thedesertginseng–alongtheHaloxylonammodendronPhotosource:UNEP-IEMP1.BackgroundXinjiangUygurAutonomousRegion,locatedinnorth-westernChina,ishometothesecondlargestshiftingdesertintheworld–theTaklamakanDesert.TheTarimBasin,coveringtheTaklamakanDesert,hasatemperatedesertclimatewithlessthan50mmofaverageannualprecipitation.In1995,theTarimDesertHighway,worldlongestdeserthighway(522km),wasbuiltthroughouttheTaklimakanDesert,runningfromnorthtosouthtotransportoilandgasfromitscentre.Thishighwayhasalsobroughtlocalcommunitiesbacktothedesert,wholivealongthehighway.Protectingthehighwayandsustainablelivelihoodsinthedeserthavebeenkeyissuesintheregion.Tocost-effectivelyprotectthehighwayfromsand-duneencroachment,theXIEGtested273speciesofplantsinadesertclimatewithsalinewaterirrigationwiththeaimofbuildingagreenbeltwithintheTaklimakanDesertoverafewdecades.Haloxylonammodendron,Tamarixspp.andCalligonumwerefoundtobethebestspecies,survivingwellinextremeenvironmentalconditions,playingavitalroleinsandfixation,controllingdesertificationandprovidingagreenbufferforthehighway.Asaresult,agreenbelt(Fig.9.2)stretchingfor436kmthroughtheheartoftheTaklamakanDesertwasconstructedoveraperiodof16yearsfrom1991to2006toprotecttheTarimDesertHighway(Millsetal.2015).Anotherissuetobeaddressedbytheprojectislocalsustainablelivelihoodswithinthedesert.Since1986,theXIEGhasundertakenandcompletednumerouslong-termappliedresearchprojectswithmultiplestakeholdersontheproductionofamedicinalplant,thedesertginseng(CistanchedeserticolaandCistanchetubulosa).Theseplantsarerootparasitesthatliveofftheshrubs(HaloxylonammodendronandTamarixspp.)alongthehighwaygreenbelt,whichcanprovideawin-winsolutionwithecologicalandeconomicbenefitsifappropriatelypromoted.However,duetohighdemandforCistancheandincreasingpricesintheearlydays,excessivediggingresultedinasharpdecreaseinthewildCistanchespecies,theirhostplantsHaloxylonammodendronandTamarixchinensisandtheirhabitat.Thislong-termresearchisexpectedtobebackedupbythehigh-yieldandsustainableplantingofCistanchedeserticolaandCistanchetubulosainsouthernandnorthernXinjiangwhileconservingthedesertvegetation.MeanwhileCistanche,knownasRouCong-RonginChineseordesertginseng,areanendangeredwildspeciesmainlydistributedinthearidlandsandwarmdesertsofnorth-westernChina(Xu,2009).ThespecieshasbeentraditionallyusedinChinaandJapanasamedicinalplantforalongtimeandhasahugemarketregionally.ResearchshowedthatthetotalsuitableproductionareaofC.deserticolainChinawas675,354.9km2anddistributedmainlyintheAlashanLeagueofInnerMongolia,thenorth-easternXinjiang,northernGansuandthemiddleofNingxia(Chenetal.2007).43GoodpracticesonvulnerableecosystemrestorationinChinaFigure9.2ThegreenbeltalongtheTarimDesertHighwayPhotosource:XIEG,CAS2.Interventionapproachandimplementationplan2.1CistanchehostplantationBothTamarixandHaloxylonareimportanthostsforCistancheandnativespeciesforcontrollingsandmovement.PlantingTamarixandHaloxyloninthedesertprovidesanopportunitytodevelopaCistancheindustry.ThesehostshrubsshouldbeplantedinawaythatfacilitatesCistancheintercropping.Haloxylonammodendron,aprotectedspeciesinChina,isaxerophyticperennialshruborsmalltreeofhighecologicalvalueinanti-desertificationstrategiesduetoitshightolerancetodroughtandsaltstress.ItdominatesmanysandyandsalineareasofAsiandeserts(Huangetal.2003).Itplaysanimportantroleinthemaintenanceofthestructureandfunctionofthedesertecosystemviasandfixation,windcontrolandmicroclimateamelioration(Maetal.2021).Throughnumerousexperiments,HaloxylonammodendronwasintroducedsuccessfullytotheTaklimakanDeserthinterlandandbecamethemajortreespeciesfordeserthighwayshelterbeltconstructionin1992,layingthefoundationforCistanchedeserticolainoculationandexpandingtheplantingrangeofCistanchedeserticolatosouthernXinjiang.PlantingTamarixisrecommendedforthehighwaygreenbeltalongtheroadandinplannedareas.Sandylandswithrelativelylowsalinity,andstrongwaterpermeabilityarerecommendedareasforplantingTamarix.TheshiftingdesertlandintheHotanareaisalsotherighthabitatforTamarix.2.2Cistancheplantingtechnologiesforhighyield2.2.1CistancheseedselectionSeedswithfullandglossygrainsandhighmaturityshouldbechosen.Inthe1990s,therewereveryfewCistancheseedsinthemarket,andthepricecouldbeashighas120,000/kg.Nowadays,withthehighyieldofCistanche,thecostofitsseedsinXinjiangisonlyafewhundredCNY/kg.44GoodpracticesonvulnerableecosystemrestorationinChina2.2.2CistancheplantingmethodsTable9.1RecommendedCistancheplantingmethodsDitchingFirst,buildafurrownexttothehostvegetation(TamarixorHaloxylon)atadistancedeterminedbytheheightofthehostplant.Generally,theheightofthehostplantshouldbemorethan50cmtoensuregoodsurvival.Itisrecommendedthatthefurrowis20cmawayfromthehostplantandparalleltoit,andabout50–80cmdeep.SowingCistanchewTheCistancheseedsandsandysoilismixedandthensprinkledintothefurrowintheproportionof1kgofseedsto10muofland.Inthisway,theseedsarethree-dimensionallydistributedinthesandsinceTamarixrootsextendinalldirections.Three-dimensionalsowingcanimproveopportunitiesforcontactbetweenseedsandroots,increasingtheinoculationrate.Toavoiddamagecausedbythelowtemperature,theinoculationdepthshouldnotbelessthan70cm.MostfarmersintheHotanareanowusemachinestosowseeds,whichsignificantlysaveslabourcost.IrrigationDripirrigationtechnologyisusedtwiceayeartomaketheplantrootsshallower,usuallyinJuneandAugust.HarvestThebesttimetoharvestisspringandautumnwhenitiseasiertospotthecracksonthegroundcausedbythegrowingCistanche.TheharvestperiodintheHotanregionisNovember,sincesummeristhedormancyperiod,andthelowwintertemperatureswillcauseplantdamage.Toensureasustainableharvestfor5yearsforoneplantedCistanche,itisrecommendedtoonlyharvestthetoppartinthespringandleaveatleast5cmofgrowthforthenextseasons.Figure9.3PlantingandharvestingCistanchewithrelatedcapacity-buildingbyXIEG,CASPhotosource:XIEG,CAS45GoodpracticesonvulnerableecosystemrestorationinChina2.2.3FieldmanagementBecauseofthestrongwindandsandysoilinthedesert,therootsofHaloxylonammodendronandTamarixareverylikelytobeexposedtothewind.Attentionshouldbegiventowindcontrolandkeepingthesoilmoist.Diseasesandinsectmanagementshouldbeconsidered.HaloxylonammodendronandTamarixcanbeaffectedbypowderymildew.Farmersusuallywillchooseorganicfertilizerormedicinetosolvethisproblem,thoughthiswillundoubtedlyincreasetheircosts.Itisnotrecommendedtousefertilizerorchemicalsifthereisnosignofdiseasesorinsects.2.3SustainableproductionofCistancheCistanchedeserticolainoculationtakes1–2yearsaftersowing,anditcanbeharvestedwithgoodyieldfor4years.TwosustainablemanagementmodelsforCistanchedeserticolaweretestedtoensureayearlyharvestandincomeforlocalcommunities.ThefirstmodelinvolvedrotationalcroppingforeachsideofHaloxylonammodendroneverytwoyears.Namely,sowingCistancheseedsononesideoftheHaloxylonammodendronplantationrotationallyeverytwoyears.Thiscansupportacontinuousharvestfor4yearsaftereachsowingyear.Fromthefifthyearon,theaverageyieldreached520kg/mu.Thismodelissuitabletoestablishahigh-yieldCistanchefarm.ThesecondmodelinvolvedrotationallycroppingattwoHaloxylonammodendronforests.Whentheharveststartsinthethirdyearaftersowinginoneforest,startsowingintheotherforest.Thisrotationwillsupportcontinuousharvestingwithreasonablelabourinputs.Fromthefifthyearon,theyieldreached236-283kg/mustablyandaverageyieldcouldreach260kg/mu.Thisensuresbothecologicalandeconomicbenefitsandcanbeoperatedatthehouseholdlevel.3.RestorationoutcomesTheinoculationrateandyieldofCistancheweresignificantlyincreasedbythree-dimensionalsowingtechnology.Thetwosustainableplantingmodelscanrecoverexpensesafterfiveyearsandbring3,942CNY/muand2,330CNY/munetincomesinthesixthyearrespectively.IntheHotanarea,farmersplantingCistanchedeserticolahaveanannualincomeof100,000–300,000CNY.DevelopingaCistanchedeserticolaindustrycanbringmoreincometothepeopleinthedesertarea,thusalleviatingpovertyandpromotingthedevelopmentofrelatedindustries.Forexample,theditchingmachineforplantingCistancheisfullydeveloped.Theefficiencyofaditchingmachinecanbeequivalenttoaworkforceof30people,whilethecostisabout20%,whichsignificantlyreducestheplantingcostandimprovesworkefficiency.Throughthiswin-winecologicalplantationpractice,thegreenbeltprotectedthedeserthighway,avoidedwindandsandhazards,reducedwindintensity,increasedrelativehumidityandimprovedmicroclimate.Regionalbiodiversityhasimproved,withsmallandmedium-sizedrodents,insectsandbirdsreturningtothedesert.4.DemonstrationandupscalingUpto2012,theplantingofTamarixinHotanareaofXinjianghadreached20,000hm2,andtheinoculationofCistanchetubulosahadreached10,000hm2,accumulatingto130,000hm2,withthesignificantbenefitofestablishingaCistancheindustryatanannualvalueof150millionCNY.Fromtheperspectiveofscienceandtechnologydevelopment,theteamdevelopedtwonewtechnologies,threenewproducts,compiledfivetechnicalregulationsandobtained13nationalpatents.Morethan400,000peoplereceivedtrainingonthesetechnologiesandpractices.Thecapacityoflocalmenandwomenwasstrengthenedbysharingknowledgeandtechnology.5.EstimationofinvestmentandinvestmentpaybackperiodOurpilotshowsthatwiththefirstsustainableplantingmodel,theinitialinvestmentcanbecoveredinthefifthyear,andproduce3,924RMB/munetincomefromthesixthyearon.Withthesecondplantingmodel,theinitialinvestmentcanbecoveredinthesixthyear,andgenerate2,330RMB/muaftertheseventhyear.6.ChallengesandpotentialissuesAlthoughtheCistancheindustryhasbroughtpositiveenvironmentchangesandsignificantlyincreasedincomesforthelocalpeopleinthedesertareas,therearestillmanypotentialissuesthatcannotbeignored.46GoodpracticesonvulnerableecosystemrestorationinChinaFarmersdonotplantaccordingtotherecommendedplantingnorms.SomefarmersplanttoomanyCistancheseedsforoneTamarixtogetahigheryield,causingthehostplanttodie,whichthendecreasesthesoilqualityandecosystemservices.Thus,itisimportanttogivetrainingtofarmersaboutthecorrectplantingmethodandeffectivesupervision.However,enforcingthesemethodsisalwayschallenging.Secondly,themarketpriceofCistanchefluctuatesalot.Itmainlydependsonafewleadingdomesticenterprises,whichcangreatlyinfluencethemarketprice.Cistanchetubulosaismainlyusedformedicineextractionratherthanfoodbecauseofitsbittertaste.Atpresent,duetoinsufficientpublicityandawareness,CistanchetubulosaisonlypopularinJiangsu,Zhejiang,HubeiandGuangdong,anddoesnotyetcovertheotherprovinces’markets.Insuchafluctuatingmarket,farmerswouldfinditdifficulttomakeprofitsandsustaintheirconservationandproduction.7.ProspectsforcommercialtransformationandpromotionoffindingsCistanchecultivationisoneofthemostprofitabledesertindustries.Creatingahigh-yieldCistanchedeserticolaplantationcanhavewin-winresultswithbothecologicalandeconomicbenefitsandpromotethebenigncycleofecologicalconstruction.AccordingtotheUpMarketResearchreport,theglobalCistanchedeserticolamarketisprojectedtogrowatacompoundannualgrowthrateof3%between2017and2028.Keyfactorsdrivingthisgrowtharetheriseindemandfornaturalremediesforchronicdiseases,increasedadoptionbynewconsumersandgrowinginterestamonghealth-careprofessionalsinherbalsupplements.Cistancheisalsoaglobalgenusofaholoparasiticdesertplant,whichisprimarilyendemictoNorthAfrican,Arabic,andAsiancountries(Nanetal.2013).ThereareequalopportunitiesforotherdesertregionstocultivateCistancheasadesertlivelihoodanddevelopitsindustry.ItisbelievedthatCistanchemarketcanbeimprovedthroughthefollowingactions,1)acceleratingtheprogressofthehomologouscertificationofmedicineandfoodandprovidingmoretrainingandsupervisionforqualityproduction;2)attractingmoreleadingenterprisestoentertheCistancheindustry;researchandpreferentialpoliciesarerequiredtosupportenterprisedevelopment;and3)strengtheningexchangesandcooperationwithdomesticandforeigncountriesandfinancialsupportforprofessionalteamstodevelopCistanchecultivation.FurtherinformationContact:HaifanHuang,UNEP-IEMPProfessorJiaqiangLei,XIEG,CAS;TaklamakanDesertResearchStation,CERNEmail:haifan.huang@unep-iemp.org,leijq@ms.xjb.ac.cnReferences◊Chen,J.,Xie,C.,Chen,S.,SunC.,Zhao,R.andXu,R.(2007).SuitabilityevaluationofCistanchedesertiolabasedonTCMGIS-I.(inChinese).ChinaJournalofChineseMateriaMedica32(14),1396-1401.https://pubmed.ncbi.nlm.nih.gov/17966349/.◊Huang,Z.,Zhang,X.,Zheng,G.andGutterman,Y.(2003).Influenceoflight,temperature,salinityandstorageonseedgerminationofHaloxylonammodendron.JournalofAridEnvironments55(3),453-464.https://doi.org/10.1016/S0140-1963(02)00294-X.◊Ma,Q.,Wang,X.,Chen,F.,Wei,L.,Zhang,D.andJin,H.(2021).Carbonsequestrationofsand-fixingplantationofHaloxylonammodendroninShiyangRiverBasin:storage,rateandpotential.GlobalEcologyandConservation28,e01607.http://dx.doi.org/10.1016/j.gecco.2021.e01607.◊Mills,A.,Liu,J.,Biagini,B.,Fida,E.andHanson,A.(2015).TheGreenWallintheheartoftheTakalamakanDesert.http://www.ebasouth.org/sites/default/files/case_study_full/EBA-SSC%20Case%20Study%201_0.pdf.◊Nan,Z.,Zeng,K.,Shi,S.,Zhao,M.,Jiang,Y.,andTu,P.(2013).Phenylethanoidglycosideswithanti-inflammatoryactivitiesfromthestemsofCistanchedeserticolaculturedinTarimdesert.Fitoterapia89,167-174.https://doi.org/10.1016/j.fitote.2013.05.008.◊UpMarketResearch,(2021).Cistanchedeserticolamarketresearchreport,1March.https://upmarketresearch.com/report/cistanche-deserticola-market-global-industry-analysis.Accessed22September2022.◊Xu,R.,Chen,J.,Chen,S.L.Liu,T.N.,Zhu,W.C.andXu,J.(2009).CistanchedeserticolaMacultivatedasanewcropinChina.GeneticResourcesandCropEvolution56(1),137-142.http://dx.doi.org/10.1007/s10722-008-9383-1.47GoodpracticesonvulnerableecosystemrestorationinChinaCase10.EcologicalrestorationofYongdingRiverinChinaBriefOverviewHerewedescribeourecologicalrestorationexperiencesintheYongdingRiver,the“motherriver”ofBeijing.Weintroducedthestepwiseecologicalrestorationtheory(STERE)anditsthreerestorationmodesbasedonlevelofdegradationtohelprestoretheYongdingRiver.Aseriesofsupportingtechnologywasdevelopedtoassistwiththetheoryimplementation,includingariverrestorationmulti-objectiveoptimizationanddecision-makingsystem.OurinterventionsenabledtheYongdingRivertobefullyflowingby2020,whichendedthe25-yearhistoryofrivercut-off.Thetheoryandtechnologyofriverrestorationhavebeensuccessfullyappliedin27projectson24riversinnineprovincesinChinathroughcollaborationsamonguniversities,enterprisesandtheGovernment.Thisisanimportantreferenceforriver-basin-restorationdecisionmakersandpractitioners.48GoodpracticesonvulnerableecosystemrestorationinChina1.BackgroundTheYongdingRiveristhe"motherriver"ofBeijing,anditishighlysignificanttothesocialandeconomicdevelopmentoftheriversideareasandthesustainabledevelopmentofthecapitalregionofChina,i.e.theBeijing-Tianjin-Hebeiurbanagglomeration.TheYongdingRiveris747kmlongwithadrainageareaof47,016km2.TheYongdingRiverstartsinShanxiProvince,flowsthroughInnerMongolia,Shanxi,Hebei,BeijingandTianjinandterminatesattheBohaiBay.ItisthelargestriverinBeijing,runningover170kmthroughthesouthwestofthecapitalcity.Inthepastfewdecades,theriverhasexperiencedseveralenvironmentalandecologicalproblemsduetofactorssuchasoverexploitationofwaterresourcesandwaterpollution.Sincethe1970s,incomingwaterfromupstreamhasdecreased,andthecurrentinflowsareabout1/10oftheoriginaldischarge.Manyenvironmentalproblemsemerged,suchascut-offatmanysections,groundwaterdeclineintheriverbasin,severewaterpollutionandriverecosystemdegradation.ThedryriverbedbecamethesourceofasandstorminBeijingandthesurroundingregions.Previousinterventionsweremainlybasedonfloodcontrolprojects.Althoughecologicalfunctionzoninghadbeeninitiallyestablished,therewerenoclearecologicalrestorationgoalsandobjectives.Withtheimprovementoflivingstandards,peoplehaveahigherdemandfortheecologicalfunctionsoftheYongdingRiver.Therewasanurgentneedforriverrestoration.Since2009,themunicipalityofBeijinghastakenseveralmeasurestorestoretheYongdingRiver.Oneimportanttaskistosetcleargoalsandobjectivesforriverrestoration.Howtorestoreariverremainsabigchallenge.Manytheoriesinotherdevelopedcountriessettheobjectiveofreturningtherivertoitsstatepriortodegradation.Butafterarigorousassessment,wefoundsuchtheoriesdonotapplytotherestorationoftheYongdingRiver.First,itisdifficulttorestoreittoaprior-degradationstatus.Builtin1954,theGuantingReservoirislocatedupstreamoftheBeijingsection,atthejunctionofBeijingandHebeiProvince.TheGuantingReservoirwasthefirstlarge-scalereservoirtobebuiltafterthefoundingofthePeople’sRepublicofChina.Itcoversanareaof230km2andhasatotalstoragecapacityof2.2billionm3.Thisreservoirhascompletelychangedthenaturalflows.Inaddition,theYongdingRiversufferedfromdifferentlevelsofdegradationindifferentareas.Downstream,theriverrandryduetotheterribleecologicalsituation.Second,theprior-degradationstatusisalsonotanidealsituation.Historically,thereweremanydisastrousfloodsduetotheriverbanksbursting,whichwasthemainreasonforbuildingtheGuantingReservoir.2.TheinterventionapproachandimplementationplanWeproposedthestepwiseecologicalrestorationtheory(STERE)tohelptheriverrestoration,thankstosupportfromthe‘StrategicPriorityResearchProgramoftheChineseAcademyofSciences(GrantID:XDA20060402)’.TheSTEREintegratesthreerestorativemodesthatcanbeusedwithdifferentlevelsofecosystemdegradation:environmentalremediationforseriouslydegradedecosystems,ecologicalrehabilitationformoderatelydegradedecosystemsandecological(evennatural)restorationforslightlydegradedecosystems(Liuetal.2020).Theexpectedgoaloftheriverrestorationwastoachievea“flowingriver,greenriver,cleanriver,andsaferiver”inordertosolvethefourbigproblemsofrivercut-off,ecologicaldegradation,waterpollutionandflooding.Aframeworkwasestablishedtosetconcreterestorativeobjectives,consistingofdifferentstepssuchasdiagnosingecologicalproblems,determiningthelevelsofecologicaldegradation,valuingecosystemservicesprovidedbytheecosystemandidentifyingrestorationobjectives(Fig.10.1).Figure10.1FrameworktosetrestorationobjectivesfortheYongdingRiverInformationmanagementsystemComprehensivewatershedassessmentEcologicalproblemsanddegradationdiagnoseEcosystemservicesvaluationEcologicalrestorationobjectivesystemanalysisMulti-objectiveoptimiza-tion&decision-makingsystem49GoodpracticesonvulnerableecosystemrestorationinChinaThecomprehensivewatershedassessmentwassupportedbyawatershedremotesensing(RS)inversionmodelbasedonanRS-GPS(GlobalPositionSystem)-Sampleintegrationtechnology(Fig.10.2).The3Stechnology(geographicinformationsystem,RSandGPS)wasusedtocomprehensivelyanalyzethespatial-temporalevolutioncharacteristicsofhydrology,waterquality,ecosystemandecologicalfunctionsintheYongdingriverbasin.BasedonthesocialandeconomicdevelopmentoftheYongdingriverbasin,thedrivingfactorsofriverecosystemdegradationwereidentified,andthemechanismofecologicaldegradationwasexplored.Figure10.2SchematicdiagramofthewatershedRSinversionmodelbasedonRS-GPS-SampleintegrationFigure10.3EcologicalrestorationmodesoftheYongdingRiver(Beijingsection)50GoodpracticesonvulnerableecosystemrestorationinChinaWeproposedanecosystemservicesassessmentindicatorsystemforriverrestorationbasedontheapproachesestablishedbyinvolvingstakeholders(Zhangetal.2011).Recommendedstakeholdersincluderights-holdersandespeciallyunder-representedgroups,includinglocalwomenandyouthaswellasvariousvulnerablegroupsthatareoftenleftfurthestbehind.BasedonthebasicanalysisofthegeneralecologicalconditionoftheYongdingRiver(theBeijingsection),thevaluesofecosystemserviceswereassessedtohelpidentifyecologicalproblems.From1978to2009,thevalueofprovision,supportingandculturalservicesshowedanobvioustrendofdecline,especiallythevaluesofwatercultureandwaterprovision(Fig.10.4).ThesharpdeclineofthesetwoserviceswasthemainreasonforthedecreaseinthetotalvalueofecosystemservicesprovidedbytheYongdingRiver(Beijingsection)(Zhangetal.2011).Duetotheinterceptionofriverdischargebytheupstreamreservoirs,inparticulartheGuantingReservoir,itwasverydifficulttoincreasethewatersupplycapacity.Therefore,thecontributionoftheincreaseofwaterprovisiontothetotalecosystemservicesvalueprovidedbytheYongdingRiverislimited.Onthecontrary,increasingtheabilityofwatercultureinheritancethroughecologicalrestorationwasfeasibleandeffective(Liuetal.2015).Thisrequiredanexpansionoftheareaofwaterbodiesandwetlandsinorsurroundingtheriver.Figure10.4ValuesofecosystemservicesprovidedbytheYongdingRiver(theBeijingsection)in1978and2009Meanwhile,amulti-objectiveoptimizationanddecision-makingsystemforecologicalrestorationwasdeveloped,whichcomprehensivelyconsideredthecoordinationofvariousecosystemservices,carriedoutthecomprehensiveoptimizationofmulti-objectiveandmulti-constraintconditions,determinedtheecologicalconstructionandrestorationobjectivesoftheYongdingRiver(Beijingsection)indifferentperiods,andformedtheecologicalrestorationobjectivesystemoftheYongdingRiver.Awatershedinformationmanagementplatformwasbuilttomonitortherestoredecosystemsthroughoutthewholerestorationprocessandprovidepracticalandhandytoolsforriverrestorationandmanagement(Fig.10.5).TheinformationmanagementplatformisbasedonthebasicinformationoftheYongdingriverbasin,ecologicalassessment,RSinversionandothermodels.Source:Zhangetal.201151GoodpracticesonvulnerableecosystemrestorationinChinaFigure10.5InterfacesofYongdingRiverwatershedinformationmanagementplatformThisrestorativepracticeprovidedtheoreticalandscientificsupportfortheoverallplanforthecomprehensivemanagementandecologicalrestorationoftheYongdingRiver.In2016,theOverallPlanforComprehensiveManagementandEcologicalRestorationofYongdingRiverwasissuedandimplemented.Thegreenandecologicalcorridorprojectwasinitiatedin2020.Thescale(intermsofareaandtotalvolumeofwater)oftheselakes,linesandwetlandswasestimatedbythemulti-objectiveoptimizationanddecision-makingsystem.Theresultswereusedtodeterminetheecologicalwaterreplenishmentschedulingforriverrestorationtoenhanceriverecosystemservices,inparticularculturalservices.3.RestorationoutcomesTheYongdingRiverecologicalwaterreplenishmentstartedon20April2020.Atotalvolumeof166milliontonsofwaterwasreleasedfromtheGuantingReservoirtothelowerreachesoftheYongdingRiver.The170-kilometreriverinBeijingwasfullofwaterforthefirsttimein25years,andtheriverflowedtotheWuqingDistrictofTianjin,resultinginacontinuouswaterwayof248kmfromtheoutletoftheGuantingReservoir.Onthebasisofthis,in2021,additionalwaterwasreplenishedbyusingreclaimedwaterandwaterfromtheSouth-to-NorthWaterDiversionProject.Theentireriverwasfullofwaterfromthesourceregiontotheseaforthefirsttimein26years.ThewaterflowintheriverhasprovidedsignificantecologicaleffectsinBeijingandhasimprovedthewaterecologicalenvironmentintheareasalongtheBeijing-Tianjin-Hebeiurbanagglomeration.TheproposedapproachhelpeddeterminetheecologicalflowthresholdoftheYongdingRiverandrecommendedappropriatewaterreplenishmentrequiredtoachievethegoalofecologicalrestoration,whichprovidesatheoreticalbasisfortherationalallocationofwaterresourcesintheYongdingRiver.ItwilleffectivelyguaranteetheconstructionofecologicalcivilizationinBeijingaswellasintheBeijing-Tianjin-Hebeiurbanagglomeration.Inaddition,thepracticewasverysignificantfortheconstructionofthegreenecologicalcorridoroftheYongdingRiver,whichcaneffectivelyguidetheecologicalrestorationandimproveriverecologicalservices.TheconstructionoftheYongdingRiverecologicalcorridorwillnotonlysignificantlyimprovetheecologicalenvironmentinthesouthwestofBeijingbutalsoeffectivelyimplementtheoverallurbanplanningofBeijingandhelpimprovetheurbanecologicalenvironmentqualityandtheconstructionofBeijingasaninternationalfirst-classecologicalharmoniousandliveablecity.4.DemonstrationandupscalingByworkingcloselywithseveralenterprisesandtheGovernment,theproposedSTEREandrestorativetechnologyhavebeensuccessfullyappliedin27restorationprojectson24riversin16citiesinnineprovinces.Theresearchteamalsohelpedformulate17relevantplansforcomprehensivewatershedmanagementandriverrestorationinninecities,includingShenzhen,Chongqing,JinanandHangzhou.5.EstimateofinvestmentIn2010,theGovernmentinvested17billionCNYtostartthegreenecologicalcorridorprojectontheYongdingRiver(Beijingsection).Thismeansthattheaverageinvestmentwasabout100millionCNYper152GoodpracticesonvulnerableecosystemrestorationinChinakmofriver.Inaddition,atotalofabout65billionCNYwasinvestedinimprovingthesurroundingregionalenvironmentwithintheriverbasintoassistintheriverrestoration.Itwilltakeanestimatedfourto10yearstorestoretheYongdingRiveraccordingtothelevelofdegradation.Therearenodetaileddatatosupportourevaluationintermsofthepaybackperiodforsuchrestorationinvestments.6.ChallengesandpotentialissuesTheSTERErequireslong-termmonitoringtomakesuretheriverecosystemevolvesinawaythatfollowstheplannedrestorativeaim.Onechallengeisthelackoflong-termreal-timemonitoringsystems.Infuture,thereisaneedforcontinuousmonitoringofwater,soil,benthosandbiodiversitytotracktherestorationeffect,andflexiblyadjusttheactionsifnecessary.Inaddition,althoughrestorationtargetswereclear,referenceecosystemswerenotyetwidelyusedintherestorationprocessinmanycountries.Onereasonforthisisthatmanyrivershavebeenalteredgreatlybyhumanactivities,anditisdifficulttofindasectionortributarywithoutstronghumaninterventions.However,therearemanywaystoselectreferenceecosystems(Liuetal.2017).Infuture,referenceecosystemsshouldplayamoreimportantroleinriverrestoration,especiallywhennaturalrecoveryisapplied.7.ProspectsforcommercialtransformationandpromotionoffindingsTheSTEREandriverrestorationtechnologyhavebroadapplicationpotentialsnotonlyinChinabutalsoinothercountries.Basedontheresearchandpractice,wewroteabook(LiuandClewell2017)toprovidetheconceptualfoundationforaddressingquestionsrelatedtoecologicalrestorationandrehabilitation.Itanswersmanyquestionsrelevanttotheadministrationandtechnicalmanagementofrehabilitationprojects.ThisbookbecomeoneofthefoundationdocumentsforthepreparationoftheInternationalStandardsforthePracticeofEcologicalRestorationoftheSocietyforEcologicalRestoration(Gannetal.2019),themostrecentversionofwhichwasreleasedon27September2019attheeighthWorldConferenceonEcologicalRestoration.ThereisalsopotentialforcommercialtransformationgiventheUnitedNationsGeneralAssemblydeclared2021-2030theDecadeofEcosystemRestoration,andmanycountriesareestablishingmoreandmorerestorativeprojectstoachievethetargetsestablishedinthisdecadalprogramme.FurtherinformationContact:Prof.JunguoLiu1,21SchoolofWaterConservancy,NorthChinaUniversityofWaterResourcesandElectricPower,Zhengzhou,450046,China2SchoolofEnvironmentalScienceandEngineering,SouthernUniversityofScienceandTechnology,Shenzhen,ChinaEmail:junguo.liu@gmail.comDr.YuehanDou2SchoolofEnvironmentalScienceandEngineering,SouthernUniversityofScienceandTechnology,Shenzhen,ChinaEmail:yhdou@live.cnReferences◊Gann,G.D.,McDonald,T.,Walder,B.,Aronson,J.,Nelson,C.R.,Jonson,J.,etal.(2019).Internationalprinciplesandstandardsforthepracticeofecologicalrestoration.Secondedition.RestorationEcology27(S1),S1-S46.https://doi.org/10.1111/rec.13035.◊LiuJ.andClewellA.(2017).ManagementofEcologicalRehabilitationProjects.Beijing:SciencePress.https://book.sciencereading.cn/shop/book/Booksimple/show.do?id=B5E1058CC0F5A0988E053020B0A0A6790000.◊LiuJ.,CuiW.,TianZ.andJiaJ.(2020).Theoryofstepwiseecologicalrestoration.(inChinese).ChineseScienceBulletin66(9),1014-1025.https://doi.org/10.1360/TB-2020-1128.◊LiuP.,ShenL.,LiuJ.,GaoX.,WangG.(2015).Ecosystemservicevalue-basedassessmentoneffectofeco-restorationofYongdingheRiver(Beijingsection).(inChinese).WaterResourcesandHydropowerEngineering47(4),9-13.https://www.researchgate.net/publication/339550298_Ecosystem_service_value-based_assessment_on_effect_of_eco-restoration_of_Yongdinghe_River_Beijing_Section.◊Zhang,Z.,Liu,J.,Shen,B.,Liu,P.,Wei,W.,GaoP.,etal.(2011).EvaluationofecosystemservicesoftheYongdingRiverinBeijing.(inChinese).ActaScientiaeCircumstantiae31(9),1851-1857.https://www.semanticscholar.org/paper/Evaluation-of-ecosystem-services-of-the-Yongding-in-Yi/00f36e7c105340cc9fc6b1bb3c71d823558f19b7.53GoodpracticesonvulnerableecosystemrestorationinChinaConclusionRestoringdegradedecosystemsisacomplexissuethatrequirestheintegrationofecological,socioeconomicandculturaldimensions.The10principlesoftheUNDecadestatethatsuccessfulecosystemrestoration:1)contributestoglobalpolicyframeworks;2)promotesfairandinclusiveengagement;3)includesacontinuumofrestorativeactivities;4)aimsforthehighestpossiblerecoveryforthebenefitofnatureandpeople;5)addressesthecausesofdegradation;6)integratesalltypesofknowledge;7)setsmeasurableecological,culturalandsocioeconomicgoals;8)adaptsactivitiestolocalandland/marinecontexts;9)measuresresultsandadaptsactions;and10)integratespoliciesandmeasuresforsustainableimpacts.TheseprinciplesprovideaguidingtoolfortheimplementationoftheUNDecadeandmaximizingthesustainableproductionofgoodsandservices.Lookingforward,theongoingUnitedNationsConventiononBiologicalDiversityCOP-15hasbeennegotiatinganewpost-2020globalbiodiversityframeworkwithanambitiousinitialgoalofconserving30%oflandandseaareasglobally,whichwillbeintegratedintowiderlandscapeandseascapechange.Tomaximizenetgainstobiodiversity,ecosystemhealthandintegrity,andhumanhealthandwell-being,anintegratedapproachtorestorationisessential.Asthecountrywiththelargestpopulationintheworld,Chinahassomeofthemostvulnerableecosystems.Fifty-fivepercentofthelandareaofChinaisvulnerabletodegradation(NationalDevelopmentandReformCommissionofChina2015).EcologicalrestorationinChinaenteredanewerawhentheChineseGovernmentmade‘ecologicalcivilization’aparamountobjective,andin2018,itbecameoneoftheconstitutionalprinciplesofChina(Cuietal.2021).In2020,ChineseGovernmentapprovedtheMasterPlanforNationalKeyEcosystemProtectionandRestorationMajorProjects(2021–2035)withninemajorprojectsinvolving3trillionCNYininvestmentandcoveringallsevenkeyecosystemareasinChina(Sino-GermanEnvironmentalPartnershipII2020).InSeptember2020,theChineseGovernmentlaunchedtheGuidelinesforEcologicalRestorationProjectsofMountain,River,Forest,Farmland,LakeandGrasslandEcosystems.TheselaidgoodfoundationsforecosystemrestorationinChinafortheUNDecadefromagovernance,policy,financeandtechnicalperspective.Thisreportpresentedtechnologies,approachesandoutcomesofintegratedecosystemrestorationeffortsinChinaoverthepastfewdecades,especiallythesignificantprogressmadebytheCERNinsocial-ecologicalmanagementandaccumulatedexperiencesinenvironmentalconservation,safeguardingpublicinfrastructureandimprovinglivelihoods.These10casestudiespresentedthenationalpolicycontextonrestoration,inclusivemulti-stakeholderparticipation,long-termmonitoringandresearch-basedadaptivemanagement,localcommunityempowermentbyenhancinglivelihoods,andhowtheyaddressedtherootcausesofdegradation.Theseareground-levelpracticesthatsuccessfullyfulfilthe10principlesproposedbytheUNDecade.Asustainableuseofecosystemsimpliesabalancebetweenprotectionandexploitation(Weißhuhn,MüllerandWiggering2018).Thisreportanalyzedtrade-offsbetweenshort-termandlong-termbenefits,ecologicalandsocioeconomicbenefitsandupstreamanddownstreamdevelopment.Localcommunitybuy-inandbehaviourchangetoscaleuppilotinterventionsusuallytakestimeandadaptivemanagementisusedtobestfitthelocalcontextandknowledge.IntheInterMongoliagrassland,LoessPlateau,TaklamakanDesertandYongdingriverbasinstudies,long-termissue-basedmonitoringandappliedresearchwerecarriedoutforover10yearstodeveloptestedstandardsandregulationstoscaleupthetechnology.Suchknowledgeandtechnologysharingareexpectedtoenhancethegoodpracticesknowledgehubandcapacity-buildinginordertohelpimplementtheUNDecade.Inmanycases,vulnerablegroupsandcommunitiesrelyonvulnerableecosystems.Asaresult,theyfaceheightenedrisksfromnaturalandclimate-inducedhazards(UnitedNationsFramework54GoodpracticesonvulnerableecosystemrestorationinChinaConventiononClimateChange2018),especiallyintheleastdevelopedcountries.Sincetechnicalcapacitiesandskillandknowledgegapsoftenconstrainresponseoptions,thereisaneedtodevelopcapacitiesforsustainablelandmanagementandassociatedinformationsystems,particularlyindevelopingcountriesthatarepronetoandmostaffectedbylanddegradation(UnitedNations2020).Thismayinvolve,forexample,appropriatemeasurestoenhancesharingofindigenousandlocalknowledgethathasbeeneffectiveinaddressinglanddegradationproblemsincertaincontexts(UnitedNations2020).SuchSouth-Southknowledgeexchangebetweenareaswithasimilarvulnerabilityandsocioeconomicdevelopmentstatusallowsmoreeffectivemutuallearning.Fromthesesharedexperiencesandlessonslearnedindifferentvulnerableecosystems,afewissuesareworthfurtherattentionwithregardsecosystemrestorationprojectimplementation,especiallyforlarge-scaleinterventions.1.Long-termmonitoringandresearchonecosystemrestorationlaysthefoundationsforeffectiverestorationintervention.Havingmultiplestakeholdersengagedinappliedresearchgreatlysupportstechnologyinnovation,useoftraditionalknowledge,capacity-buildingandincreasedcost-effectivenessandlocalbuy-in.ThismodalitywasclearlydemonstratedinmostofcasesintheCERN.TheLossPlateauGrainforGreenProgrammestartedatasmallpilotsiteinZhifanggouattheCERNAnsaiEcologicalStation.Thedesertginsengplantationispartofarangeofsolutionsforbuildingandmaintainingthegreenbeltalongthedeserthighwayafterover10yearsofappliedresearch.ToReferences◊NationalDevelopmentandReformCommissionofChina(2015).TheMainFunctionalAreaPlanning.(inChinese).Beijing:People’sPublishingHouse.◊OstromE.(2009).Ageneralframeworkforanalyzingsustainabilityofsocial-ecologicalsystems.Science325(5939),419-422.https://www.science.org/doi/10.1126/science.1172133.◊Sino-GermanEnvironmentalPartnershipII(2020).Policysummaryonthe“MasterPlanforNationalKeyEcosystemProtectionandRestorationMajorProjects(2021-2035)”,11June.https://environmental-partnership.org/news/policy-summary-on-the-master-plan-for-national-key-ecosystem-protection-and-restoration-major-projects-2021-2035/.Accessed3August2022.◊UnitedNations(2020).TheUnitedNationsDecadeonEcosystemRestorationStrategy.ERDStrat.pdf(unep.org).◊UnitedNationsFrameworkConventiononClimateChange(2018).ConsiderationsRegardingVulnerableGroups,CommunitiesandEcosystemsintheContextoftheNationalAdaptationPlans.Bonn,Germany.https://unfccc.int/sites/default/files/resource/Considerationsregardingvulnerable.pdf.◊Weißhuhn,P.,Müller,F.andWiggering,H.(2018)Ecosystemvulnerabilityreview:Proposalofaninterdisciplinaryecosystemassessmentapproach.EnvironmentalManagement61,904-915.https://doi.org/10.1007/s00267-018-1023-8.◊Zhao,W.,Yu,X.andXu,C.(2021)Social-ecologicalsystemmanagementindrylands:experiencesfromChineseEcosystemResearchNetwork.CurrentOpinioninEnvironmentalSustainability48,93-102.https://doi.org/10.1016/j.cosust.2020.11.006.applytheseecosystemrestorationormanagementtechnologieselsewhererequireslocaltestingandcalibration.2.Anadaptivemanagementapproachbyallstakeholdersinrestorationinitiativesiscriticallyimportant.Achievingsustainabledevelopmentandbalancingsocial-ecologicaltrade-offsisfullydependentontheresponseandfeedbackofcouplingnatureandsocietyecosystemelements(Zhao2020).Althoughthelong-termsustainabilityofsocial-ecologicalsystemsisinitiallydependentonusersoragovernmenttoestablishrules,theserulesmaynotbesufficientinthelongrun.Thelong-termsustainabilityofrulesatlocalleveldependsonmonitoringandenforcementandthemnotbeingoverruledbylargergovernmentpolicies(Ostrom2009).Emphasisshouldthereforebegiventotheinteractionbetweenpoliciesandthewisdomoflocalstakeholdersintheresponseandfeedbackbetweenecosystemsandsocialsystems.3.Theshort-andlong-termregionalwaterresourcebalanceshouldbethoroughlyevaluatedduringecosystemrestoration,consideringthesocioeconomicbenefits.Carbon-watercouplingcyclesareregulatedbymultiplefactors,e.g.,precipitation,landuse,land-usechangeandmanagementstrategies.ThecontinuousecologicalrestorationprojectinthedrylandregionsinChinahasresultedinanincreaseinforestsandshrublands,whichhasreducedannualstreamflowandsedimentload(Zhao2020).Thewaterconsumptionofrevegetationanditsoutputshavetobeevaluatedaswellintermsofthesustainablelivelihoodsofthelocalcommunity.55GoodpracticesonvulnerableecosystemrestorationinChina

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱