RENEWABLES2023GLOBALSTATUSREPORTENERGYSUPPLYCOLLECTION2023EXECUTIVEDIRECTORRanaAdibREN21PRESIDENTArthourosZervosREN21MEMBERSMEMBERSATLARGEMichaelEckhartDavidHalesKirstyHamiltonPeterRaeArthourosZervosGOVERNMENTSAfghanistanAustraliaAustriaBrazilDenmarkDominicanRepublicGeorgiaGermanyIndiaMexicoMoroccoNorwayRioNegroRepublicofKoreaSouthAfricaSouthAustraliaSpainUnitedArabEmiratesUnitedStatesofAmericaZimbabweSCIENCEANDACADEMIAAEE–InstituteforSustainableTechnologies(AEE-INTEC)CouncilonEnergy,EnvironmentandWater(CEEW)FundaciónBariloche(FB)InternationalInstituteforAppliedSystemsAnalysis(IIASA)InternationalSolarEnergySociety(ISES)NationalRenewableEnergyLaboratory(NREL)NationalResearchUniversityHigherSchoolofEconomicsRussia(HSE)SouthAfricanNationalEnergyDevelopmentInstitute(SANEDI)TheEnergyandResourcesInstitute(TERI)UniversityofTechnology–InstituteforSustainableFutures(UTS)WorldResourcesInstitute(WRI)INDUSTRYASSOCIATIONSAfricaMinigridsDevelopersAssociation(AMDA)AllianceforRuralElectrification(ARE)AmericanCouncilonRenewableEnergy(ACORE)AssociaçãoLusófonadeEnergiasRenováveis(ALER)AssociaçãoPortuguesadeEnergiasRenováveis((APREN)ChineseRenewableEnergyIndustriesAssociation(CREIA)CleanEnergyCouncil(CEC)Euroheat&Power(EHP)EuropeanHeatPumpAssociation(EHPA)EuropeanRenewableEnergiesFederation(EREF)GlobalOff-GridLightingAssociation(GOGLA)GlobalSolarCouncil(GSC)GlobalWindEnergyCouncil(GWEC)IndianRenewableEnergyFederation(IREF)InternationalGeothermalAssociation(IGA)InternationalHydropowerAssociation(IHA)RE100/ClimateGroupRES4AfricaFoundationSolarPowerEurope(SPE)UnionInternationaldeTransportPublique(UITP)WorldBioenergyAssociation(WBA)WorldWindEnergyAssociation(WWEA)INTER-GOVERNMENTALORGANISATIONSAsiaPacificEnergyResearchCenter(APERC)AsianDevelopmentBank(ADB)ECOWASCentreforRenewableEnergyandEnergyEfficiency(ECREEE)ElectricPowerCounciloftheCommonwealthofIndependentStates(EPC)EuropeanCommission(EC)GlobalEnvironmentFacility(GEF)InternationalEnergyAgency(IEA)InternationalRenewableEnergyAgency(IRENA)IslamicDevelopmentBank(IsDB)OrganizaciónLatinoamericanadeEnergía(OLADE)RegionalCenterforRenewableEnergyandEnergyEfficiency(RCREEE)UnitedNationsDevelopmentProgramme(UNDP)UnitedNationsEnvironmentProgramme(UNEP)UnitedNationsIndustrialDevelopmentOrganization(UNIDO)WorldBank(WB)NGOS350.orgAssociationAfricainepourl'ElectrificationRurale(Club-ER)CDPCLASPCleanCookingAlliance(CCA)ClimateActionNetworkInternational(CAN-I)CoalitiondeCiudadesCapitalesdelasAmericas(CC35)EnergyCitiesEuropeanYouthEnergyNetwork(EYEN)FundaciónRenovables(FER)GlobalForumonSustainableEnergy(GFSE)GlobalWomen’sNetworkfortheEnergyTransition(GWNET)GreenpeaceInternationalICLEI–LocalGovernmentsforSustainabilityInstituteforSustainableEnergyPolicies(ISEP)InternationalElectrotechnicalCommission(IEC)JeuneVolontairespourl'Environnement(JVE)MaliFolkecenter(MFC)PowerforAllRenewableEnergyandEnergyEfficiencyPartnership(REEEP)RenewableEnergyInstitute(REI)RenewablesGridInitiative(RGI)SLOCATPartnershiponSustainable,LowCarbonTransportSolarCookersInternational(SCI)SustainableEnergyforAll(SEforAll)SustainableEnergyAfricaTheGlobal100%RenewableEnergyPlatform(Global100%RE)WorldCouncilforRenewableEnergy(WCRE)WorldFutureCouncil(WFC)WorldWideFundforNature(WWF)RENEWABLESINENERGYSUPPLYFOREWORDInadditiontotheglobaldevelopmentandclimatedeterioration,theglobalenergycrisisexperiencedin2021-2022hashighlightedthecriticalimportanceofsecuringareliableandstableenergysupply.Inthiscontext,policymakersaswellasenergyconsumershaveturnedmoreattentiontorenewableenergy.Asshiftingtorenewablesbecomesaglobalnecessity,apressingquestionremains:Howdoweensurethatwehaveenoughofthemtosupportaprosperouseconomy,fostersocialequity,andachievesustainabledevelopment?Andhowcanweprovidesecureandstableenergysupplyglobally?Renewablepowerexperiencedrecord-breakinggrowthin2022,butthisprogressalonedoesnotcapturethefullpictureofthetransition.Thecurrentgrowthrateofrenewablepowerisstillinsufficient,anditovershadowssomecriticalbottlenecks,suchasslowpermittingprocessesandinsufficientgridinfrastructure–asIwrite,over1terawattofrenewablepowercapacityiswaitingtobeconstructedorconnectedtothegrid.Renewableheatandfuelsalsolag-heatandfuelsprovidenearly80%ofglobalenergysupplybutarestilllargelydependingonfossilfuel.Toshieldusfromfuturecrises,policymakersneedtopaygreaterattentiontodiversifyingthesourcesandtechnologiesofrenewables.Inaddition,theyneedtofocusonbuildinganeconomythathasrenewablesasitsbackbone.Thismeansputtinginplacestructurestoenablethesustainablegrowthoftherenewablesindustry,includingrampingupmanufacturingcapacities,securingnecessarysupplychainsanddevelopingskilledlabour.TheRenewables2023GlobalStatusReport–EnergySupplyModuledelvesintotheintricaciesofrenewableenergyprogress,examiningthedistributionofenergyamongcarriersandaddressingcriticalobstacles.Itisthesecondinafive-piececollectionreleasedthisyearandrepresentsthecollaborativeeffortsofhundredsofcontributorswhosharetheambitionofprovidingirrefutableandunbiasedfactsandknowledgetopropeltheglobalwaveofchange.Ihopethatinthismodule,youwillfindtheessentialelementsandtoolstosupportyouranalysisandworktowardsaswifttransitiontorenewableenergy.ThankyoutotheREN21team,authors,specialadvisors,andcontributorswhohavededicatedtheirknowledge,time,andefforttoproducethisreport.Theirinsights,passion,andcommitmentareinstrumentalincreatingthesecrowd-sourcedandpeer-reviewedreports.Iamconfidentthatthispublicationwillserveasavaluableresourceforpolicymakers,industryleaders,andstakeholders,informingtheirdecision-makinganddrivingthetransitiontoasustainableenergyfutureforall.Sincerely,RanaAdibExecutiveDirector,REN213RENEWABLES2023GLOBALSTATUSREPORT-RENEWABLESINENERGYSUPPLYRENEWABLESINENERGYSUPPLY:GlobalTrendsModuleOverview.........................................13Policy....................................................21Investment..............................................26REPORTCITATIONREN21.2023.Renewables2023GlobalStatusReportcollection,RenewablesinEnergySupply(Paris:REN21Secretariat).ISBN978-3-948393-08-3Foreword................................................03Acknowledgements......................................09PhotoCreditsandImpressum............................88REnergyUnitsandConversionFactorsRDataCollectionandValidationRMethodologicalNotesRGlossaryRListofAbbreviationsReferenceTablescanbeaccessedthroughtheGSR2023EnergySupplyDataPackatRhttp://www.ren21.net/gsr2023-data-pack/supplyLINKSTOMICROSITETABLEOFCONTENTSMARKETTRENDSBioenergy...............................................35GeothermalPowerandHeat.............................42HeatPumps.............................................46Hydrogen...............................................50Hydropower.............................................54OceanPower............................................59SolarPhotovoltaics(PV)..................................62ConcentratedSolarPower(CSP).........................69SolarThermalHeating....................................71WindPower.............................................77ChallengesandOpportunities............................86Commentsandquestionsarewelcomeandcanbesenttogsr@ren21.net.4Almost10%ofthetotalinstalledrenewablepowercapacitywasaddedin2022.H2Renewablescover30%ofglobalelectricitygenerationwithsolarPVandwindpowerrepresenting12%.China,theUnitedStates,India,Brazil,andSpaininstalled66%ofthenewSolarPVcapacityin2022.Asofend-of2022,announcedhydrogenprojectswouldleadtoaninstalledelectrolysercapacityof134-240GWby2030.FIGURESFigure1.RenewablesinEnergySupply...................12Figure2.ShareofRenewableEnergyinElectricityGeneration,byEnergySource2012and2022....14Figure3.ShareofRenewableHeatProduction,byEnergySource,2010and2020...............15Figure4.RenewableShareofElectricityGeneration,byRegion,2012and2022.......................16Figure5.RenewablePowerTotalInstalledCapacityandAnnualAdditions,byTechnology,2022..........17Figure6.RenewablePowerCapacityAnnualAdditionsbyTechnology,2017-2022,andIncreasesRequiredby2030toAchievetheIEA’sNetZeroScenario..............................18Figure7.Technology-SpecificTargetsforInstalledRenewablePowerCapacity,2022...............21Figure8.RenewableEnergyFeed-inTariffsandNetMeteringPolicies,2022....................22Figure9.GlobalInvestmentinRenewablePowerandFuelsbyTechnology,2018-2022................26Figure10.GlobalInvestmentinREPowerandFuelsbyCountryandRegion,2013-2022..............27Figure11.GlobalInvestmentinNewPowerCapacity,byType,2022..................................31Figure12.RangeofAnnualRenewableEnergyInvestmentNeededinClimateChangeMitigationScenarios,ComparedtoRecentInvestments..............32Figure13.ShareofBioenergyinTotalFinalEnergyConsumption,2020...........................36Figure14.GlobalProductionofEthanol,BiodieselandHVO/HEFAFuel,byEnergyContent,2011-2021...37Figure15.GlobalBioelectricityInstalledCapacity,byRegion,2012-2022.........................40Figure16.GlobalWoodPelletProduction,byRegion,2012-2021.....................................41Figure17.GeothermalPowerCapacityandAdditions,Top10CountriesandRestofWorld,2022.......43Figure18.GeothermalDirectUse,EstimatesforTop4CountriesandRestofWorld,2022.............44Figure19.NationalHeatPumpMarketswiththeLargestGrowthin2022........................47Figure20.SalesofHeatPumpsandAdditionsofSolarPVinPoland,2012-2022.................48Figure21.HydrogenStrategiesandRoadmapsinSelectedCountries,asofEnd-2022.............51Figure22.HydropowerGlobalCapacity,SharesofTop10CountriesandRestofWorld,2022.......55TABLEOFCONTENTSSIDEBARSSidebar1.PermittingandGridUpdatesforRenewableEnergy.............................33Sidebar2.StandardisingSustainabilityintheHydropowerSector............................56TABLESTable1.TopFiveCountries,2022.......................19SNAPSHOTSPoland...................................................48Chile.....................................................53Japan....................................................83Figure23.HydropowerGlobalCapacityandAdditions,SharesofTop10Countries,2022...............55Figure24.SolarPVGlobalCapacityandAnnualAdditions,2012-2022...................63Figure25.SolarPVGlobalCapacity,byCountryandRegion,2012-2022........................63Figure26.SolarPVCapacityandAdditions,Top10CountriesforCapacityAdded,2022.....64Figure27.SolarPVGlobalCapacityAdditions,SharesofTop10CountriesandRestofWorld,2022....65Figure28.ConcentratingSolarThermalPowerGlobalCapacity,byCountryandRegion,2012-2022....70Figure29.SolarWaterHeatingCollectorsGlobalCapacity,2012-2022.....................................72Figure30.SolarWaterHeatingCollectorAdditions,Top20CountriesforCapacityAdded,2022......72Figure31.WindPowerGlobalCapacityandAnnualAdditions,2012-2022...................78Figure32.WindPowerCapacityandAdditions,Top10Countries,2022........................79Forfurtherdetailsandaccesstothereport,referencesandendnotes,visitwww.ren21.net/gsr-2023/GLOBALSTATUSREPORT2023COLLECTIONRenewablesinENERGYSUPPLY5RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYREN21istheonlyglobalcommunityofactorsfromscience,governments,NGOsandindustryworkingcollectivelytodrivetherapiduptakeofrenewables–now!RENEWABLEENERGYPOLICYNETWORKFORTHE21stCENTURYREN21workstobuildknowledge,shapedialogueanddebate,andcommunicatetheseresultstoinformdecisionmakerstostrategicallydrivethedeeptransformationsneededtomakerenewablesthenorm.Wedothisincloseco-operationwiththecommunity,providingaplatformforthesestakeholderstoengageandcollaborate.REN21alsoconnectswithnon-energyplayerstogrowtheenergydiscourse,giventheeconomicandsocialsignificanceofenergy.Themostsuccessfulorganisms,suchasanoctopus,haveadecentralisedintelligenceand"sensing"function.Thisincreasesresponsivenesstoachangingenvironment.REN21incarnatesthisapproach.Ourmorethan4,000communitymembersguideourco-operativework.Theyreflectthevastarrayofbackgroundsandperspectivesinsociety.AsREN21’seyesandears,theycollectinformation,shareintelligenceandmaketherenewablevoiceheard.REN21takesallthisinformationtobetterunderstandthecurrentthinkingaroundrenewablesandchangenorms.Ourpublicationsareprobablytheworld’smostcomprehensivecrowd-sourcedreportsonrenewables.Eachisatrulycollaborativeprocessofco-authoring,datacollectionandpeerreviewing.6RENEWABLES2023GLOBALSTATUSREPORTENERGYDEMANDMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULOVERVIEWPOLICYINVESTMENTMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESCOLLECTION2023CROWD-SOURCEDDATAANDKNOWLEDGERENEWABLESGLOBALSTATUSREPORT2023COLLECTIONCROWDSOURCEDDATAANDKNOWLEDGESince2005,REN21'sRenewablesGlobalStatusReport(GSR)hasspotlightedongoingdevelopmentsandemergingtrendsthatshapethefutureofrenewables.Itisacollaborativeeffortinvolvinghundredsofexperts.Thisyear’sedition(18th)hasevolvedindesignandstructuretoreflectthefundamentalchangesintheglobalenergylandscape.Thenewstructureisintheformofacollectionoffivepublications.Inadditiontopresentingthetrendsinrenewableenergysupply,italsodivesintotheenergydemandsectors,withdedicatedmodulesonbuildings,industry,transportandagriculture.Itincludesapublicationonenergysystemsandinfrastructurewithrenewables,aswellasapublicationonrenewablesforeconomicandsocialvaluecreation,acknowledgingthekeyrolethatenergyplaysacrosseconomiesandsocieties.Collectivelythesefivepublicationsofferreadersasystemicglobaloverviewofthecurrentuptakeofrenewables.ThisnewstructuremakestheGSRakeytoolinexpandingtherenewableenergydiscussionintokeysectorsandecosystems,developingasharedlanguageanddrivingastrongerintegrationofsupply,demand,infrastructure,marketandinvestment.Formoreinformation,seetheMethodologicalNotessectionondatacollectionandvalidation.RENEWABLES2023GLOBALSTATUSREPORTENERGYSUPPLYCOLLECTION2023REN21'sdataandknowledgecollectionmethodisbuiltonaglobalmulti-stakeholdercommunityofexperts.Itisvalidatedinacollaborativeandtransparentopenpeer-reviewprocess.Itismadeopenlyavailabletodevelopasharedlanguagethatshapesthesectoral,regionalandglobaldebateontheenergytransition.7ThisreportwascommissionedbyREN21andproducedincollaborationwithaglobalnetworkofresearchpartners.FinancingwasprovidedbytheGermanFederalMinistryforEconomicCooperationandDevelopment(BMZ),theGermanFederalMinistryforEconomicAffairesandClimateAction(BMWK)andtheUNEnvironmentProgramme.Alargeshareoftheresearchforthisreportwasconductedonavoluntarybasis.DISCLAIMER:REN21releasesissuepapersandreportstoemphasisetheimportanceofrenewableenergyandtogeneratediscussiononissuescentraltothepromotionofrenewableenergy.WhileREN21papersandreportshavebenefitedfromtheconsiderationsandinputfromtheREN21community,theydonotnecessarilyrepresentaconsensusamongnetworkparticipantsonanygivenpoint.Althoughtheinformationgiveninthisreportisthebestavailabletotheauthorsatthetime,REN21anditsparticipantscannotbeheldliableforitsaccuracyandcorrectness.Thedesignationsemployedandthepresentationofmaterialinthemapsinthisreportdonotimplytheexpressionofanyopinionwhatsoeverconcerningthelegalstatusofanyregion,country,territory,cityorareaorofitsauthorities,andiswithoutprejudicetothestatusoforsovereigntyoveranyterritory,tothedelimitationofinternationalfrontiersorboundariesandtothenameofanyterritory,cityorarea.ACKNOWLEDGEMENTSREN21DATAANDKNOWLEDGETEAMJadBabaAnaDíazVidalYukoKomazawaNathalieLedanoisHendYaqoobSPECIALADVISORSAdamBrownJanetL.SawinCHAPTERAUTHORSHagarAbdelnabiHindCouzinAhmedElGuindyDuncanGibbBharadwajKummamuruKristinSeybothPeterStalterFreyrSverrissonGlenWrightRESEARCHANDPROJECTSUPPORT(REN21SECRETARIAT)ThomasAndréFayrouzAtrakoutiTaliaContreras-TapiaStefanieGicquelVibhushreeHamirwasiaJonasReolonKremerBoranaResulajAndreaWainerLauraE.WilliamsonCOMMUNICATIONSSUPPORT(REN21SECRETARIAT)YasmineAbd-El-AzizAnnaAbrahamMarielaLopezHidalgoHalaKilaniShiyaoZhangEDITING,DESIGNANDLAYOUTLisaMastny(Editor)weeks.deWerbeagenturGmbH(Design)PRODUCTIONREN21Secretariat,Paris,FranceDATAANDPYTHONPROGRAMMINGNicolasAchury(independentconsultant)LEADTOPICALCONTRIBUTORSBIOENERGYTakanobuAikawa(RenewableEnergyInstitute);PharoahLeFeuvre(Enegas);ChristianRakos(PropelletsAustria)HEATPUMPSYannickMonschauer(InternationalEnergyAgency–IEA);ThomasNowak(EuropeanHeatPumpAssociation);JanRosenow(RegulatoryAssistanceProject)HYDROPOWERJohnAltomonte(VerneEnergySolutions,Corp.);MichaelBarnard(CleanTechnica);MatteoBianciotto;AlexCampbell;RebeccaEllis;DebbieGray;LeiXie(InternationalHydropowerAssociation(IHA));XizhouZhou(S&PGlobal)INVESTMENTJamesEllis(BloombergNEF);CharlotteGardes-Landolfini;AliIzadi-Najafabadi(BloombergNFF);RyanWiser(LawrenceBerkeleyNationalLaboratory)CSPRichardThonig(CSP.guru);DavidTrebolle(ProtermoSolar)SOLARTHERMALHEATINGBärbelEpp(solrico);MonikaSpörk-Dür;WernerWeiss(AEE–InstitutfürNachhaltigeTechnologien);PedroDias(SolarHeatEurope)WINDFengZhao(GlobalWindEnergyCouncil–GWEC);AmericanCleanPower;GiuseppeCostanzo(WindEurope);StefanGsänger(WorldWindEnergyAssociation–WWEA)Note:Someindividualshavecontributedinmorethanonewaytothisreport.Toavoidlistingcontributorsmultipletimes,theyhavebeenaddedtothegroupwheretheyprovidedthemostinformation.Inmostcases,theleadtopicalcontributorsalsoparticipatedintheGlobalStatusReport(GSR)reviewandvalidationprocess.ACKNOWLEDGEMENTS9RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYPEERREVIEWERSANDOTHERCONTRIBUTORSChristianA.Sarikie(EndaSolar(T)Ltd);MussaAbbasiMussa(MinistryofEnergyTanzania);MohammedAbdalghafoor(UnitedNationsFrameworkConventiononClimateChange);MahmoudAbouElenen(GE);HassanAboughalma(Georenco);AbdenourAchour(ChalmersUniversityofTechnology);AyooluwaAdewole(UniversityCollegeLondon);DamilolaAdeyanju(EnelFoundation);SujanAdhikari(InternationalRenewableEnergyAgency–IRENA);FlorenciaAgatiello;GamzeAkarsu(UnitedNationsDevelopmentProgramme);IqbalAkbar(HoneywellInternational);CarolynAmon(Deloitte);MarlonArraesJardim(MInistryofMinesandEnergyBrazil);ErosArtuso(TerraConsultSarl);PatrickAtoudaBeyala(SOASUniversityofLondon);FadekeAyoola(NETAfrica);ShakilaAziz(UnitedInternationalUniversity);MatthieuBallu(EuropeanCommission);ManjolaBanja(EuropeanCommission);RajuBarman;MarieBlancheTing(UniversityofSussex);RinaBohleZeller(Vestas);UdochukwuBolaAkuru(TshwaneUniversityofTechnology);ElinaBosch(BecquerelInstitute);GonzaloBravo(BarilocheFoundation);WilliamBrent(HuskPowerSystems);KirstinBretthauer(DeutscheGesellschaftfürInternationaleZusammenarbeit–GIZ);GuyBrindley(WindEurope);ThailysCamposMagalhães;AnitaChebii(SerengetiEnergy);SreenivasChigullapalli(IndianInstituteofTechnologyBombay);ChuckChuanNg(XiamenUniversityMalaysia);DavidClark(KineticEnergyGenerationSystems);SuaniCoelho(UniversityofSãoPaulo);UteCollier(IRENA);LanvinConcessao(WorldResourcesInstitute);AlekhyaDatta(KPMGIndia);ElmiendeWet(ZeroCarbonCharge);GilesDearden(NaturalPower);ZuzanaDobrotkova(WorldBank);JulieDulce(ManilaElectricCompany);SälmaEl-Gamal(WorldFutureCouncil);WemogarElijahBorweh(UniversityofLiberia);BenElliston(UniversityofNewSouthWales);YaseminErboyRuff(CLASP);GerardoEscamilla(IRENA);AmmarFadlallah(LebaneseCenterforEnergyConservation);AkifFarooqui(TERI);ThomasFees(IntiTechSolar);JuanFernandoMartín(FundaciónRenovables);DavidFerrari(ExemplaryEnergy,Melbourne);RafaelFrancisco(ABSOLAR);AhmedGarba(BlueCamelEnergyLtd);EduardoGarcia(ENERGY-W);LuisGarcía;AlfonsoGerman(StripSteel);AnastasiaGrabco(SumaCapital);ChrisGreacen(UniversityofSanFrancisco);PaulH.Suding(Elsud);BradHeavner(CaliforniaSolar&StorageAssociation);JohnHensley(AmericanCleanPowerAssociation);GabrielaHernández-Luna(AutonomousUniversityofMorelosState–UAEM);RainerHinrichs-Rahlwes(EuropeanRenewableEnergiesFederation);AnastasiaIoannou(UniversityofGlasgow);SammyJamarChemengich(CLASP);RodJanssen(EnergyinDemand);ArioJati;BernardoJoelCarrilloCastillo;DanielleJohann(ABRASOL);WimJonkerKlunne(HouseholdSolarFundersGroup);ManuelJoséEspinosa(ThePhoenixGroup);MariaJoséLinders(StatisticsNetherlands);JózsefKádár(AravaInstituteforEnvironmentalStudies);ChristosKalyvas(UniversityofHertfordshire);ChisakulaKaputu(SustainableEnergy&EnvironmentLTD);PhubalanKarunakaran(WWFMalaysia);PanayiotisKastanias(CyprusUnionofSolarThermalIndustrialists);ChisakulaKaputu(SustainableEnergy&EnvironmentLTD);ShoraiKavu(MinistryofEnergyandPowerDevelopment,Zimbabwe);KamilKaygusuz(KaradenizTechnicalUniversity);MohamedKhalifa(KhartoumRefineryCompanyLtd);M.KhalilElahee(UniversityofMauritius);KennedyKhusi;BirolKilkis(OSTIMTechnicalUniversity);SiirKilkis(ScientificandTechnicalResearchCouncilofTürkiye);ShigekiKobayashi(TransportInstituteofCentralJapan);BozhilKondev;AssemKorayem(TotalEren);DeepakKumar(StateUniversityofNewYorkatAlbany);SivanappanKumar(NaresuanUniversity);MaryseLabriet(EnerisConsultants);ReshmiLadwa(GWEC);ElisaLai(CLASP);PadmasaiLakshmiBhamidipati(UnitedNationsEnvironmentProgramme);FerdinandLarona(GIZ);GeorgeLavidas(DelftUniversityofTechnology);AndrewLawrence(WitsSchoolofGovernance);DenisLenardic;DetlefLoy(LoyEnergyConsulting);AndreaLieson(BSWSolar);JoseLuisVillate(TECNALIA);MarissaMalahayati;JaideepMalaviya(SolarThermalFederationofIndia–STFI);EmileMartin(WuppertalInstitute;GonçaloMartins(PortugueseAssociationofRenewableEnergy–APREN);HironaoMatsubara(InstituteforSustainableEnergyPolicies);LeopoldoMico(SolarHeatEurope);AlanMiller;EmiMizuno(SustainableEnergyforAll);AlirezaMollasalehi;MohammadrezaMollasalehi(BeroozFanavareBeinolmelalCo.);AntonioMoreno-Munoz(UniversityofCordoba);WolfgangMostert;SabathaMthwecu(SolarRais);JuliaMuench(LDESCouncil);MweetwaMundiaSikamikami(BitpopEngineering);AbubakarMusaMagaga(NigerianinstituteofTransportationTechnology);AmonMwadime(AfricaMinigridDevelopersAssociation);NurzatMyrsalieva(UnitedNationsIndustrialDevelopmentOrganization–UNIDO);PaulNduhuura(MakerereUniversityBusinessSchool);TuanNguyen(RINAConsulting);MarjanNikolov(CenterforEconomicAnalyses);JesseNyokabi(QuaiseEnergyAfrica);SolomonOjoawo(MemorialUniversityofNewfoundland);PetaOlesen(DepartmentofClimateChange,Energy,theEnvironmentandWater);SaverioPapa(SolarHeatEurope);ArghyaPaul;TomaszPawelec(UNIDO);LottaPirttimaa(OceanEnergyEurope);PascualPolo(AsociacióndelaIndustriaSolarTérmica–ASIT);RameshPoluru(INCLENTrustInternational);DeboraPontes(Zypho®);EdwigePorcheyre(Enerplan);JoanaPortugalPereira(FederalUniversityofRiodeJaneiro);PedroR.Dias(SolarHeatEurope/ESTIF);UweR.Fritsche(IINAS&IEABioenergy);SwastiRaizada10ACKNOWLEDGEMENTS(InternationalInstituteforSustainableDevelopment);DayaRamNhuchhen(GovernmentofNorthwestTerritories);BardRama(PragueTechnicalUniversity);AtulRaturi(TheUniversityoftheSouthPacific);ShayanRazaghy(CircuitEnergyInc.);A.RicardoJ.Esparta(USP);NkweausehReginaldLongfor(SophiaUniversity);DaveRenné(InternationalSolarEnergySociety);JuanRobertoLozano-Maya(NationalEnergyControlCenter–CENACE);HeatherRosmarin(InterAmericanCleanEnergyInstitute);MartinSabel(BundesverbandWärmepumpe(BWP)e.V.);TarekSafwatKabel(UniversityofSadatCity);SanchitSaranAgarwal(TheEnergyandResourcesInstitute);AmitSaraogi(OorjaDevelopmentSolutionsLimited);MiguelSchloss(Surinvest.Ltda.);AliShahhoseini(QazvinIslamicAzadUniversity);EliShilton(Elsol);N.Shinde(UESRenewableEnergyPvtLtd);WilsonSierra(UniversidaddelaRepúblicaUruguay);KamilSobczak(fenixwing.com);DosseSossouga(AmisdesEtrangersauTogo);JuliaSouder(LDESCouncil);LaizSouto(UniversityofBristol);JanuszStarościk(AssociationofManufacturersandImportersofHeatingAppliances–SPUIG);AlexandraStyles(HamburgInstitut);JanSvoboda(AMO);JinTanaka(UNISCInternational);MichaelTaylor(IRENA);SuaniTeixeiraCoelho(USP);FarukTelemcioglu;HannibalTesfahunegn(PowerforAll);CostasTravasaros(GreekSolarIndustryAssociation–EBHB);DanielTrier(PlanEnergi);IoannisTsipouridis(REDPROConsultants);KutayUlke(Bural);RodrigoValdovinos(IDMAChileInstitut);DanielVanMosnenck(NemoRenSys);SilviaVera(InstituteforDiversificationandEnergySaving–IDAE);AnaVieira(NationalLaboratoryforCivilEngineering–LNEC);PatriciaVillarroelSáez(RegionalCourtsofAppeal,Chile);MarionWalker(ZSW);DavidWalwyn(RenewableEnergyGenration);MoritzWeigel(AfricanEnergyNow);TimWeis(UniversityofAlberta);HarshaWickramasinghe(SriLankaSustainableEnergyAuthority);AminYahyaKhotbehsara;QazvinIslamicAzadUniversity);PeterYang(CaseWesternReserveUniversity);NoureddineYassaa(CommissariatauxEnergiesRenouvelablesetàl'Eff);HameedullahZaheb(KabulUniversity);XiaZuzhang(FoodandAgricultureOrganizationoftheUnitedNations)11FuelHeatElectricity28.6%48.7%22.7%3.7%Biofuel9.9%Renewableheat30%RenewableelecricityTotalFinalEnergyandTotalModernRenewableEnergyShare,byEnergyCarrier,2020RENEWABLESINENERGYSUPPLY30%oftotalelectricitygenerationwassuppliedbyrenewablesin2022Investmentinrenewablesgrew+17.2%in2022,butgrowthwasunevenacrosstechnologiesandgeographiesElectricityaccountsfor23%oftotalfinalenergyconsumptionOnly3countriesannouncedneworrevisedrenewableheatingtargetsin2022,foratotalof46countriesRenewablePowerandHeatingandCoolingTargets,2022174countrieshaverenewablepowertargets,butonly37have100%targetsNumberoftargetsFuels(biofuelsandhydrogenPowerHeatingandcooling05010015020046464949174174+3+3ExistingtargetsNewtargets+9+9+6+6FIGURE1.FuelHeatElectricity28.6%48.7%22.7%3.7%Biofuel9.9%Renewableheat30%RenewableelecricityTotalFinalEnergyandTotalModernRenewableEnergyShare,byEnergyCarrier,2020RENEWABLESINENERGYSUPPLY30%oftotalelectricitygenerationwassuppliedbyrenewablesin2022Investmentinrenewablesgrew+17.2%in2022,butgrowthwasunevenacrosstechnologiesandgeographiesElectricityaccountsfor23%oftotalfinalenergyconsumptionOnly3countriesannouncedneworrevisedrenewableheatingtargetsin2022,foratotalof46countriesRenewablePowerandHeatingandCoolingTargets,2022174countrieshaverenewablepowertargets,butonly37have100%targetsNumberoftargetsFuels(biofuelsandhydrogenPowerHeatingandcooling05010015020046464949174174+3+3ExistingtargetsNewtargets+9+9+6+6FIGURE1.Newlyinstalledrenewablepowercapacityaccountedfor348GWin2022.Source:Seeendnote6forthissection.12MODULEOVERVIEWPOLICYINVESTMENTANDFINANCEMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMODULEOVERVIEWRENEWABLESINENERGYSUPPLYModuleOverviewPolicyInvestmentiThisincludesthedirectheatsuppliedby/producedfromfossilfuels,traditionalbiomass,modernbioenergy,solarthermalandgeothermalsources.Theglobalenergycrisisof2021-2022,wassparkedbytherapideconomicreboundinthewakeoftheCOVID-19pandemicwhichledtotighterenergysupplymarketsstartinginOctober2021.1Theworld'senergychallengeswereexacerbatedinFebruary2022followingtheRussianFederation’sinvasionofUkraine.2Theenergycrisiscontributedtohighinflationandthenbecameaglobalphenomenonduringtheyear,eveniftheeffectswerelessvisibleinAsiaandsomepartsoftheworld.3Inresponse,governmentshavepaidgreaterattentiontothesecurityofenergysupplyandhaveturnedtorenewablestocounterinflation,supplydisruptionsandpricevolatility.4Thisishighlightedbythegrowthinenergy-relatedpoliciessuchastheUSInflationReductionAct(IRA),whichincludessubsidypackagesaimedatboostingdomesticmanufacturinganddeploymentofrenewableenergytechnologiesandtheEuropeanUnion’s(EU)REPowerEU,whichaimstobridgethegapbetweenregionalenergysupplyanddemandthroughrenewables.5Theglobalenergycrisisandassociatedchallengeshavepromptedwide-rangingchangesintheenergysupplylandscape.Theseincludegreateremphasisonenergysecurity,expansionofdomesticenergyproductionandmanufacturing,increasedinternationalcooperationandpolicysupportforrenewableshighlightingtheneedforanacceleratedshifttorenewablesinenergysupply.RENEWABLEELECTRICITYISDRIVINGTHESHIFTINENERGYSUPPLYThedistributionoftheworld’stotalfinalenergysupplyacross–heat,fuelandelectricity–revealsimportantinsightsaboutthestatusoftherenewableenergytransition.Themajorityoftheworld’senergyissuppliedintheformofdirectheati,whichaccountedfor48.7%ofthetotalin20206(pseeFigure1.),followedbyfuel–includingliquidandgaseousfuelsusedfortransport–whichrepresented29%ofthetotal.7Meanwhile,theshareofelectricity(includingforheatandtransport)intheglobalenergysupplyhasincreasedsteadily,risingfrom19%in2010to23%in2020.8Thisshiftreflectsthegrowingrelianceonelectricitytomeetenergyneedsinallend-usesectors.Reflectingthistrend,mostoftheprogressinincreasingtheshareofrenewablesintheenergysupplyhasbeenachievedinthepowersector,withrenewableenergycontributingnearlyone-third(30%)ofglobalelectricityproductionin2022.9(pSeeFigure2.)13RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYForheat,theprogresshasbeenrelativelyslower,withtheshareofmodernrenewablesintheheatsupplyincreasing2.6%inthelastdecade,from8.9%in2010to11.5%(excludingtraditionalbiomass)in2020.10(pSeeFigure3.)Modernbioenergycontinuedtosupplymostofrenewableheat,at68%,whilesolarthermalsupplied6%andgeothermaldirectheatcontributed5%(theremaining21%wassuppliedbyrenewableelectricity).11Forfuels,biofuelsrepresentednearlyallrenewablefuelandsupplied3.6%ofthetotalfuelsupplyin2020,upfrom2.3%in2010.12Inabsoluteterms,biofuelproductionincreased60%duringthedecade.13Renewablehydrogenhasbeenhailedasapotentialgame-changerfordecarbonisingenergyintensivesectors,andin2022thenumberofelectrolysisplantsgrewrapidlytoreacharound1gigawatt(GW)ofcapacity.14However,morethan95%ofcurrenthydrogenproductionisstillbasedonfossilfuels.15Thedevelopmentofrenewableenergyinthepowersectoristheresultofincreasedpolicyattentiontorenewablepower.Asof2022,asmanyas174countrieshadtargetsforrenewablepowershares(including37countrieswithtargetsfor100%renewableelectricity),49countrieshadtargetsforbiofuels,and46countrieshadtargetsforrenewableheat,withonly9and3newtargetsforbiofuelsandrenewableheat,respectively,beingannouncedin2022.Incontrast,morethan25newtargetsforrenewablepowersharesandinstalledcapacitywereannouncedin2022.16Source:Seeendnote6forthissection.FIGURE2.ShareofRenewableElectricityGeneration,byEnergySource,2012and20222022201221.3%Shareofrenewableelectricity29.9%Shareofrenewableelectricity2.8%2%2.7%68%11%16.4%15.1%Fossilfuels61%FossilfuelsNuclearpower9%Nuclearpower12.1%HydropowerBioenergyandgeothermalpowerSolarandwindpowerRenewableshareofelectricitygenerationincreasedbyalmost9inthepastdecade.percentagepoints14MODULEOVERVIEWTHESHIFTTORENEWABLEENERGYSUPPLYISUNEVENACROSSREGIONSGlobally,Chinacontinuedtoleadinnewrenewableenergyinvestmentsin2022,accountingfor55%ofthetotal.17Europefollowedwith11%,andtheUnitedStateswith10%.18Incontrast,AfricaandtheMiddleEastcombinedrepresentedonly1.6%ofglobalinvestmentinrenewables,indicatingthehighconcentrationofthisinvestmentinjustafewregions.19Forrenewableheat,Europeleadsinthemodernbioheatmarket,witha24%sharein2020,followedbytheUnitedStateswith13%.20Chinaaccountedfor73%ofthesolarwaterheatingmarket,followedbyTürkiye,theUnitedStates,GermanyandBrazil.21Thesolarheatmarketcontractedmorethan9%in2022duelargelytodecliningsalesinChina;however,someEuropeanmarkets,especiallyinresponsetotheenergycrisis,experienceddouble-digitgrowth,includingItaly(up43%),France(29%),Greece(nearly17%),GermanyandPoland(both11%).22Chinaistheworld’sfastest-growinggeothermalheatmarket,andotherkeymarketsareTürkiye,IcelandandJapan;together,thesefourcountriesaccountedfornearly90%ofglobalgeothermaldirectusein2022.Overall,however,globalcapacityadditiosofgeothermalpowerwereone-thirdlowerthanin2021,withonly0.2GWaddedin2022.23Inthecaseofrenewablefuels,NorthAmericasupplied44%oftheglobaltotalofrenewablebiofuelsin2020(latestavailabledata),followedbyLatinAmericaandtheCaribbeanwith25%andEuropewith18%.24RenewablefuelproductionhaslaggedinAsiaandthePacific(11%)andAfrica(lessthan1%).25Australiaisanemergingleaderinrenewablebasedhydrogenandissettohavethelargestnumberofrenewablehydrogenplantsworldwide.26Theshareofrenewableelectricity,theshareofrenewableshasbeengrownsteadilyinrecentyear.In2022,globalrenewableelectricitygenerationgrew8.1%upfroma5.5%growthin2021.27LatinAmericaandtheCaribbeancontinuedtohavethehighestshareofrenewablesintheelectricitymixamongregions,at61%in2022(upfrom56%in2012)(pseeFigure4).28Hydropowerdominatestheregion’selectricitysupply,contributing45%oftotalproductionand73%ofrenewableproduction.29In2022,renewableelectricitygenerationinLatinAmericaandtheCarribeangrewby12%.30Oceaniashowedthebiggestincreaseintheshareofrenewablesintheelectricitymix,risingfrom21%in2012to40%in2022,duemostlytodevelopmentsinAustralia,with13%growthinrenewableelectricitygenerationin2022alone.31ThisisattributedmostlytothegrowingshareofsolarPVandwindenergy,whichrosefrom4.1%to22%intheregionduringthedecade.32Source:Seeendnote10forthissection.FIGURE3.ShareofRenewableHeatProduction,byEnergySource,2010and2020202020108.9%Shareofrenewableheat11.5%Shareofrenewableheat1.4%0.4%1.2%77%14%7.0%7.9%Fossilfuels&nuclearTraditionalbiomass2.3%Modernbioenergy(incl.districtheat)SolarheatandGeothermalRenewableElectricityRenewableshareofheatgenerationincreasedbyalmost2.6inthepastdecade.percentagepoints13%Traditionalbiomass75%Fossilfuels&nuclear15RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYInEurope,theshareofrenewablesregionaltotalelectricitygenerationincreasedfrom25%in2012to36%in2022.33Windpowerrepresented11%ofEurope’stotalgenerationin2022(upfrom4%in2012),andsolarpowerrepresented5%(upfrom1.5%in2012).34Theregion'soverallrenewableelectricitygenerationwasstablereflectingopposinggrowthacrosstechnologies.Generationfromhydropower,heavilyaffectedbydroughtsandwaterscarcity,wasdown11.5%comparedto2021,whereasgenerationfromsolarPVgrewarecord21.6%andfrompower11.2%.35InNorthAmerica,theshareofrenewablesintheelectricitymixrosefrom19%in2012to29%in2022.36Duringthedecade,windpower’sshareofgenerationincreasedfrom3.3%to9.6%,andsolarpower’ssharerosefrom0.11%to4.3%.37In2022,renewableelectricitygenerationintheregiongrew9%upfrom3%growthin2021.38TheshareofrenewablesinAsia’selectricitymixincreased10%during2012-2022,risingfrom17%to27%.39ThiswasduemainlytotheincreaseinsolarPVandwindgeneration,whichsuppliedonly1.7%ofAsia’selectricityin2012butreachedan11%sharein2022.40In2022alone,renewableelectricitygenerationintheregiongrew11%.41InAfrica,therenewableelectricityshareincreased7%,from17%in2012to24%in2022.42Hydropower’sshareofgenerationintheregionrosefrom16%to19%,andsolarandwindenergygrewfrom0.4%to4.7%(2.7%forwindand2%forsolar).43In2022,renewableelectricityinAfricagrew11%comparedto5%increasein2021.44TheMiddleEasthadcontinuedtolagotherregions,withtheshareofrenewablesinelectricitygenerationrisingfrom2.4%in2012to3.4%in2021(comprising1.7%hydropower,1.4%solarenergyand0.2%windenergy).45Source:Seeendnote28forthissection.ShareofRenewableEnergy(%)Growthbetween2012–2022(%)Non-renewableelectricityshareRenewableelectricityshareOceaniaNorthAmericaAfricaAsiaEuropeLatinAmericaandCaribbeanMiddleEast20122022201220222012202220122022201220222012202220122022World20122022+19%+9%+10%+1%+5%+12%+10%+7%Onlythreeregionshaverenewableelectricityshareshigherthan35%FIGURE4.RenewableShareofElectricityGeneration,byRegion,2012and202216MODULEOVERVIEWSource:Seeendnote47forthissection.03006009001,2001,500Capacity(GW)Additions2022Capacity2021Addedin2022+9%+25%+348GW+2%+4%243GW7822HydropowerSolarPVWindpowerOtherrenewablepowerSolarPVWindFIGURE5.RenewablePowerTotalInstalledCapacityandAnnualAdditions,byTechnology,2022THESHIFTINRENEWABLEENERGYSUPPLYISBEINGLEDBYSPECIFICTECHNOLIGESTheenergytransitionhasfocusednotonlyonpower,butalsoonafewspecifictechnologiesinthepowersector.In2022,solarPVandwindpowerrepresented92%ofrenewablepowercapacity(70%solarand22%wind).46(pSeeFigure5.)Intotal,348GWofrenewablepowercapacitywasaddedin2022(up13%fromthe306GWaddedin2021);however,thisannualcapacityadditionwouldneedtobeacceleratedbyasmuchas2.5timestoachievethecapacitygrowthrequiredtoachievetheSolarPVandWindaccountedfor92%ofrenewablepoweradditions.17RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYSource:Seeendnote48forthissection.Additionsbytechnology(Gigawatts)Bio-power,geothermal,oceanpower,CSPHydropowerWindpowerSolarPV201920172018202020212022IEANetZeroScenario2030Renewablepoweradditionsneedstox2.5timestobeontrackwiththeIEAnet-zeroscenario.+348GWFIGURE6.RenewablePowerCapacityAnnualAdditionsbyTechnology,2017-2022,andIncreasesRequiredby2030toAchievetheIEA’sNetZeroScenarioInternationalEnergyAgency’s(IEA)scenariofornetzeroemissionsby2030.47(pSeeFigure6.)Annualcapacityadditionsforbio-power,geothermal,oceanpowerandconcentratedsolarthermalpower(CSP)wouldneedtogrow9.7timestobeontrackwiththeIEAnetzerotargets.48Forwindpower,annualadditionswouldneedtoincrease3.7timestoreachtheIEAtargets,particularlyasadditionsslowedin2022asaresultofsupplychaininterruptionandrisingmaterialcosts(down17%comparedto2021).49ThewindsectorespeciallyisatcriticaljunctureasthecurrentnewandannouncedmanufacturingcapacityfallsshortinmeetingtheIEA’snet-zeroscenario.50MeanwhilesolarPVhadanotherrecordyearin2022,withadditionsrising37%comparedto2021(up25%forutility-scalesolarPVand54%fordecentralisedsolarPV);however,toreachtheIEAtarget,thecurrentratetheannualinstallationneedstodoublein2030.5118MODULEOVERVIEWTABLE1.TopFiveCountries2022Note:New=Countrydidnothavearankingin2021.12345TOTALADDITIONSPERTECHNOLOGYBiopowercapacityChinaJapan(+3)BrazilIndonesia(+12)Türkiye(-1)GeothermalcapacityKenya(New)IndonesiaUnitedStates(-2)Turkiye(-1)Chile(New)HydropowercapacityChinaLaoPDR(+3)Canada(-1)France(New)Ethiopia(New)SolarPVcapacityChinaUnitedStatesIndiaBrazil(+1)Netherlands(+8)ConcentratedSolarThermalPower(CSP)capacityChina(New)UnitedArabEmirates(New)–––WindcapacityChinaUnitedStatesBrazilUnitedKingdom(+1)Germany(+2)SolarwaterheatingcapacityChinaTürkiyeBrazilIndiaUnitedStates12345POWERTotalrenewablecapacityChinaUnitedStatesBrazilIndiaGermanyTotalrenewablecapacity(nohydro)ChinaUnitedStatesGermanyIndiaJapanTotalrenewablecapacitypercapita(nohydro)IcelandDenmarkFinland(+16)Belgium(+8)Greece(+10)BiopowerChinaBrazilUnitedStatesIndiaGermanyGeothermalUnitedStatesIndonesiaPhilippinesTürkiyeNewZealandHydropowerChinaBrazilCanadaUnitedStatesRussianFederationSolarPVChinaUnitedStatesJapanGermany(+1)India(-1)CSPSpainUnitedStatesChinaMoroccoSouthAfricaWindChinaUnitedStatesGermanyIndiaSpainHEATSolarwaterheatingcollectorcapacityChinaTürkiye(+1)UnitedStates(-1)GermanyBrazilGeothermalheatoutputChinaTürkiyeIcelandJapanNewZealandNetCapacityAdditionsin2022TotalPowerCapacityasofend202219RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYRENEWABLEENERGYMANUFACTURINGISCONCENTRATEDINCHINAIn2022,manufacturingcapacitiesforbothrenewablesandenablingtechnologieshadanotheryearofstronggrowthforsolarPV(up39%),electrolysers(26%)andheatpumps(13%).52Windenergymanufacturingcapacitygrewbyamoremodest2%.53Inresponsetotheenergycrisisandassociatedchallenges,multipleflagshippolicypackages–suchastheUSInflationReductionAct,theNet-zeroIndustryActinEurope,Japan’sGreenTransformationprogrammeandIndia’sProductionLinkedIncentivescheme–haveaimedtoincreasedomesticmanufacturingcapacityofrenewableenergyandenablingtechnologies.54ThemanufacturingofsolarPVpanelsremainedgeographicallyconcentratedinChina,whichdominatedwithmorethan80%sharesacrossallproductionstagesin2022.55ThenextlargestcountrieswithrespecttomanufacturingcapacityareVietnamandIndia,accountingfor5%and3%,respectively,oftheglobalcapacity.56In2022,90%ofthegrowthoccuredinChinaandoutofthetop10largestsolarPVannouncedmanufacturingprojects,onlyone(number10)wasinIndia.HighcostscontinuetobealeadingbarriertomorewidespreadsolarPVmanufacturing;comparedtoChina,costsareanestimate10%higherinIndia,20%higherintheUnitedStatesand35%higherinEurope.57Forwindenergy,westernmanufacturerscontinuedtofacegrowingcompetitionfromChineseturbinemakers,whichhaveactivelypursuedsalesoverseas.58In2022,Chinaaccountedforover60%ofglobalmanufacturingcapacity,followedbytheEU(justunder15%)andtheUnitedStates(10%).59Heatpumpmanufacturingcapacityismoregloballydistributed.In2022,35%ofglobalcapacitywasinChina,followedby25%intheUnitedStates,andcloseto20%intheEU.60Similarly,electrolysermanufacturingisconcentratedinChinawitharound40%ofelectrolysermanufacturingcapacity,withtheEUandtheUnitedStateshavingsharesof20%each.61In2022,globalmanufacturingofrenewableenergyandenablingtechnologiesgrewbynearly40%.20POLICYMODULEOVERVIEWPOLICYINVESTMENTANDFINANCEMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESOVERALLCONTEXTAspolicymakersaroundtheworldgrapplewithenergysecurityconcerns,theyhaveprioritisedmeasuresthatcanensureasteadyandreliableenergysupplywhilespeedingdecarbonisationofthesector.1Thishasledtotheuptakeofwell-definedandspecificpolicymeasures.2Majorannouncementsin2022thatreshapedthepolicylandscapeofrenewablesincludetheUSInflationReductionAct,theEuropeanUnion’s(EU)Fitfor55andRePowerEUpackages,Australia’sClimateChangeBill,Japan’sGXGreenTransformationandChina’s14thFive-YearPlan.3Inresponsetotheongoingenergycrisis,governmentsalsoincreasedtheirspendingontheenergytransition.4However,meetingthedecarbonisationtargetrequiredtoaverttheworsteffectsofclimaticchangerequiresfargreatereffort.Thepoliciesdiscussedhereofferawidediversityofexamplesbutarenotexhaustive.ELECTRICITYMostcountrieshaveinplacebroadnationalrenewableenergytargetsforthepowersector.5In2022,Bolivia,Chile,theEUandfoursub-nationaljurisdictionsinCanadaannouncedneworrevisedtargetsforrenewablesinelectricitygeneration,bringingthetotalnumberofjurisdictionswithsuchtargetstoatleast174,upfrom135in2021.6(pSeeFigure1inModuleOverview.)Althoughtargetsalonemaynotbeenoughtoincentiviseinvestment,theycanindicatearegion’sdedicationtotheenergytransition.Convertingtargetsintoconcreteactionrequiresimplementingassociatedpoliciesandregulations.7PowerpoliciesfocusprimarilyonsolarPVandwindpowercapacity(pseeFigure7),similartothehighlevelsofinvestmentinsolarandwindenergyascomparedtootherrenewabletechnologies.8During2022,theEUand20nationalandsub-nationaljurisdictionsaddednewtargetsforinstalledcapacitiesofsolarPV(7)andwind(13)power.9Intotal,morethan250technology-specificpowercapacitytargetswereinplacein126nationalandsub-nationaljurisdictionsbyyear’send.10Source:Seeendnote8forthissection.Note:Nonewtechnology-specifictargetswereannouncedin2022forCSP,GeothermalpowerandOceanpower.200150100050250300NumberoftargetsNewin202225targetsWindpowerSolarPVCSPBio-powerGeothermalHydroandOceanpower-1Bio-power8SolarPV2Hydro-power14WindpowerExistingendof2021Newin2022FIGURE7.Technology-SpecificTargetsforInstalledRenewablePowerCapacity,202221RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYThenumberofcountrieswithsupportpoliciesforrenewablesinthepowersectorremainedat156in2022,thesameasin2021.11Althoughsomecountriesadoptednewpolicies,othersremovedpolicies(mainlyfeed-intariffpolicies).12Mostcountriesuseamixofpolicyinstrumentstosupporttheuptakeofrenewables,whichcandifferbasedonthetechnologyandsizeoftheinstallationandonwhetherornotitisdecentralised.Renewableenergypoliciesinthepowersectorincludetargets,renewableportfoliostandards(RPS),renewableenergycertificates(RECs)orGuaranteesofOrigin(GOs),feed-intariffsandpremiums,auctionsandtenders,netmetering(andotherpoliciesthatencourageself-consumption),andfiscalandfinancialincentivessuchasgrants,rebatesandtaxcredits.13Feed-intariffs(FITs)andfeed-inpremiumshavebeenusedwidelytosupporttheuptakeofrenewableswithinbothlarge-scalegridsystemsandfordecentralisedpowergeneration.14(pSeeFigure8.)In2022andearly2023,15countriesand5sub-nationaljurisdictions(allinAustralia)revisedtheirfeed-intarifforpremiumpaymentpolicies.15Bytheendof2022,83countrieshadinplacefeed-intarifforpremiumpaymentpolicies.16FITpolicieswereremovedinsixcountries(Austria,CostaRica,Finland,NewZealand,SwitzerlandandUganda)duringtheyearandreintroducedinsixcountries(Bulgaria,China,Ireland,MauritiusandSouthAfrica)afterhavingpreviouslybeenremoved.17BarbadosreviseddownitsFITforsmallerprojects(below1megawatt,MW)andraiseditforlargerprojects(10MWandhigher)inanefforttoincentiviselargeprojects.18GermanyupdateditsRenewableEnergyActtogiveownersofrooftopsolarphotovoltaic(PV)systems(upto750kilowatts,kW)theoptiontoeitherchooseareducedFITbutusepartofthepowertheyproducethemselves,orfeedinalloftheelectricitygeneratedbyrooftopsystemsandreceiveanadditionalpaymentontopofthestandardFIT.19Mauritiusincludedinits2022-2023budgetprovisionsforaFITformedium-scalesystems.20SouthAfricaannouncedthereintroductionofFITsforsolarPVtotackleloadshedding.21Thailandintroduceda25-yearFITforsolarPVandsolar-plus-storage,andJapanadoptedprovisionalFITsforfiscalyear2023.22Source:Seeendnote14forthissection.Note:Allcountrieswithroundcircleshaveremovedfeed-intariffpoliciesexceptfortheNetherlandswherethenetmeteringpolicywasremovedafterparliamentvotedtoendthemeasure.RemovedNet-meteringNopoliciesornodataBothpoliciesFeed-intari/premiumpaymentNet-meteringRemovedandthenreintroducedFiTRemovedFiTFIGURE8.RenewableEnergyFeed-inTariffsandNetMeteringPolicies,2022Bytheendof2022,83countrieshadinplacefeed-intarifforpremiumpaymentpolicies.22POLICYNetmeteringisstillapopularpolicyusedtoincentivisehouseholds,commercialentitiesandindustrialfacilitiestoinvestintheirownrenewableenergysystemsbyenablingthemtosellsurpluselectricitytothegrid.In2022,10countriesandseveralUSstatesrevisedtheirnetmeteringpolicies,includingCyprus,Egypt,Finland,Ghana,thePhilippines,RomaniaandSlovenia.23TheNetherlandsremoveditsnetmeteringpolicyin2022aftertheparliamentvotedtoendthemeasure.24Byyear’send,atotalof92countrieshadnetmeteringpoliciesinplace.25CyprusannouncedthatitwouldexpandfundingforsolarnetmeteringbyEUR40million(USD43million).26Finland,whichhasimplementednetmeteringsinceearly2021,adoptedanewcentralisedinformationsystemthatenablesmanymoresolarPVsystemstobenefitfromtheschemestartingin2023.27EgyptreleasedupdatednetmeteringrulesinDecreeNo.6of2022,withincreasestothemaximumnetmeteringcapacityallowed.28Ghana’sPublicUtilityRegulatoryCommissionapprovednetmeteringtariffguidelines,andthePhilippinesincreasedthesizelimitofenergysystemseligiblefornetmeteringfrom100kWto1MW.29However,somecountrieshavephaseddownnetmetering,insomecasestoindirectlyencouragetheinstallationofenergystoragesystems.TheDutchparliament’sdecisiontophaseoutnetmeteringwasaimedlargelyatincentivisingtheuseofstorageandrelievingpressureonthegrid.30Polandisshiftingfromnetmeteringtonetbillingi.31Atthesub-nationallevel,USstatesthatarereducingorshiftingawayfromnetmeteringschemesincludeCalifornia,Florida,Idaho,Indiana,MichiganandNorthCarolina.32InCalifornia,thethirditerationoftheNetMeteringProgram(NEM3.0)enteredintoforceinApril2023andislessfavourablethanNEM2.0.33BetweenJanuaryandSeptember2022,theawardedrenewableauctioncapacityincreased70%toreach77gigawatts(GW),primarilyinsolarPVandwindpower,withChinaandEuropeaccountingfor75%ofthetotalawardedcapacity.34In2022,severalcountriesusedauctionsandtenderstoattractprivatesectorinvestmentforlarge-scalerenewableenergyprojects,increasetheinstalledpowercapacityanddiversifytheenergymixtoboostenergysecurity.InAsia,Indiatendered28GWofvariablerenewablepowercapacityandThailandlaunchedanewroundofauctionsforbiogas,wind,solarpoweraswellasforenergystoragecapacity.35ThePhilippinesannouncedaGreenEnergyAuctionProgrammefor2023ofacombined2GWforhydropower,solar,biomassandwindpowercapacity.36InEurope,Germanyissuedtendersforinstallationsabove750kW,Greecelaunchedanewroundoftendersuntil2024(awardingover530MWinitsfirstround),andPolandawarded486MWofsolarPVinanauction.37SouthAfricaconcludeditssixthauctionroundbyawarding860MWofsolarpowercapacity.38Atthesubnationallevel,NewSouthWalesinAustralialauncheditsfirst-everrenewableenergyauction,targeting12GWofrenewablesandstorageby2030toreplaceretiringcoalplants.39Ingeneral,however,auctionsandtenderswereundersubscribedgloballyascountries(includingFrance,Germany,GreeceandSpain)struggledtoadjustthesemeasurestoinflationandtotherisingcostsofrenewablepowercomponents.40AcrossmuchofEurope,theUnitedStatesandseveralothercountries,permittingprocessescontinuetobechallengingandinleadtoundersubscribedauctions.41Toattractinterest,GermanyraisedthepricecapforwindandsolarPVtenders.42Financialandfiscalpolicies–suchastaxexemptions,rebates,grantsandloans–arepopularinstrumentstoincentivisetheuptakeofrenewables.43Suchpoliciescantargetspecifictechnologiesandsectorsorbetechnology-agnostic.In2022,61jurisdictions–includingBulgaria,Canada,theEU,Kenya,SouthAfricaandtheUnitedStates–introducedorrevisedfinancialandfiscalpoliciesforrenewables,bringingthetotalnumberofcountrieswithsuchpoliciesto138.44TheUSInflationReductionActof2022allocatesUSD391billioninsubsidiesandtaxcreditsforthecleanenergytransition,includingtechnology-neutraltaxcreditsfrom2025onwardsfornewelectricitygeneration(includingrenewable),taxcreditsforthemanufactureofcleanenergytechnologies.45Thecreditsareguaranteedfor10years,helpingtoprovideconfidencetothemarket.46Othercountriesannouncedfinancialandfiscalincentives.ThroughRePowerEU,theEUplanstoeaseaccesstotaxcreditsforgreeninvestment.47CanadaannouncedtaxcreditstotallingUSD83billionforcleanelectricity,cleantechnologymanufacturingchainsandcleanhydrogen.48SouthAfricaannouncedaZAR9billion(USD500million)solartaxincentiveforhouseholdsandcompanies,andagreedtoexpanditsrenewableenergytaxinitiativetoremovethresholdsongenerationandtoenableinvestorstodeductthefullcostofnewrenewableassets.49BulgariaisallocatingEUR102million(USD112million)forgreenenergyandstorageprojectsinthetourismsector.50AsofJanuary2022,Kenyaisgrantinga50%taxexemptiontopowerproducerssellingelectricitythatisgeneratedfullyoff-grid,inapushfordecentralisedrenewableenergysolutions.51iNetmeteringisasystemthatallowsresidentialandcommercialcustomerswithsolarpanelsorotherrenewableenergysourcestoreceivecreditforanyexcesselectricitytheygenerateandsendbacktothegrid,whichcanbeusedtooffsetfutureelectricitybills.Netbilling,ontheotherhand,isasysteminwhichcustomersarepaidfortheexcessenergytheygenerateatafixedrateperkWh,whichistypicallylowerthantheretailratetheywouldpayforelectricity.23RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYBytheendof2022,35countrieshadinplacerenewableportfoliostandards(RPS),whichmandateutilitiesandprivatesectorcompaniestoinstalloruserenewables.ThePhilippinesamendeditsRPStorequireaminimumof2.5%renewableenergysuppliedtodistributionutilitiesordirectbuyers,upfrom1%previously.52Atthesub-nationallevel,36USstatesandtheDistrictofColumbiahadRPSasofNovember2022tosupportrenewableenergygeneration.53ThestateofMarylandreviseditsRPSpoliciesinplacetonolongerincludewasteincineration,factoryfarmgas,andwoodbiomass,aspartoftheReclaimRenewableEnergyAct.54MandatesforrooftopsolarPVrequirecertainbuildingsorpropertiestoinstallsolarpanelsontheirroofs.55Suchpoliciesmadeacomebackin2022,withannouncementsofmandatesintheCzechRepublicandthreesub-nationaljurisdictionsinChina(Guangzhou,JiangxiandShaanxi).56TheEUreleaseditsSolarEnergyStrategyanditsproposedPerformanceforBuildingDirective,whichrequiretheinstallationofrooftopsolarPVonallnewpublicandcommercialbuildingswithatleast250squaremetres(m2)ofsurfaceby2026,onallexistingpublicandcommercialbuildingsby2027andonallresidentialbuildingsby2029.57InFrance,newlegislationmakesitmandatoryforparkinglotsof80spotsormoretoinstallsolarPVsystemswithinthreetofiveyears.58Greece’ssolarmandate,whichtookeffectin2023,requiressolarPVonallnewbuildingswithatleast50%non-residentialuseandmorethan500m2inarea.59InGermany,9outofthe16federalstateshaverooftopsolarPVmandates,allofwhichtookeffectinJanuary2022.60Atthesub-nationallevel,TokyoandKawasakiCityinJapanannouncedin2022thattheyaremandatingsolarPVonallnewresidentialbuildingsasof2025.61Communitysolarenablesindividuals,businessesandcommunitiestohaveastakeinrenewableenergyprojects,suchascommunityenergyarrangements,sharedownership,self-consumptionandvirtualnetmetering.Suchengagementhelpstocreateamorepositivepublicresponsetorenewablesandtoincreaseprojectdeployment.Asoftheendof2022,13USstateshadformalcommunitysolarprogrammes,andseveralotherstateshadutility-runprogrammes.62Amongadvancementsduringtheyear,Californiaenactedlegislationauthorisingregulatorstodefineanewcommunityprogrammeforthestate.63TheUSNationalCommunitySolarPartnershipissuedaroadmapforreaching5millioncommunitysolarhouseholdsby2025.64TheAustralianGovernment,aspartofits2022ClimateChangeLaw,committedAUD102.2million(USD70million)totheCommunitySolarBanksInitiative.65In2022,Belgium,Denmark,GermanyandtheNetherlandscollectivelypledgedtoincreaseoffshorewindcapacityten-foldby2050.66Germanyupdateditstargetforoffshorewindpowercapacityfrom40GWto70GWby2040undertheOffshoreWindEnergyAct.67Australiahasdevelopedregulationsforoffshoreenergyinfrastructuretoprovideincreasedinvestmentandregulationforthesector.68Vietnam’sDraftPowerDevelopmentVIIIincludestargetsfor16GWofonshoreandnearshorewindand7GWofoffshorewind.69In2023,nineEuropeancountries(Belgium,Denmark,France,Germany,Ireland,Luxembourg,theNetherlands,NorwayandtheUnitedKingdom)agreedtocollectivecapacitytargetsforoffshorewindpower,aimingtoachieveaminimum120GWby2030and300GWby2050.70Otherpolicychangesduringtheyearcouldslowgrowthinwindpowerdeployment.Denmarkpauseditswell-establishedandefficient“opendoor”schemeforoffshorewind,creatinguncertaintyfordevelopers,whilePolandvotedtoamenditsstrictwindpowerlawtoforbidsitingwindturbineswithin700metresofresidentialbuildings.71Irelandintroducedarequirementthatoffshorewindpowerprojectsbebuiltin(yetunidentified)DesignatedMarineAreas,effectivelyputtingoffshoredevelopmentonhold.72In2022andearly2023,theSlovakRepublic,TürkiyeandtheUnitedKingdomannouncednationalrenewablehydrogenstrategiesandroadmaps,bringingthetotalnumberofcountriesiwithsuchstrategiesto45.73(pSeeFigure21inHydrogensection.)Fiscalandfinancialincentivessupportingrenewablehydrogenwereinplacein14countries,7sub-nationaljurisdictionsandtheEUasofendof2022.74Otherpoliciesandprogrammesincludeameasuresettingupexport-importcorridorsforrenewablehydrogenbetweenChileandtheNetherlands.75Countriesaresupportingrenewablehydrogenbecauseofitspotentialtoreducecarbonemissionsinhard-to-abatesectors,suchasinsomeindustries.76ArgentinalaunchedaGreenHydrogenStrategytargeting5GWofrenewablehydrogenby2030.77SouthAfricaissueditsHydrogenSocietyRoadmap,whichaimsfor500kilotonnesofrenewablehydrogenproductionby2030and15GWby2040.78Austria,initshydrogenstrategy,istargeting4terawatt-hoursofannualrenewablehydrogenproductionand1GWofelectrolysiscapacityby2030.79Uruguayannouncedarenewablehydrogenroadmaptargeting1milliontonnesofproductionannuallyby2040andrequiringtheinstallationof20GWofrenewables.80TheUSInflationReductionActincludesataxcreditforrenewablehydrogenofUSD3perkilogram.81In2021,sixcountries(Egypt,Kenya,Mauritania,Morocco,NamibiaandSouthAfrica)launchedtheAfricaGreenHydrogenAllianceinanefforttoadvancetheuptakeofrenewablehydrogeninAfrica.8224POLICYHEATINGANDCOOLINGIn2022,onlytwocountries(GermanyandSerbia)andtheEUupdatedtheirheatingandcoolingtargets.(pSeeFigure1inModuleOverview.)TheEUistakingsignificantstepstowardspolicyadvancementinsolarthermalenergy.TheFitfor55packageaimstoacceleratethedeploymentanduptakeofrenewables,includingsolarthermal,bysettinghigheroveralltargetsfor2030andmoreambitioussub-sectoraltargetsinheatingandcooling,buildingsandindustry.83Therevisedtextfocusesonacceleratingpermittingforrenewableenergyprojectsandensuringtheavailabilityofaskilledworkforce.84UndertheEU’sGreenDealIndustrialPlan,solarthermalenergyisrecognisedasastrategicnetzeroindustry,andtheregionplanstoinnovateandscalemanufacturingcapacityinnetzerotechnologies.85Althoughthesectoriscurrentlyabletosupplyaround90%ofEUheatenergydemand,thechallengeistoexpandthiscapacitytomeetprojectedgrowthto2030andbeyond.86TheEUalsoisunderpinningitsleadershipinthegreentransitionandresearchandinnovationinvestmentsincleanenergytechnologiesbyrevampingtheStrategicEnergyTechnologyPlan;thisisexpectedtobenefittheEuropeansolarthermalsectorbyincludingrenewableheatingandcoolinggeneration.87Policiesarounddistrictheatinggainedmomentumin2022,especiallyinthefaceofhighenergypricesduringtheyear.88GermanyissettingupafundofEUR3billion(USD3.3billion)aimedatdecarbonisingthedistrictheatingsectorandfinancingtheconstructionofnewheatingnetworkswith75%renewables.89Denmarkapprovedanewlawthatallowsdistrictheatingcompaniestonegotiatepricingwithgeothermaloperatorstoputacaponconsumercosts.90TheUKNetZeroStrategyallocatesGBP338million(USD421million)fortheHeatNetworkTransformationProgramme,withafocusonlow-carbontechnologies.91Heatpumpsareconsideredacentralsolutionforenergyefficiency,andmanycountrieshavepushedforgreateruptake.GovernmentsinEurope,JapanandtheUnitedStatesintroducedhigh-levelpolicymakingeffortstoencouragedeploymentofthedevices.92Subsidiescurrentlyavailableforupfrontcostsofbothair‐to‐airandair‐to‐waterheatpumpsarebelowthoseforgasboilersinsomecountries,includingFranceandtheUnitedStates.93TheRePowerEUpolicytargetstheinstallationof20millionheatpumpsby2026andnearly60millionby2030.94TheEUalsoannouncedanactionplantoboostregionalheatpumpmanufacturinganddeployment.95InFrance,grantsupportforinstallingground-sourceheatpumpswasraisedtoEUR5,000(USD5,500)perunitinearly2023.96Germanylaunchedrebatesofupto40%forhomeownerstoinstallheatpumps.97TheUSInflationReductionActoffersrebatesforlow-incomehouseholdsthatcoverupto100%ofthecostofaheatpumpandinstallation.98Chinaintroducedanupdatedbuildingenergylaw,itsfirstbindingenergyefficiencystandardfornewbuildings,thattargetsinstallingheatpumpsfor2millionsquaremetresofpublicandgovernmentbuildings.99CanadaannouncedanadditionalCAD250million(USD185million)toswapoilfurnacesforheatpumps,andNewYorkStateinvestedUSD70milliontoelectrifypublichousing.100Suchpolicieshaveresultedinrisingheatpumpsalesandprovidedclearsignalstotheexpandingheatpumpindustry.101TheRePowerEUpolicytargetstheinstallationof20millionheatpumpsby2026andnearly60millionby2030.25RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYGlobalnewinvestmentinrenewablepowerandfuels(notincludinghydropowerprojectslargerthan50megawatts,MW)reachedarecordhighin2022,atanestimatedUSD495.4billioni.1Investmentincreased17.2%from2021,duelargelytotheglobalriseinsolarphotovoltaic(PV)installations.2Theseestimatesdonotincludeinvestmentinrenewableheatingandcoolingtechnologies,forwhichdataarenotcollectedsystematically.GlobalinvestmentinheatpumpsiireachedUSD63.4billion,up9.6%from2021.3(pSeeBuildingsModule.)Hydropowerinvestment(includingprojectsabove50MW)hashoveredataroundUSD8billionforthepastseveralyears,althoughdataremainlimited.4Theincreaseinrenewableenergyinvestmentcameamiddrasticchangesintheenergylandscapein2022,includingtheRussianFederation’sinvasionofUkraine,skyrocketinginflationandongoingsupplychaindisruptionsrelatedtotheCOVID-19pandemic.InEurope,thewarinUkraineanditsimplicationsforimportsofRussiangasamplifiedcallsforgreaterdeploymentofrenewablesandrelatedinvestment.5Together,thesefactorspromptedsweepinggovernmentinterventionstofast-trackacleanenergytransition,includingtheInflationReductionActintheUnitedStates,theREPowerEUplaninEuropeandtheGXGreenTransformationProgrammeinJapan.6(pSeePolicysection.)Inflation(ofaround8%)playedaroleintheinvestmentgrowthinrenewablesin2022,contributingtohighercostsforcomponents,constructionandfinancing.7However,inflationrepresentedonlyafractionoftheoverallinvestmentincrease,meaningthatinvestmentexpandedwellbeyondtheeffectsofinflation.8Ingeneral,thedecliningcostsofrenewablesoverthepastdecadehavemeantthatadollarinvestedtodaytranslatesintohighercapacityinstalledthanitdidinyearspast.9Withoutthesecostreductions,muchmoreinvestmentwouldbeneededtobringthesamelevelofcapacityonline.10iDataarefromBloombergNEFandincludethefollowingrenewableenergyprojects:allbiomassandwaste-to-energy,geothermalandwindpowerprojectsofmorethan1MW;allhydropowerprojectsofbetween1and50MW;allsolarpowerprojects;alloceanenergyprojects;andallbiofuelprojectswithanannualproductioncapacityof1millionlitresormore.iiHeatpumps,althoughnotconsideredrenewableenergytechnologiesinthisreport,areenergy-efficientheatingandcoolingsystems.MODULEOVERVIEWPOLICYINVESTMENTANDFINANCEMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESInvestment($billion)350300250200150100500201820192020202120222018201920202021202220182019202020212022+36%-1%-32%Changein%2021to2022OtherRenewablesSolarWindSource:Seeendnote11forthissection.FIGURE9.GlobalInvestmentinRenewablePowerandFuelsbyTechnology,2018-2022GlobalnewinvestmentinrenewablepowerandfuelsreachedarecordhighUSD495billionin2022.26INVESTMENTANDFINANCEINVESTMENTBYTECHNOLOGYSolarPVandwindpowercontinuedtodominatenewinvestmentinrenewables,withsolarPVaccountingfor62%ofthe2022totalandwindpowerfor35%.11(pSeeFigure9.)ThestronggrowthinsolarPVinvestmentof2021expandedfurtherin2022,risingnearly36%toreachUSD307.5billion.12Windpowerinvestmentfell1.3%toUSD174.5billion,areflectionofpolicyuncertainties,longandcomplexpermittingregulationsinmanycountries,andhighinflationinthecostsofinputs.13Theprivatesectorhasbeentheprimarysourceofglobalinvestmentsinrenewableenergyinrecentyears,althoughthebalancebetweenpublicandprivateinvestmentsvariesdependingonthetechnologyandcontext.14In2020,themostrecentyearforwhichdataareavailable,privatesourcesaccountedfor69%ofrenewableenergyinvestment,withmostofthisoriginatingfromcommercialfinancialinstitutionsandcorporations.15PrivatefinanceaccountsforthevastmajorityofsolarPVtechnologies(around83%in2020),asthesetechnologiesarecommerciallyviableandhighlycompetitive;incontrast,geothermalandhydropowertechnologiesrelymostlyonpublicfinance,withprivatefinancerepresentingonlyaround32%and3%,respectively.16Hydropowerinvestmentsoftenneedpublicfinancebecauseofthelargeupfrontinvestments,theneedforlong-tenorloans(asconstructioncantakemorethanadecade),highconstructionrisks,complexandlengthypermittingprocedures,andhighsocialcostsandenvironmentalrisks,allofwhichhamperprivatesectorinvestments.17INVESTMENTBYECONOMYInvestmentinrenewablepowerandfuelsvariedbyregionin2022,risinginBrazil,ChinaandIndiabutfallinginEuropeandtheUnitedStates.18(pSeeFigure10.)Chinacontinuedtoaccountforthelargestshareofglobalrenewableenergyinvestment(excludinghydropowerlargerthan50MW),at55%,followedbyEurope(11.3%),Asia-Oceania(excludingChinaandIndia;10.8%)andtheUnitedStates(10.0%).19Allotherworldregionsaccountedfor4%orlessofthetotal.20China’soverallinvestmentinrenewablesincreasedsharplyin2022,rising56.2%toreachUSD274.4billion.21Thiswasduelargelytocontinuedgrowthinthecountry’ssolarPVcapacity,whichgrew78.9%toUSD164.5billion.22WindpowerinvestmentalsoincreasedinChina,rising33.2%toreachUSD109.0billion.23Investmentinallotherrenewableenergytechnologieswasonlymarginalbycomparison.24RenewableenergyinvestmentinChinaisdriveninpartbythecountry’slong-termdecarbonisationgoalsandbythegrowingdemandforelectricitycomparedwithcountriesintheOrganisationforEconomicCo-operationandDevelopment(OECD),whereelectricitydemandisrelativelystagnantorgrowingfarmoreslowly.25InvestmentinsolarPVhasbeensupportedbypoliciesenactedbyChineseprovincialandlocalgovernments,aswellasbygrowinginterestindistributedsolarPVfromcommercialandindustrialentities.26AlthoughChinahasphasedoutdirectsubsidysupportforwindpoweratthenationallevel,provincialandlocalgovernmentshavecontinuedtosupportprojectinvestments,particularlybyfacilitatinglandacquisitionandotherprojectlogistics.2727RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYInEurope,investmentinrenewableenergyprojectsfell26%toUSD55.9billionin2022.28Thisdeclinereflectsinflation-relatedchallenges(withcostsrisingatahigherratethanprospectiverevenues)aswellasnationalinterventionsinelectricitymarketsthatsetvaryingrevenuecapsfordifferenttechnologies,shakinginvestorconfidence.29Despitethesechallenges,someEuropeancountriesshowedremarkableinvestmentgrowth:inItaly,renewableenergyinvestmentincreased53.2%toUSD3.69billion,andinSpainitgrew36.3%toUSD10.5billion.30Bulgaria,EstoniaandRomaniaalsoshowednotablegrowth,althoughstartingfromamuchsmallerbase.31Othercountriessawsignificantdropsininvestment.InFrance,investmentfell35.6%toUSD4.4billion,inGermanyitwas2013201420152016201720182019202020212022201320142015201620172018201920202021202220132014201520162017201820192020202120222013201420152016201720182019202020212022BillionUSDBillionUSDUnitedStatesAmericas(excl.UnitedStates&Brazil)BrazilBillionUSDBillionUSDAfrica&theMiddleEast1505101505100105152002040608029.129.130.830.837.437.446.446.446.146.141.641.656.856.855.055.049.549.513.013.017.017.012.712.78.28.213.213.214.914.913.113.110.110.116.816.816.616.69.29.212.512.514.814.83.43.45.45.46.76.75.15.16.16.13.93.97.17.18.48.46.26.26.66.610.210.25.55.59.49.410.610.69.39.38.28.262.362.313.713.7Note:Figuredoesnotincludeinvestmentinhydropowerprojectslargerthan50MW.Reference:BloombergNEF,EnergyTransitionInvestmentTrends2023Source:Seeendnote70forthischapter.FIGURE10.GlobalInvestmentinRenewablePowerandFuels,byCountryandRegion,2013-202228INVESTMENTANDFINANCEdown32.8%toUSD8.8billion,andintheUnitedKingdomitplummeted81.4%toUSD2.2billion.32ThedramaticdropinUKinvestmentreflectspoliciesthathavebannedsolarPVfromfarmland(citingfoodsecurityconcerns)aswellasplanninglawsthathaveblockedonshorewindfarms.33Intheregionalranking,Spainagaintooktheleadinrenewableenergyinvestment,followedbyGermanyandPoland.34Chinaaccountedfor55%ofglobalinvestmentinrenewables.BillionUSD2013201420152016201720182019202020212022201320142015201620172018201920202021202220132014201520162017201820192020202120222013201420152016201720182019202020212022BillionUSDEuropeChinaIndiaAsia&Oceania(excl.China&India)BillionUSDBillionUSD05100204060801000204080601506012018024030011.511.54.74.75.55.57.77.712.912.913.013.010.210.28.98.96.86.811.011.053.853.840.940.950.850.848.848.838.438.437.337.345.345.348.548.569.069.058.358.355.955.950.850.856.356.355.855.860.260.244.044.053.253.254.554.580.680.675.475.4274.4274.460.860.885.985.9117.3117.3103.2103.2142.5142.598.198.1109.0109.0114.7114.7175.6175.629RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYInAsia-Oceania(excludingChinaandIndia),investmentinrenewablesfell7.7%toUSD53.7billion.35ThisdeclinereflectsdecreasesinJapan(down29.4%toUSD12.5billion)andtheRepublicofKorea(downUSD4.2%toUSD6.7billion).36AlthoughinvestmentinsolarPVintheregiongrewslightly(3.4%toUSD39.8billion)in2022,itwasnowherenearthelevelsseenin2020.37AcontributingfactorwastheongoingdeclineinsolarPVinvestmentinVietnam,theregion’slargestsolarPVmarket,followingthediscontinuationofthecountry’sfeed-intariffattheendof2020.38InvestmentinwindpowerinAsia-Oceaniafell15.9%toUSD12.1billion,attributedinparttodifficultiesinacquiringgridconnections,acommonproblemintheregion.39Investmentinbiofuelsincreasedmarkedlyduringtheyear,up239.6%toUSD0.18billion.40TheincreaseisduelargelytoincentivesthatIndonesiaandMalaysiaputinplacetosupportthelocalpalmoilindustry,aftertheEuropeanUnion(EU)imposedsustainabilityrestrictionsonpalmoilimports.41TheUnitedStatesattractedthemostrenewableenergyinvestmentamongdevelopedeconomies,althoughinvestmentcontinueditsdeclineofrecentyears,falling10%toUSD49.5billion.42InvestmentfellinbothsolarPV(down16.1%toUSD25.5billion)andwindpower(down24.6%toUSD15.2billion).43TheUSinvestmentdeclinecontinuedtoreflectthechallengesseenin2021:difficultieswithsupplychains,roadblocksinpermittingandgridconnection,thefall-offinavailablefederaltaxcredits(whichwasreversedduringtheyear),andcontinueduncertaintyabouttariffsandothertrademeasuresthatimpactmoduleimports.44InIndia,totalnewinvestmentinrenewablesincreased4.4%toUSD11.5billionin2022.45InvestmentinsolarPVrose19%toUSD8.6billion.46Biofuelinvestmentgrewmarginally,andinvestmentinallotherrenewabletechnologies,includingwindpower,fellduringtheyear.47AlthoughauctionscontinuetosupportinvestmentinbothsolarPVandwindpowerinIndia,thescalablenatureofsolarPV(whichallowsittobedeployedmorequicklywithfewercomplicationsforgridconnection)hasgivenitagreatadvantageoverwindpower,explaininginpartthelargedifferenceininvestmentbetweenthetechnologies.48WindpowerinvestmentinIndiahasnotyetrecoveredtoits2016peak,duelargelytodifficultieswithprocuringlandfornewprojectsinareaswithstrongwindresourcesorneartransmissionnetworks,butalsobecauseofthenationalshiftfromfeed-intariffstotendering.49Brazil’stotalinvestmentinrenewableswasup18.3%toUSD14.8billion.50Continuingthegrowthof2021,investmentinsolarPVincreased23.7%in2022andinwindpowerincreased14.5%,whereasinvestmentinallotherrenewableenergytechnologieseitherstagnatedordeclined.51TheflurryofinvestmentinrooftopsolarPVcontinued,inadvanceofrevisedlegislationthatwillgraduallyintroducegrid-accesschargesforresidentialandcommercialsystemownersbeginninginJune2023.52WindpowerinvestmentreachedanewhighinBrazilandisincreasinglybeingsupportedbypowerpurchaseagreementsthatarenotconnectedwithgovernment-runauctions.53Thisdemonstratestheriseinunregulatedelectricitymarketsharescoupledwithgrowingcorporatedemandforcleanenergy.54AlthoughthesharesofbiomassinBrazil’stotalrenewablepowerinvestmentaredecreasing,dependablesugarcanefeedstocksandongoinggovernmentauctionstargetingbiomass-generatedelectricityhavehelpedtoensureongoinginvestmentinthetechnology.5530INVESTMENTANDFINANCEiInvestmentinutility-scalebatterycapacityisnotincludedintheinvestmenttotalsforrenewablepowerandfuelspresentedearlierintheparagraph.OutsideBrazilandtheUnitedStates,renewableenergyinvestmentintheAmericastotalledUSD16.6billion,downslightlyfrom2021.56SolarPVinvestmentintheregionincreased16%toUSD11.8billion,whereasinvestmentfellinallothertechnologies,includingwindpower,whichwasdown9.6%toUSD4.8billion.57Biofuelinvestmentdropped100%toonlyUSD1.1billion.58Investmentinrenewableswasimpactedbyinflation,thediscontinuationofCOVID-19stimuluspackages,weaklocalcurrenciesandsloweconomicgrowth.59InArgentina,newrenewableenergyinvestmenthasfallensharplyduemainlytoeconomicandfinancialturmoil,aswellastobottlenecksinthetransmissioninfrastructurethathavegreatlyslowedtheintegrationofadditionalvariableelectricitysupplies.60Chileremainsakeydestinationfornewrenewableenergyinvestmentintheregion,despiterelativelylowerlevelsspentin2022,andColombiahasemergedasanimportantnewmarketforwindandsolarpowerinvestment.61Toenablegreatergridintegrationofvariablerenewables,bothcountrieshavetakenstepstosupportutility-scalebatterycapacityi,whichisonlybeginningtobedeployedintheregionatscale.62InvestmentinrenewablesintheMiddleEastandAfricawasup3.0%toreachUSD8.4billionin2022.63RegionalinvestmentleadersincludedSouthAfrica(up45.4%toUSD2.2billion),Egypt(up669.2%toUSD1.8billion)andIsrael(up9.2%toUSD0.99billion).64AtleastsomeofSouthAfrica’sremarkablegrowthinrenewableenergyinvestmentmaybeinresponsetotheNovember2021announcementofdedicatedfinance(initiallyUSD8.5billion)fordecommissioningcoal-firedpowerplantsanddeployingrenewables.65PartnersinthisJustEnergyTransitionInvestmentPlanforthecountryincludeFrance,Germany,theUnitedKingdom,theUnitedStatesandtheEU.66Manydevelopingandemergingeconomiesfaceuniquechallengesinfinancingrenewableenergyprojects,comparedtothedevelopedworld.Investmentinthesecountriesmaybecomplicatedbypoliticalinstability,macroeconomicuncertainty(relatedtoinflationandexchangerates),policyandregulatoryissues(suchaspoorlydesignedorimplementedprocessesforobtaininglicences,permits,rightsandotherapprovalstobuild),institutionalweaknessesandalackoftransparency.67(pSeeSidebar1)Countryrelatedrisksandunderdevelopedlocalfinancialsystemsalsocandirectlyaffectthecostofcapital.68Nominalfinancingcostscanbeuptoseventimeshigherinemerginganddevelopingcountriesthanindevelopedcountries,suchastheUnitedStatesandcountriesinEurope.69RENEWABLEENERGYINVESTMENTINPERSPECTIVERenewablepowerinstallationscontinuedtoattractfarmoreinvestmentin2022thandidfossil-fuelbasedornucleargeneratingpowerplants.70Investmentinnewrenewablepowercapacityaccountedfor74%ofthetotalinvestmentcommittedtonewpowergeneratingcapacity(includingfossilfuelsandnuclear).71(pSeeFigure11).Source:Seeendnote70forthissection.FIGURE11.GlobalInvestmentinNewPowerCapacity,byType,202274%RenewableenergyNuclearCoalOilandNaturalGas11%8%8%640three-quartersUSDbillioninvestedin2022Justunderofthetotalinvestmentinnewpowercapacitywenttorenewablesin2022.31RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYMostscenariosthatlimittheincreaseintheglobalmeantemperatureareaccompaniedbyanear-completephase-outoffossilfuelpowergeneration(withoutcarboncaptureandstorage)by2100.72TheParisAgreement(inArticle2.1c)highlightstheneedtomakefinanceflowsconsistentwiththegoaloflimitingglobaltemperatureriseto1.5degreesCelsius.73Achievingthisgoalwouldrequirelargegrowthinoverallrenewableenergyinvestmentcomparedtothelastdecade.Estimatesoftheannualinvestmentinrenewablepowerneededby2030toachievetheParisAgreementgoalsareintherangeofUSD1,300–1,400billion.74(pSeeFigure12.)Source:Seeendnote74forthissection.Note:ThesescenariosquantifyrenewableenergydifferentlythantheBloombergNEFhistoricalbasisusedinthischapter.Thesescenarioestimatesareforrenewablepoweronly,whilethehistoricalbasisincludespowerandrenewablefuels.FIGURE12.RangeofAnnualRenewableEnergyInvestmentNeededinClimateChangeMitigationScenarios,ComparedtoRecentInvestmentsAnnualinvestmentinrenewableenergyneedstoincreasebymorethanan150%.Annualinvestment(USDbillion/yr)Current(2022)annualrenewableenergyinvestment01,0001,8004002008006001,4001,2001,60020202021203020221,8641,4001,3002,000OneEarthClimateModelBloombergNEFNetZeroScenarioIRENA1.5CScenario+276%+183%+162%423363Increaserelativeto2022(%)Annualinvestmentrequirements49532INVESTMENTANDFINANCESIDEBAR1.PermittingandGridUpdatesforRenewableEnergyInterestinrenewableenergyincreasedgloballyin2022inlightofthesevereenergycrisistriggeredbytheRussianFederation’sinvasionofUkraine.Morecountriesandcompaniesareseekingtheopportunitytoincreasetheirinstalledcapacityasrenewablesareseenasprovidingcleaner,cheaperandmorestableenergythanfossilfuels.In2022,globalrenewableenergycapacitygrew13%,adding348GWtoreachatotalof3,481GW.However,akeyconstraintfortheimplementationofrenewablesistherequiredpermittingtoenableconnectiontotheelectricalgrid.Inmostplaces,thecurrentgridcapacityisinsufficienttotransmitthepowergeneratedfromrenewablesources.TheUnitedStateshasmorethan900GWofrenewableenergyprojectswaitingtobeconstructedandconnected,yetmanyhavebeenunabletoconnecttothegrid,delayingdecarbonisationintheworld’ssecondlargestemitterofgreenhousegases.Theconventionalgridwasbuilttoaccommodateacentralisedpowersystemfedbyarelativelysmallnumberoflargepowerplants.Investmentsingridupdateshavebeeninadequate,resultinginmorethan1,200GWofrenewableenergyprojectsinUSawaitingconnectionasof2022.Thischallengeisbeingwitnessedglobally.Greece,acountrythatfullycovereditselectricitydemandwithrenewablesforthefirsttimein2022,has11.5GWofprojectswaitingtobeconnectedtothegrid.IntheUnitedKingdom,around600projectswithacombinedcapacityof176GWareinthequeueforconnection,withaprojectedwaitingtimeforsomeprojectsextendinginto2036.Financialandenvironmentalvariablescangreatlycomplicategridupgrading,andthecostcansometimesbeprohibitiveforutilitycompanies.In2020,PineGateRenewablesintheUSstateofNorthCarolinaterminateditssolarPVprojectduetotheestimatedgridconnectioncostofUSD5million.Germany,whichplanstoadd12,000kilometresofelectricitylines,facesananticipatedcostofEUR55billion(USD58.7billion)toexpandhigh-voltagelinesby2030.Globally,anestimatedUSD21.4trillioningridinvestmentwouldbeneededtoachievenetzeroemissionsby2050.Theprocessofupgradinggridsneedstobetransparenttolocalcommunitiesandsensitivetoenvironmentalconcerns.Thiscanbetimeconsumingforcompaniesthatarehopingtorealiseprojectsasquicklyaspossibletorecoupinitialinvestments.IntheUnitedStates,themedianapprovaltimeforconnectinganewpowerprojecttothegridin2021was2.8years,doubletheapprovaltimein2015.InGermany,farmershaveprotestedgridexpansions,citingthepotentiallyseriousimpactsthatundergroundcablescouldbringtofarmlands.Manygovernmentsarewellawareofthepotentialbottleneckofgridconnectionfortheenergytransition.In2022,thegovernmentofGreeceimplementedstricterstandardsforconnectingrenewableenergytogrids,topreventinexperiencedutilitycompaniesfrompreoccupyingthegridbytakinglongleadtimestorealiseprojects.TheUSgovernmentlaunchedaBetterGridInitiativetodevelopnewandupgradedhigh-capacitytransmissionlinesinthecountry,identifyingareasofgreatestneed.Inaddition,thefederalgovernmentwillprovidemorethanUSD20billiontosupporttransmissioninfrastructure.Giventhatgridexpansiontakestime,theJapanesegovernmenthasdevelopedaschemetousetheexistinggridmoreflexibly,requiringcompaniestoagreeto“non-firmconnection”wherebyprojectsmustsuspendoperationswhenrequiredtosecuregridstability.Toacceleratepermitting,Spaintemporarilyabolisheditsrequirementtocarryoutenvironmentalimpactassessmentsforrenewablesprojects,whichcouldhalvethedevelopmenttime.IntheUnitedStates,abilltosimilarlyoverhaultheenvironmentalprocesswasproposedbutrejected.Meanwhile,UKrenewableenergydevelopershaveaskedforregulatoryreformsthatprioritiserenewableenergyprojectswithshortlead-timesthatarereadytoproceed,inplaceofthecurrent“firstcome,firstserved”approach.iAnindividual,householdorsmallbusinessthatnotonlyconsumesenergybutalsoproducesit.Prosumersmayplayanactiveroleinenergystorageanddemand-sidemanagement.Source:Seeendnote75forthissection.33Almost10%ofthetotalinstalledrenewablepowercapacitywasaddedin2022.H2Totalglobalinstalledrenewablepowercapacityreached3,481Gigawattin2022.Renewablescover30%ofglobalelectricitygenerationwithsolarPVandwindpowerrepresenting12%.China,theUnitedStates,India,Brazil,andSpaininstalled66%ofthenewSolarPVcapacityin2022.Asofend-of2022,announcedhydrogenprojectswouldleadtoaninstalledelectrolysercapacityof134-240GWby2030.34MARKETDEVELOPMENTSMARKETDEVELOPMENTSBioenergy(includingtraditionaluseofbiomass)isthelargestrenewableenergysource,accountingfor12.6%ofoverallenergyconsumptionin2020.Globally,mostoftheuseofbioenergywasforheating.Globalproductionofliquidbiofuelstotalled162billionlitresin2021,providing3.6%oftheoverallenergyuseinthetransportsector.In2022,672terawatt-hours(TWh)ofelectricitywasgeneratedfromawidevarietyofbiomassfeedstock,withtheshareinoverallelectricitygenerationat2.4%.Totalinstalledbiopowercapacitywas149gigawatts(GW)in2022.BIOENERGYKEYFACTSBioenergy,orenergyderivedfrombiomass,isaversatilerenewableenergysourcewithamultitudeoffeedstocks,technologicalpathwaysandend-uses.1Predominantfeedstocksincluderesiduesfromforestharvestingandprocessing(e.g.,fuelwood,woodchips,sawdust),energycrops,wastesandresiduesfromtheagriculturesector(e.g.,paddystraw,ricehusk,animalwaste)andtherenewableshareofmunicipalsolidwaste.2Thisfeedstockcanbeconvertedthroughavarietyofbiological,chemicalandthermalprocessestoproduceelectricity,heat,cooling,andtransportfuels,aswellasmaterialsandchemicals.3Theuseofbiomassforenergycanbebroadlyclassifiedintotraditionalandmodernbioenergy.Traditionalbioenergytypically35RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYinvolvesthedirectcombustionofbiomasssuchaswood,charcoal,cowdungandcropwasteininefficientappliancessuchasopen-firedcookstoves.Suchuseoccursmainlyindevelopingcountriesandproduceshouseholdairpollutionthatisharmfultohumanhealth.4However,modernsustainablebioenergy–theuseofimprovedfuels(e.g.,pellets,woodchips,ethanol,biogas,biomethane,etc.)inmodernequipment–willplayanimportantroleinmitigatingclimatechange.5Bioenergyisthelargestrenewableenergysourceglobally,asitprovidesheat,electricityandfuelsfortransport.6In2020(latestdataavailable),thegrossfinalenergyconsumptionofbioenergywas45.6exajoules(EJ),accountingfor12.6%oftotalenergyconsumption.7Theuseofmodernbioenergyforindustry,buildings,transport,agricultureandpowerwas20.6EJ,representing5.7%oftotalenergyconsumption.8(pSeeFigure13.)Globally,mostbioenergyisusedforheat.In2020,modernbioenergyprovided14.9EJofheat(industry66%,buildings31%andagriculture3%),whichaccountedfor23.4%ofallheatconsumption.9Intransport,consumptionofliquidandgaseousbiofuelswas3.8EJ,providing3.6%ofallrenewableenergyinthetransportsector.10Theelectricitysectorconsumed1.9EJofbiomass,or2.3%ofenergyuseinthatsector.11Overall,bioenergyrepresentedarenewableenergyshareofaround45%inglobaltotalfinalenergyconsumptionin2020,downfrom54%in2010.12During2010-2020,theglobalfinalenergyconsumptionofbioenergyincreasedfrom29EJto45EJ,rising4.4%annually.1387.4%Non-biomass5.7%6.9%ModernbioenergyNon-bioenergyModernbioenergyElectricityBuildingsIndustryTransportAgriculture100%75%50%25%0%5.03.62.311Agriculture0.1%Electricity0.5%Traditionalbiomass1.1%Transport1.3%Buildings2.7%Industry7.4Source:Seeendnote8forthissection.FIGURE13.ShareofBioenergyinTotalFinalEnergyConsumption,202036MARKETDEVELOPMENTSBIOHEATGlobally,traditionaluseofbiomassaccountsformorethanhalfofallbioenergyuse,mainlyinemergingeconomiesinAsiaandAfricawhereitisusedlargelyforcookingandindoorheating.14Underscenariosfornetzerogreenhousegasemissions,theuseoftraditionalbiomasswouldneedtobephasedoutby2030.15Renewablealternativesincludemodernbioenergytechnologiessuchasbiogas,ethanolandprocessedbiomasssuchaspelletsandbriquettes.16In2020,modernformsofbioenergyproduced1.2EJofderivedheat,forexampleincombinedheatandpower(CHP)plantsandheat-onlyplants.17Halfofthisproductionwasfromsolidbiomasssourcessuchaswoodchipsandwoodpellets,whilewaste-to-energyaccountedforaround45%andbiogasfor4.3%.18Heatproductionfromsolidbiomassnearlytripledgloballyduring2010-2020.19Thebuildingssectorusedanestimated29EJofbioenergyin2020outofwhich4.9EJofmodernbiomassforenergy(includingdistrictheatingnetworks);thisaccountedfor5%oftotalfinalenergyconsumption.20(pSeeFigure13.)Inindustry,biomassprovided9.9EJofrenewableheat,or11%oftheoverallheatdemand.21Theuseofbioheatinindustryincreased36%between2010and2020.22Industriessuchasconsumergoods,breweries,pharmaceuticalsandbakeriesarereplacingtheiruseoffossilfuels(mainlycoalandnaturalgas)forproducinghotwaterandsteamwithrenewablessuchasbiogas,pelletsandbriquettes.23In2022,HeinekenopenedthelargestbiomassplantinCambodiatoprovidethermalenergytoitsbreweryinPhnomPenh.24Districtheatingisanefficientwaytotransferheataroundtheclockfromalargecentralplanttodomesticandcommercialestablishmentsviaundergroundpipes,leadingtoimprovedenergyefficiency,reducedemissions,fuelflexibilityandreducedcosts.25Districtheatingaccountedfor8%ofoverallheatdemandin2021.26However,morethan90%ofthedistrictheatingwasfromfossilfuels,mainlycoalinChinaandnaturalgasintheRussianFederation.27InEurope,wastefeedstockwasusedformostdistrictheating,withDenmark,Sweden,Estonia,LithuaniaandLatvialeadingtheway.28InVilnius,Lithuania,anewCHPplantusingmunicipalwasteandbiomasswillbeabletoprovide40%oftherequiredheatforthecitywhilereduceheatingcostsby20%.29InSweden,districtheatinginbuildingsamountedto43.1terawatt-hours(TWh)(0.16EJ)in2020,accountingfor58%ofallenergyconsumptionPrimaryenergysupplyofbioenergyincreasedby17%during2010–2020.Source:Seeendnote50forthissection.FIGURE14.GlobalProductionofEthanol,BiodieselandHVO/HEFAFuel,byEnergyContent,2011-2021Production(EJ)HVO/HEFABiodiesel(FAME)Ethanol024132016201520142013201220112017201820192020202137RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYinresidentialandcommercialbuildings.30Asmuchas80%ofSweden’sdistrictheatproductioninCHPplantswasfrombiomasssources,includingwoodbriquettesandpellets,woodchips,sawdust,biogasandmunicipalwaste.31In2022,Egyptannouncedplansforthecountry’sfirstwaste-to-energyplant.32Europeaccountsfor90%ofallbioheatproducedfrommunicipalwaste,solidbiofuelsandbiogas.33In2021,theregionproduced0.55EJofbioheatfromsolidbiofuels;61%ofthiswasinhighlyefficientCHPplantsandtherestinheat-onlyplants.34BioheatdemandinEuropegrew16%in2021.35Sweden,FinlandandDenmarkaccountedfor50%oftheheatproductionfrombiomassinEuropethatyear.36Renewablemunicipalwasteprovided0.13EJofheat,mainlyinCHPplants,withGermanyandSwedenaccountingforhalfofthisproduction.37Forbiogas,grossheatproductiontotalled0.04EJ,andone-thirdofthisheatblendedintonaturalgasgrids.38ItalyandGermanyaccountedfor63%ofthebiogasheat,withGermanyproducing70%ofallbiogasheatingasgrids.39Acriticalend-useforbioenergyiscleancooking.Asof2020,around3billionpeople(30%oftheglobalpopulation)didnothaveaccesstocleancookingsolutionsandreliedontraditionalbiomassuseininefficientcookstoves(inSub-SaharanAfrica,accessisevenlower,at17%).40Modernandrenewablesolutionsincludebottledethanol,distributedsolar,pelletgasifiersandelectricpressurecookers.41Theshareofpeoplewithaccesstocleancookingsolutionsincreased9percentagepointsduring2010-2020.42In2020,accordingtoanindustrysurveyof60companies,salesofbiomassstoves(includingbiogas)accountedfor90%ofthetotalcleancookingsalesrevenue.43AtanestimatedUSD26million,thiswaswellbelowtheUSD8billionperyearrequiredforuniversalaccesstocleancooking.44TRANSPORTBIOFUELSLiquidbiofuelsofferasolutiontoreplacingfossiloilinthetransportsector.45In2020,biofuelsaccountedfor3.6%oftotalenergyuseinthesector.46Transportbiofuelsareproducedmainlyfromsugarorstarchcropssuchassugarcane,maize,cassavaandcereals;oilcropssuchasrapeseed,soybeanandoilpalm;and,morerecently,usedcookingoilandanimalfats.Throughvariousproductionpathways,thesefeedstockscanbeconvertedtobioethanol,biodiesel,hydrogenatedvegetableoil(HVO)andfuelsformaritimetransportandaviation(sustainableaviationfuels,orSAF).Gaseousfuelssuchasbiomethane,producedbyupgradingbiogas,arealsousedinroadtransport.47Thebiofuelsaretypicallyblendedwithpetrolordieselwhenusedinroadtransport.CurrentblendstypicallyrangefromE5(5%ethanolinpetrol)andB7(7%biodieselindiesel)toambitionsforE20(India)andB35(Indonesia).48HigherblendsalsoarepossiblewithexistingED95andB100,whicharetypicallyusedinheavy-dutytransportandwithamodifieddieselengine.49In2021,globalproductionofliquidbiofuelstotalled162billionlitres(4.06EJ).50(pSeeFigure14.)Bioethanolproductiontotalledanestimated106billionlitres(2.24EJ),accountingfortwo-thirdsofglobalbiofuelproduction.51Biodieselaccountedfor28%ofglobalproduction,at45.7billionlitres(1.49EJ),followedbyHVO(renewablediesel)atalmost10billionlitres(0.33EJ).52Despiteintensefocusandsignificantopportunities,biojet(SAF)productionremainsatanearlystageofmarketdevelopment,with150millionlitresproducedin2022.53Demandforliquidbiofuelsgrew4.6%in2021astransportrestrictionsrelatedtotheCOVID-19pandemicwereeased,leadingtoamassiveincreaseinfueldemandforallend-usesectors,especiallyaviation.54Biodieselproductionincreased4.3%,followedbybioethanolproductionatamodestrateof2.2%.55Renewabledieselproductiongrew44%,andbiojetproductiondoubledin2021.56Ethanolisthelargestbiofuelproducedgloballyandaccountedfor66%oftotalbiofuelproductionin2021.57TheUnitedStatesisworld’slargestethanolproducer,followedbyBrazil;together,theyproducedmorethan80%oftheglobaltotalin2021.58TheprimaryethanolfeedstockintheUnitedStatesiscorn(maize),whileinBrazilitissugarcane.ThemostcommonUSblendisE10,whichisavailableineverystate,andeffortsareunderwaytoincreasetheblendtoE15incertainmidwesternstatessuchasIowa,IllinoisandMinnesota.59InBrazil,thecurrentblendingmandateis27%,andpoliciessuchasRenovabioaimtofurtherexpandtheuseofbiofuelstoreducethecarbonintensityoftransport.60IntheEuropeanUnion(EU),theshareofethanolintransportwas6.8%byvolumein2021,withE5contributingtothebulkofthepetrolmarket(althoughE10isincreasinggradually).61Majorhurdlesfortheexpansionofliquidbiofuelsintheregionincluderecentlegislationthatcurtailsthequalificationofcropbiofuelsforrenewableenergytargets;decliningpetroldemand;anddiscussionssurroundingthephase-outofinternalcombustionengines.62InAsia,Chinaisoneofthelargestproducersofethanol,withestimatedproductionof12billionlitresin2022,mainlyviamaizeandricekernels.63Aplannednationwideblendingmandateof10%by2020wasnotmet,withtheblendratereachingonly1.8%38MARKETDEVELOPMENTSasof2022.64InIndia,incontrast,implementationoftheEthanolBlendedPetrolprogrammeledtotheachievementofE10in2022.65TheIndiangovernmenthasannouncedatargetofE20tobeachievedby2025.66Apartfromcrop-basedbiofuels,ethanolcanbeproducedfromcellulosicsourcessuchaswheatstraw.Commercialisationofcellulosicethanolfacilitiesisongoing,althoughmajorprojectshavefacedtechnical,supplychainandeconomicissues.67Evenso,thereisrenewedinterest,withnewprojectsbeingannouncedinBrazil,IndiaandRomania.68Conventionalbiodiesel,commonlyreferredtoasFAME(fattyacidmethylester)biodiesel,usescommonvegetableoils(palm,soy,peanut,rapeseed)forconversionviatransesterificationtoproducearenewablesubstitutetodieselinroadtransport.In2021,biodieselrepresented28%oftotalbiofuelproduction.69TheEUisaleaderinFAMEbiodiesel–producinganestimated12billionlitresin2021–andaccountsfor7.8%ofthedieseldemand,withrapeseedbeingthedominantfeedstock.70France,GermanandSpaincontribute62%oftheregion’sFAMEbiodieselproduction.71Asiahasexperiencedrapidgrowthinbiodieselproduction,drivenmainlybyexpandingmandatesinSoutheastAsiancountries.Indonesia,theworld’stoppalmoilproducer,announcedplanstoincreaseitsbiodieselblendingmandatetoB35startingin2023.72In2020,MalaysiaannouncedagoalofB20,buttheroll-outwasdelayedduetoissuesrelatedtotheCOVID-19pandemicandtoanuncertainpoliticalsituation.73ThailandpostponeditsproposedB10mandateandisinsteadfocusingonB7duetosurgingfeedstockprices.74Hydrogenatedvegetableoil(HVO),orrenewablediesel,reliesonsimilarfeedstockasbiodiesel,althoughthereisamarkeddifferenceintheproductiontechnologyandproductcharacteristics.75HVOisproducedviahydroprocessingofoilsandfats,resultinginadrop-infuelthatisfullycompatiblewithexistingfossilfuelinfrastructure.76Nesteaccountsforanestimated40%ofallproductionglobally,withrefineriesinFinland,theNetherlands,andSingapore,andothermajoroilcompaniessuchasBP,EniandTotalalsoareinvestinginHVO.77Biomethane(upgradedbiogas)isanotheroptionfordecarbonisingtransportandothersectorsviainjectionintonaturalgasgrids.PromisingmarketsincludetheEU,theUnitedStatesandanemergingsectorinBrazil.78InSweden,281plantsproduced2.3TWhofbiogasin2021,outofwhich67%wasupgradedtobiomethane.79Seventypercentofitwasusedfortransport.80Totalglobalbiomethaneproductionin2020wasaround5billioncubicmetres,accountingfor0.1%ofglobalnaturalgasconsumption.81IncentivesintheUSInflationReductionActaswellastheEUtargetofproducing35billioncubicmetresofbiomethaneby2030areexpectedtofurtherincreaseproduction.82Aviationisexpectedtobeasignificantmarketforbiofuelsconsumption.Duetolimitedotheroptionsforreplacingfossilfuels(suchaselectrification),especiallyforlong-haulflights,sustainableliquidbiofuelsofferapotentialsolution.83Internationalagreementsintheaviationsectortargetreducinggreenhousegasemissions50%by2050.84However,currentSAFproductionlevelsareverylow,atanestimated150millionlitresin2022,representingonly0.03%ofglobaljetfueldemand.85AlthoughnumerouspathwaysexistforproducingSAF–suchasalcohol-to-jet,gasification,Fischer-Tropsch,pyrolysisoilandpower-to-liquid–thereiscurrentlyonlyonecommercialproductionroute(HEFA).86ThemainchallengesforcommercialSAFproductionaresupplychainsandhigherproductioncostsrelativetofossiljetfuel;however,recentlegislationsuchastheUSInflationReductionActcoulddrivemajorgrowthinthesector.87TheInflationReductionActaimstoproduce3billiongallonsofSAFby2030andofferstaxcreditsforSAFbiofuels.88TheEUalsohasintroducedSAFtargetsviatheREFuelEUinitiative.89Maritimetransportaccountsfor2-3%ofglobalgreenhousegasemissionsandfor80%oftheinternationaltradeofgoods.90In2018,theInternationalMaritimeOrganizationannouncedtargetsforreducingthecarbonintensityofthesector40%by2030and70%by2050,aswellaslimitsonthesulphurcontentofthefuelsused.91Comparedtotheaviationsector,whichfacesstrictfuelregulationsduetosafety,themaritimesectorhasseveraloptionsincludingelectrificationandbiofuels.In2020,globalproductionofbiofuelsinthesectortotalledanestimated30,000tonnesofusedcookingoil,biofuels,andbiogas,supplyingroughly0.01%ofglobalmaritimefuelconsumption.92Criticalbarrierstogrowthincludepricing,sustainabilityandsupplychaininfrastructure.93ProductionofHVOorrenewabledieselincreasedby66timesduring2010–2020.39RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYBIOPOWERBiopowerinvolvestheproductionofelectricityfrombiomassfeedstock.Thecapacitiesvaryfromlarge-scalestand-alonepowerfacilitiesofmorethan100megawatts(MW)tosmall-scalebiomassplantsofaround100kilowatts(kW).94In2022,672TWhofelectricitywasgeneratedfromawidevarietyoffeedstocks.95Productionofelectricityfrombiomassgrewslightlyat0.8%,whiletheshareinoverallelectricitygenerationremainedthesameat2.4%.96Asof2020,70%oftheelectricitywasproducedfromsolidbiomasssourcesfrombothforestandagriculturesectors,suchaswoodpellets,woodchipsandsugarcanebagasse.97Urbanmunicipalandindustrialwastegenerated113TWh(16%)ofelectricity,whilebiogasgenerated90TWh(13%).98Installedbiopowercapacityreachedanestimated149GWin2022,orjustover4%oftotalrenewablepowercapacity.99Biopowercapacityincreased5%in2022,oneofitsslowestratesofyear-on-yeargrowthinthelastdecade.100(pSeeFigure15.)Chinahadthelargestinstalledbiopowercapacity,with34GW,followedbyBrazil(17GW),theUnitedStates(11GW)andIndia(10GW).101Chinaaloneaccountsformorethanone-quarter(26%)oftheglobalelectricityproductionfrombiomass,withgenerationof172TWhin2022–mainlyfromforestandagriculturalbiomassaswellasmunicipalsolidwaste.102InBrazil,thebioenergyshare(mainlyfromsugarcanebagasse)inelectricitygenerationreachedanestimated8.6%in2022.103During2022,electricitygenerationfrombiomassincreasedinAsiancountriessuchasJapan(up19%),theRepublicofKorea(up24%)andIndia(up3%),drivenbyincentivessuchasfeed-intariffs,renewableenergycertificatesandmandatesforco-firingbiomasswithcoal.104Indiaisexpectedtobeamajorplayerinbiomasselectricitygenerationduetoanupcomingpolicytoco-fire5%(andhigher)ofbiomassinthermalpowerplants.105AlthoughIndiausedonly83,066tonnesin2022,financialincentivesforprocessingbiomasscouldgeneratenewsupplytomeetthisdemand.106Biomasselectricitygenerationfell10%intheUnitedKingdom,reflectingoutagesatsomekeyinstallations.107InEurope,biopowergenerationfromsolidbiofuels(excludingcharcoal)grew12%in2021toreach93TWh.108Crucially,87%ofthepowergeneratedwascompliantwiththesustainabilitycriterialaidoutinEUregulations,andmostofthesolidbiomassused(96.5%)wasofEuropeanorigin.109In2021,Finland,SwedenandGermanyweretheregion’stopproducers,accountingfor37%ofproduction.110However,debateshavearisenaroundtherevisionoftheEURenewableEnergyDirective(RED3)andtheinclusionofprimarywoodybiomassfeedstocksinsubsidiesandtargetsSource:Seeendnote100forthissection.FIGURE15.GlobalBioelectricityInstalledCapacity,byRegion,2012-20222%RestofWorld2%RestofWorld10%NorthAmerica10%NorthAmerica15%15%20%Asia(excludingChina)20%Asia(excludingChina)23%China23%China30%Europe30%EuropeInstalledCapacity(GW)LatinAmericaandCaribbean17515012510075502502016201520142013201220192017201820202021202240MARKETDEVELOPMENTSforrenewables.111Inrecentdiscussions,therenewableenergytargetwasraisedtoatleast42.5%by2030,whilestrengtheningthebiomasssustainabilitycriteriainlinewithEUclimateandbiodiversityambitions.112Oneofthemostprominentandfastestgrowingbiomasscommoditiesiswoodpellets.In2022,globalproductiontotalled44milliontonnes.113(pSeeFigure16.)ThelargestproducerwastheUnitedStates,followedbyVietnam,whichrecentlytooksecondplace.114DespitethelossofpelletsupplyfromtheRussianFederationandBelarusduetothewarinUkraine,theinternationalmarketisexpectedtoexpandgloballyduetoproposedupgradesofUSplantsandnewfacilitiesinSoutheastAsiaandSouthAmerica.115MajorconsumersincludetheEU(bothcommercialpowergenerationanddomesticheating)andJapan(mainlypower).116Production(MillionTonnes)RestoftheWorldAsiaAmericasEurope020401030502016201520142013201220172018201920202021Source:Seeendnote113forthissection.FIGURE16.GlobalWoodPelletProduction,byRegion,2012-2021Bioelectricityandbioheatincreasedby90%and70%respectivelybetween2010and2020.41RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYGeothermalenergyhasasomewhatuniqueplaceamongrenewableenergytechnologies.Ononehand,itrepresentsatinyfractionoftheglobalenergybalanceandisdwarfedbyotherrenewableenergysources.Onetheotherhand,itcanrepresentavaluableandevencriticalcomponentoftheenergymixinarelativelyfewlocationsaroundtheworld.Whilegeothermalenergyiistheoreticallyubiquitous,itcanbehardtoreachinmostplacesotherthanwheretheEarth’slithosphericplatesmeet.Newtechnologiesarebeingdevelopedtomakethisenergysourcemoreeconomicallyaccessibleinmorelocations.GeothermalenergyisderivedfromthermalandpressuredifferentialsintheEarth’scrust,providingdirectthermalenergyorelectricitybyuseofsteamturbines.In2022,geothermalelectricitygenerationtotalledanestimated101TWh,anddirectusefulthermalenergysupplytotalledanestimated155TWh(560PJ).1Insomeinstances,geothermalplantsproducebothelectricityandheatforthermalapplications(co-generation),butthisoptiondependsonlocation-specificthermaldemandcoincidingwiththegeothermalresource.2GEOTHERMALPOWERForelectricitygeneration,newgeothermalpowercapacityintroducedin2022was0.2GWii,bringingtheglobaltotaltoaround14.6GW.3Thiswasone-thirdlessthantheadditionsin2021andwellbelowthefive-yearaverageof0.5GWsince2017.4CapacitywasaddedinIndonesia,Japan,Kenya,Nicaragua,thePhilippinesandtheUnitedStates.5(pSeeFigure17.)Thetop10countriesforgeothermalpowercapacityattheendof2022weretheUnitedStates,Indonesia,thePhilippines,Türkiye,NewZealand,Kenya,Mexico,Italy,IcelandandJapan.6However,capacityvaluesaresubjecttohighuncertaintyduetoalackofstandardisedreportingcriteria.7Kenyahadthelargestgeothermalpowercapacityadditionin2022asitcompletedthe86MWUnit6attheOlkariaIcomplex.8Theadditionraisedthecountry’sgeothermalcapacityto0.95GW,representing42%ofKenya'stotalgeneratingcapacity.9Kenyaisalsopursuingupgradestoexistinggeneratingunits,includingtheoriginalthreeunits(45MW)atOlkariaI,whichwasthefirstgeothermalpowercapacitycommissionedinAfrica,in1980.10Totalplannedupgradesareexpectedtoincreasecapacitybyanother123MW.11Newgeothermalpowergeneratingcapacityof0.2GWcameonlinein2022,bringingthecumulativeglobaltotaltoaround14.6GW.Globalgeothermalpowercapacityadditionswereone-thirdlowerin2022thanin2021,andwellbelowthefive-yearaverageof0.5GWsince2017.GeothermalpowercapacitywasaddedinIndonesia,Japan,Kenya,Nicaragua,thePhilippines,andtheUnitedStates,withmostcountriesaddingonlysingle,smallunits.Geothermaldirect-use(excludingheatpumps)grewnearlyanestimated10%in2022,toaround155TWh(560petajoules,PJ).Chinaistheworld’sfastest-growinggeothermalheatmarket,andotherkeymarketsareTürkiye,IcelandandJapan.Together,thesefourcountriesareestimatedtoaccountfornearly90%ofglobalgeothermaldirectusein2022.KEYFACTSGEOTHERMALPOWERANDHEATiHere,thetermrefersmostlytoenergyderivedfrommedium-to-highenthalpy(>100degreesCelsius(°C))hydrothermalandhotdry-rockresources,andtypicallyatsignificantdepth.Specifically,itdoesnotincludetherenewablefinalenergyoutputofnear-surface,ground-source(orground-coupled)heatpumps,sometimesreferredtoas“geothermalheatpumps”.(pSeeHeatPumpssection.)iiNetadditionstendtobelowerthanthesumofnewplantsduetodecommissioningorde-ratingofexistingcapacity.42MARKETTRENDSTheUnitedStatesremainsthegloballeaderininstalledgeothermalcapacity,althoughannualcapacityadditionsinrecentyearshavemostlyjustmaintainedoveralloutput.12Duringthefive-yearperiodof2016-2021,netcapacityincreased3.2%whilegenerationgrewlessthan1%.13Threeprojectswerecompletedin2022,includingtheadditionof13MW(net)attheOrmatTechnologies(UnitedStates)TungstenMountainfacilityinNevada.14InCalifornia,Ormatalsocompletedthe30MW(17MWnet)CasaDiablo-IV.15GeothermalpowerintheUnitedStatescontinuestosupplyaround0.4%ofUSnetelectricitygeneration,asmuchas17TWhiin2022.16Inearly2023,aUSgovernmentstudydeterminedthatlarge-scaleexpansionofgeothermalpowerinthecountrywoulddependonlargefuturecostreductionsofenhancedgeothermalsystemsii(EGS).17Indonesiacompletedthreeprojectsin2022,adding55.5MW.18OntheislandofFlores,thefirst5MWunitoftheSokoriadevelopmentwasinaugurated,followedbythe50MWUnit3attheSorikMarapiprojectonNorthSumatra.19OntheNorthSulawesisiteofthe120MWLahendongcomplex(developedinstagesfrom2001through2016),a0.5MWbinary-cycleiiiunitwasinstalled.20Duringthefive-yearperiod2017-2022,geothermalcapacityinIndonesiagrewnearly30%(averageof106MWannually),from1.8GWtomorethan2.3GW.21In2021,geothermalpowergenerationwas15.9TWh,or5.5%ofthecountry’stotalgridsupply.22Withsignificantcoalreserves,Indonesia’s6.8GWoftotalnewpowercapacity(9.1%growthto81.2GWin2022)continuedtobedominatedbyfossilthermalplants.23Thegovernmenthopestoreversethatpatternandseerenewablecapacityoutpaceothersourcesthisdecade.24Inlate2022,Nicaraguasawthecommissioningofa10.4MW(net)binary-cycleunitattheexistingSanJacintoGeothermalProject.25Originallybuiltto10MWin2005,theSanJacintofacilitywaslaterexpandedto72MWin2012(operatingat65MWin2022).26ThePhilippinesranksthirdgloballyfortotalinstalledgeothermalpowercapacityat1.9GW(1.8GWofnetdependablecapacity).27Nocapacityhadbeenaddedsince2018untilasmall3.6MWbinary-cycleunitwasaddedin2022attheMountApogeothermalfacilityinMindanao.28Thenewunitutilisesresidualthermalenergycontainedinthegeothermalbrinefromtheexisting103MWplant,producingincrementalelectricitywithouttheneedforadditionaldrilling,similartothesmallestnewunitinIndonesia.29iGenerationdataforgeothermalpowerintheUnitedStates,asfirstreported,tendtobereviseddownwardbythefollowingyear.iiWhileconventionalhydrothermalsystemsrelyonsufficientheat,permeabilityandfluidtodeliverenergytothesurface,enhancedgeothermalsystemscanbeimplementedwherefluidandpermeabilityarelacking.InanEGS,injectingfluidintothehotrockatgreatpressurecreatesfracturesthatallowfluidpathwaystoform,whichcanbeusedforaninducedhydrothermalcycle.iiiInabinary-cycleplant,whichhasbecomethemostcommondesignatplantsbuiltinrecentyears,thegeothermalfluidheatsandvaporisesaseparateworkingfluid(withalowerboilingpointthanwater)thatdrivesaturbinetogenerateelectricity.Eachfluidcycleisclosed,andthegeothermalfluidisre-injectedintotheheatreservoir.Thebinarycycleallowsaneffectiveandefficientextractionofheatforpowergenerationfromrelativelylow-temperaturegeothermalfluids.OrganicRankineCycle(ORC)binarygeothermalplantsuseanorganicworkingfluid,andtheKalinaCycleusesanon-organicworkingfluid.Conversely,geothermalsteamcanbeuseddirectlytodrivetheturbine,butthisismoretypicalforhigher-enthalpyapplications.3,0002,5002,0001,5001,0005000MegawattsRestofWorld+56+56+3.6+86+11Addedin20222021totalJapanIcelandItalyMexicoKenyaNewZealandTürkiyePhilippinesIndonesiaUnitedStatesSource:Seeendnote5forthissection.FIGURE17.GeothermalPowerCapacityandAdditions,Top10CountriesandRestofWorld,202243RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYInanefforttoinvigorateinvestmentingeothermalenergy,thePhilippinesgovernmentopenedthesectoruptofullforeignprojectownershipin2020–aprovisionstilldeniedtootherrenewableenergytechnologies.30Incrementalresourcedevelopmentismademoredifficultbyhighcostsandexplorationrisks,whilesomepotentialprojectsfacepermittinghurdlesonaccountofimpactsonbothecologicallysensitiveareasandruralpopulations.31Japanwastheonlyothercountrytoaddcapacityin2022,installinga150kWbinary-cyclepowermoduleatathermalbathfacilityintheKumamotoregion.32Mimickinganearbyunitinoperationsince2020,themoduletapsthe110°Cwellsupplytogenerateelectricitybeforethegeothermalwatersareutilisedforbathing.33Despitebeingthemostactivegeothermalmarketoverthelastdecade,Türkiyeaddednonewgeothermalpowerplantsin2022,althoughitsstatedinstalledcapacity(1.7GW)was15MWhigherthanattheendof2021.34Inthe11yearsfrom2008through2019,capacitygrewfrom30MWto1.5GW,withthebulkofthatcomingonlinesince2015(1.1GW).35Annualadditionsthencontractedto99MWin2020and63MWin2021.36Türkiye’sgeothermalindustryattributesthestagnationtothelackofgovernmentsupport,specificallyaweakenedfeed-intariff(FIT)thatisnolongerpeggedtotheUSdollarsince2021,butalsothecurrencyriskofweakeningTurkishlira.37Inearly2023,theTurkishgovernmentindicatedpendingrevisionstotheFITthatwouldreflectcurrentconditions.38GEOTHERMALHEATWorldwide,thecapacityforgeothermaldirectusei–directextractionofgeothermalenergyforthermalapplications–totalledanestimated38gigawatts-thermal(GWth)in2022.39Basedonreportedvaluesfor2019andtheprecedingfive-yeargrowthrate,theestimatedannualcapacityincreasein2022was2.7GWth.40Bythesameestimation,geothermalenergyuseforthermalapplicationsislikelytohavegrownby14TWhduring2022toanestimated155TWh(560PJ).41Thetopcountriesforgeothermaldirectusein2022were(indescendingorder)China,Türkiye,IcelandandJapan.42(pSeeFigure18.)Geothermaldirectuseishighlyconcentratedinthosefourkeymarkets(estimatedtorepresent87%oftheglobaltotalin2022)andisfurtherlocalisedwithineachcountry.43Directuseinothercountriesincludes(indescendingorder)NewZealand,Hungary,theRussianFederation,Italy,theUnitedStatesandBrazil.44iDirectuserefersheretodeepgeothermalresources,irrespectiveofscale,thatusegeothermalfluiddirectly(i.e.,directuse)orbydirecttransferviaheatexchangers.Itdoesnotincludetheuseofshallowgeothermalresources,specificallythosetappedwithground-sourceheatpumps.(pSeeHeatPumpssection.)Thetop4countriesrepresenent90%oftheglobalgeothermalheatmarket.100806040200Terawatt-hoursRestofWorldJapanIcelandTürkiyeChinaSource:Seeendnote42forthissection.FIGURE18.GeothermalDirectUse,EstimatesforTop4CountriesandRestofWorld,202244MARKETDEVELOPMENTSChinaistheworld’sfastest-growinggeothermalheatmarket,withannualgrowthexceeding21%during2015-2019.45Basedonthistrend,China’suseofgeothermalheathaslikelygrownfromareported197PJin2019toaround355PJin2022,whichwouldrepresentnearlytwo-thirdsoftheestimatedcurrentglobaluse.46In2022,China’s14thFive-YearPlanforenergyefficiencyandgreenbuildingdevelopmentemphasisedcontinuedexpansionofgeothermalenergyuseforspaceheating.47InTürkiye,reportedgeothermalheatusegrew3.8%annuallyonaverageduring2015-2019,andatthatrateitmayhavereachedatleast61PJin2022.48Forspaceheatingalone,installedcapacitygrewfromjustover1GWin2019to1.5GWin2020,suggestingevenmorerobustgrowthrecently.49Icelandranksthirdgloballyintheuseofgeothermalheat.50Asof2021,annualgeothermalheatconsumptionwasaround35PJ,fromaninstalledcapacityofaround2.5GWth.51Directgeothermalsupplymeets90%ofspaceheatingdemandinIceland.52Availablegeothermalresourcesfordirectusefarexceedcurrentutilisation.53Therefore,incrementalusewillbedeterminedbypopulationgrowthandincreasesineconomicactivity,withtheexceptionofanynewresourcesfoundinlessgeothermallyactivepartsofthecountrywherepopulationshavereliedonelectricityforspaceheating(eithergeothermalorhydropower)orevenfossilfuels.54GeothermalheatdevelopmentsincontinentalEuropeareconcentratedinafewareaswheredeepheatreservoirsexist.Theseinclude,inparticular,southernregionsofGermany(Bavaria),theParisregionofFranceandvariouslocationsinHungary,Italy,theNetherlandsandPoland.Projectexplorationanddevelopmentcontinuedin2022inmanylocations.IntheNetherlands,theproductionofgeothermalheatincreased6%in2022,with31geothermalprojectlocationswithanannualproductioncapacityof6.4PJ.55Eventhoughnewboreholesareaddedeachyear,thelocalgeothermalindustryconsidersprogresstobeslow,hamperedbypermitprocessing,therigorsofthedrillingprocess,andalackofadequateheatdistributionnetworkstohouseholdsandgreenhouses.56Political,financialandsocialbarriersalsolimitprojectdevelopment,withpublicacceptancebecomingamorepressingconcern.57Asoflate2022,70projectswereinvariousstagesofdevelopment,with19advancingtowardscommencingheatproduction.58Byearly2023,anewMiningActwasexpectedtosupportgeothermalactivities,allowingastate-ownedenterprisetofinanciallyparticipateinprojectsasanon-operatingpartner.59Developmentofdirect-usefacilitiesinFrancecontinuesintheParisregion(Île-de-France),aswellastothesouthwestinAquitaineandtotheeastinAlsace.60FollowingthecompletionofthreenewgeothermalfacilitiesintheParissuburbsin2021,anewprojectwasannouncedin2022forthemunicipalityofMeudon.Theplanistodisplace83%ofthecurrentgas-firedsupplyby2026,toheattheequivalentof7,600homes.61Thelocaldistributionnetworkalsowillbeupgradedforgreaterefficiencyandtoaccommodatethelowergeothermalsupplytemperatures.62InGermany,nonewgeothermalplantscameonlinein2022.63However,thenationalgovernmentlaidoutaroadmapforachievinga10-foldincreaseingeothermalheatutilisationby2030(10TWhperyear),whichwouldentailbuilding100additionalgeothermalprojectsinthattimeframe.64InBavaria,localauthoritiesoutlinedplanstomeetone-quarterofheatdemandinbuildingswithgeothermalsupplyby2050,expandingdistrictheatnetworksasneededtoconnectthermalloadswithexpandingproductionareas.65Understandingtheresourceavailabilityiscriticaltofurtherdevelopment,andtothatend,estimatesofheatreservoirsinGermanywereupdated,indicating20%higherheatflowthanpreviouslyunderstood.66WorkwasunderwayduringtheyeartoexpandgeothermalheatsupplyanddistributionnetworksintheMunicharea.67InVienna,Austria,theculminationofextensiveresearchonthesubsoilunderthecitypavedthewayforplanstocommenceexploratorydrillingin2023.68Thecityanticipatesthatthecompletionofitsfirstgeothermalplantin2026(estimatedat20megawatts-thermal)wouldsupplyheatto125,000households.69Thehighriskoffailureingeothermalexplorationledtosomeprojectsbeingputonhold.InSwitzerland,drillinghadbegunatLavey-les-Bainsearlyin2022withhopesofcompletingthecountry’sfirsthydrothermalprojecttoproducebothelectricityandheatby2023.Whilethetechnicallychallengingdrillingwasasuccess,itdidnotfindsufficientflowofgeothermalfluidtomaketheprojectviable.70Inaddition,twoGermanprojectsmetcriticalsetbackswhendrillingfailedtofindenoughpermeabilityandflowforcommercialutilisation.71Geothermalenergyusecanexpandsignificantly,providedthatdramaticcostreductionsareachieved.45RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYHeatpumpsarewidelyusedtomeetheatingandcoolingdemandsinresidential,commercialandindustrialapplications.Onanappliancelevel,heatpumpscanprovideheatmoreefficientlythanconventionalheatingtechnologies.1Thisisbecause,ratherthan“producing”thermalenergy(forexample,throughcombustion),heatpumpsusearefrigerationcycletodrawheatfromalower-temperatureambientsourcetoahigher-temperaturedestination.Heatpumpsuseanexternalenergysource,typicallyelectricity,todrivethiscycle,“pumping”around3-4unitsofheatperunitofelectricity.2Commonsourcesofambientenergyincludetheoutsideair,thegroundandbodiesofwater.Air-sourceheatpumpsarethemostwidespread,accountingforaround85%oftheheatpumpsinbuildingsworldwide.3Whetherornotheatpumpsarea“renewable”technologyisunderdebate.Ontheonehand,theyalwaysharnessasourceofrenewableenergy,whetheritistheambientair,waterorevenwasteheat.However,theenergythatpowerstheunits,typicallyelectricity,isnotnecessarilyrenewableandisfrequentlybasedonfossilfuels.Theratioofrenewableheatingandcoolingprovidedbyheatpumpsisthereforelimitedbytheauxiliaryenergy;ifthisenergyisrenewable,soisthefulloutputoftheheatpump.InmarketssuchasJapanandtheEU,andtosomeextenttheRepublicofKorea,heatsuppliedbyheatpumpsiscreditedasrenewable,makingtheunitseligibleforsupportundercertainrenewableenergypolicyschemes.4In2022,Chinaclassifiedheatpumpsasarenewableenergytechnologyatthenationallevelforthefirsttime.5Althoughheatpumpsarewidelyavailableandhavebeenacommontechnologyfordecades,theyrepresentonlyasmallshareoftheglobalheatingmarket.In2021,heatpumpsaccountedforlessthan10%ofheatingequipmentsalesglobally,whereasfossilfuel-baseddevicesrepresented45%ofsales.6ANNUALADDITIONSANDLEADINGCOUNTRIESTheglobalmarketforheatpumpsisconcentratedmainlyincountrieswithcolderclimates,suchasChina,Japan,theUnitedStatesandpartsofEurope.However,countrieswithwarmerclimatesalsoinstallheatpumps,giventhattheunitscanbereversible,movingheatfromtheinteriortotheexteriorratherthanviceversa.Becauseheatpumpsalsocanprovidecooling,theirgrowingglobaldeploymentisattributedinparttorisingdemandforspacecooling.7Worldwide,theheatpumpmarketgrewanestimated11%in2022,thesecondconsecutiveyearofdouble-digitgrowth.8Chinaistheworld’sleadinginstallerofheatpumps.Itsheatpumpmarketremainedlargelystablein2022asthecountrycontinuedtograpplewitheconomicrecoveryfromtheCOVID-19pandemic.9Increasingly,ground-sourceheatpumpsarebeingdeployedinChinatoreplacecoal-firedfurnaces.10TheUnitedStatesalsoisalargeheatpumpmarket.Air-airsystemsaremostcommoninthecountry,withbuildingsoftenusingductworktodistributetheheatfromthedevicetothetargetedspace.In2022,theUSheatpumpmarketgrew11%toreacharecord4.3millionunitsshipped.(pSeeFigure19.)11Forthefirsttime,USannualheatHeatpumpsareanestablishedtechnologyandmetaround10%oftheworld’sheatingneedsinbuildingsin2022.Salesofheatpumpsgrew11%globallyin2022,notablyinEuropewheretheyincreased38%,driveninpartbytheRussianFederation’sinvasionofUkraine.IntheUnitedStates,annualsalesofheatpumpseclipsedfossilgasfurnacesforthefirsttime.Manycountriesexperiencedreductionsintheupfrontcostofheatpumps,whichremainsasignificantbarriertodeployment.In2022,morethanEUR5billion(USD5.4billion)ofinvestmentwasannouncedinheatpumpmanufacturingfacilitiesinEurope,whiletheUnitedStatesearmarkedUSD10billionintaxcreditsformanufacturing,forwhichheatpumpsareeligible.Polandisoneoftheworld’sfastestgrowingmarketsforheatpumpsandsolarphotovoltaics(PV).Heatpumpsalesgrew120%in2022,andPolandbecamethethirdlargestsolarPVmarketintheEuropeanUnion.HEATPUMPSKEYFACTS46MARKETDEVELOPMENTSpumpsaleseclipsedannualsalesofgasboilers,althoughsalesofbothdeviceshavebeenrising.12Stateandlocalpolicieshavedrivenheatpumpsales,evenbeforefederallegislationcameintoforce.13HeatpumpsalesinEuropealsohaverisendramatically.In2022,salesincreased38%toreacharecord3millionunits.14Thiswasontopofa34%marketincreasein2021,vastlyexceedingtheroughly10%growthofprioryears.15FrancewasagainEurope'sleadingmarket,withsalesofaround600,000unitscorrespondingtoamarketgrowthof20%.16Salesgrew37%inItalyand58%inGermany,theregion’stwootherlargemarkets.17NotablegrowthalsooccurredinEurope’semergingmarkets.Polandexperiencedthelargestoverallexpansionglobally(firstinpercentagegrowthandsecondinabsolutesales)withmorethan200,000unitssoldin2022.18(pSeeSnapshot:Poland.)MarketsdoubledinBelgiumandtheCzechRepublic,althoughstartingfromamuchsmallerbase.19Air-to-waterheatpumpsaremostcommoninEurope,comprisingaroundhalfofallunitssold.20InEurope,theRussianFederation’sinvasionofUkrainewasakeydriverofheatpumpuptakein2022.Adramaticriseinenergyprices,notablyfossilgasforheating,ledmanyconsumerstolooktowardsheatpumpstoreducetheirgasdemand.21Alsocontributingtomarketexpansionwasthegrowingnumberofcountrieswithpoliciesmandatingthephase-outorrestrictionoffossilfuelheatinginbuildings,withtheexpectationthatanEUDirectivewouldeventuallyrequirethis.22MandatesrestrictingfossilfueluseinnewbuildingsareincreasinglycommonintheUnitedStatesaswell,althoughtheyhavefacedbacklash.23HEATPUMPAPPLICATIONSANDTRENDSHeatpumpsaremostcommonlydeployedinbuildingstoheatspaceandwater.Asof2021,heatpumpsmetanestimated10%oftheworld’sheatingdemandinbuildings.24Inadditiontoprovidingdirectheatinbuildings,heatpumpsareincreasinglyusedtomeetlow-temperatureneedsinindustrialprocessing.Heatpumpsprovideenergyforvariouspurposesinfoodandbeverageproduction,papermanufacturing,andchemicalproduction,typicallysupplyingprocessheatupto100°C.25Insomeindustries,commercialapplicationshaveachievedtemperaturesof140-160°C,andasof2022high-temperatureindustrialheatpumpsreaching200°Cwereintheprecommercialstage.26InEuropeandtheUnitedStates,industrieshaveturnedincreasinglytoheatpumpstoreducedependenceonfossilfuels.27Manufacturershaveannouncedmassivemodelsofupto120MWincapacitytogenerateprocesssteamforthechemicalindustry.28Heatpumpsalsosupplythermalenergyfordistrictheatingnetworks.29Unlikeforhouseholdapplications,themostcommonsystemsfordistrictheatingarewater-sourceandground-sourceheatpumps,drawingonwastewaterorindustrialwasteheatastheenergysource.30In2022,large-scaleheatpumpsadvancedinAustria(basedonwastewater),Finland(wastewaterandseawater),Germany(riverwaterfromtheRhine;Europe’slargestheatpumpat40MW),theNetherlands(wastewater)andSweden.31TwoprojectsunderdiscussioninSerbiawoulduseheatpumpsbasedonwastewatertoheatdistrictenergynetworks.32Annualgrowthinheatpumpsales(additionalunitssoldinthousands)5004003002001000100%61%120%100%59%58%52%40%52%Heatpumpmarketgrowth(%)PolandBelgiumSwedenAustriaGermanyFinlandNetherlandsUnitedKingdomItalyNorwayFranceDenmarkUnitedStates37%25%20%11%20%Source:Seeendnote11forthissection.FIGURE19.NationalHeatPumpMarketswiththeLargestGrowthin202247RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYHeatPumpsGrewRapidlyinPolandin2022AmidasurgingEuropeanheatpumpmarket,Polandexperiencedtheworld’sfastestgrowthinheatpumpsin2022.SalesofheatpumpsinPolandgrew120%comparedto2021.NearlyathirdofallnewheatingsystemsinPolandwereheatpumpsin2022,andthecountrybecametheEU’sfifthlargestmarketinabsoluteterms.Poland’sheatpumpmarkethasbeenontheupswingforseveralyears.Thenumberofunitssoldhasincreasedfromaround12,000in2012tomorethan200,000in2022.Therapidmarketgrowthbeganin2018followingthereformofanairpollutionlawthatincreasedfinancialsupportforheatpumpstoreplacecoal-firedheatingsystems.Notably,PolandisoneoftheonlyEuropeancountriestoproviderenewableheatingsubsidiesadjustedtohouseholdincome.HeatpumpsarenottheonlyenergytechnologytoexperiencerapidgrowthinPoland.SolarPVmarketsalsohaveskyrocketed,withPolandbecomingtheEU’sthirdlargestmarketin2022.(pSeeFigure20.)TheRussianFederation’sinvasionofUkrainealsoresultedinsupportforsolarPVin2022,withnaturalgasandcoalpricesincreasingsubstantiallyandconsumerseagertoavoidbuyingRussiangas.SNAPSHOTPOLANDHeatpumpsales(inthousands)SolarPVadditions(GW)2001501005004321020122013201420152016201720182019202020212022Source:Seeendnote18forthissection.FIGURE20.SalesofHeatPumpsandAdditionsofSolarPVinPoland,2012-202248MARKETDEVELOPMENTSNotabletrendsintheheatpumpindustryin2022includedsignificantinvestmentsinmanufacturingspurredbytheglobalenergycrisisandtheRussianinvasionofUkraine,morecompetitivecosts,useofoperatingheatpumpsasasourceofflexibility,andeffortstolowerthelife-cycleemissionsofunits.Numerousfirmsacrosstheheatpumpvaluechainannouncednewmanufacturingfacilitiesduring2022.MostoftheseprojectsareinEuropeandareexpectedtobecompletedby2025,boostingtheregion’sheatpumpproductioncapacity;intotal,projectsrepresentingmorethanEUR5.5billion(USD5.9billion)wereannounced.33DaikinEuropeaccountedformorethanaquarterofthissum,investingaroundEUR1.2billion(USD1.3billion)initsEuropeansites.34VaillantannouncedaninvestmentofEUR130million(USD139million)in2022andopenedanewfactoryinearly2023thatcanproducemorethan500,000heatpumpsannually.35StiebelEltronannouncedaninvestmentofEUR600million(USD640million)totripleitsproductionby2025.36AdditionalinvestmentannouncementscamefromBDRThermea,Bosch,Ecoforest,GroupeAtlantic,Hoval,NIBE,MideaGroupandPanasonic.37Manyheatpumpcomponentmanufacturersalsopledgednewinvestments.38TheUSInflationReductionActof2022earmarkedUSD10billionintaxcreditsforcleanenergymanufacturingaswellasUSD500millioningrantsformanufacturingfacilities.39Inearly2023,LGElectronicsannouncedthatitwouldopenitsfirstheatpumpmanufacturingfacilityintheUnitedStates.40Thecostofheatingwithaheatpumpdependsonbothupfrontandongoingcosts.Inmostmarkets,theupfrontcostsforequipmentandinstallationremainabarriertoadoption.Dependingontheregion,installingaheatpumpcanbemuchmoreexpensivethaninstallingafossil-basedheatingtechnology.41Despitethis,manycountrieshaveseenreductionsintheupfrontcostsofheatpumpsi.42Policiestoreducesuchcosts,especiallyforlow-incomehouseholds,areimportantforwideradoptionofthetechnology.43Theoperationalcostsofheatpumpsvarybycountry,andtheircompetitivenesswithfossilfueltechnologiesdependsonanarrayoffactors.Injurisdictionswherefossilgasandoilaremuchcheaperthanelectricity,eventhehighefficiencyofheatpumpscannotcompensateforongoingcosts.44Thisisoftenexacerbatedbyenergytaxationregimesthatplaceheavyburdensonelectricity.45Denmark,Germany,theNetherlandsandtheUnitedKingdomhavebegunreformingtheirtaxregimestofavourelectricheating,especiallywithheatpumps.46Othercountrieshavereformedtariffstofurtherincentiviseheatpumps.47Despiteongoingcostbarriers,manyhouseholdsthatswitchedtoheatpumpsfromexistingfossilfuelboilerssawsavingsontheirenergybills.48InCanada,Germany,theRepublicofKorea,andtheUnitedKingdom,thelevelisedcostofheatingwascompetitivewithafossilgasboileralternativeduring2022.49Switchingtoheatpumpstypicallyreducesgreenhousegasemissions,buttheuseofconventionalrefrigerants(fluorinatedgases,orf-gases)inthesesystemscancontributepotentgreenhousegasesifreleasedtotheatmosphere.50InEurope,effortstophaseouttheserefrigerantshaveledtodiscussionsonalternativeswithlowerglobalwarmingpotentials,suchaspropaneorcarbondioxide(CO2).However,somealternativesmayhaveenvironmentalhazardsandcomplicatedorexpensiveoperatingandinstallationconditionsthathampertheiruse.51Inearly2023,theEuropeanParliamentadoptedaproposaltophaseoutf-gasesby2050,andwhiletheheatpumpindustrysupportsthegoal,ithasexpressedconcernsaboutproposedshort-termbansaffectingproductioncapacity.52Previousinternationalenvironmentalagreements,suchastheKigaliAmendmenttotheMontrealProtocol,fosteredthetransitiontomanyrefrigerantswithlowerglobalwarmingpotentialsthatarecurrentlyinuse.Astheheatpumpindustryevolves,thebiggestcompetitivechallengewillbetheongoinguseofrelativelyinexpensivefossilfuelsforheating.53iThesedeclinescanlargelybeattributedtoeconomiesofscaleinbothmanufacturingandinstallationdueinparttowidespreaduptakeandtechnologyimprovements.Seeendnote42forthissection.Inmanycountries,operatingaheatpumpisalreadycheaperthanafossilfuelheatingsystem.49RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYRenewable(oftenreferredtoasgreen)hydrogenisrapidlyemergingasakeyenablingtechnologywithsignificantpotentialtodecarbonisevarioussectors,inlinewithglobaleffortstomeetnetzeroemissiontargets.Renewablehydrogenishydrogenproducedusingrenewableenergysourcesiviaelectrolysis,aprocessthatsplitswatermoleculesintohydrogenandoxygen.Thehydrogencanbestoredii,transported,orusedon-siteasacleanandflexiblefuelforawiderangeofapplications.Interesthasgrowninusingrenewablehydrogenasameanstoreduceemissionsinhard-to-abatesectorssuchasheavyindustry.Thepotentialusesofrenewablehydrogenarediverse,rangingfromfuelforlong-haultruckingandshipping,tofeedstockforindustrialprocessessuchassteelandcementproduction,toservingasacarrierforelectricitygeneration.1However,renewablehydrogenfacesseveralkeychallengesthathinderitsrapidupscaling.Theseincludehighconversionlosses(with20-30%oftheenergylostthroughelectrolysis),highupfrontproductioncostsandtheneedforsignificantinvestmentsininfrastructuresuchaspipelinesandstoragefacilities.2Nevertheless,governmentsandindustriesareincreasinglyrecognisingthepotentialofrenewablehydrogenandcommittinglargeresourcestoitsdevelopment.3RENEWABLEHYDROGENPRODUCTIONFACILITIESCurrently,theglobaldemandforhydrogenismetalmostentirely(around95%)withhydrogenproducedfromfossilfuels.4In2022,despitetheslowingglobaleconomy,worldwidehydrogenproductioncapacityexceededanestimated100milliontonnes,upfrom94milliontonnesin2021and91milliontonnesin2019.5Renewablehydrogenproduction,however,totalledonly109kilotonnesin2022,althoughthiswasa44%increasefromthe2021level(35kilotonnes).Enablingthegrowthinhydrogenproductionwastherapidscale-upofelectrolysisplantsto510MWin2021,anincreaseof210MW,or70%,comparedto2020.6Electrolysermanufacturingcapacitydoubledbetween2017and2022tonearly8GW,assuccessfulpilotanddemonstrationprojectsadvancedtocommercial-scaleprojects.7Theaveragesizeofnewelectrolysersin2021was5MW,butthiscouldreach260MWin2025andintheGW-scaleby2030.8In2022,morethan112milliontonnesofnewlow-carbonhydrogencapacitywasannounced,mainlyintheUnitedStates,Denmark,Egypt,CanadaandPortugal.9Intotal,morethan393dealsrelatedtohydrogenwereclosed,upfrom277dealsin2021,showinganupwardtrendinlow-carbonhydrogenmarketdevelopment.10Australiahadthelargestnumberofannouncedrenewablehydrogenplantsworldwideasof2022;duetoitsabundantsolarandwindresources,thecountryisexpectedtoseesomeofthelowestlevelisedcostsforproducingrenewablehydrogenby2050.11Despitetherapidscale-upofelectrolysisplantsto510MWbytheendof2021–upby210MWor70%relativeto2020–thedemandforhydrogenisstillbeingmetalmostentirely(around95%)byhydrogenproducedfromfossilfuels.Morethan393dealsrelatedtohydrogenwereclosedin2022,upsignificantlyfromthe277dealsregisteredin2021.Realisationofalloftheprojectsinthehydrogenpipelinecouldleadtoaninstalledelectrolysercapacityof134-240GWby2030,withthelowerendoftherangesimilartothetotalinstalledrenewablecapacityinGermanyandtheupperendsimilartothecapacityinallofLatinAmerica.Australiahasthelargestnumberofannouncedrenewablehydrogenplantsamongcountries.Governmentscontinuetoconsiderhydrogenapillaroftheirenergysectorstrategies,witharound30countrieshavingnationalhydrogenstrategiesasof2022.HYDROGENKEYFACTSiThedefinitionofrenewableenergysourcesisstillunderdebate.Forexample,FranceispressingtheEUtoacknowledgenuclearasarenewableenergysource,giventhedominanceofnuclearpowerinthecountry’senergymix.iiHydrogenisanenergycarrier,notanenergysource,andcandeliverorstoreatremendousamountofenergy.Hydrogencanbeusedinfuelcellstogenerateelectricity,orpowerandheat.50MARKETDEVELOPMENTSIn2022,highercostsforkeyelementsofrenewablehydrogenprojectsresultedinpartfromglobalsupplychainissues(relatedtogeopoliticalinstabilityinEurope)andfromrisingglobaldemandforsolarPVandelectrolysers.12Atthisearlydevelopmentstageofthecleanhydrogenindustryglobally,costsofrenewablehydrogenproductionvarydependingonthescaleandsizeoftheprojectaswellasonhownearbytheproductionistowherethehydrogenwillbeused.In2022,hydrogenproducedthroughelectrolysisusingrenewablepowercostanestimatedUSD5-10perkilogram.13Hydrogenstrategiesarebeingdevelopedandimplementedworldwide,withleadingplayersinAsia,NorthAmerica,AustraliaandtheEU.14(pSeeFigure21.)Eachregionhasitsuniqueapproachtohydrogendeployment,dependingonfactorssuchasnationalenergypolicies,naturalresourcesandinfrastructure.Japanwasthefirstcountrygloballytoformulateanationalhydrogenstrategy,in2017,aspartofitsambitiontobecometheworld’sfirst“hydrogensociety”byadoptinggreenhydrogenacrossallsectors.15Akeypillarinthestrategyisdevelopinglong-termsupplyagreementstoimporthydrogenfromoverseas,givenJapan’sshortageofthenaturalresourcesnecessarytodeploywindandsolarenergyatscale.Despiteitsambitiousandvisionaryplan,Japanhasperformedfarbelowitsgoalofincreasinguptakeofhydrogenfuelcellsandfuelcellvehicles,andthehydrogenstationsbuiltacrossthecountryhaveseenlittleuse.16Asofearly2023,Japanfacedchallengesinscalinguphydrogenproductionanduseduetohighcostsandlackofinfrastructure.17Chinawasthelargestproducerofhydrogenin2022,ataround25milliontonnes,andisexploringtheproductionanduseoflower-emissionhydrogentohelpmeetenergyneedsandspurindustrialdevelopmentwhilealsoaddressingclimateconcerns.18TheChinesegovernmenthaslaidoutamedium-andlong-termdevelopmentplanforhydrogen(2021-2035),withthegoalsofbringing50,000fuelcellelectricvehiclesontheroadby2025;producinggreenhydrogenusingrenewablestoreach100,000to200,000tonnesannuallyby2025;andusingcleanhydrogeninenergystorage,electricitygenerationandindustry.19Strategyannouncedin2021/early2022+EUhydrogenstrategyFossilfuel-basedhydrogenorunknownMixedhydrogenRenewablehydrogenSource:Seeendnote14forthissection.Note:Thetypeofhydrogen(renewable,mixed,fossilfuel-based)isunknownforAustria,Ecuador,Sweden,andTrinidadandTobago.TheRussianFederationplanstoproducehydrogenfromnuclearandrenewablesources,butcurrentlynaturalgasisthemainsourceforhydrogenproduction.Mixedreferstohydrogenproducedfrombothrenewableandnon-renewableenergysources.Austria,Singapore,TürkiyeandUruguay'shydrogenstrategiesarecurrentlyinpreparation.TypeofhydrogenproductioninAustria,Ecuador,Sweden,andTrinidadandTobagoisunknown.FIGURE21.HydrogenStrategiesandRoadmapsinSelectedCountries,asofEnd-202251RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYInIndia,theprimeministerhasstatedthatrenewablehydrogencouldenablea“quantumleap”towardsenergyindependenceforthecountryby2047.20In2021,IndiaannouncedaNationalHydrogenEnergyMissiontodeveloparoadmapforusinghydrogenasanenergysource;theaimsaretocreateaglobalhubforthemanufacturingofhydrogentechnologies;tofacilitatedemandcreationinindustry(suchasfertilisers,steelandpetrochemicals);andtodemonstratetheuseofhydrogenintransportapplications.21In2020,theEuropeanCommissionadopteditsoverarching“hydrogenstrategyforaclimate-neutralEurope”.22Thestrategyaimstosupportthedeploymentofcleanhydrogeninvarioussectors,includingindustry,transport,andpowergeneration,aspartofEUeffortstoachieveclimateneutralityby2050.23AkeyaspectoftheEUstrategyisleveragingpartnershipsandcollaborationattheregionalandgloballevels,asillustratedin2022-2023throughtheMediterraneanhydrogenpipelineprojectandtheJapan-EUpartnershipfortheexchangeofinformationandresearch.24In2023,theEU(with28%)andJapan(24%)werethegloballeadersinpatentfilingsrelatedtohydrogen.25Germany’sNationalHydrogenStrategyintendstoexpandtheroleofhydrogentodecreasenationaldependenceoncoal.26ThegovernmentplanstoinvestUSD7.5billiontoachieveahydrogenproductioncapacityof5GWby2030andanother5GWduring2035-2040,allowingexemptionfromthegreenpowersurcharge(EEGlevy);itwillalsoleveragepartnershipswith31potentialnetexportersandacrosstheEUthroughaUSD2.1billionfundtoestablishinternationaltradepartnerships.27In2022-2023,GermanysignedalandmarkagreementwithDenmark,thelargestdealofitskindtodate,tobuilda1GWelectrolysisplantinDenmarkthatwillproducegreenhydrogenusingoffshorewindpower,atatotalprojectcostofUSD32.6billion.28In2020,Franceannounceditsstrategyforthedevelopmentofdecarbonisedhydrogen,aimingtoinvestUSD7.5billioningreenhydrogenproductionandinfrastructure,withthegoalofreducinggreenhousegasemissions6milliontonnesby2030.29GiventhecontributionofnuclearpowerplantstoFrance’senergymix,thecountryhasbeenpushingfortheEUtorecogniselow-carbonhydrogenproducedfromnuclearpowerinitsrenewableenergyrules;however,someEUMemberStatesworrythatthiswouldundermineeffortstorapidlyscaleupwindandsolar.30Spainreleasedastrategyin2020thatprovidesavisionfordevelopingafavourableenvironmentforthesupplyanddemandofrenewablehydrogen.31Keymilestonesofthestrategyarecommissioning300-600MWofelectrolysersby2024and4GWby2030,andreducing4.6milliontonnesofCO2emissions,throughmobilisingUSD9.6billionofinvestments.32InFebruary2022,fourgrantprogrammestotallingUSD267millionweredeployedtoaddressinnovationinthehydrogenvaluechain.ThisincludedUSD108millionforlargeelectrolysers,USD86millionforpilotingfuelcellelectricvehicles,USD43millionforindustrialandexperimentalresearch,andUSD32millionforcapacitybuilding.Spainisexpectedtobecomeakeyplayerinhydrogeneconomyintheshort-andmedium-term,consideringthecountry’sindustryinvestment,collaborationwithMediterraneancountriesandamplesolarresourceforproducinggreenhydrogen.33InNorthAmerica,theUnitedStatesreleaseditsdraftNationalCleanHydrogenStrategyRoadmapinlate2022.Theplansetsoutthreekeypriorities:targetingstrategic,high-impactusesofhydrogen;reducingthecostofcleanhydrogentoUSD1perkilogramby2031;anddeployingatleastfourregionalcleanhydrogenhubsthroughanunprecedentedUSD7billioninfunding.34TheUnitedStatesistheworld’ssecondbiggestproducerandconsumerofhydrogenafterChina,accountingfor13%ofglobaldemand.35TheInfrastructureInvestmentandJobsActof2021containedaUSD9.5billionbudgettoboostcleanhydrogendevelopment,andthesubsequentHydrogenEarthshotprogramme,throughits“111goal”,aimstocutthecostofcleanhydrogentoUSD1per1kilogramin1decade.36Australiareleaseditsgreenhydrogenstrategyin2019,layingoutacomprehensiveplantopositionthecountryasamajorglobalplayerinthehydrogenindustryby2030.Thestrategyaimstodevelopaclean,innovative,safeandcompetitivehydrogenindustrythatdeliverssignificanteconomic,social,andenvironmentalbenefits,withasetofambitioustargets.Gigawatt-scaleprojectambitionisontheriseinAustralia,with11GW-scalehydrogenprojectsinthepipelinein2022and9moreannounced(eitherneworexistingprojects).37TheAustraliangovernmentisprovidingUSD526million(AUS800million)towardstheestablishmentofeighthydrogenhubsthroughtheRegionalHydrogenHubsprogrammeandothercommitments,includingninefeasibilitystudiestosupportpotentialfuturehydrogenhubs.38Asof2022,almost95%ofglobalhydrogenproductionwasfromfossilfuels.52MARKETDEVELOPMENTSBrazilpublishedaresolutionin2022establishingtheNationalHydrogenProgram(PNH2),whichaimstopromotethedevelopmentofacompetitivehydrogenmarketinthecountry.39Theprogrammeseekstoencouragetheproduction,distributionanduseofhydrogenasacleanenergysource,withafocusonrenewablehydrogen.TherenewablehydrogensegmentinBrazilstartedtogrowin2022withtheinstallationofthecountry’sfirstindustrial-scalerenewablehydrogenproductionplant,completedinMaybyUnigel.40Thesystemincludesthree20MWelectrolyserssuppliedbyThyssenruppNucera,withasecondphaseexpectedtoexpandtheproject’scapacitybeyond100MW.41Chile’snationalstrategywasreleasedin2020andhasthreemainstrategicpillars:commissioning5GWofelectrolysisby2025,ensuringthemostcompetitivelypricedgreenhydrogenintheworldby2030andbecomingamongtheworld’stopexporterofgreenhydrogenby2040.42TheHaruOniproject,ledbythecompanyHighlyInnovativeFuels,wassuccessfullycommissionedin2022andentailsbuildingahydrogen-basedfuelproductionplantinMagallanes,SouthChile.43Theprojectwillproducehydrogen,e-methanolande-petrolpoweredby3.4MWwindturbines.44Expectedannualproductionis350tonnesofcrudemethanol,130,000litresofpetroland16tonnesofcarbon-neutralliquefiedgas.45HYDROGENTRADEROUTESAstheglobaldemandforgreenhydrogencontinuestorise,anexpandingnetworkofhydrogentraderoutes,plansandagreementsistakingshape,fosteringinternationalcollaborationandhighlightingkeyimportersandexporters.46Mainimportingregions,suchasEurope,Japan,andtheRepublicofKorea,aredrivenbyambitiousclimategoals,industrialrequirements,andlimiteddomesticrenewableenergysourcestomeettheirgreenhydrogenneeds.Ontheotherhand,countrieswithabundantrenewableenergypotential–suchasAustralia,Chile(pseeSnapshot:Chile),andcountriesintheMiddleEastandNorthAfrica–areemergingaspotentialkeyexporters,aimingtocapitaliseonthegrowinghydrogenmarket.47AHiddenHydrogenChampionisAwakeningAnotableplayerintheemergingglobalhydrogentradeisChile,whichisfocusingonpublic-privatepartnershipsasakeymechanismtoacceleratethecountry’senergytransition.Chilehassignedseveralinternationalagreementswithforeigncountriestostrengthenitshydrogenindustry.In2021,ChilesignedajointagreementwithGermanywiththeaimofenhancingco-operationingreenhydrogenprojectdevelopment.Thetwocountrieswillexchangeexperienceandknowledgethroughthecreationofaworkinggroup,andwillalsoestablisharegulatoryframework.Afurtheraimistodeveloplow-carboncertificationsystems.AjointagreementbetweenChileandtheNetherlandsaimstoestablishgreenhydrogenimport-exportcorridors.Italsoseekstoaligntheinvestmentagendaandtoimprovethecollaborationofprivatecompanies.Inaddition,ChilesignedamemorandumofunderstandingwithBelgiumtoenhancegreenhydrogenproductioninco-operationwiththeportsofAntwerpandZeebrugge,whichaimtobecomethemainhubsforhydrogenimportstoEurope.InAsia,ChilesignedamemorandumofunderstandingwiththeRepublicofKoreatoexpandco-operationinthelow-carbonhydrogensectorandtoexchangetechnologiesforproducing,storing,transportingandusingcleanhydrogen.Source:Seeendnote47forthissection.SNAPSHOTCHILE53RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYGlobalhydropowermarketsaddedatleast22.2GWin2022,foratotalinstalledcapacityof1,220GWi.1Generationincreased5%over2021toreach4,429TWh.2However,asin2021,thecapacityaddedin2022waswellbelowtheestimated30GWofhydropoweradditionsthatareneededannuallytokeepglobaltemperaturerisebelow2°Cby2050.3In2022,hydropowerrepresented37%oftheworld’stotalinstalledrenewableenergycapacityandadded2%ofthetotalcapacityofallrenewables.4Fluctuatingwaterlevels,relatedinparttoclimatechange,haveraisedconcernsabouthydropowerinfrastructureandthedevelopmentoffuturefacilitiesandstorage.Africa,Asia,EuropeandNorthAmericaallexperiencedseveredroughtsin2022,reducingwatersuppliesandthecapacityuseofplants.5IntheZambeziriverbasinbetweenZambiaandZimbabwe,the2.13GWKaribareservoir(theworld’slargest)droppedto0.97%ofitsusablestorageinDecember2022,leadingtopowerrationingandoutages.6Manydrought-strickenareashaveturnedtocoaltosupplementpowerneeds.7Climatechangealsocouldalterseasonalproduction,causingsnowyregionstoproducemorehydropowerinwinterasrainreplacessnow,andlesspowerinspringandsummerduetoreducedsnowmelt.8(pSeeSidebar2.)AswithsolarPVandwind,Chinadominatedtheglobalhydropowermarketin2022,withatotalinstalledcapacityexceedingthatofthenextfourleadingcountriescombined(Brazil,theUnitedStates,CanadaandtheRussianFederation).9(pSeeFigures22and23).Thetopfourcountriesinhydropowergeneration(China,Brazil,CanadaandtheUnitedStates)producedmorethantherestoftheworldcombined.10Developingcountriescontinuedtoleadinsharesofhydropowerintheenergymix,withCostaRicagenerating73%ofitselectricityfromhydropower,andVenezuela,theworld’stenthlargestproducer,generating68TWh.11Globalinstalledhydropowercapacityreached1,220GWin2022,up22.2GWfrom2021.Chinagrewitsleadininstalledhydropowercapacity,bringingthetotalto368GWin2022,morethaninBrazil,Canada,theUnitedStatesandtheRussianFederationcombined.Hydropowergenerationreached4,429TWhin2022,halfofitproducedbyonlyfourcountries(China,Brazil,CanadaandtheUnitedStates).Europeanhydropowerproductiondropped19%in2022duetoextremedrought.Hydropowerprovidescrucialservicesincludingloadfollowing,gridsupportandcaseloadelectricity;inareaswherehydroelectricproductionhasdeclinedduetodrought,insomecasescoalhasbeenusedtosupplementtheseservices.iHydropowercapacitiesexcludepumpedstorage,whichservesasenergystorage,notasanenergysource.HYDROPOWERKEYFACTS54MARKETDEVELOPMENTSChinaBrazil30%RestofWorld30%9%Canada7%UnitedStates6%18%RussianFederation4%India4%Norway3%Türkiye3%Japan2%France2%Next6countriesSource:Seeendnote9forthissection.FIGURE22.HydropowerGlobalCapacity,SharesofTop10CountriesandRestofWorld,2022GigawattsCanadaChinaLaoPDRFranceEthiopiaPakistanColombiaChileZambiaGuinea35201510525+13+1301005025150200250300400350+0.9+0.9+1.1+1.1+0.8+0.8+0.7+0.7+0.6+0.6+0.5+0.5+0.5+0.5+0.45+0.45Addedin20222021total+1.0+1.0Source:Seeendnote9forthissection.FIGURE23.HydropowerGlobalCapacityandAdditions,SharesofTop10Countries,2022During2001-2020,ChinainvestedatotalofUSD29.9billioninhydropowerprojectsglobally.55RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYChinaexpandeditshydropowercapacitylead,adding13GWin2022toreachatotalinstalledcapacityof368GW.12Thecountryishometotheworld’slargesthydropowerfacilitiesandcompletedseveralmassiveprojectsduringtheyear,includingsixalongtheYangtzeRiverandthelastturbinesofthe16GWBaihetanHydropowerStation,thelargestsincetheThreeGorgesDam.13HeavyrainfallboostedhydropowergenerationinSouthChinaby18%inthefirstfivemonthsof2022,reflectingarecenttrendofheighteningfloodseasonsmaxingoutgenerationcapacities;thishelpedbringthecountry’stotalannualgenerationto1,352TWh.14Conversely,theYangtzeRiverregisteredrecordlowwaterlevels,posingathreattoSichuanProvence,whichreceives80%ofitsenergyfromhydropower.15ThroughitsBeltandRoadInitiative,ChinaistheownerorinvestorindiverseinfrastructureprojectsacrossAfrica,Asia,LatinAmerica,andOceania,havingsignedmemorandaofunderstandingwitharound150countries.16During2001-2020,ChinainvestedatotalofUSD29.9billioninhydropowerprojectsglobally,plusanotherUSD2.5billioninrelatedtransmissionanddistribution.17Overall,atleast38GWofBeltandRoadInitiativehydropowerprojectsareeitherinoperationorunderconstruction,withanother11GWplanned.18WhilesuchprojectshaveinjectedcapitaloutsideofChina,theyreportedlyhavebeenpronetoconstructionflawsandoperationalfailures,andsomehaveledtodisplacementoflocalcommunities.19Brazilrankedsecondgloballyinhydropowerinstalledcapacityandgeneration,althoughitonlyaddedjustover300MWin2022.20Favourablerainconditionsboostedproduction17%inthecountry.21Intotal,Brazilgenerated92%ofitsoverallelectricityfromrenewablesduringtheyear,andhydropowercontributed78%oftherenewableenergyproduction.22Canadaremainedthirdinbothtotalhydropowerinstalledcapacityaswellashydroelectricgeneration.23Thecountrycontinuestobealeaderinaddedcapacityandbroughtonline1GWofprojectsin2022,includingthe245MWRomaine4hydroelectricplantinQuebéc.24Hydro-Quebéc,apublicutilitythatoversees37GWofhydropowerandthermalprojectsinCanada,signalledthatitwouldhaltaddinghydropowercapacitygoingforward,citinglongprojecttimelinesandlargeupfrontcapitalrequirements.25IntheUnitedStates,theworld’sfourthlargestproducerofhydropower,generationincreased4%in2022toreach262gigawatt-hours(GWh),representing6.2%ofthecountry’senergymix.26Thedecades-longmegadroughtintheUSwestcontinuedtoaffectgenerationinthefirsthalfof2022.27TheWesternAreaPowerAdministration,witharound10GWofinstalledhydropowercapacity,recordedonly65.7%ofaveragegenerationduringthe2022fiscalyear,attributingthedeclineto“negligible”snowpacki.28However,levelsreboundedinthesecondhalfof2022andinto2023astheSierraNevadamountainsandtheColoradoRiverBasinexperiencedheavysnowfall.29Overall,generationacrossCalifornia,OregonandWashingtonstategrew14.2%in2022to129,918TWh,representing49.6%oftheUStotal.30In2022,14.2MWofsmallhydropowerplantscameonlineintheUnitedStates,while8.4MWwereretired.31Asoftheendof2022,351MWoftotalhydropowerwasplannedorunderconstructioninthecountry..32TheUSinstalledhydropowercapacitywasstagnantfortheyear,at80GW.33iSnowpackreferstothemeasureofcompactedsnowfromthepreviouswinter.Therun-offwaterfromthesnowpackfeedsintoriversandstreams,contributingtohigherwaterlevelsinspringandsummer.56MARKETDEVELOPMENTSSIDEBAR2.StandardisingSustainabilityintheHydropowerSectorAstheworld’soldestrenewableenergytechnologyandthelargestsourceofrenewableelectricitytodate,hydropowercontinuestofacechallengesrelatedtosustainability–especiallylarge-scalehydropoweri.Factorscontributingtothesocialandenvironmentalimpactsofhydropowerincludethesourcingofconstructionmaterials,disruptionofecosystemsfromdamsandreservoirs,methaneproductionfromdecomposingorganicmaterialinfloodedareas,andthedisplacementofcommunities,amongothers.Hydropowerrequiresfarfewermineralsandpreciousmetalsthanotherrenewableenergytechnologies,butitstilldependsoncopper,chromium,zincandaluminiumforplantoperations.Becausehydroelectricplantsserveasbothenergyproductionandinfrastructureprojects,theirconstructionandmaintenancerelyheavilyoncementandsteel.Materialscontributejustover30%ofthegreenhousegasemissionsfromhydropowerprojects,typicallyreleasingaround43gramsperkilowatt-hour(kWh,)butattimesreaching2,200gramsperkWh.Themajorityofemissionsfromhydropowercomefromsedimentationandtheanaerobicdecompositionoforganicmaterialsinreservoirs,especiallyinareaswithdensevegetationsuchastheAmazon.Methaneemissionsfromreservoirhydropowerprojectscanreach88gramsperkWh,orupto70%oftotallife-cycleemissions.Overall,globalemissionsfromhydropowertotalled103milliontonnesofCO2equivalentin2022.Inthepast,financingforrenewableenergyprojectsthroughgreenbondshasexcludedhydropowerbecauseofunclearsustainabilitycriteria.In2021,however,theClimateBondsStandardbeganregisteringgreenbondstofinancehydropowerprojectscharacterisedbylowemissionintensityandhighpowerdensityii.ToenableaccesstogreenbondfinancingundertheClimateBondsStandardandpromoteinvolvement,theSwissgovernment'sHydropowerSustainabilityESGAssessmentFund,openfrom2020-2024,isawardingCHF1million(USD1.07million)toevaluateglobalhydropowerprojects'environmental,socialandgovernanceperformance.Asof2023,atleastUSD150millionworthofcertifiedbondsandloanshadbeenissuedunderthecriteria.However,hydropowerprojectsposebroadersustainabilityimpactsthanthosecoveredinthesecriteria,contributingtobiodiversityloss,erosion,andhabitatdestruction,amongotherimpacts.Life-cycleassessmentsforprojectscanrangewidelybecauseoflimiteddataavailabilityandinconsistentmodellingapproaches.Moreover,displacementofcommunitiesremainsaseriousconcern,asillustratedbyrecentlocaloppositiontotheJanjićiplantinBosniaandHerzegovinaandtheBenerdaminIndonesia.China’sThreeGorgesDam,completedin2006,resultedinthelargesthumandisplacementfromahydropowerproject,displacingmorethan1millionpeopleduringthe17-yearconstructionperiod.TransmissioninfrastructurefromremotehydropowerprojectsalsohasaffectedIndigenouslands,sparkingbacklash.IntheUnitedStates,theNewEnglandCleanEnergyConnectfacedfierceoppositionasNativeAmericangroupsclaimedthatancestralterritorieswerenotproperconsideredinthedevelopmentoftransmissionlines.SustainabilitystandardssuchastheHydropowerSustainabilityAssessmentProtocolhaveattemptedtostandardiseassessmentsandtoaccreditprojectsthatusegoodpracticestominimisetheenvironmentalandsocialimpacts.However,comprehensiveassessmentsarestillrelativelynewtothesector.The510MWTeestaVhydropowerstationinnorthernIndiawasthefirsthydropowerprojectgloballytobaseitsassessmentoncriteriarelatedtoclimatechangeresilienceandthemitigationofcarbonemissions.Inearly2023,the11MWSebzorhydropowerfacilityinTajikistanbecamethefirstprojectcertifiedundertheHydropowerSustainabilityStandard,meeting12criteriaincludingpreservingbiodiversity,maintainingwaterqualityandaddressingresettlementofcommunities.TheInternationalHydropowerAssociation(IHA)offerstrainingprogrammestocertifyprofessionalstoconductsustainabilityassessmentsandtoimplementstrategiesbasedontheHydropowerSustainabilityStandard.Nepal’sHydropowerAssociationrecentlypartneredwiththeIHAtotrain60professionalstoimprovehydropowerprojectperformanceandattractgreenfinance.iLarge-scalehydropowerplantsrefertofacilitiesgreaterthan30MW.Smallandminihydropowertypicallyimplylowerenvironmentalimpactsduetosmalllandareauseandlessdisruptiontosurroundingnaturalecosystems.iiProjectsstartingoperationafter2020mustmeetcriteriaofeitherlessthan50gramsofCO2equivalentperkWhproducedorapowerdensityofgreaterthan10wattspersquaremetre(W/m2);forfacilitiesinoperationbefore2020,thecriteriaarelessthan100gramsofCO2equivalentperkWhorgreaterthan5W/m2.Source:Seeendnote8forthissection.57RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYiThistotalexcludestheYusufeliproject,whichwascompletedin2022,butwasstillnotinoperationasofearly2023.InEurope,hydropowerplantsserveastherenewableenergysourceforbaseloadelectricity,loadfollowingandgridsupport;however,in2022theworstdroughtin500yearsledtoa19%declineinregionaloutput.34SeveredroughtledsomehydropowerreservesinItalyandSpaintodropbyhalf.35Topartiallyfillanenergygenerationgapof185TWh,manycountriesturnedtocoalproduction,whichrose7%in2022.36Hydropowerrepresented10%(283TWh)ofEurope’selectricityoutputin2022,ledbySweden(69TWh),France(46TWh),andAustria(36TWh),whichtogethercomprisedmorethanhalfofthecontinent’shydropowergeneration.37InAustria,Croatia,Latvia,andSweden,hydropoweraccountedformorethan35%ofthetotalelectricitymixin2022.38OutsideofChina,Asiagenerated940TWhofhydropowerin2022andadded2.8GW,foratotalinstalledcapacityof269.6GW.39Pakistan’s720MWKarotplant,whichcameonlineinJune,isthefirstprojectdevelopedbytheChinaThreeGorgesCorporationundertheChina-PakistanEconomicCorridor,bringingPakistan’stotalhydropowercapacityto10.6GW.40India’s600MWKamengplantcameonlineinNovember2022aspartofthecountry’splantoinstall30GWofhydropowerby2030.41InNepal,theenergyauthorityisauthorisedtoexportupto400MWofhydropowertoIndia’sgrid,butithasbeenunabletomeetthemaximumpowerlevelduetoadropincapacityusefrom2,200to1,550MW,relatedtoreducedprecipitationandrecedingglaciersintheHimalayaregion.42Türkiyeadded80MWin2022,outpacingadditionsin2021foratotalcapacityof32GWi.43Overthelasttwodecades,Türkiyehasinvestedheavilyinhydropower,addingaround650systems.44Therecentlycompleted588MWYusufelidam,theworld’sfifthlargest,beganfillingitsreservoirin2022.45TheTigris-Euphratesriversystem,whereincreasinglycomplexwaterneedsinvolvefivecountriesthatsharethebasin,reboundedafteradry2021.46Asresult,hydropowerplantsinTürkiyewereabletodoubletheirdailygenerationtomorethan110GWh,helpingtominimisepowershortagesduringa10-dayperiodinJanuary2022whennaturalgassuppliesfromIranweredisrupted.47InAfrica,hydropowercapacityincreased2.6GWtoreach37.7GWin2022,generatingatleast150TWh.48Theregionisthemostuntappedgloballyforhydropowerdevelopment,withapotentialcapacityof474GWasof2021,especiallyinWestAfricaandpartsofSouthernandCentralAfrica.49In2022,droughtaffectedprimarilyCentralandEastAfrica,andEthiopia,KenyaandSomaliaexperiencedbetween30-60%lessrainfallfromOctobertoDecember–theregion’slongestandmostseveredroughtonrecord.50Kenya’sElectricityGeneratingCompanyreportedthathydropower,alongwithgeothermalandwindpower,willhelpmeetthecountry’sgrowingelectricitydemand,whichexceededarecord2GWin2022.51KenyasignedanimportdealwithEthiopiathatwilllikelyincludeelectricityfromtheGrandEthiopianRenaissanceDam(5.3GW),whichwhencompletedwillbeAfrica’slargesthydropowerproject.52InAugust2022,thedamstartedproducingelectricityfromthesecondof13turbinesof375MWeach.53HydropowerissettosupplythebulkofenergyinTanzania.54Thereservoirforthe2.1GWJuliusNyerereDamstartedtofillinJanuary2023andisexpectedtoproduce5,920GWhannually.55Hydropoweralreadyaccountsfor31%ofTanzania’selectricityneeds,andanother600MWofsmall-tomedium-sizedhydropowerplantsisinthepipeline.56InNigeria,allfour175MWturbinesoftheZungeruHydropowerStationwerecommissionedin2022andbeganoperation.57Theplant,plusanadditional700MWofprojectsinthepipeline,areexpectedtomeet10%ofthecountry’senergyneedswhencompleted.58ManycountriesinLatinAmericaandtheCaribbeanwereearlyadoptersofhydropowerasaprimarysourceofelectricitygeneration.Fivecountries–Colombia,CostaRica,Ecuador,PanamaandVenezuela–producemorethan70%oftheirelectricityfromhydropower.59In2022,theregionhadatotalinstalledcapacityof20.9GWandgenerated69TWh.60Hydropowerplantshavealifetimeof30to80years,presentingopportunitiestoimprovetheirefficiency,extendlifespans,andboostcapacityandgenerationthroughrefurbishmentandmodernisation.Basedon2022estimates,worldwidehydropowermodernisationeffortscouldincreasethetotalinstalledcapacityofexistingplantsbyroughly9GW.61Around600GWofhydropowerplantsare30yearsorolder,and400GWare40yearsorolder.62InAfrica,wherearound38%ofthefleetisinmediumtohighneedofmodernisation,itwouldcostaroundUSD6.8billiontobring0.8GWofidledhydropowerunitsbackonlineandtoupgradeoverallregionalcapacityfrom0.7to1.6GW.63InLatinAmericaandtheCaribbean,anestimated70GWofcapacitywillneedshort-ormedium-termmodernisation,ataroundUSD32billion.6458MARKETDEVELOPMENTSOceanpowertechnologiesirepresentthesmallestshareoftherenewableenergymarket,althoughthereisavastglobalresource.1Deploymentsslowedin2022,followingthelargeincreasein2021intheaftermathoftheCOVID-19pandemic.2Atotalof1.9MWwasdeployedin2022,downfrom4.6MWin2021.3Theestimatedoperatinginstalledcapacityin2022was514MW.4Twotidalrangesystems–the240MWLaRancestationinFranceandthe254MWSihwaplantintheRepublicofKorea–accountforthemajorityofthiscapacity.Potentiallocationsarelimitedandlarge-scaleenvironmentalengineeringisrequired;thus,fewproposalshavebeenadvancedtoexpandtheuseofthistypeofsystem.Tidalstreamdevicesandwaveenergyconvertersarethefocusofdevelopmentefforts.AdvancementshavebeenconcentratedlargelyinEurope,althoughrevenuesupportandambitiousresearchanddevelopment(R&D)programmesinotherregionshavespurredincreaseddevelopmentanddeployment,particularlyinCanada,theUnitedStatesandChina.5Tidalstreamdevicesareapproachingmaturity,andpre-commercialprojectsareunderway.Around41MWoftidalstreamcapacityhasbeendeployedsince2010.6Mostprojectstargetingindustrial-scaleproductionarebasedonhorizontal-axisturbinesmountedontheseafloororonafloatingplatform.7Thesedeviceshavedemonstratedconsiderablereliability,andtotalgenerationsurpassed80GWhasoftheendof2022.8Wavepowerdevicesareyettoseethesamelevelofdesignconvergence.Developersaregenerallyaimingtotapintoutility-scaleelectricitymarketswithdevicesabove100kWortofulfilspecialisedapplicationswithdevicesbelow50kW.9Around25MWofwavepowerhasbeendeployedsince2010.10OCEANPOWERINDUSTRYIn2022,theglobaloceanpowersectorcontinueditsjourneytocommercialisation,withsignificantnewfundingannouncementsandthecontinuanceofsuccessfulflagshipprojectstoprovetheirreliability.Mostdeploymentsarepilotprojects,witharound60activeteamstestingtheirdevicesintheopensea.11Afewdevelopershaveadvancedbeyondsmall-scalepilotstohighertechnologyreadinesslevelsandapipelineofcommercial-scaledeployments.Fivetidalstreamdevicestotalling2.7MWweresuccessfullydeployedin2022.12InChina,anadditional1.6MWturbinewasdeployedandconnectedtothegridatLHD'stidalcurrentenergydemonstrationprojectatZhoushaninZhejiang,bringingtheproject’stotalcapacityto3.3MW.13Thedemonstrationprojecthasnowbeenoperatingcontinuouslyformorethanfiveyears.AtCHNEnergy’sJiangxiaTidalPowerStation(a4.1MWtidalbarragecommissionedin1981),acomplementary100MWsolarPVplantwasbuiltatthestation’sreservoir.14Europestillleadstheracetocommercialisationofoceanpower,butambitioussupportprogrammesarespurringdevelopmentsinCanada,ChinaandtheUnitedStates.Fivetidalstreamdevices(2.7MW)andsixwavepowerdevices(165kW)weredeployedin2022.Tidalstreamhasdemonstrateditsreliability,withtotalgenerationsurpassing80GWhin2022.TheUKgovernment’sContractsforDifferenceschemeearmarked41MWfortidalpowerin2022,forthefirsttimeever.DevelopersofoceanpowerattractedEUR16million(USD17million)infundingfromdiversesourcesduringtheyear.OCEANPOWERKEYFACTSiOceanpowertechnologiesharnesstheenergypotentialofoceanwaves,tides,currents,andtemperatureandsalinitygradients.Inthisreport,oceanpowerdoesnotincludeoffshorewind,marinebiomass,floatingsolarPVorfloatingwind.59RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYMinestodeployedasecond100kWdeviceintheFaroeIslands,successfullyexportingelectricitytothegrid.15Theuniquedeviceoperatesonsimilarprinciplestoakiteflyinginthewind,usingthehydrodynamicliftforcegeneratedbytheunderwatercurrenttomoveatetheredkitethatdrivesagenerator.Additionalinfrastructurehasnowbeeninstalledtoconnectthetwodevicesandtooperatebothsystemsinanarray.Minestodevisedacomprehensiveplanforbuildingoutlarge-scaletidalpowerarraysintheFaroeIslands,identifyingandverifyingfouradditionalsitesthatcouldmeet40%oftheislands’demand.16KyudenMiraiEnergyLtd.deployedSIMECAtlantisEnergy’s500kWtidalcurrentgeneratorinNagasakiPrefecture,Japan,aspartofaMinistryoftheEnvironmentprojecttopromotetidalpower.17IntheRepublicofKorea,the80kWUldolmokTidalPowerPilotPlantwasdeployedatanopen-seatestsite.18Theplantgeneratedcloseto9megawatt-hours(MWh)ofelectricityduringitseight-monthtestdeployment,forwhichtheKoreaEnergyAgencyawardedrenewableenergycertificates.19InFrance,Sabellaredeployedits1MWbottom-fixedtidalturbineintheFromveurpassageinBrittany.20ThedeploymentispartofthePHARESproject,whichaimstocombinewind,tidal,andsolarenergy,aswellasstorage,toprovidetheoff-gridUshantIslandwithmostofitselectricityneeds.21Sabellaalsosuccessfullyconnectedasmallelectrolysertotheturbineforgreenhydrogenproduction.OrbitalMarinePowercontinuedtestingitsO2turbineattheEuropeanMarineEnergyCentre(EMEC)inOrkney,Scotland.Thecompanysecured7.2MWinContractsforDifferencei(CfDs)aswellasnewinvestmentfromtheScottishNationalInvestmentBankandindividualsviatheAbundanceInvestmentplatform.22LongstandingleaderMeyGenalsosawsuccessinthenewCfDprogramme,agreeingtoadd28MWofcapacityby2027.23ThiswouldeffectivelymakeMeyGentheworld’sfirstcommercial-scaletidalarray.NovaInnovationmanufacturedandshippedthree100kWdirect-driveturbines:twofordeploymentinBluemullSound,Shetland;andonefordeploymentattheNovaTidalArrayinPetitPassage,Canada.24Thecompanyisalsoontracktodeploya50kWdemonstratorturbineandhasundertakenafeasibilitystudyfora7MWtidalarrayintheLarantukaStraitofIndonesia.25Forwavepower,sixadditionsoccurredin2022,totalling165kWincapacity.InIsrael,EcoWavePowerwasabletodeploythecountry’sfirstgrid-connectedwavepowerproject,anattenuatordevicewithacapacityof100kW,thankstoacombinationofpublicandprivatesupport,includingfeed-intariffs.26InChina,HannOceandeployedits15kWwaverotordeviceatShengsiisland.27TheWanshan1MWWaveEnergyDemonstrationProjectsuccessfullytestedtwo500kWdevicesinopen-seatrialsinGuangdongProvince,wheretheunitswithstoodseveraltyphoons.28Theprojectisscheduledfordemonstrationoperationin2023.InFrance,aquarter-scaleprototypeofawaveenergyconverterspecificallydesignedtobeintegratedintodykeinfrastructure,wassuccessfullyinstalledattheportofSainteAnneduPortzic.29Theprototypewasundergoingtesting,whichwasexpectedtoconcludebyMarch2023,withtheeventualdevicetargetingacapacityof800kW.30AttheEMECinScotland,AWSOceanEnergyreportedpositiveresultsfromatestdeploymentofitsWaveswingdevice.31Theconverterachievedaveragepowerofmorethan10kWandpeakpowerof80kWundermoderatewaveconditions.32InBelgium,EXOWAVEcompletedthedemonstrationofits3.5kWwave-to-waterplantattheBlueAcceleratortestsiteinOostende.33IntheRepublicofKorea,ademonstrationwaveenergyconverterwasconstructedandunderwentperformanceevaluationsaspartofagovernment-fundedR&Dprojecttodevelopa30kWwaveenergyconvertersuitableforbreakwatersinremoteislands.34iTheUK’sContractsforDifference(CfD)schemeaimstosupportlow-carbonelectricitygenerationbyprotectingprojectdevelopersfromvolatilewholesaleprices.60MARKETDEVELOPMENTSThe296kWMutrikuWavePowerPlantinBasqueCountry,Spainisapproachingamilestoneof3GWhofproductionsincebeingconnectedtothegridinJuly2011.35Thefacility,builtintoabreakwater,hasnowbeenintegratedintothetestinginfrastructureoftheBiscayMarineEnergyPlatform(BiMEP)andwillbeavailablefortriallingnewdesignsofkeycomponents,suchasairturbines,electricalgeneratorsandcontrolsystems.36Developmentofotheroceanpowertechnologies,suchasoceanthermalenergyconversion(OTEC),remainsslow,andonlyahandfulofpilotprojectshavebeenlaunched.37SagaUniversityinMalaysiaandotherresearchinstitutionsareconductingongoingresearchonahybridsystemofOTECanddesalination.38Theresearchincludesthedevelopmentofa3kWhybridOTECexperimentalsystemthatwillbeinstalledinMalaysiain2023toinitiatefurtherresearch.39Oceanpowerisnotyetcompetitiveinutilitymarketsduetotheneedforsignificantcostreductionsandfurthertechnologicaladvancements,particularlyforwavepower.Thesectorremainshighlydependentonpublicfundingtoleverageprivateinvestmentandisyettoreceiveclearmarketsignalstoencouragethefinalstepstowardscommercialisation.40Dedicatedrevenuesupportisessentialtoachievepredictablereturnsandtoattractprivateinvestorsuntiltheindustryreachesahigherlevelofmaturity.41A2018EuropeanCommissionimplementationplanestimatedthatEUR1.2billion(USD1.5billion)infundingwasneededby2030tocommercialiseoceanpowertechnologiesinEurope,requiringequalinputfromprivatesources,nationalandregionalprogrammes,andEUfunds.42Intotal,anestimatedEUR6billion(USD7.4billion)hasbeeninvestedinoceanpowerprojectsworldwide,ofwhich75%wasprivatefinance.43In2022,theEUannouncedafundingbudgetofEUR40million(USD42.7million)fordemonstrationoftidalarraysundertheHorizonEuropeframework,withasimilarcallforwavepowerin2023.44TheUKgovernment’sCfDschemeallocated41MWtotidalstreamtechnologiesforthefirsttimein2021,whichwillprovideGBP10million(USD12.1million).45TidalpowerprojectsfromOrbitalMarinePower,SimecAtlantisEnergyandMagallanesRenovableswereawardedcontracts.46InCanada,thegovernmentannouncedarefundable30%investmenttaxcreditthatwillcovertidal,waveandrivercurrenttechnology.In2022,EUR16million(USD17.1million)wasprovidedthrougharangeofprivateinvestmentpathways.47SeaQurrentreceivedEUR4.8million(USD5.1million)frombothexistingandnewshareholders;OrbitalMarinePowersecuredEUR4.5million(USD4.8million)throughtheAbundanceInvestmentplatform;SabellaraisedEUR2.5million(USD2.6million)throughbondissues;QEDNavalreceivedEUR1.7million(USD1.8million)fortheconstructionofademonstratorplatform;MoceanEnergysecuredEUR873,000(USD932,000)inequityfundingfromexistingfunderstoadvancethedesignofthenextgenerationofitswavepowerdevice;andWavepistonraisedEUR600,000(USD640,000)fromexistingshareholderstofinalisetheinstallationofitsfull-scalesystemin2023.48Deployingoceanpoweratscalealsowillrequirestreamlinedconsentingprocesses.49Uncertaintyregardingenvironmentalinteractionshasoftenledregulatorstorequiresignificantdatacollectionandstrictenvironmentalimpactassessments,whichcanbecostlyandthreatenthefinancialviabilityofprojectsanddevelopers.50Currentscientificknowledgesuggeststhatthedeploymentofasingledeviceposeslittlerisktothemarineenvironment,althoughtheimpactsofmulti-devicearraysarenotwellunderstood.Thiscallsforan“adaptivemanagement”approachthatrespondstonewinformationovertime,supportedbymorelong-termdataandgreaterknowledgesharingacrossprojects.51TheEUcommittedUSD42.7millionfordemonstratingtidalarrays.61RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYSolarPVmaintaineditsrecord-breakingstreak,withnewcapacityincreasing37%in2022,whileglobalsolarproductionreachedanaverageof6.2%,upfrom5%in2021.Forthetenthconsecutiveyear,AsiadominatedregionallyinnewsolarPVinstallations,contributing64%oftheglobaladdedcapacityin2022.TheleadingcountriesforcumulativeinstalledsolarPVcapacityremainedChina,theUnitedStates,India,Brazil,andSpain,whiletheleadingmarketsforpercapitacapacityremainedAustralia,theNetherlandsandGermany.Polandwasanewentranttothetop10solarPVinstallers(eighthgloballyandthirdinEurope),adding4.9GWofcapacity,nearly50%morethanitscapacityaddedin2021.Centralisedutility-scalesolarPVreachedatotalof124.8GWofnewinstallations,drivenbytendersandtheattractivenessofpowerpurchaseagreements.DistributedPVadded115.2GWandwasdrivenbyfallingmodulecosts,whichmadeinstallationsmoreattractiveandaccessible.AlthoughsolarPVpanelproductionremainsconcentratedinChina,morecountrieshavestrengthenedimportbarriersandincentivesforlocalmanufacturing,pioneeredbytheUnitedStatesandIndia.SOLARPHOTOVOLTAICS(PV)KEYFACTSThesolarPVmarketcontinueditssteadygrowthin2022,with243GWofnewinstallationsadded,61GWmorethanin2021.1(pSeeFigure24.)ThiswasthelargestincreaseinannualcapacityeverrecordedandbroughtthecumulativeglobalsolarPVcapacityto1,185GW,passingthe1-terawattmilestone.2Thisrecord-breakingincreasewaspossibledespiteongoingdisruptionacrossthesolarsupplychainduetobothshortagesandrisingcostsofrawmaterials.3SolarPVcontributedanestimated6.2%ofglobalelectricitygenerationin2022,upfrom5%in2021.4Withtheexpansionofcapacity,severalcountriesreliedonsolarPVgenerationtomeetalargeshareoftheirelectricitydemand.Bytheendof2022,atleastninecountrieshadsufficientinstalledsolarPVcapacitytomeetatleast10%oftheirelectricitydemand,upfromsevencountriesin2021.5Around22countrieshadenoughinstalledsolarPVcapacitytomeet5%oftheirelectricitydemand,upfrom18countriesin2020.6SpainhadthehighestshareofsolarPVinannualgeneration,at19.1%,followedbyGreece(17.5%),Chile(17%),theNetherlands(15.9%)andGermany(15.7%).7Forthetenthconsecutiveyear,AsiadominatedregionallyinnewsolarPVinstallations,followedbytheAmericas,whichagainsurpassedEurope.8Thetopfivecountriesibycapacityadded(indescendingorder)wereChina,theUnitedStates,India,Brazil,andSpain,togethercomprisingaround66%ofnewlyinstalledcapacity(upfrom61%in2021).9(pSeeFigure25.)62MARKETDEVELOPMENTSGigawatts1,185GigawattsWorldTotal1,4001,2001,000800600400200020172016201520142013201220182019202020222021AnnualadditionsPreviousyear‘scapacity100100138138178178228228305305407407512512623623+303038405077103104112139175240+38+40942942+50+77+102+105+111+137+1821,185+243+175760760Source:Seeendnote1forthissection.FIGURE24.SolarPVGlobalCapacityandAnnualAdditions,2012-2022Gigawatts2017201620152014201320122022201820192020202102004001,0008006001,2001781781001001381382283054074075126237607601,185942942RestofWorldGermanyIndiaJapanUnitedStatesChinaWorldTotal1,185GigawattsSource:Seeendnote9forthissection.FIGURE25.SolarPVGlobalCapacity,byCountryandRegion,2012-202263RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYThenextfivemarketsin2022wereGermany,Japan,Poland,AustraliaandtheNetherlands.Theannualmarketsizerequiredtorankamongthetop10countriesin2022was3.9GW,upfrom3.4GWin2021.10(pSeeFigure26.)TheleadingcountriesforcumulativesolarPVcapacityremainedChina,theUnitedStates,Japan,India,andGermany,whiletheleadingmarketsforpercapitacapacitycontinuedtobeAustralia,theNetherlandsandGermany.11(pSeeFigure27.)Globalcapacityadditionsofutility-scalesolarPV–large-scale,centralisedsystemsconnectedtothegrid–increasedaround25%,toreachatotalof124.8GW,whilerooftopsolarPVrosearound54%toreach115.2GW.12Similarto2021,installationsofrooftopPVin2022occurredmainlyinChina,theUnitedStates,Spain,AustraliaandGermany.13+52.6+52.6+18.6+18.6+18.1+18.1+4.9+4.9+7.5+7.5+6.5+6.5+106+106+9.9+9.9+8.1+8.1+3.9+3.9+3.9+3.9010050150255075100125200350400450300250RestofWorld150Addedin20222021totalAustraliaNetherlandsGigawattsChinaPolandJapanGermanySpainBrazilIndiaUnitedStatesSource:Seeendnote10forthissection.FIGURE26.SolarPVCapacityandAdditions,Top10CountriesforCapacityAdded,2022GlobalrooftopsolarPVadditionsrosearound54%in2022toreach115.2GW.64MARKETDEVELOPMENTSSeveralcountriesannouncedmeasuresin2022toexpandtheshareofrooftopPVsystemsintheenergymarket.Toincentiviseresidentialsystems,NorwayincreasedthemaximumsubsidyperkWinstalledaswellasthemaximumsystemsizeeligibleforrebates,from15kWto20kW.14Germanyreducedthevalue-addedtax(VAT)to0%forresidentialPVsystemsupto30kWinsizeandprovidedtaxexemptionstooperatorsofsmallPVsystems.15BelgiumloweredtheVATforPVinstallationsandheatpumpsdeployedonbuildingsconstructedinthelasttenyears.16Italyloosenedpermitsforutility-scalePVandsimplifiedthepermittingprocessforcommercialrooftopsystemsupto200kW.17PortugalandSpainbothstreamlinedpermitstopromoteself-consumption,andfor2022theAustriangovernmentmorethanquadrupledthebudgetofitsrooftopsolarrebateprogramme.18China’ssolarPVmarketexperiencedunprecedentedgrowthin2022,addinganestimated106GW,oraround93%morethanin2021.19Around58%ofthenewcapacitywasdistributedsolarPV(61.4GW),while44.6GWwascentralisedsolarPV.20Intotal,China’smarketgrew35.5%in2022toreachacumulativecapacityof414.5GW,with165.8GW(40%)fromdistributedgenerationiand248.7GW(60%)fromcentralisedplants.21China’smarketforcentralisedsolarPVplantsgrewaround18%,whiledistributedsolarPVgrew47%.22Thecountry’srooftopmarketwasdrivenlargelybythethree-yearwhole-countyrooftopsolarscheme,whichlaunchedinearly2021andregistereddoublethenumberofinstallationsin2022comparedto2021.23Totalelectricityproduction(fromallsources)increased3.6%inChina,whereaselectricityfromsolarPVsurged27.8%,to418TWh.24Thecountry’stotalelectricitydemandin2022reached8,840TWh,withsolarPVrepresenting4.7%ofthetotal.25IndiawasagainthesecondlargestmarketinAsiafornewsolarPVcapacity,andthirdglobally.Thecountryaddedaround18.1GWin2022,morethanthepreviousyear,representingaround80%ofthecountry’stotaladdedpowercapacity(fromallsources).26ThesolarPVadditionsincludedaround15.7GWofutility-scalesolar(87%)and2.4GWofrooftopPVinstallations.27ThisbroughtIndia’scumulativeinstalledsolarPVcapacitytoaround79GW.28However,thiswasstillwellbelowIndia’stargetof100GWofsolarby2022.29Utility-scalesolarfellshortbyaround2GWandrooftopPVbyastaggering25GW.Theshortfallcanbetracedtomultiplefactorsincludingnetmeteringlimits,customsdutiesthatcameintoeffectinApril2022,unsignedrenewablepowersupplyagreementsthathavebeentenderedbutnotsignedbydistributioncompanies,andbankingrestrictions(withhigherbankingchargesandthebankingperiodforrenewablepowerchangedfromannuallytomonthly).30InJapan,theannualgrowthinsolarPVinstallationsstagnatedin2022,withthecountryagainaddingaround6.5GW,tobringthetotalinstalledcapacitytoanestimated84.5GW.31AnewmandateforsolarPVannouncedinTokyorequiresallnewhomesandbuildingstoinstallrooftopPVstartingin2025ii.32Japanalsohoststhelargestnumberofagriculture-basedsolarPVplantsglobally,asdual-usesystemssuchasagrivoltaicsandfloatingsolarPViDistributedgenerationreferstosystemsthatprovidepowertogrid-connectedconsumers,ordirectlytothegrid,butondistributionnetworksratherthanonbulktransmissionoroff-gridsystems.Inthissection,distributedgenerationreferstorooftopandground-mountedPVforresidential,commercialandindustrialapplications.iiTherooftopspaceshouldbemorethan20squaremetresforhomesandlessthan2,000squaremetresforbuildings.44%China22%+240GigawattsRestofWorld8%20%UnitedStates8%India4%BrazilSpain3%Germany3%Japan3%Poland2%Australia2%Netherlands2%Next6countriesSource:Seeendnote10forthissection.FIGURE27.SolarPVGlobalCapacityAdditions,SharesofTop10CountriesandRestofWorld,202265RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYhavemajorpotentialinthecountryconsideringthelimitedlandavailability.33(pSeeNicheSolarPVMarketssub-section.)In2022,around100MWofagriculturalPVcapacitywasaddedinJapan,foracumulativetotalofaround300MW.34ThesolarPVmarketintheUnitedStatescontractedin2022.Thecountryadded18.6GWduringtheyear,down16%from2021levels,toreachacumulativecapacityof141.6GW.35Forthefourthconsecutiveyear,solarPVwastheleadingsourceofUSaddedpowergenerationcapacity,accountingforarecordhalfofthetotalcapacitybroughtonlinein2022.36ThetopstatefornewsolarPVadditionswasCalifornia(4.7GW),followedbyTexas(3.3GW)andFlorida(1.7GW).37USsolarPVgenerationtotalled201TWh,withthebulkofitutility-scale(143TWh)andtherestgrid-connected,distributedrooftopsystems(58TWh);altogether,solarPVcontributed4.7%ofUSelectricitygenerationin2022.38InMarch2022,theUSgovernmentcarriedoutaninvestigationafterasolarmodulemanufacturerclaimedthatChinesecompaniesbasedinSoutheastAsiawereexportingpanelstotheUnitedStateswhileavoidingUSanti-dumpingandcountervailingtariffsinplacesince2012.39Theinvestigationledtoatemporaryhaltinshipmentsfrommodulemanufacturers,leadingtoamoduleshortageinthecountryandcontributingtoslower-than-usualannualgrowth,mainlyintheutility-scalemarket.40InanothersetbackfortheUSsolarmarket,customsofficialsdetainedanestimated10GWofsolarpanelsfromChinain2022underenforcementoftheUyghurForcedLaborPreventionAct.41TheUSInflationReductionAct,signedinAugust2022,isexpectedtohaveapositivelong-termimpactonthesolarPVmarket.42TwoofthemainincentivesforsolarPVareanincreaseintheInvestmentTaxCreditfrom26%to30%forresidentialandcommercialprojects,andtheapprovaloflarge-scalearraystoqualifyforProductionTaxCreditsofupto2.5centsperkWh.43BrazilcontinuedtoleadinsolarPVcapacityinLatinAmerica,addingnearly10GW,anewrecordandroughlydoubletheamountaddedin2021.44Thisincludedarecord7.6GWofnewdistributedcapacityand2.5GWofcentralisedPVsystems.45MarketgrowthinBrazilwasdrivenmainlybyhighelectricitybillsandbynewregulationsfordistributedgeneration.46Inearly2022,thegovernmentmadePVsystemsofupto5MWinsizeeligiblefornetmeteringuntil2045,andestablishedagridfeestartingin2023.47OthernotablecapacityadditionsinLatinAmericawereinChile(1.8GW)andMexico(680MW),whilePanama’slargestsolarPVplant(120MW)beganoperation,withpotentialannualgenerationofaround240GWh.48Europeadded40.5GWofsolarPVin2022toreach206GWofinstalledcapacity,markinganotheryearofoutstandinggrowth.49NewinstallationsintheEU-27reached38.9GW,63%morethanthe25.9GWaddedin2021.50Inearly2022,aspartofaplantoreduceitsrelianceonRussiannaturalgasandtoacceleratethedeploymentofrenewables,theEUannouncedthatitwouldexpeditebymorethan20%thetargetof420GWofsolarPVby2030.51ThetopEUadditionswereinSpain(8.1GW),Germany(7.5GW),Poland(4.9GW),theNetherlands(3.9GW)andFrance(2.9GW),whiletheleadersfortotalcapacitywereGermany,Spain,Italy,FranceandtheNetherlands.52Portugaladdedanotable2.5GWin2022,reflecting250%year-on-yeargrowth,andItalyadded2.6GW,with174%growth.53China'saddedsolarPVcapacitywasaround93%morethanin2021.66MARKETDEVELOPMENTSGermany’ssolarPVcapacityadditionswereupalmost50%in2022,wellabovethe8%growthraterecordedin2021,andtotalinstallationsreached67GW.54TheGermanmarketwasdrivenmainlybygovernmentauctionsandmorethan3GWoftenders.55Powerpurchaseagreements(PPAs)alsoplayedarole,withunsubsidisedinstallationsaccountingforaround872MWofcapacityadded.56In2022,solarPVcontributedarecord11.8%ofGermany’selectricityproduction,upfrom9.8%in2021.57TheRussianFederation’sinvasionofUkrainestirredupGermany’senergymarket,pushingthegovernmenttoreleaseamendmentsin2022supportingrenewablesinthecomingyears.Toimproveenergysecurityandadvanceclimateneutrality,Germanyadoptedanaccelerationscheme(theEasterPackage)thatrevisedenergylawsandproposednewmeasures,includinghigherfeed-intariff(FIT)rates,removaloftheFITsurchargeforself-consumedsystemsof10-30kW,andanincreaseintheauctionthresholdto1MW(previously300kWforrooftopand750kWforground-mountedsystems).58Spainaddedaround8.1GWofsolarPVin2022,65%morethanin2021(4.9GW),bringingthecountry’stotalcapacityto26.6GW.59Installationsincluded4.3GWofutility-scaleand2.7GWofself-consumptiondistributedPVsystems.60Around47%ofthenewinstallationsunderself-consumptionwereinstalledintheindustrialsector,32%intheresidentialsectorand20%inthecommercialsector.61Spain’sutility-scalePVmarketcontinuedtobedrivenbyunsubsidisedPPAs,whiletherooftopPVmarket,whichgrewatasteadyrateofaround102%in2022,wasdrivenbyhighelectricityprices.62Spainnowfacesapotentialovercapacitychallenge,necessitatinginvestmentsingridexpansionandenergystorage.63Polandwasanewentranttothelistoftop10solarPVinstallersin2022,adding4.9GWornearly50%morethanin2021(3.3GW).64Residentialprosumersirepresentedaround80%ofthenewcapacity,motivatedbyanattractivenetmeteringschemeandbyrisingelectricityprices.65However,thespikeinhouseholdinstallationsposedchallengesforthedistributionnetwork,andinApril2022Polandreplacedthenetmeteringschemewithnetbilling,aslightlylessattractiveoptionforhouseholds.66TheNetherlands,theothernewentranttothetop10installers,added4GWofsolarPVin2022.67Nearlyhalfofthenewinstallations(1.8GW)wererooftopPV,up38%in2022anddrivenlargelybythecountry’snetmeteringscheme.68In2022,theNetherlandsboastedEurope’shighestshareofsolarPVintheenergygenerationmix,at14%(upfrom11.8%in2021).69AustraliaremainedthelargestsolarPVmarketinOceaniaaddingaround3.9GWin2022foratotalcapacityofnearly30GW.70SolarPVgenerationrosearound20%to34.3TWh,contributing14.7%ofAustralia’stotalelectricitygeneration;rooftopPValoneaccountedfor25.8%ofrenewablegenerationandfor9.3%ofallgeneration.71Australia’ssolarrooftopsegmentaddedanestimated2.8GW,drivenbya15-20%increaseinelectricitybillsnationwide,althoughthiswaslessthanthe3.3GWadded2021,duemainlytosupplychaindisruptions.72Byyear’send,anestimated3.4millionhomesacrossthecountryhadrooftopsolarsystemsinstalled.73Householdbatteryadditionsalsogrewsignificantly(44%)in2022,withanestimated50,000batterysystemsadded.74TofacilitatewideruptakeofrooftopPVwithoutcompromisinggridstability,thestateofWesternAustraliahasfollowedthestepsofSouthernAustraliatoimplementremotedisconnectionofnewandupgradedsolarandbatteryinstallations.75TheMiddleEastandAfricaaddedaround7.2GWofsolarPVin2022.76Africainstalledaround950MW–up14%fromthe833MWinstalledin2021–bringingthetotalcapacitytoatleast10GW.77Theregion’stopinstallerwasAngola,addingaround284MW,followedbySouthAfrica(111.8MW),Egypt(80MW),Ghana(71.3MW)andMozambique(41.9MW).78iProsumersarethosewhoconsumeelectricalenergyaswellasproduceandexportexcesselectricitytothegrid.Bytheendof2022,anestimated3.4millionhomesacrossAustraliahasrooftopsolarsystemsinstalled.67RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYNICHESOLARPVMARKETSInadditiontoconventionalPVinstallations,floatingsolarPVandagriculturalPVigainedgreaterrecognitionin2022,withmultiplecountriesdefiningsupportivemeasuresfortheseinstallations.AlthoughthetotalinstalledcapacityoffloatingPVplantsisdifficulttotrack,withlimiteddocumentationofrecentadditions,thecapacitywaswellover3GWbytheendof2022.79ThetopfivecountrieswiththehighestestimatedfloatingPVpotentialaretheUnitedStates,China,Brazil,IndiaandCanada.80India’slargestproject(around100MW)wascommissionedin2022,andtheCzechRepublicalsofinishedbuildingitsfirstfloatingPVplantinearly2022.81Germany’snewEasterPackagesupportedthedevelopmentofagriculturalPV,includingitaspartofthelarge-scaletenderschemeinsteadoftheinnovationtender.82France,whichconsidersagriculturalPVcriticalineffortstoachievethecountry’stargetof100GWofsolarby2050,compiledanewsetofstandardsdefiningandcharacterisingthisapproach.83Similarly,ItalycompiledadetailedlistofstandardsforagriculturalPVprojects,facilitatingtheexpansionofthismarketinthecountry.84Building-integratedPV(BIPV)systemsandvehicle-integratedPViiarenichemethodsofinstallationthatinvolvetheintegrationofsolarPVwithinthesurfaceofbuildings(façadesandrooftops)aswellasvehicles.In2022,Chinareleasedaplanaimedatdeploying50GWofrooftopandBIPVbytheendof2025.85IntheRepublicofKorea,theSeoulmetropolitangovernmentannouncedarebateschemethatcoversupto80%ofthecostsofpurchasingandconstructingBIPVsystems.86SOLARPVINDUSTRYIn2022,Chinacontinuedtodominatetheglobalmanufacturingofsolarpanels,withmorethanan80%stakeacrossallproductionstages.87AleadingbarriertothewidergeographicalspreadofPVmanufacturingisthegapincostsbetweenChinaandothercountriesthatseektoincreasedomesticproduction.ComparedtoChina,costsarehigher10%inIndia,20%higherintheUnitedStatesand35%higherinEurope.88Thecostofpolysiliconiii,whichrepresentsaround35%ofthetotalcostofaPVmodule,continuedtoincreasein2022.89Bymid-year,theaveragecostofpolysiliconwasUSD45.4perkilogram,itshighestrecordedcostinmorethanadecade,whichpromptedChina’snationalenergyagencyandstateregulatortoaskregionalauthoritiestostepintostoptherampantcostincrease.90Theriseinpriceisattributedtoincreaseddemand,macroeconomicfluctuationsandsupplychainissues.91Althoughglobalshippingcostsacrossallindustriesdecreasedslightlyin2022,theyremainedsubstantiallyhigherthanin2019,beforetheCOVID-19pandemic,withlargeimpactsonsolarPVmarkets.92Indiacontinuedtosupportdomesticproductionofsolarmodulesin2022,bothbyincreasingfinancialincentivesandbroadeningtaxexemptions,andbyimposingahighcustomsduty(40%)ondeveloperstodiscouragetheuseofimportedsolarmodules.93InEurope,theEuropeanCommissionispreparinganewlegalinstrumenttobanthesaleofgoodsmadewithforcedlabour,includingsolarpanelsmadeinXinjiang,China,whereabuseshavereportedlyoccurred.94Germany,inparticular,isstrategisingtorestorethecountry’sfullyfledgedsolarPVmanufacturingsupplychain.95IntheUnitedStates,thegovernment’s2021banonimportsofmaterialsmanufacturedinXinjiangcameintoeffectinJune2022.96However,theUSsolarmanufacturingmarketremainsrelativelyunpreparedtomeettherisingdemandformodules,astheoperationalcostofUSmodulefactoriesismuchhigherthaninAsia,duemostlytohigherlabourandelectricitycosts.97InJuly2022,theUSgovernmentannouncedaUSD56millioninvestmenttoexpeditedomesticsolarmanufacturing.98Celltechnologiesin2022followedsomewhatsimilartrendsaspreviousyears.Passivatedemittercell(PERC)ivsolarpanelscontinuedtodominateovern-typecells,suchastunnel-oxidepassivatedcontact(TOPConv)andheterojunctiontechnology(HJT).99However,withPERCcellsapproachingtheirtheoreticalefficiencylimit,emergingmanufacturersoutsideofChinaarepursuingHJToverPERC.100MajorcellmanufacturersinChinaalsohaverampedupmanufacturingcapacityofTOPConmodules.101iAgriculturalPVusesthesamesiteforbothenergyandcropproduction.iiNottobeconfusedwithbuildingandappliedPV(BAPVandVAPV),whichconsistoffittingPVmodulesontoasurface.iiiPolysiliconistherawmaterialforcrystallinesiliconwhichisusedtomanufacturePVwafers.ivPERCisatechniquethatreflectssolarraystotherearofthesolarcell(ratherthanbeingabsorbedintothemodule),therebyensuringincreasedefficiencyaswellasimprovedperformanceinlow-lightenvironments.vTOPConcellsadaptasophisticatedpassivationschemetoadvancecellarchitecturesforhigherefficiencies.68MARKETTRENDSCSPMARKETSTheglobalinstalledcapacityofconcentratingsolarthermalpower(CSP)increasedby200MWin2022toreachatotalof6.3GW.1(pSeeFigure28.)ThisgrowthfollowedthefirstyeareverofcontractionofglobalCSPcapacityin2021.2Overall,theglobalCSPmarkethasslowedfollowinganinitialsurgeofdevelopmentinSpainandtheUnitedStatesintheearly2010s.3Neitherofthesehistoricallyleadingmarketshasaddedcapacityinnearlyadecade.However,newprojectshavecomeonlineandareunderconstructioninemergingmarkets,includingChile,China,Israel,Morocco,SouthAfricaandtheUnitedArabEmirates.4In2022,thefirstportion(200MW)ofa600MWparabolictroughfacilitycameonlineatalarge-scalehybridCSPpowerplantintheUnitedArabEmirates.5Oncecompleted,theplantwillbetheworld’slargestCSPfacilityat700MW(includingthe100MWcentraltower).6Itisspreadover77squarekilometresandcombinessolarPVandCSP;the266metresolartower,theworld’slargest,enteredcommercialoperationsinearly2023.7Mostoftheworld’sCSPcapacityunderconstructionisinChina.Asoftheendof2022,atleast30CSPprojectswereinvariousstagesofconstructionandcommissioninginthecountry,with14projects(totalling1.4GWofcapacity)scheduledtocomeonlineduring2023.8Iftheseprojectsarecompletedasscheduled(whichishighlyuncertain),itwouldraisetheglobalcumulativeCSPcapacitybyroughly23%,equivalenttothetotaloperationalcapacityintheUnitedStatesasof2022.9Inearly2023,thefirstoftheseChineseprojectsstartedcommercialoperations,a50MWtowerCSPfacility.10ThemaindriversforCSPinChinaarethe“dualcarbon”plan,whichaimstogiveflexibilitytothegrid;policysupporttodrivecostreductions;R&Dat11majoruniversities;andalocalCSPsupplychaincomprisingmorethan500Chinesefirms.11AstatecouncilactionplanalsoproposesdevelopingCSP,promotingitsco-locationwithwindpowerandsolarPV.12Inaddition,the14thFive-YearPlanforaModernEnergySystem(2021-2025)promotestheactivedevelopmentofCSPaswellasthecoordinateddeploymentandjointoperationofCSP,windandPVpowergenerationfacilitiesinregionssuchasGansu,InnerMongolia,QinghaiandXinjiang.13WesternregionsinChinawithahighlevelofsolarirradiationareencouragedtouseCSPasapowersourceforpeakshaving.14Chinaisnotableforitsfocusonsolartowersystems.Whereasmostoftheworld’shistoricCSPcapacity(morethanthree-quarters)isparabolictrough(andonly20%tower),inChinamorethan63%ofprojectsaresolartower,whileonlyaquarterareparabolictrough.15Asofend-2022,around1.3GWofCSPcapacitywasstillinoperationintheUnitedStates,withnoprojectsunderplanningorconstruction.16ThecountryhasnotaddednewCSPcapacitysince2015.17However,theInflationReductionActof2022wasexpectedtogiveCSPaboost,earmarkingUSD24milliontofundCSPtechnologiesforelectricitygenerationaswellasforindustrialprocessheat.18Followingthefirst-everyearofcontractioninglobalCSPcapacity,200MWwasaddedintheUnitedArabEmiratesin2022toreachatotalof6.3GWworldwide.Fornearlyonedecade,nonewCSPcapacityhasbeenaddedinhistoricalleadersofSpainandtheUnitedStates.ChinaispoisedtobecomeagloballeaderininstalledCSPcapacity,withatleast30projectsundervariousstagesofconstructionandcommissioningasoftheendof2022.SeveralAfricancountriesalsoweredevelopingCSPprojects.Hybridprojects,whereCSPisco-locatedwithsolarPVandwindpower,areincreasinglycommonandhavebeenresponsiblefordrivingdowncosts.NearlyallnewCSPplantscontainsomeformofthermalenergystorage.ThecostofelectricitygeneratedbyCSPplantsfell68%between2010and2021.KEYFACTSCONCENTRATINGSOLARTHERMALPOWER69RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYSpainhasaddednonewCSPcapacitysince2013andfacedfurthersetbacksduring2022.Althoughthecountryhadaimedtoaward220MWofnewCSPcapacityatarenewableenergyauctioninOctober,nocapacitywasawarded.19Thiswasduemainlytoindustryrequestingahigherpricethanthegovernmentwaswillingtooffer,andtoindustryuncertaintyaboutthepossibilitiestoaccesstheelectricitygrid.20SpainaimstodoubleitsCSPcapacityfrom2.3GWto4.8GWby2025and7.3GWby2030,yetthecountryhadnocapacityunderconstructionin2022.21Italyhad8MWofCSPcapacityunderconstructionin2022andaimstoadd880MWby2030.22InSouthAfrica,theRedstoneCSPplantbeganconstructionandisexpectedtobecompletedin2023,with100MWcapacityand12hoursofstorage.23InAfrica,Botswanamovedforwardinatenderingprocessfora200MWCSPplant,andafeasibilitystudywasconductedforaCSPfacilityinNamibia.24AnAustraliancompanyreceivedAUD65million(USD44million)toconstructanovelplantdesignconsistingofseveralsmalltowers,asopposedtothesinglelargetowerthatistypicalofsolartowerplants.25CSPINDUSTRYThemaincompaniesactiveintheCSPindustryin2022werebasedinChina,SpainandtheUnitedArabEmirates.26TheyincludedprojectdevelopersShanghaiElectric,Abengoa,AccionaEnergia,andACWAPower,aswellasseveralsmallerfirms.ThecostiofelectricitygeneratedbyCSPplantsfell68%between2010and2021.27Thisdeclinewasdrivenlargelybydecreasesintotalinstalledcostsandbyimprovedcapacityfactors.28Thegrowingadditionofthermalenergystoragealsohasgrownplantcapacityfactors,improvingplantdispatchabilitywhiledecreasinglevelisedelectricitycosts.29Inaddition,hybridisationwithsolarPVhasbeenresponsiblefordrivingdownCSPcosts,especiallyinChina.30Upfrontcostsreboundedin2021,althoughtheincreaseshouldbeconsideredwithcaution,asonlyoneprojectwasbroughtonline.31(Costdatafor2022werenotavailableatthetimeofpublication.)Technologycouldplayagrowingroleindrivingdowncosts,ascleaningofheliostats(amajorcomponentintowerCSPplants)andcloudcoverpredictionhavethehighestpotentialforincreasingthevalueofCSPplants.32Hybridprojectscoulddrivecostsdownfurther.A2021studyfoundthatChileanhybridsolarPV-CSPplantscouldreachlowerlevelisedelectricitycoststhangas-firedpowerplants,whileprovidingthesameflexibilitybenefitstothesystem.33ResearchanddevelopmentofCSPsystemscontinuedin2022.TheUnitedStatesandChinaleadtheworldinpatentapplicationsforthetechnology,eachaccountingforaround20%ofallapplications.34Inearly2023,constructionbeganonthefinalstageofaUSD100millionCSPdemonstrationprojectintheUnitedStates.35TheUSDepartmentofEnergyhasagoaltoreducethecostofheliostatsone-thirdby2030fromits2021level.36In2022,ChinaprovidedtotalfundingofRMB8.06million(USD1.2million)foratotalof21CSPresearchprojects(12youthprojects,8generalprogrammes,and1regionalandinternationalcooperationandexchangeproject).37iReferstotheglobalweightedlevelisedcostofelectricity(LCOE).Gigawatts0123457620172016201520142013201220182019202020212022RestofWorldSpainUnitedStates6.16.15.55.54.84.84.74.74.64.64.34.33.43.42.52.56.26.26.36.36.16.1Source:Seeendnote1forthissection.FIGURE28.ConcentratingSolarThermalPowerGlobalCapacity,byCountryandRegion,2012-2022Fornearlyonedecade,allCSPcapacityhasbeenaddedinemergingmarkets.70MARKETDEVELOPMENTSTheglobalsolarheatmarketcontracted9.3%in2022toanestimated22.8GWthi,afteranincreasein2021thatfollowedsevenyearsofdecline.1Salesgrewatdouble-digitratesinseverallargesolarthermalmarkets,includingItaly(43%),France(29%),Greece(almost17%),andGermanyandPoland(both11%);inaddition,SouthAfrica,thestrongestmarketinSub-SaharanAfrica,reportedanincrease(9%)over2021.2However,salesdeclinedinotherlargemarketsincludingIndia(-21%),China(-12.3%),Spain(-12%)andPortugal(-11%),followingstronggrowthin2021.3Thesolarthermalindustrywaschallengedbysupplychainissues,logisticsdisruptionsandinflation,whichpushedupcosts.Insomecountries,manufacturersstruggledtoprocurerawmaterialsfortheproductionofcollectorsandstoragetanks,leadingtolongerdeliverytimesandrisingprices.4Despitehigherfossilfuelprices,onthedemandsidealackofawarenessofsolarthermaloptionsandanimbalanceinpoliciesandutilityincentivesinmanycountriesmeantthatsolarthermalcontinuedtofacefiercemarketcompetition–fromsolarPVinparticular,butalsofromheatpumpsandbiomassboilers,bothofwhichofferstand-alonesolutionsforhotwaterand/orspaceheating.5Small-scalesolarthermalsystemsandcombi-systems(forwaterandspaceheating)continuedtoaccountforaround60%ofannualinstallations,butinrecentyearstheyhavelostmarketshareacrossmuchofEuropeandChina.6Demandforlarge-scaleprojects,incontrast,isincreasing,withseveralmulti-megawattplantsunderconstructionin2022forcommercialandindustrialclients,signallinganeweraforbigsolarinthoseregions.7Insomecountries,interestalsoisrisinginhybridsystems,particularlycombinedsolarthermalandheatpumpsystemsindistrictheatingnetworks.8Byyear’send,millionsofresidential,commercialandindustrialclientsinaround150countrieswerebenefitingfromsolarthermalheatingsystems.9Cumulativeglobalcapacityinoperationreachedanestimated542GWthin2022,up3.3%from523GWthin2021.10(pSeeFigure29.)Totalglobalcapacityofsolarwatercollectorsinoperationattheendof2022wasenoughtoprovidearound442TWhofheatannually,equivalenttotheenergycontentof260millionbarrelsofoil.11Chinaremainedthelargestmarketforsolarthermalsystemsofalltypes,accountingforaround73%ofthecumulativeworldcapacity,followeddistantlybyTürkiye,theUnitedStates,GermanyandBrazil.12Thetop20countriesfornewadditionsremainedlargelythesameasin2021,ledbyChina,Türkiye,Brazil,IndiaandtheUnitedStates.13(pSeeFigure30.)AsignificantadditionwasLebanon,whereinstallationsrosemorethanfour-foldin2022astheremovalofsubsidiesdroveuppricesforfuelandelectricity.14Theglobalsolarthermalmarketcontracted9.3%in2022,duelargelytoadropinChina.Salesgrewatdouble-digitratesinseverallargemarketsincludingItaly(up43%),France(29%),Greece(almost17%),GermanyandPoland(both11%).Althoughsmall-scalesystemsforwaterandspaceheatingcontinuedtolosemarketshareinmanycountries,demandforlarge-scaleprojectsincreased.SolarthermalcontinuedtofacefiercecompetitionfromsolarPVaswellasheatpumpsandbiomassboilers.Bytheendof2022,millionsofresidential,commercialandindustrialclientsinsome150countrieswerebenefitingfromsolarthermalheatingsystems.TheleadingmarketsforsolarthermaltechnologyindistrictheatingwereChina,whichcommissionedanestimated25systems,andGermany,whichhadarecordyearwith8newplants.Moresolarindustrialheatplants(SHIP)beganoperationin2022thaninanyotheryearsincesurveysbeganin2017,withatleast114projectscomingonline.TheNetherlandsledwith38systems,followedbyChina(17)andFrance(14).SOLARTHERMALHEATINGKEYFACTSiGlobaldataareforsolarthermalwatercollectors(glazedandunglazed)only.71RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYGigawatts-thermalGlazedcollectorsUnglazedcollectors010020030040060050020212012201320142015201620172018201920202022330330374374409409435435456456473473482482487487499499523523542542542Gigawatts-thermalWorldTotalSource:IEASHC.Seeendnote10forthissection.Note:Dataareforglazedandunglazedsolarwatercollectorsanddonotincludeconcentrating,airorhybridcollectors.FIGURE29.SolarWaterHeatingCollectorsGlobalCapacity,2012-2022Gigawatts-thermal051015AustriaPortugalMoroccoCyprusFranceLebanonSpainSouthAfricaPolandItalyIsraelMexicoGreeceAustraliaGermanyUnitedStatesIndiaBrazilTürkiyeChinaUnglazedcollectorsGlazed–evacuatedtubecollectorsGlazed–flatplatecollectors1.5-12%-4%-2%+3%+3%++11%1.51.251.00.750.50.251.5+43%+43%+385%+385%-12%-25%-25%-11%-11%-13%-13%+29%+29%+5%+5%+11%+9%-21%-8%+17%Source:Seeendnote13forthissection.Note:Additionsrepresentgrosscapacityaddedandareroundedtonearestwholenumber.TheadditionsforMexicoandIsraelreferto2021(latestdataavailable).ForMorocco,theshareofcollectortypeswasnotavailable.FIGURE30.SolarWaterHeatingCollectorAdditions,Top20CountriesforCapacityAdded,202272MARKETDEVELOPMENTSTOPCOUNTRYMARKETSAfterstabilisingin2021,China’ssolarthermalsalescontinuedthedownwardslidethatbeganin2014,asthemarketwasaffectedbypandemic-relatedrestrictionsandaresultingslowdowninnewconstruction.15Evenso,thecountrycontinuedtoaccountforthelargestshareofglobalannualsales,atnearly69%.16Chinaaddedanestimated15.2GWth(21.7millionsquaremetres,m2)in2022,down12.3%from2021,foratotalof396.2GWth(566millionm2).17By2022,China’senergysavingsfromtheuseofsolarthermaltechnologiesexceededanestimated1billiontonnesofstandardcoal.18SalesofvacuumtubecollectorsinChinafell11%,to11.2GWth,accountingfornearlythree-fourthsoftotalsales,whileflatplatesalesdeclined19%,to4GWth.19Mostnewinstallationswereintheengineeringmarketi(83%),withtherestintheretailmarket.20WaterheatingremainedtheprimaryuseforChina’ssolarthermalsystems,butthemarketforspaceheatingcontinuedtoexpand,up9.5%in2022.21China’sindustrymovedfurthertowardsmodularisationandincreasedintelligenceofsystems,whilepricecompetitionbecameincreasinglyfierce.22Despiteindustryexpectationsofdouble-digitgrowth,Brazil’smarketcontracted2.1%relativeto2021,whensalesgrew28%toarecordhigh.23Thedeclinewasduetoeconomicchallenges,concernaboutinvestmentsecurityinadvanceofstateandfederalelections,andexpectedgovernmentsupportpoliciesforsolarthermalthatdidnotmaterialisein2022.24Braziladdedatotalof1.26GWth(nearly1.8millionm2),withsystemsforswimmingpools(unglazedcollectors)accountingfornearly52%ofthenewlyinstalledcollectorarea,or0.6GWth(920,463m2).25Althoughtheresidentialsector(73%)remainedthelargestmarket,solarheatinginhotelshasincreasedrapidly,withinvestmentsgenerallypayingoffin2-4years.26Brazil’stotaloperatingcapacitygrew8.5%in2022,to9.1GWth.27Followingstronggrowthin2021,India’smarketdeclined21%in2022.28Thecountryaddedanestimated1.06GWth(1.52millionm2)foratotalof13.9GWth(19.8millionm2),closetomeetingtheSolarMissiontargetfor2022.29Salesofvacuumtubecollectorsdropped19%,whileflatplatecollectorsalesfell50%,totheirlowestshare(5%)ineightyears.30ThedeclinewasduelargelytofallingsolarPVpricesplusanetmeteringschemeandanewlyenacted(2021)federalsubsidyforsolarPV,whichencouragedcustomerstoinstallsolarPVoversolarthermal.31ThestateofKarnatakacontinuedtoleadwithamarketshareabove75%,duetorisingelectricratesandasolarbuildingobligationinplacesince2007.32AsinIndia,mostsolarthermalsystemsinTürkiyeareresidentialwaterheaters;however,systemsalsohavebeeninstalledinhotels,hospitalsandotherfacilities,placingthecountrysecondafterChinaforthenumberoflargesystemsinoperation.33ThepaybackperiodsforsolarthermalalongtheMediterraneancoastarerelativelyshortduetohighirradiationandagoodmatchbetweenhotwaterdemandandthehighsolar-yieldseason.34Türkiyealsoishometotheworld’slargestsolarthermalcoolingsystem,inauguratedin2022.35Intotal,Türkiyeaddedanestimated1.3GWthin2022,downmorethan4%from2020,foracumulativeoperatingcapacityof19.1GWth.36Themarketdeclinewasduetoamixofhighinflation,uncertaintyaboutupcomingelections,andcompetitionfromnaturalgas,whichisdistributedtoanincreasingnumberofruralareas.37TheUnitedStatesrankedfifthforsalesin2022,adding617megawatts-thermal(MWth),bringingitstotalsolarthermalcapacityto18.2GWth.38AsinBrazilandAustralia,newpoolheatingsystemsdrovetheUSmarket.39TheUnitedStatesremainedthesecondlargestmarketforunglazedcollectors(587MWth)afterBrazil,followedbyAustralia(245MWth),whereunglazedcollectorsrepresentedover71%of2022additions.40UnlikeinTürkiye,Brazil,andIndia,wheresolarwaterheatersarecost-effectivecomparedtoelectricity-drivensolutions,intheUnitedStatesandmostEuropeancountriesfinancialincentivesarestillneededtoreduceupfrontinvestmentcosts,duetohigherequipmentandlabourcostsandinsomecaseslowersolarresources.41iChinesestatisticscharacterisesystemsaseitherstandardisedsmallresidentialsolarwaterheatersor“engineered”systems,whichincludelargersystemsusedin,forexample,industry,agriculture,publicinstitutionsandresidentialhousingprojects.Severalmulti-megawattplantswereunderconstructionin2022forcommercialandindustrialclients,signallinganeweraforbigsolarthermalinmuchofEuropeandChina.73RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYMarketstrengthvariedacrossEurope,withcontinuedexpansioninseveralcountries(includingItaly,France,GreeceandPoland)andsurprisinggrowthinGermany,butdeclineselsewhere(includinginAustriaandSwitzerland).42MostsolarthermalsystemsinEuropeareonrooftopsandareusedforresidentialwaterheating.43ThetopfiveEuropeancountriesfornewadditionsin2022wereGermany,Greece,Italy,PolandandSpain.44InGermany,theworld’ssixthlargestsolarthermalmarket,annualsaleswereup11%,withanestimated91,000solarthermalsystemsadded,totalling496MWth(709,000m2).45ThiswasGermany’sthirdyearofmarketstabilityorgrowthfollowingseveralyearsofcontraction.46Theincreasecamedespitesupplybottlenecksandweakeneddemandinconstructionandrenovationcausedbyeconomicuncertainty,andwasduetorisingfuelpricesandcontinuednationalfundingforresidentialinstallations.47Bytheendof2022,Germanyreachedanestimated15.5GWth(22.1millionm2)ofcapacityinoperation.48ThesecondlargestEuropeanmarket,Greece,addedarecord293MWth(419,000m2),up17%over2021,foratotalof3.8GWth(5.4millionm2)inoperation.49TheGreekmarketwasdrivenmainlybyhighelectricitypricesandadesiretoshiftawayfromfossilfuels.50Greece’ssolarthermalindustryisgrowingrapidly,withannualproductionofcollectorarearisingfrom540,000m2in2014to1.2millionm2in2021.51Domesticsaleswereup33%overthisperiodwhileexportstripled,accountingfor70%of2021production.52Productionincreasedafurther19.4%in2022,andexportsrose21%.53Italy’smarketexpanded43%in2022,toanestimated225MWth.54Thisfollowedarecord83%increasein2021,thefirstpositiveyearaftermorethanadecadeofcontraction.55TheincreasesweredrivenmainlybytheSuperbonusi,a110%taxreductionforenergyefficiencymeasuresthatincludereplacingfossilboilerswithrenewableheatingsystems.56InPoland,additionsincreased11%over2021,to147MWth(210,000m2),withflatplatecollectorsaccountingformorethan99%iiofthemarket.57Increasedpublicinvestmentcombinedwithrisingfossilfuelpricesandthethreatoffuelsupplydisruptiondrovethemarket.58Atyear’send,Polandhadanestimated2.4GWth(3.4millionm2)inoperation.59Asin2021,Spainwastheonlytop-fiveEuropeanmarketwhereadditionsfellduringtheyear.60The12%declinein2022followeda24%declineovertheperiod2017-2021,withanestimated102MWth(145,500m2)addedin2022.61SolarthermalhasstruggledtocompetewithsolarPV,whichiswidelypublicisedandisthefocusofmostsolarinstallers,makingitdifficulttofindinstallersforsolarthermalsystems.62Thisisdespitesignificantgovernmentincentives,suchasgrantsforindustryandforupto60%ofsomeresidentialinstallations.63DISTRICTHEATINGAlthoughmostsolarthermalcapacityinstalledgloballycontinuedtobeforwaterheatinginindividualbuildings,theuseofsolarthermaltechnologyindistrictheatingcontinuedtoexpandin2022.TheleadingmarketwasChina,followedbyGermany.64Additionalplants,orextensionsofexistingones,werecommissionedinAustria,DenmarkandItaly(wheretwonewplantscameonline).65Byyear’send,325large-scaleiiisolarthermaldistrictheatingsystemswithatotalcapacityofnearly1.8GWth(2.56millionm2)weredocumentedasoperatingaroundtheworld,manyofthemwithseasonalstoragecapacity.66Chinareportedivcommissioningatotalof119.7MWth(171,068m2)inanestimated25solardistrictheatingsystems.67Bytheendof2022,thecountryhadaround67solardistrictheatingsystemstotalling400MWth.68Workcontinuedonthe79.8MWth(114,000m2)plantforatourismresortinHandanBay;thefacility,duetoopenin2023,willuseparabolictroughcollectorstosupplywaterandspaceheatingforthehotelandanindoorpool,aswellasiceandsnowforanindoorskislope.69Germanyhadarecordyear,witheightplants(totalling30.8MWthor44,000m2)startingoperationsin2022,comparedwithnineplants(33MWth)inallofEuropeduring2021.70Largesystemsfordistrictheatingremainasmallsegment(6%)oftheGermanmarketbutsawthestrongestgrowthin2022,drivenbysolarthermal’spotentialtoachieveclimateprotectiongoalswhilemakingenergysupplylesssusceptibletocrisesandstabilisingdistrictheatingprices.71iTheSuperbonusenteredintoforcein2021,andin2022itwasextendedthrough2025(withratesdecreasingovertime).iiThisrepresentsamarkedshiftawayfromvacuumtubesystemsinPoland,wherevacuumtubecollectorsaccountfor15%oftotaloperatingcapacity.Seeendnote59forthissection.iiiSolardistrictheatingsystemsareconsideredtobelarge-scaleiftheyaremorethan350kilowatts-thermal(500m2).ivChina’snationalstatisticsdonotdistinguishbetweencollectorfieldsheatingindividualbuildingsandthoseheatingmultiplebuildingsviadistrictnetworks.74MARKETDEVELOPMENTSGermany’slargestnewplantswerea13.1MWth(18,732m2)systeminGreifswald,ontheBalticSea,anda5.2MWth(9,118m2)systeminthetownofLemgo,whichiscombinedwithnaturalgas-drivencombinedheatandpowerplantsandaheatpump.72Bytheendof2022,48solardistrictheatingplantstotalling99.8MWth(142,500m2)wereoperatinginGermany,withafurther9plants(21.8MWth)underconstructionorinadvancedplanning,andaround50plants(200MWth)inpreparation.73Agrowingnumberofprojectshavebeeninitiatedbylocalenergyco-operativesi.74OnlyonesolardistrictheatingsystembeganoperatinginDenmarkduring2022,a1.9MWth(2,664m2)projectinthecityofHørsholm,followingonenewplantin2021.75Despitelimitedadditionsin2021and2022,Denmarkremainedtheworldleaderinsolardistrictheating,with123systemstotallingmorethan1.1GWth(1.6millionm2)operatingattheendof2022.76Despitethespikeinelectricityprices,whichhelpedhighlightsolarthermal’spotentialtoprovidelow-costheat,therewerenosignsthatDenmark’ssolarthermalmarketwouldreturntoitspreviousscaleunderexistingpolicies.77Thecountryhasprioritisedrenewableelectricity(particularlywindenergy),withpolicysupportdrivingahugeshiftfromsolarthermaltoheatpumpsindistrictheatingstartingin2020.78However,publicfundingexpandedin2022toincludesolarthermal.79TotalsolarcollectorsalesinAustriafell15%in2022,despiteasignificantextensiontoalargesystemfordistrictheatinginGraz.80However,highenergypricesandagovernmentcampaigntorenovatebuildingsandmoveawayfromoilandnaturalgassparkednewinterestinsolarthermalfordistrictheating.81Inearly2023,27feasibilitystudieswereunderwayfornearly1millionm2ofsolarcollectorarea.82ElsewhereinEurope,risingconcernsaboutenergysecurity,heightenedbytheRussianFederation’swaronUkraine,overtookclimatechangeandairqualityconcernsastheprimarymotivatorfornewsystemsintheWesternBalkancountries.83TheEuropeanBankforReconstructionandDevelopment(EBRD)extendeditssolardistrictheatingsupporttoadditionalcitiesinAlbania,BosniaandHerzegovina,KosovoandSerbiain2022.84TheEuropeanCommission,Germany’sKfWbankandtheEBRD,togetherwithalocalcontribution,willfunda40.6MWthcollectorfieldwithabsorptionheatpumpsanda408,000m3seasonalstoragefacilityinKosovo’scapital,Pristina.85Accordingtooneestimate,solarthermalprovides3timestheenergyyieldperareaofsolarPVandupto43timesthatofbiomassorethanolforheat.86Despiterisingconcernsaboutheatcostsandenergysecurityinmanycountries,obstaclesremain,includingalackofawarenessaboutthebenefitsofsolarthermalindistrictheating,competitionwithheatpumps,challengesfindingsuitablesitesforlargeinstallationsclosetourbanareaswithheatnetworks,andlengthypermittingprocesses,whicharecausingbottlenecksacrossEurope.87iInSeptember,Germanyintroducedafederalsubsidyforefficientheatingnetworksthatincludeslarge-scalesolarthermalprojectsandisavailabletomunicipalities,energysuppliersandenergycommunities.Seeendnote74forthissection.LackofawarenessaboutthebenefitsofsolarthermalsystemsandcompetitionwithsolarPVandheatpumpsareslowingtheiradoption.75RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYINDUSTRIALHEATSolarthermaltechnologiesprovideemission-freeheatfornumerousindustrialprocessesirequiringlow(below150°C)ormedium(150-400°C)temperatureheat.88Industrialcompaniesaroundtheworldareturningtorenewableheatsolutions,includingsolarheattechnologies,tomeetsocialandenvironmentalgoalsandtoachieveenergypricestabilityii.89Moresolarindustrialheatplants(SHIPs)beganoperationin2022thaninanyotheryearsincesurveysbeganin2017.90Atleast114SHIPprojectswithatotalcapacityof30MWthcameonlineduringtheyear,upfrom78completedprojectsin2021,althoughthetotalcapacityinstalledwaslower(downfrom36MWth).91Bytheendof2022,atleast1,089SHIPinstallations,totallingmorethan856MWth,weresupplyingprocessheattofactoriesworldwide.92Foodandbeverageindustrieshadthelargestnumberofsystems,andtheminingsectorhadthelargestshare(59%)oftotaloperatingcapacity.93NinedifferenttechnologytypesiiiforSHIPwereinstalledin2022.94Mostsystemsinoperationuseflatplatecollectors,followedbyparabolictroughcollectorsandvacuumtubes.95AtleastinEurope,themarketisexpandingforparabolictrough,linearFresnelandconcentratingdishcollectors,whichcanprovidetemperaturesabove100°C.96Asinothersectors,thereisagrowinginterestincombiningsolarthermaltechnologieswithheatpumps.97ThelistofcountrieswiththehighestnumbersofnewlycommissionedSHIPprojectsivchangedagainin2022,withtheNetherlandstakingtheleadoverChinaandMexicowith38systems,followedbyChina(17),France(14),Mexico(13)andGermany(9).98TheleadingmarketsfornewcapacityinstalledvweretheNetherlands(7.3MWth),China(7.2MWth)theUnitedStates(5.4MWth)andSpain(2.8MWth).99InChina,completedprojectsusedavarietyoftechnologiesforapplicationsindairies,textiles,vehiclemanufacturing,petroleumrefining,andotherindustries,withthelargestfacilityhaving3,570m2ofgrosscollectorarea.100OutsideofChina,thenumberofannualinstallationsnearlydoubledfrom55systemsin2020(totalling22MWth)to97in2022(23MWth).101TheNetherlandsandFrance(1.8MWth)ledinEuropeduetoalargenumberofsubsidisedagriculturalsystems.102Afterseveralyearswithlittleactivity,theUnitedStatesbroughtonlinefournewsystems,includingitsfirstsolarsteamboiler.103Inmostmajormarkets,demandforSHIPsystemsisdrivenbypolicyincentives.104Despitehighfossilfuelpricesin2022,SHIPprojectdevelopersfacedsignificantobstaclestoconcludingcontracts.105EvenwhereSHIPiscost-competitivewithoutpublicsupport,thelackofawarenessaboutthebenefitsofsolarheathasledtolimitedprogress.106Ofthe114systemscompletedin2022,only20didnotreceivegovernmentfunding.107However,inMexicorisingfossilfuelcostsandinterestinreducingcarbonemissionshaveboostedinterestinSHIPprojectswithoutgovernmentsubsidies.108LatinAmerica’sfirstpurchaseagreementviforsolar-generatedsteamwassignedinMexicoin2022.109SuchheatpurchaseagreementsareincreasinglycommonandaremovingSHIPintonewmarkets.110ProjectsunderdevelopmentinFrance(dairy),Spain(brewery)andBelgium(chemicalproducer)allwererealisedunderheatpurchaseagreements,whichminimisethemarketriskforinvestorsvii.111Inrecentyears,severalsuppliershavelefttheSHIPsectorwhilenewoneshaveentered,withtheshareofthoseofferingconcentratingsolarthermalsolutionsincreasingfrom31%in2017to41%in2022.112SHIPremainsachallengingsectorbecauseawarenessoftheoptionsremainslow,clientstypicallywantshortpaybackperiods,andprojectsrequiresignificantleadtimeviii.113GlassPoint(UnitedStates),whichbuilttheworld’slargestSHIPplantinOman(33MWth)in2019,wasliquidatedin2020butrestartedoperationsin2022,committingtodevelopa1.5GWthsolarsteamplantixforaminingcompanyinSaudiArabia.114iIndustriesincludechemical(boiling,distilling),foodandbeverage(drying,boiling,pasteurising,sterilising),machinery(cleaning,drying),mining(copperelectrolyticrefining,mineraldrying,nitratemelting),textile(washing,bleaching,dying)andwood(e.g.,steaming,compressing,drying).iiSignificantenergypricevolatilityhasincreasedinterestinsolarthermalsolutions;however,thosesamepricefluctuationshavesloweddecisionprocessesasindustrialcompaniesareuncertainaboutatwhatlevelitismostattractivetolockinaprice.Seeendnote89forthissection.iiiTheseincludedflatplate(39%),vacuumtube(24%),parabolictrough(12%),aircollectors(11%),high-temperatureflatplate(6%),linearFresnel(4%),PVT(3%),unglazedpolymer(1%)andconcentratingdish(0.4%).Concentratingcollectorsweremostlyparabolictrough,butincludedthreenewlinearFresnelsystemsinSpainandsomeconcentratingdishcapacity(makingup0.4%oftotalSHIPinstallations).Seeendnote94forthissection.ivIn2021,therankingsfornumberofsystemsinstalledwereChinafirst,followedbyMexico,theNetherlandsandAustria.NotethatChina’snumbersarelikelyhigherthanreportedandvaryfromyeartoyearduetofluctuationsinreporting.Seeendnote98forthissection.vIn2021,thetopcountriesforcapacityinstalledwereFrance,ChinaandTürkiye.Seeendnote99forthissection.viUndertheagreement,theclientischargedpertonneofsteammonthly,savingmoneycomparedtothepreviousfossil-basedsystem.viiHowever,evenincountrieswhereSHIPsystemsarecompetitivewithfossilfuels,governmentincentivesremaincriticalforincreasingawarenessandencouragingclientstosignheatpurchasecontracts.Seeendnote111forthissection.viiiInadditiontoprojectcontracting,planningandconstruction,industrydecisionshavebeenslowedbyasmuchas6-12monthsbecausemanypotentialconsumerswanttoapplyforgovernmentsubsidies,evenwhensolarthermalsystemsareofferedatacompetitiveprice.Seeendnote113forthissection.ixTheplantwillreplacenaturalgasintherefiningofbauxiteintoalumina,andisexpectedtoreducethecompany’scarbonfootprintbyanestimated50%.Seeendnote114forthissection.76MARKETDEVELOPMENTSMorethan77GWiofwindpowercapacity–including68.4GWonshoreandnearly8.8GWoffshore–wasaddedtotheworld’sgridsin2022,increasingthetotaloperatingcapacity9%toanestimated906GW.1(pSeeFigure31.)Intotal,anestimated89GWiiwasmechanicallyinstalledaroundtheworldduring2022.2Theyear2022wasthethirdlargesteverfornewinstallations.3However,relativeto2021,globalgrid-connectedadditionsfellmorethan17%(5%onshoreand58%offshore)duemainlytoslowdownsinChinaandtheUnitedStates;Europewastheonlyregionwhereinstallationsrosein2022.4InvestmentinfutureprojectsalsodroppedinallregionsexceptAsia-Pacific,evenasmanycountriesincreasedtheirambitionsforwindpowerandasfossilfuelpricessurged,makingrenewablesmorecompetitive.5Thetoppolicymechanismssupportingwindpowerinstallationsin2022wereChina’s“gridparity”scheme,auctionsinmultiplecountries,andtheUSProductionTaxCredit.6Countriesaroundtheworldincreasedwindpowertargets,drivenbyclimatechange,energysecurityandeconomicgrowthgoals,aswellasthecost-competitivenessofwindenergy.7Privatesectorpowerpurchaseagreements(PPAs)alsoplayedakeyroleindrivingdemandfornewcapacity,withanestimated10.9GWofcontractssignedin2022.8Despitethecompetitivenessofwindenergyandambitiousnationaltargets,newobstaclesin2022compoundedexistingchallenges,affectinginstallationsandinvestments,thehealthofthewindindustryanditsabilitytoscaleproductiontomeetfuturedemand.9Pressuredbypoliciesthatforyearsfocusedalmostexclusivelyonachievingthelowestpossiblepriceofwindenergy,manufacturershaveracedtobuildever-largerturbines–atgreatexpense–tocompeteonprice.10Delayedpermittingfornewprojectshasconstraineddeploymentacrossmuchoftheworld,ashaveprotracted,complexandexpensivegridplanningandlonggridconnectionqueues.11TheCOVID-19pandemicdisruptedsupplychains,createdlogisticschallenges,pushedupcostsforshippingandmaterials,anddelayedprojectsiii–challengesthatcontinuedinto2022.12Anestimated89GWofwindpowercapacitywasmechanicallyinstalledin2022,ofwhichmorethan77GWwasaddedtotheworld’sgrids,bringingthetotalgrid-connectedcapacitytoanestimated906GW.Globalgrid-connectedadditionsfellmorethan17%duemainlytoslowdownsinChinaandtheUnitedStates;Europewastheonlyregionwhereinstallationsrose.Countriesaroundtheworldincreasedtheirwindpowertargets,drivenbyclimatechange,energysecurity,andeconomicgrowthgoals,aswellasthecost-competitivenessofwindenergy.Whileoffshoreinstallationsdeclinedrelativeto2021,duemainlytoatemporaryslowdowninChina,theglobalpipelinenearlydoubledin2022tonearly1.2terawattsacross38countries.Theindustrycontinuedtoinnovatetochangethecostbaseofprojects;toaddresschallengesassociatedwithscalingupproduction,transportandotherlogisticalissues;andtoenhancethevalueofwindenergywhilefurtherimprovingitsenvironmentalandsocialsustainability.WINDPOWERKEYFACTSiAdditionsaregross(althoughonlyafewcountriesdecommissionedsignificantamountsofcapacityin2022).Seeendnote1forthissection.iiGlobaladditionsin2022wereanestimated89GW,forayear-endtotalofatleast934GWmechanicallyinstalled,includingcapacityaddedinChinaandVietnambutnotofficiallygrid-connectedattheendof2022.StartingwiththiseditionoftheGSR,onlygrid-connectedadditionsareincludedintextandfiguredata,unlessotherwisenoted.“Mechanicallyinstalled”referstocapacitythatisinstalledinplaceandreadytoproduceelectricitybutnotnecessarilyofficiallyconnectedtothegrid.Seeendnote2forthissection.iiiProjectdelayscreatedadditionalchallengesasmanymanufacturerswereboundbypre-existingcontracts,resultinginsalesatsignificantloss.77Gigawatts1,000800600400200028328331931937037043343348848854054059159165065074574590690682982920162015201420132012202020212017201820192022AnnualadditionsPreviousyear‘scapacity906GigawattsWorldTotalGrid-Connected+94+77+95+61+51+54+55+64+52+36+45RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYThroughouttheyear,shortagesofskilledlabourandinflation–exacerbatedbytheRussianFederation’swaronUkraine–pushedenergyandmaterialscostshigher,furtherimpactingtheprofitabilityofbothonshoreandoffshoreiwindenergy.13Unfavourablepoliciesandshiftingregulatorylandscapesinmanycountriesincreasedmarketuncertainty,whiledevelopersdelayedprojectsduetorisingcostsandinterestrates,therebyreducingnewturbineorders.14WesternmanufacturersalsofacedincreasedcompetitionfromChineseturbinemakers,whichhavepro-activelypursuedsalesoverseas.15ForthetopEuropeanandUSmanufacturers,thesetrendsresultedinjobcuts,shutteredfacilitiesandunderinvestmentinnewmanufacturingcapacity,atatimewhenexpansionofproductionisneededtomeetambitiousgovernmenttargets.16Thetopwesternwindturbinemanufacturersallsawheavyfinanciallossesin2022,despiterisingfossilfuelpricesandturmoilinnaturalgasmarkets,andevenasfossilfuelcompaniessawrecordprofits.17iOffshorewindpowerwaslongshieldedfromthechallengesfacingonshorewindpowerbecauseofthelongtimeframefromplanningtocompletion.Seeendnote13forthissection.Source:Seeendnote1forthissection.Note:Totalsmaynotaddupduetorounding.Additionsin2022aregross.FIGURE31.WindPowerGlobalCapacityandAnnualAdditions,2012-2022In2022,thetopwesternwindturbinemanufacturersallsawheavyfinanciallosses.78MARKETDEVELOPMENTSLargemanufacturersinChinahavefaredbetterinrecentyearsthankstopredictablepoliciesandalargedomesticsteelindustry,butalsohavewitnessederodingprofits.18Followingonwesternmanufacturers,whichbeganraisingturbinepricesin2021,China’sGoldwindnotedinearly2022that,afteryearsofdramaticpricereductions,therewasnomoreroomforpricestofall.19Againstsuchchallenges,theindustry(atleastoutsideofChina)hasexpressedtheneedforpolicymakerstoaddressbarriersrelatedtopermittingandgridaccessandtotakeamoreholisticapproach,prioritisingtheeconomicandsocietalbenefitsofwindpowerratherthanfocusingsolelyonminimisingprice.20Onapositivenote,non-pricecriteriaareincreasinglybeingincludedinpolicydesign,atleastforoffshorewindauctionsinEurope.21Inaddition,strongcommunityengagementandlocalinvestmenthavehelpedreducelocalresistancetoprojectsandspeedthepermittingprocessinmanycountries.22TOPMARKETSNewwindfarmsreachedfullcommercialoperationinatleast45countriesin2022,downfrom52countriesin2021.23Forthe15thconsecutiveyear,Asia(mostlyChina)wasthelargestregionalmarket,representing55%ofnewgrid-connectedcapacity(downfrom58%in2021).24MostoftheremaininginstallationswereinEurope(23%),hometo6ofthetop10countriesworldwide;NorthAmerica(12%);andLatinAmericaandtheCaribbean(6.8%).25Bycountry,ChinawasfolloweddistantlybytheUnitedStates,whichwaswellaheadofBrazil,GermanyandFinland;thesefivecountriestogetheraccountedforalmost72%ofannualinstallations.26Othercountriesinthetop10ifortotalcapacityadditionswereFrance,Sweden,India,theUnitedKingdomandSpain.27(pSeeFigure32.)Thelistofthe10iileadingcountriesforcumulativecapacityremainedthesameasin2021.28iThetop10marketsin2021wereChina,theUnitedStates,Brazil,Vietnam,theUnitedKingdom,Sweden,Germany,Australia,IndiaandTürkiye.Torankamongthetop10in2022,annualinstallationsofmorethan1.6GWwererequired,upfrom1.4GWin2021and1.1GWin2020.Seeendnote27forthissection.iiThetop10countriesforcumulativecapacityattheendof2021and2022wereChina,theUnitedStates,Germany,India,Spain,theUnitedKingdom,Brazil,France,CanadaandSweden.Gigawatts+12+12+2.4+2.4+2.7+2.7+2.1+2.1+2.1+2.1+1.8+1.8+1.7+1.7+1.7+1.7+4.1+4.1400320240160800806040208080Addedin20222021totalUnitedStatesRestofWorldChina+37.6+37.6+8.6+8.6SpainUnitedKingdomIndiaSwedenFranceFinlandGermanyBrazilSource:Seeendnote27forthissection.Note:Numbersabovebarsaregrossadditions,butbarheightsreflectyear-endtotals.NetadditionswerelowerforChina(36.5GW),theUnitedStates(8.3GW)andGermany(2.5GW)duetodecommissioning.Totalsmaynotaddupduetorounding.FIGURE32.WindPowerCapacityandAdditions,Top10Countries,202279RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYChinacompleteditsshiftto“gridparity”atthestartof2022withtheexpirationofthenationalfeed-intariff(FIT)foroffshoreprojects,meaningthatallnewwindprojectsreceivetheregulatedpriceforcoal-firedgenerationineachprovince.29Installersconnected37.6GWiofwindcapacitytothenationalgrid(32.6GWonshoreandmorethan5GWoffshore),accountingformorethanhalfofglobaladditionsin2022.30Althoughland-basedgrid-tiedadditionsrose6.2%,to32.6GW(netof31.5GWafterdecommissioning),totalgrid-connectedinstallationsdeclinednearly21%asnewoffshorecapacityfellmorethan70%followingthepolicy-drivenboomin2021.31Projectcommissioninglateintheyearalsowasslowedsignificantlybypandemic-relatedrestrictions.32Attheendof2022,China’stotalgrid-connectedwindpowercapacitywas365.4GW,including334GWonshoreand31.4GWoffshore.33Windgenerationrose16.3%in2022andaccountedfor8.8%ofChineseelectricityproduction,upfrom7.8%in2021and6.1%in2020.34InlateDecember,thegovernmentannouncedatargettoreach430GWofwindpowercapacitybytheendof2023.35Chinacontinuedtodominatewindturbinemanufacturingaswellastheglobalsupplychainforcriticalcomponents(withamarketshareofmorethan70%)andrawmaterials.36Thecountryaccountsforsome60%ofglobalturbineandcomponentmanufacturingcapacity.37AlthoughmostChinese-madeturbinescontinuetobeinstalleddomestically,decliningdemandandfiercecompetitionathomehastriggeredpricewarsandpushedmanufacturerstoturnelsewhere,andthecompetitivepricingandtechnologicalimprovementsofChineseturbineshaveattractedgreaterinternationalinterestii.38Sixoftheworld’stop10turbineproducersin2022werebasedinChina;theremainingfourwereVestas(Denmark),whichbysomeaccountswasedgedoutforfirstplacebyChina’sGoldwind,followedbySiemensGamesa(Spain),GE(US)andNordexGroup(Germany).39TheUnitedStatescontinuedtoranksecondforcapacityadditionsandyear-endtotal.However,USinstallationsin2022weredown37%relativeto2021,totalling8.6GWiii(grossadditions,allonshore),thecountry’slowestannualadditionssince2018.40Boththenascentoffshoresectorandmorethan10GWofonshorecapacityweredelayedduetosupplychainconstraints,gridinterconnectionissuesandpolicyuncertaintyiv.41Byyear’send,theUnitedStateshad144.2GW(including42MWoffshore)ofwindpowercapacityinoperation.42Windenergyaccountedfor10.2%ofUSutility-scaleelectricitygenerationin2022,upfrom9.2%in2021.43TheUSpipelineofprojectsalsodeclined(down13%)in2022;atyear’send,capacityinadvanceddevelopmentexceeded26.7GW,ofwhich16.7GWwasoffshore.44AnnouncementsforwindPPAsrose15%relativeto2021,althoughtheywerebelowthosefortheperiod2018-2020.45PPApricesalsoincreased,by27%year-on-year,butfelllatein2022forthefirsttimesince2020astheUSInflationReductionActbegantohavesomeeffect.46ThethirdrankingcountryfornewlyinstalledcapacitywasBrazil,forthethirdyearrunning.Windrepresentedalmosthalfofthecountry’snewpowercapacity,withrecordadditionsofnearly4.1GW.47Brazilaccountedforalmost80%ofinstallationsinLatinAmericaandtheCaribbeanduring2022.48Thecountry’sstronggrowthwasdrivenbypublicauctionsandparticularlybyprivatePPAs,withtheshifttowardscorporatePPAscontinuing.49Windenergyhasachievedthecountry’slowestfreemarketpriceforelectricity.50Attheendof2022,Brazilhadmorethan25.6GWofoperatingwindpowercapacity.51Windenergywasthecountry’ssecondlargestsourceofelectricityafterhydropower,accountingfor13.6%ofthemixin2022.52iTheChineseWindEnergyAssociationreportedthat44.7GWwasmechanicallyinstalledonshore,butmorethan12GWofthiscapacitywasnotgrid-connectedbyyear’send.Seeendnote30forthissection.iiAsoftheendof2022,morethan4,000Chineseturbineshadbeenexported,representingacumulativecapacityofaround12GW,orlessthan3%ofnon-Chinesecapacity.Seeendnote38forthissection.iiiInaddition,11projectswerepartiallyrepowered(1.8GW)duringtheyearand6completedfullrepowering(0.5GW).Seeendnote40forthissection.ivTheProductionTaxCreditexpiredattheendof2021butwasincreasedandextendedinAugust2022withpassageoftheInflationReductionAct(IRA).TheIRA’simpactonthewindindustrywasmutedduring2022bylackofguidanceabouthowtoaccesscredits.Seeendnote41forthissection.Europewastheonlyregionwhereinstallationswereupin2022,withrecordadditionsof17.9%.80MARKETDEVELOPMENTSEuropeplacedsecondafterAsiaforregionalshareofnewglobalinstallationsandaccountedforalloftheremainingtop10countries,withtheexceptionofIndia.Itwastheonlyregionwhereinstallationsincreasedin2022,upnearly12%.53AllofEuropeaddedarecord17.9GW(net17.4GWi)ofcapacityin2022,mostofwhichwasinstalledonshore(86.2%),forayear-endtotalof242.4GW(212.1GWonshoreand30.3GWoffshore).54TheEUaccountedformostoftheinstallations,addingnearly15.8GW(14.5GWonshore,morethan1.2GWoffshore)tototal204.1GW(187.8GWonshoreandnearly16.3GWoffshore).55Despitetheregion’srecordinstallationsin2022,anestimated80GWofcapacitywasstuckinpermittingproceduresacrosstheEUandNorwayatyear’send.56Individualcountriesworkedtosimplifyplanningproceduresduringtheyear,andinDecembertheEUformallyagreedonemergencymeasurestoaddresspermittingchallenges.57AcrosstheEUMemberStates,targetsforwindpowercapacitytotalaround423GWby2030.58In2022,however,Europe’sturbineordersfell36%(to10.7GW),followingasmallerdeclinein2021.59Investmentinnewprojectsreachedthelowestlevelsince2009,duetohighinflationandgovernmentmarketinterventionsthatunderminedinvestorconfidence.60Theregion’stopinstallerswereGermany,Finland,France,Sweden,theUnitedKingdom(whichlosttheregionalleadafterregainingitin2021)andSpain.61Thesesixcountriesaccountedfornearly60%ofEurope’sannualwindpowerinstallationsandwereallamongtheglobaltop10.62ExceptforSwedenandtheUnitedKingdom,annualadditionsincreasedsignificantlyinallofthesecountriesin2022.63GermanyclaimedEurope’stopspotfornewcapacityin2022andrankedfourthglobally.Thecountryaddedmorethan2.7GW(2.4MWonshore,0.3GWoffshore)anddecommissionednearly0.3GW,forayear-endtotalofmorethan66.3GW(almost58.3GWonshore,8.1GWoffshore).64Netinstallationswereupsharply(46.5%)over2021butstillwellbelowthepeakof6.1GWin2017,thelastyearinwhichnewcapacityqualifiedunderGermany’sFITsystem.65Windenergygenerationincreased9%iiin2022,to125.3TWh.66Toacceleratedeployment,Germanycommittedtoinstalling10GWofonshorewindpowerannuallystartingin2025andsetnewtargetsforoffshorecapacity.67During2022,however,allwind-specificauctionsinGermanywereundersubscribed,andatyear’sendinvestorconfidencewasdownduetoanimpendinglevyiiionprofitsfromgeneration.68Suchmeasures,intendedtohelpconsumersdealwiththeenergycrisissparkedbytheRussianFederation’swaronUkraine,havereportedlystifleddevelopmentinotherEuropeancountriesaswell.69FollowingGermanyfornewwindpowercapacitywasFinland,whichhadarecordyearwith2.4GWadded(allonshore),toranksecondinEuropeandfifthworldwide.70Finland’stotaloperatingwindpowercapacityrosemorethan74%,to5.7GW,asthecountryworkedtoachievenetzeroemissionsby2035andspeeditstransitionfromimportedfuels.71Finlandmetaround14%ofitselectricitydemandwithwindenergyin2022.72iThedifferenceisduetodecommissioning.Seeendnote54forthissection.iiHowever,itwasdownrelativeto2019and2020,duetolowwindspeedsformuchof2022.Seeendnote66forthissection.iiiThelevywouldtake90%ofwind(andsolar)energyprofitsaboveEUR130(USD138.8)perMWh,oraboveabenchmarkbasedonthefeed-intariffassignedtoaspecificproject.OtherEUMemberStatesalsobeganimposinglimitsonelectricityprices,includingatlevelsbelowthoseagreedbytheEUinSeptember2022.Seeendnote68forthissection.81RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYFrancealsosetanewrecordforannualinstallations,rankingthirdinEuropeandsixthworldwide.73Thecountryaddednearly2.1GWin2022,includingthefirstcommercial-scalewindprojectoffFrenchshores,forayear-endtotalapproaching21.1GW(almost20.7GWonshoreandnearly0.5GWoffshore).74Windenergymetanestimated8%ofFrance’selectricitydemandduringtheyear.75AnnualinstallationsinSwedenfellslightly,but2022wasstillthecountry’ssecondstrongestyearever,withnearly2.1GWadded(allonshore)foratotalof14.2GW(including0.2GWoffshore).76ThecountryrankedfourthinEuropeandseventhgloballyfornewcapacity.77Swedendoesnotuseauctionstosupportdeploymentofwindpowercapacity,butthedomesticindustryissupportedbyastrongPPAmarket.78Windenergygenerationmadeupfora6%dropinhydropoweroutputduring2022and,inthefirsttwomonthsof2023,itaccountedfor27%ofSweden’stotalgeneration.79Despitea36%declineinadditionsrelativeto2021,theUnitedKingdomcontinuedtorankamongthetopcountriesinEurope(fifth)andtheworld(ninth).80Onshoreadditionsroseslightly(0.5GW),whileoffshoreinstallationsfellnearly50%(below1.2GW),followingarecordyearin2021.81Afterseveralyearsoflowonshoreinstallationrates,theUKgovernmentsignalledplanstorelaxrestrictionsonland-basedconstructionsetin2015.82Atyear’send,totalcapacityapproached28.5GW(14.6GWonshore,13.9GWoffshore).83Thankstoincreasedcapacityandgoodwinds,UKwindfarmsgeneratedarecord74TWhin2022,enoughtopowermorethan19millionBritishhomesandhelpingtoreducerelianceonnaturalgas.84Spainaddednearly1.7GW(allonshore),morethantwicetheadditionsof2021,bringingtotalcapacityto29.8GW.85ThecountryrankedsixthinEuropeandtenthgloballyfornewinstallations.Spain’sonlyonshorewindpowerauctionin2022sawpoorresultsduetoaverylowsecret-biddingpricecap;onthepositiveside,thecountrylaunchedaschemetosupporttherepoweringofoldturbines.86Windenergygenerationincreasedslightlyover2021toanestimated61TWh.87Overthepasttwodecades,theEUhasseenaconsistentincreaseiinwindenergy’soutputandshareoftotalelectricitydemand.88In2022,windgenerationintheEUandUnitedKingdomcombinedwasupmorethan9%,duetonewinstallationsandstrongwindsinmanycountries,andmetaround17.3%ofelectricitydemand(14.1%onshore,3.2%offshore).89Denmark(55%)andIreland(34%)hadthehighestwindenergysharesintheirelectricitymix,andsharesexceeded20%intheUnitedKingdom(28%),Germany(26%),Portugal(26%),SpainandSweden(both25%).90Atyear’send,GermanycontinuedtoleadinEuropefortotalwindpowercapacity,with66.3GW,followedbySpain(29.8GW),theUnitedKingdom(28.5GW),France(21.1GW)andSweden(14.2GW).91Thesefivecountriestogetheraccountedfornearly66%oftheregionaltotal.92Indiaalsorankedamongtheworld’stop10countriesforwindpoweradditionsin2022,risingonespottorankeighth.93Althoughinstallationsremainedbelowthepeakin2017,whenIndiashiftedfromFITstotenderingvia“reverseauctionsii”,annualinstallationswereup26.6%over2021,to1.8GW,forayear-endtotalexceeding41.9GW(allonshore).94Despitethismarketgrowth,Indiadidnotmeetitsnationaltargetof60GWby2022.95OFFSHOREWINDIntheoffshorewindpowersegment,sixcountriesinEuropeandthreeinAsiaaddednearly8.8GWofcapacityin2022,foraglobaltotalof64.3GW.96Windturbinesoperatingoffshoreaccountedfor11.4%ofnewgrid-connectedwindpowercapacityin2022andrepresentedmorethan7%oftotalcapacityoperatingatyear’send.97Installationsweredown59%fromtherecordhighin2021,duealmostentirelytoadeclineinChina,but2022wasstillthesecondhighestyearforadditions.98Chinacontinuedtoleadthesectorforthefifthconsecutiveyear,withnearly58%ofnewcapacity,andEuropeandChineseTaipeiinstallednearlyalltherest.99Chinaadded5.1GWofoffshorewindpowercapacityin2022,followedinAsiabyChineseTaipei(1.2GW),wherethecountry’sfirstoffshoreprojectbegancommercialoperation,andJapan(84MW).100(pSeeSnapshot:Japan)China’sdramaticdeclineinaddedcapacity(downfrom16.9GWin2021)wasduemostlytoaslowdownaftertherushtocommissionprojectsbeforethenationalFITexpiredattheendof2021,aswellastopandemic-relatedrestrictions.101Inlate2022,China’slargestunsubsidisedoffshorewindpowerproject(0.9GW)enteredfulloperationsoffthecoastofGuangdongProvince.102Intotal,thecountryhad31.4GWoperatingatyear’send,wideningitsleadovertheformerfrontrunner(until2021),theUnitedKingdom.103iTheyear2021wasanexception,withoutputdownrelativeto2020duetopoorwindconditions.iiAnauctioninwhichsuppliersthatmeetcertainminimumcriteriacansubmitnon-negotiablepricebids,andthebuyerselectswinnersbasedonlowest-pricedbidsfirst.Thereverseauctions/biddingpolicywashaltedin2022.Seeendnote94forthissection.Asof2022,globaloff-shorewindtargetsaimtoinstall380GWby2030.82SNAPSHOTJAPANMARKETDEVELOPMENTSJapan'sFirstLarge-ScaleOffshoreWindFarminOperationInDecember2022,Japan’sfirstlarge-scaleoffshorewindfarmbeganoperationinAkitaprefectureintheTohokuregion.Thismarksaturningpointforthecountry,whichhasbeenseenaslaggingintheenergytransition.Japanaimstoachievecarbonneutralityby2050,andoffshorewindpowerisexpectedtoplayakeyroleinthiseffort,takingadvantageofthecountry’slongcoastlineandstrongwindresource.In2020,Japansetambitioustargetsfor10GWofoffshorewindcapacityby2030and30–45GWby2040.Thenewoffshorefarmisexpectedtobeabletopowertheequivalentof150,000householdsfor20years.TheelectricityissoldtoTohokuElectricPowerNetworkCo.,Inc.underapowerpurchaseagreement.Realisationoftheplantwasmadepossiblethroughstakeholdercooperation.PublicuniversitiesinAkitaandtheoperatingcountiesagreedonaschemewherebystudentscanlearnthebasicsofoffshorewindenergy.Theregionalgovernmentprovidedfundingforlocalcompaniestoparticipateinoperationsandmaintenance.Followinganauctionheldin2021,moreJapaneseoffshorewindprojectsarescheduledforthecomingyears.ThegovernmentalsoheldapublicauctionforoffshorewindinDecember2022underrevisedrules.Akitaprefecture,oneofthecountry’smostpromisingtargetareas,anticipatescreating40,000jobsthroughtheprojects.Source:Seeendnote100forthissection.83RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYEuropeconnected2.5GWofnewoffshorecapacitytothegrid,theregion’slowestadditionssince2016.104NearlyhalfofthisnewcapacitywasoperatinginUKwaters(1.2GW),wheretheworld’slargestoffshoreproject,theHornseaTwo(totalling1.4GW),wasfullycommissioned.105Inmid-2022,theUnitedKingdomheldtheworld’sfirstcommercialleasingroundtosupportlarge-scalefloatingwindpoweri,andsoonthereafterthegovernmentapprovedafurther8GWofoffshorewindpowerdeploymenttohelpachievecommitmentsfornetzeroemissionsandenergysecurity.106ElsewhereinEurope,severalfirstsoccurred:Francebroughtonlineitsfirstcommercial-scaleoffshorewindfarm,addingnearly0.5GW;theNetherlands(0.4GW)generatedelectricityfromitsfirst“subsidy-free”windfarm,the1.5GWHollandseKustZuidproject;Norwaycommissioned60MWoftheHywindTampenfloatingproject(95MWtotal),dueforcompletionin2023;andItalybroughtonlineitsfirstoffshoreproject(30MW)andthefirstintheMediterraneanSea.107Germanyalsoaddedcapacity(0.3GW)during2022.108Atyear’send,Europe’stotaloffshorecapacityreached30.3GWacross13countries.109SeveralEuropeancountriesacceleratedtheiroffshoretargets:bythecloseof2022,EUMemberStateswerecommittedtoacombined111GWby2030,andtheUnitedKingdomaloneaimedfor50GW(including10GWoffloatingwind)by2030.110However,offshorewindinvestmentsinEuropeduring2022werethelowestsince2007,withfinalinvestmentdecisionsdelayedforseveralprojectsduetoinflationaswellaspriceandmarketuncertainty.111AsnewinvestmentinoffshorewindpowerandrelatedinfrastructuredeclinedinEurope,itnearlytripledintheUnitedStates,toUSD9.8billion.112Morethan13GWwasawardedthroughstateandfederalleasesales,includingthefirstoffshorewindleasesaleiiinthePacificOcean(California).113Althoughnoadditionalcapacitycameonlineduring2022,theUnitedStateshadnearly16.7GWofcapacityinadvanceddevelopmentbyyear’send.114Inall,10USstateshadcombinedprocurementtargetsofmorethan74GW.115Atleast16nationalandsub-nationalgovernmentssetneworincreasedtargetsforoffshorewindcapacityin2022–includingNovaScotia(Canada),VictoriaState(Australia)andthePhilippines–withtargetsforoffshorewindpowerby2030approaching380GWglobally.116Australiadeclaredthefirstoffshorewindenergyzones,Indiaissuedadraftplanforthecountry’sfirstoffshorewindtenders,andinBrazilproposalsformorethan170GWofprojectshadbeensubmittedforapprovalbyyear’send.117Betweenearly2022andearly2023,theglobaloffshorewindpowerpipelineincreasedby508GW,to1,174GWacross38countries,withtheglobalpipelineforfloatingwindpoweralreadyexceeding120GWbymid-2022.118Bytheendof2022,19countries(13inEurope,5inAsiaand1inNorthAmerica)hadatleastsomeoffshorewindcapacityinoperation,upfrom18countriesin2021.119Chinaledintotalcapacity(31.4GW),followeddistantlybytheUnitedKingdom(13.9GW),Germany(8.1GW),theNetherlands(2.8GW),DenmarkandBelgium(botharound2.3GW).120Asia(mostlyChina)washometonearly53%ofglobaloffshorecapacity,takingovertheleadlongheldbyEurope.121iFloatingwindpowerusesfloatingplatformsthatareanchoredtotheseabedwithmooringchains,ratherthanfixedstructuresthatlockturbinestotheseafloor.Itenablestheuseofthebestoffshorelocationsforcapturingenergyfromthewind.Byoneestimate,theuseoffloatingturbinescantriplethesizeofthepotentialmarket.Seeendnote106forthissection.iiItwasalsothefirstleasesaleintheUnitedStatestosupportcommercial-scalefloatingwindpower.84MARKETDEVELOPMENTSTECHNOLOGYANDINNOVATIONThewindpowerindustryhasrespondedtothetransitiontoauctionsaswellastorisingmaterialcostsandotherpressuresthroughconsolidationamongmanufacturersandinnovation.122In2022,theindustrycontinuedtoinnovatetochangethecostbaseofprojects;toaddresschallengesassociatedwithscalingupproduction,transportandotherlogisticalissues;andtoenhancethevalueofwindenergywhilefurtherimprovingitsenvironmentalandsocialsustainability.123Chinesefirmsledinthevolumeofnewwind-relatedpatentapplications.124Turbinesizecontinuedtoincreaseinordertooptimisecostandperformancei.125In2022,theaveragesizeofturbinesdeliveredtomarketpassed4MW,15%largerthanin2021.126Theaverageturbinesizeinstalledonshorewas3.9MW,andtheaverageinstalledoffshoreexceeded7.6MW.127Westernturbinemanufacturerscontinuedtoinvestinnewmodelseventhoughtheywerenotmakingenoughprofittocoverthecosts.128Forexample,Vestaslaunchedtheworld’stallesttowerforonshoreturbines(199metres)in2022,andGEconfirmedinearly2023thatitwasdevelopinga17-18MWversionofitsHaliade-Xoffshoreturbine.129Chinesefirmsalsohavebeendrivenbypricepressurestoinnovateandarecompetingtooutsizeoneanotherinturbines.130MingYang,forexample,launchedtheworld’slargestonshoreturbine(8.5MW)in2022,onlytobesurpassedbyEnvisionEnergy(near10MW)andthenSANY(11MW);meanwhile,severalChinesemanufacturersbeganmarketingoffshoreturbinesinthe16-18MWrangeduringtheyear.131Therapidpushtodevelopmorepowerfulmachineshasstrainedmanufacturing,makingithardertoreachthesupplychainefficienciesneededtoachieveeconomiesofscale;italsohasprovidedlittleopportunitytolearnfrominstalledturbinesbeforemovingtothenextsizeup;and,insomecases,hasincreasedpermittingchallenges.132Somewesternmanufacturershavebegunshiftingtheirfocusfromupscalingturbinestostandardisingproductlinesinordertoreduceproductioncostsandtomanufactureturbinesmorequicklyandefficiently.133Innovationintheindustrycontinuedtofocusonmakingwindenergyfullysustainableinawaythatiscost-effectiveinordertoremaincompetitive.134Initiativestoreduceemissionsassociatedwithturbineproductionandinstallationhaveincludedredesigningthelogisticsnetworkandshiftingtocleanersourcesofenergyforproduction.135Substantialeffortsalsocontinuedtofocusonreducingthelife-cycleimpactsofturbineblades,whichtypicallyaremadefromfibreglassandcarbonfibreandendupinlandfillsiteswhentheyarediscarded.136In2022,companieswereworkingonavarietyoftechnologiestorecyclebladesmadefromtraditionalmaterialsortodevelopnewmore-sustainablebladematerials.137iLarger,higher-efficiencyturbinesmeanthatfewerturbines,foundations,convertersandcables,andlesslabourandotherresources,arerequiredforthesameoutput,translatingintofasterprojectdevelopment,reducedrisk,lowercostsofgridconnectionandofoperationandmaintenance,andoverallgreateryield,allimportantfortheoffshoresectorinparticular.Seeendnote125forthissection.In2022,companieswereworkingavarietyofontechnologiestorecyclebladesandtodevelopnewmore-sustainablebladematerials.85RENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLYRIntheshortterm,inflationanddisruptedsupplychainshaveslowedthedeploymentofmostrenewablesandpushedupcosts.RCountrieshavestruggledtoadjusttopricefluctuationsinmaterialsandenergy,resultinginundersubscribedauctionsandtendersduetotheirconditionsnotmatchingthemarketreality.RDelayedpermittingandunfavourableand/orinconsistentpolicieshaveledtouncertainty,stallingwindpowerdeploymentandslowinginvestmentinnewmanufacturingcapability.RTheglobalmarketsforCSPandoceanpowerhaveslowed,asthehistoricalmarketleadershaveaddedlittlenewcapacityinrecentyears.RThebiggestchallengesforrenewableheatandfuelmarketsarethelow(sometimessubsidised)pricesoffossilfuelsandthedifficultiesinaccessingaffordablefinance.RExtremedroughthashamperedhydropowerproductionacrosspartsofAfrica,Asia,EuropeandNorthAmerica.MARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESMARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESfortheUptakeofRenewablesinEnergySupplyCHALLENGES86MARKETDEVELOPMENTSRRenewablesofferthepotentialtomitigateclimatechange,improveenergysecurity,createjobsandboostlocaleconomies.REvenaccountingforrisingcosts,windandsolarpowercontinuetobecost-competitivewithfossilfuelsandarecheaperthancoal-firedgenerationinmostcountries.RTherooftopsolarPVmarkethasincreasedsteadilysince2018andexperiencedrecordgrowthin2022asthemarketbecamemoreattractiveforbothresidentialandcommercialcustomers.RThemomentumaroundhydrogenisbuilding,butpoliciesneedtoprioritisetheuseofrenewableenergytoavoidsimpledisplacementofemissionsandtoharnesshydrogen’shugepotentialtodecarboniseheavyindustry,maritimetransportandaviation.RHeatpumpscanprovideavaluablesourceofenergysystemflexibility,enablinggreaterintegrationofvariablerenewablesourcesandlowerenergybillsforconsumers.RBioenergyprovidessolutionsforheatingandfuelsinheavyindustryandtransport,suchaspharmaceuticals,cement,steel,foodandbeverages,aviationandmaritimeshipping.MARKETDEVELOPMENTSCHALLENGESANDOPPORTUNITIESOPPORTUNITIES87PHOTOCREDITSpage8:©crystal51;shutterstockpage11:©BenoîtDeschasaux;unsplashpage12:©EtienneGirardet;unsplashpage13:©Bohbeh;shutterstockpage14:©Shaiith;shutterstockpage14:©CaseyHorner;unsplashpage15:©MarkusSpiske;unsplashpage17:©DiyanaDimitrova;shutterstockpage18:©Sharomka;shutterstockpage18:CousineIsland,Seychelles;©MartinHarvey;shutterstockpage20:©IMImagery;shutterstockpage20:Productionofgearboxesforwindturbines;©industryviews;shutterstockpage20:©MarkusSpiske;unsplashpage23:©anatoliy_gleb;shutterstockpage24:©fokkebaarssen;shutterstockpage25:Almerecity,theNetherlands;©PavloGlazkov;shutterstockpage27:©TimSiegert-batcam;shutterstockpage30:NewDelhi,India;©PradeepGaurs;shutterstockpage30:SugarcaneharvestinginQueensland,Australia;©FrancescaPianzola;shutterstockpage31:©AnimafloraPicsStock;shutterstockpage32:Algaeproduction;Wageningen,Netherlands;©INTREEGUEPhotography;shutterstockpage32:Hydrogenfuelcellbus;Tokyo,Japan;©NedSnowman;shutterstockpage33:©RomanZaiets;shutterstockpage34:©Snapshotfreddy;shutterstockpage35:Biogasplant;CzechRepublic;©Kletr;shutterstockpage36:Sugarcanefield;SantaClara,Cuba;©possohh;shutterstockpage38:Kunduvillage,Senegal,Africa;©Agarianna76;shutterstockpage39:AdkinsEnergyethanolplant;Lena,Illiois,US;©dvande;shutterstockpage41:©francescodemarco;shutterstockpage42:Geothermalpowerstationpipeline;©N.Minton;shutterstockpage44:Hebei,China;©JamesJiao;shutterstockpage45:GeothermalPowerPlant;Sumatera,Indonesia;©HarinnitaDetta;shutterstockpage46:HeatPumpMaintenance;©VirrageImages;shutterstockpage48:Heatpump;Warsaw,Poland;©GrandWarszawski;shutterstockpage49:©guteksk7;shutterstockpage50:©FOTOGRIN;shutterstockpage52:©Audioundwerbung;shutterstockpage53:©FreeWind2014;shutterstockpage53:©Scharfsinn;shutterstockpage54:©JoseLuisStephens;shutterstockpage54:Hydroelectricpowerplant;©AndreyShchekalev;shutterstockpage55:EnglebrightDam;YubaRiver,California,US;©GarySaxe;shutterstockpage55:©DejanDosenovic;shutterstockpage56:BaihetanDamConstruction;YangtzeRiver,China;©burakyalcin;shutterstockpage56:©PierreJeanDurieu;shutterstockpage57:©CosminSava;shutterstockpage58:KiewLomDam,Lampang,Thailand;©AedkaStudio;shutterstockRENEWABLES2023GLOBALSTATUSREPORT–RENEWABLESINENERGYSUPPLY88COPYRIGHT&IMPRINTRenewableEnergyPolicyNetworkREN21Secretariatforthe21stCenturyc/oUNEnvironmentProgramme1rueMiollis,BuildingVII75015ParisFrancepage59:©SIMECAtlantisEnergypage60:©Minestopage60:SihwaLakeTidalPowerPlant;Ansan-si,Gyeonggi-do,SouthKorea;©Stockforyou;shutterstockpage61:©O2;OrbitalMariePower'sO2turbinepage62:©Tukio;shutterstockpage62:©BiniClick;shutterstockpage64:©anatoliy_gleb;shutterstockpage65:©kikmuthita;shutterstockpage66:Miagao,Iloilo,Philippines;©MDVEdwards;shutterstockpage67:©salajean;shutterstockpage68:©TsetsoPhoto;shutterstockpage69:©Sopotnicki;shutterstockpage71:©RussieseO;shutterstockpage73:©John_T;shutterstockpage74:Undergrounddistrictheatingpipes;©ZigmundsDizgalvis;shutterstockpage75:©KennethBaggeJorgensen;shutterstockpage76:©FMonkeyPhoto;shutterstockpage77:©LIUSHENGFILM;shutterstockpage78:©sdf_qwe;shutterstockpage80:Tramandaí,RioGrandedoSul,Brazil;©ViagenseCaminhos;shutterstockpage81:©Vladimkaproduction;shutterstockpage83:©MUNGKHOODSTUDIO;shutterstockpage83:©LanceBellers;shutterstockpage84:©MichaelBrianShannon;shutterstockpage85:SaintNazaire,France;©MCMEDIASTUDIO;shutterstockpage85:©HenrikA.Jonsson;shutterstockpage86:©JirapongManustrong;shutterstockpage86:ColoradoriverupstreamoftheHooverDam;US;©MilanRademakers;shutterstockpage86:©Mabeline72;shutterstockpage87:©IndustrialDonutPicks;shutterstockpage87:©Bohbeh;shutterstockpage87:©NavinTar;shutterstockpage88:©fokkebaarssen;shutterstock89ENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIMODULEOVERVIEWENDNOTES–MODULEOVERVIEW1InternationalEnergyAgency(IEA),“GlobalEnergyCrisis”,https://www.iea.org/topics/global-energy-crisis,accessedMarch8,2023.2Ibid.3V.RomeiandA.Smith,“GlobalInflationTracker:SeeHowYourCountryComparesonRisingPrices”,FinancialTimes,March6,2022,https://www.ft.com/content/088d3368-bb8b-4ff3-9df7-a7680d4d81b2.4IEA,“RenewablePower’sGrowthIsBeingTurbochargedasCountriesSeektoStrengthenEnergySecurity”,December6,2022,https://www.iea.org/news/renewable-power-s-growth-is-being-turbocharged-as-countries-seek-to-strengthen-energy-security.5McKinsey,“TheInflationReductionAct:Here’sWhat’sinIt”,October24,2022,https://www.mckinsey.com/industries/public-and-social-sector/our-insights/the-inflation-reduction-act-heres-whats-in-it;EuropeanCommission,“REPowerEU:Affordable,SecureandSustainableEnergyforEurope”,https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe_en,accessedMarch1,2023.6InternationalEnergyAgency(IEA),“WorldEnergyBalances2020:ExtendedEnergyBalances”,https://www.iea.org/data-and-statistics/data-product/world-energy-balances;2022.Figure1fromIEA,op.cit.note6.7Ibid.8Ibid.Figure2fromEmber,"GlobalElectricityReview2023",April12,2023,https://ember-climate.org/insights/research/global-electricity-review-2023/.9Figure3fromIEA,op.cit.note6.10Ibid.11Ibid.12Ibid.13P.Day,“Hydrogenasabackupforrenewablesremainsadistantproposition”,Reuters,February1,2023,https://www.reuters.com/business/energy/hydrogen-backup-renewables-remains-distant-proposition-2023-02-01;IEA,“GlobalHydrogenReview2022”,2022,https://www.iea.org/reports/global-hydrogen-review-2022.14REN21PolicyDatabase.SeeGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack/supply.15BloombergNEF,“EnergyTransitionInvestmentTrends:ExecutiveSummary”,2023,https://about.bnef.com/energy-transition-investment.16Ibid.17Ibid.18IEA,“WorldEnergyBalances2021”,https://www.iea.org/data-and-statistics/data-product/world-energy-balances.19GlobalmarketbasedondatafromW.WeissandM.Spörk-Dür,“SolarHeatWorldwide,GlobalMarketDevelopmentandTrends2022,DetailedMarketFigures2021,2023Edition”,InternationalEnergyAgency(IEA)SolarHeatingandCoolingProgramme(SHC),2023,pp.6,58,60,https://www.iea-shc.org/solar-heat-worldwide,andfromM.Spörk-Dür,AEE–InstituteforSustainableTechnologies(AEEINTEC),personalcommunicationwithREN21,May2023andIEA,op.cit.note1.20Ibid.21CalculationbasedonLundandToth,2023.Growthof14.2TWhin2022basedondifferentiatedfive-yearcompoundannualgrowthrateacrossnineend-usecategoriesfrom2014through2019(totaloutputhavinggrownfrom265,790TJin2014to420,906TJin2019);powercapacitydatafromsourcesintheGeothermalpowerandheatsection;capacitydataforothercountriesfromInternationalRenewableEnergyAgency(IRENA),“RenewableCapacityStatistics2023”,March2023,https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023;estimatedelectricitygenerationin2022basedonInternationalEnergyAgency(IEA),“Renewables2022DataExplorer”,December6,2022,https://www.iea.org/data-and-statistics/data-tools/renewables-data-explorer.22IEA,“WorldEnergyBalances2021:ExtendedEnergyBalances”,op.cit.note1.23Ibid.24Ibid.25GovernmentofAustralia,DepartmentofClimateChange,Energy,theEnvironmentandWater,“StateofHydrogen2022”,2022,https://www.dcceew.gov.au/energy/publications/state-of-hydrogen-2022.26Ember,op.cit.note8.27Figure4fromIbid.28Ibid.29Ibid.30Ibid.31Ibid.32Ibid.33Ibid.34Ibid.35Ibid.36Ibid.37Ibid.38Ibid.39Ibid.40Ibid.41Ibid.42Ibid.43Ibid.44Ibid.45Ibid.46Figure5fromInternationalHydropowerAssociation,personalcommunicationwithREN21,May112023;IEAPhotovoltaicPowerSystemsProgramme,“Snapshot2023”;https://iea-pvps.org/snapshot-reports/snapshot-2023/;GlobalWindEnergyCouncil,“GlobalWindReport2023”,2023,https://gwec.net/globalwindreport2023/;InternationalRenewableEnergyAgency,“2023RenewableCapacityStatistics”,2023,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Renewable_energy_statistics_2022.pdf?rev=8e3c22a36f964fa2ad8a50e0b4437870(OtherRenewablePower:Bioenergy,Geothermal,ConcentratedSolarPower,Marine).47Figure6fromIEA,“NetZeroby2050”,2021,https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf48Ibid.49Ibid.50IEA,“TheStateofCleanTechnologyManufacturing”,May2023,https://www.iea.org/reports/the-state-of-clean-technology-manufacturing.51Ibid.52IEA,op.cit.note47.53IEA,op.cit.note50.54Ibid.55Ibid.56Ibid.57IEA,“SpecialReportonSolarPVGlobalSupplyChains”,July2022,https://www.iea.org/reports/solar-pv-global-supply-chains.58SouthChinaMorningPost,“ChineseWindTurbineMakersEyeAsia,EuropeforGrowthasClimateChange,EnergySecurityTakeCentrestage”,August29,2022,https://www.scmp.com/business/china-business/article/3190585/chinese-wind-turbine-makers-eye-asia-europe-growth-climate.59IEA,op.cit.note51.60Ibid.61Ibid.90BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIPOLICYENDNOTES–POLICY1InternationalEnergyAgency(IEA),“GlobalEnergyCrisis–Topics”,https://www.iea.org/topics/global-energy-crisis,accessedApril13,2023.2IEA,“WorldEnergyOutlook2022ShowstheGlobalEnergyCrisisCanBeaHistoricTurningPointTowardsaCleanerandMoreSecureFuture”,October27,2022,https://www.iea.org/news/world-energy-outlook-2022-shows-the-global-energy-crisis-can-be-a-historic-turning-point-towards-a-cleaner-and-more-secure-future.3Ibid.4IEA,“GlobalGovernmentSpendingonCleanEnergyTransitionsRisestoUSD1.2TrillionSincetheStartofthePandemic,SpurredbyEnergySecurityConcerns”,December9,2022,https://www.iea.org/news/global-government-spending-on-clean-energy-transitions-rises-to-usd-1-2-trillion-since-the-start-of-the-pandemic-spurred-by-energy-security-concerns.5REN21PolicyDatabase.SeeGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack/supply.6Ibid.7Ibid.8Figure7fromIbid.9Ibid.10Ibid.11Ibid.12Ibid.13Ibid.14Figure8fromibid.15Ibid.16Ibid.17Ibid.18M.Madden,“FTCAnnouncesNewRatesforPowerSoldtoNationalGrid”,BarbadosToday,January10,2023,https://barbadostoday.bb/2023/01/10/ftc-announces-new-rates-for-power-sold-to-national-grid.19M.Willuhn,“GermanyRaisesFeed-inTariffsforSolarupto750KW”,pvmagazine,July7,2022,https://www.pv-magazine.com/2022/07/07/germany-raises-feed-in-tariffs-for-solar-up-to-750-kw.20DLAPiper,“AfricaEnergyFuturesMauritius”,2022,https://www.dlapiper.com/en/insights/publications/2022/11/africa-energy-futures/africa-energy-futures-mauritius.21E.Bellini,“SouthAfricatoIntroduceFeed-inTariffsforRooftopPV”,pvmagazine,July26,2022,https://www.pv-magazine.com/2022/07/26/south-africa-to-introduce-feed-in-tariffs-for-rooftop-pv.22B.Santos,“ThailandIntroducesFITSchemeforSolar,Storage”,pvmagazine,October31,2022,https://www.pv-magazine.com/2022/10/31/thailand-introduces-fit-scheme-for-solar-storage;Enerdata,“JapanSetsFeed-inTariffLevelsforRenewableProjectsin2022-2023”,February25,2022,https://www.enerdata.net/publications/daily-energy-news/japan-sets-feed-tariff-levels-renewable-projects-2022-2023.html.23REN21PolicyDatabase,op.cit.note5.24E.Bellini,“DutchParliamentApprovesProposaltoPhaseOutNetMetering”,pvmagazine,February9,2023,https://www.pv-magazine.com/2023/02/09/dutch-parliament-approves-proposal-to-phase-out-net-metering.25Ibid.26I.Tsagas,“CyprusExpandsFundingforSolarNetMetering”,pvmagazine,August26,2022,https://www.pv-magazine.com/2022/08/26/cyprus-expands-funding-for-solar-net-metering.27B.Santos,“FinlandtoExtendNetMeteringtoAllPVSystemsin2023”,pvmagazine,October26,2022,https://www.pv-magazine.com/2022/10/26/finland-to-extend-net-metering-to-all-pv-systems-in-2023.28F.Salah,“AheadofCOP27–EgyptRelaxestheRestrictionsonNetMeteringandSelfConsumptionSolarPlants”,Riad-Riad.com,March9,2022,https://riad-riad.com/ahead-of-cop27-egypt-relaxes-the-restrictions-on-net-metering-and-self-consumption-solar-plants.29S.Sundar,“GhanaAimstoBecomeaRegionalManufacturingHubforSolarValueChains”,Zawya,November29,2022,https://www.zawya.com/en/projects/industry/ghana-aims-to-become-a-regional-manufacturing-hub-for-solar-value-chains-cfpvtl2q;E.Bellini,“PhilippinesIncreasesNet-MeteringSizeLimitforRenewablesto1MW”,pvmagazineAustralia,November30,2022,https://www.pv-magazine-australia.com/2022/11/30/philippines-increases-net-metering-size-limit-for-renewables-to-1-mw.30E.Bellini,“DutchParliamentApprovesProposaltoPhaseOutNetMetering”,pvmagazine,February9,2023,https://www.pv-magazine.com/2023/02/09/dutch-parliament-approves-proposal-to-phase-out-net-metering.31M.R.Lown,“Poland’sTransitionfromNetMeteringtoNetBilling”,pvmagazine,July13,2022,https://www.pv-magazine.com/2022/07/13/polands-transition-from-net-metering-to-net-billing.32R.Kennedy,“CommunitySolarUp,NetMeteringDowninUSThisYear”,pvmagazine,February1,2023,https://www.pv-magazine.com/2023/02/01/community-solar-up-net-metering-down-in-us-this-year.33S.Wasson,“NEM3.0:WhyApril2023WillChangetheSolarGameinCA”,Today’sHomeowner,January17,2023,https://todayshomeowner.com/solar/guides/nem-3-0-why-april-2023-will-change-the-solar-game-in-ca.34IEA,“RenewableElectricity–Renewables2022–Analysis”,2022,https://www.iea.org/reports/renewables-2022/renewable-electricity.35U.Gupta,“RenewableEnergyAuctionsNotinTandemwithGovernmentTargets”,pvmagazineIndia,February21,2023,https://www.pv-magazine-india.com/2023/02/21/renewable-energy-auctions-not-in-tandem-with-government-targets;C.Akkaravoranunetal.,“Thailand:TheWaitIsOver!NewRoundofRenewableEnergyAuctionsHaveOfficiallyBeenLaunched–BiddingEndsinNovember2022”,GlobalComplianceNews,November9,2022,https://www.globalcompliancenews.com/2022/11/09/https-insightplus-bakermckenzie-com-bm-energy-mining-infrastructure_1-here_11022022.36Enerdata,“ThePhilippinesWillAuction11.6GWofRenewableCapacityinJune2023”,March22,2023,https://www.enerdata.net/publications/daily-energy-news/philippines-will-auction-116-gw-renewable-capacity-june-2023.html.37Willuhn,op.cit.note19;I.Tsagas,“Greece’sRenewablesTenderAwards372MWofPVatAverageof€47.98/MWh”,pvmagazine,September13,2022,https://www.pv-magazine.com/2022/09/13/greeces-renewables-tender-awards-372-mw-of-pv-at-average-of-e47-98-mwh;W.Norman,“PolandAwards486MWofSolarPVinLatestRenewablesAuction”,PVTech,December21,2022,https://www.pv-tech.org/poland-awards-486mw-of-solar-pv-in-latest-renewables-auction.38E.Bellini,“SouthAfrica’sSixthRenewablesAuctionConcludeswithLowestBidof$0.02689/KWh”,pvmagazine,December12,2022,https://www.pv-magazine.com/2022/12/12/south-africas-sixth-renewables-auction-concludes-with-lowest-bid-of-0-02689-kwh.39J.TouriñoJacobo,“NewSouthWalesLaunchesRenewablesAuction,Targets12GWofDeploymentby2030”,PVTech,October4,2022,https://www.pv-tech.org/new-south-wales-launches-renewables-auction-targets-12gw-of-deployment-by-2030.40WindEurope,“IncreasingCostPressuresandDesignFlawsUndermineSpanishAuction”,November25,2022,https://windeurope.org/newsroom/press-releases/increasing-cost-pressures-and-design-flaws-undermine-spanish-auction;reNEWS,“FranceSecures339MWinUndersubscribedSolarAuction”,August9,2022,https://renews.biz/79717/france-secures-339mw-in-undersubscribed-solar-auction;B.Radowitz,“FewBiddersinGermanCleanEnergyTenderasMacroeconomicsHitWindandSolarBuild-Out”,RechargeNews,December20,2022,https://www.rechargenews.com/energy-transition/few-bidders-in-german-clean-energy-tender-as-macroeconomics-hit-wind-and-solar-build-out/2-1-1377668.41WindEurope,“MessyPermittingLeadstoyetAnotherUndersubscribedWindAuctioninItaly”,February1,2022,https://windeurope.org/newsroom/press-releases/messy-permitting-leads-to-yet-another-undersubscribed-wind-auction-in-italy.42B.Radowitz,“‘BetterStartingPosition’–GermanRegulatorRaisesPriceCapforWindandSolarTenders”,RechargeNews,December29,2022,https://www.rechargenews.com/energy-transition/better-starting-position-german-regulator-raises-price-cap-for-wind-and-solar-tenders/2-1-1381200.43S.A.Qadiretal.,“IncentivesandStrategiesforFinancingtheRenewableEnergyTransition:AReview”,EnergyReport,Vol.7(November2021),pp.3590-3606,https://doi.org/10.1016/j.egyr.2021.06.041.44REN21PolicyDatabase,op.cit.note5.45M.Barbanell,“ABriefSummaryoftheClimateandEnergyProvisionsoftheInflationReductionActof2022”,WorldResourcesInstitute,October28,2022,https://www.wri.org/update/brief-summary-climate-and-energy-provisions-inflation-reduction-act-2022.46Ibid.91BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIPOLICY47J.Espinozaetal.,“EUPlanstoRelaxCurbsonTaxCreditsinResponseto‘Toxic’USSubsidies”,FinancialTimes,January30,2023,https://www.ft.com/content/53eb769b-6ce1-4f50-9703-f2463c465001.48J.L.,“CanadianGov’tSetsout$83BforCleanInvestmentTaxCredits”,CarbonCredits,March29,2023,https://carboncredits.com/canadian-govt-sets-out-83b-for-clean-investment-tax-credits.49Zawya,“RenewableEnergy,SolarTaxIncentiveIntroducedforBusinesses,Individuals”,February23,2023,https://www.zawya.com/en/economy/africa/renewable-energy-solar-tax-incentive-introduced-for-businesses-individuals-egjqo046;K.WhyteSubbanVirusha,“SouthAfrica:ESGWindfallwiththeExpandedRenewableEnergyTaxIncentive”,GlobalComplianceNews,March15,2023,https://www.globalcompliancenews.com/2023/03/15/https-insightplus-bakermckenzie-com-bm-tax-south-africa-two-birds-with-one-sunbeam-esg-windfall-with-the-expanded-renewable-energy-tax-incentive_02282023.50I.Todorović,“BulgariaPreparesEUR102MillioninGrantsforGreenEnergyinTourismSector”,BalkanGreenEnergyNews,October18,2022,https://balkangreenenergynews.com/bulgaria-prepares-eur-102-million-in-grants-for-green-energy-in-tourism-sector.51C.Munda,“Mini-GridsGetTaxCuttoTakeonKenyaPower”,BusinessDaily,January3,2022,https://www.businessdailyafrica.com/bd/economy/mini-grids-get-tax-cut-take-on-kenya-power-3671380.52H.AlcosebaFernandez,“PhilippinesRaisesMinimumRenewableEnergyCapacityto2.5%inPowerMix”,Eco-Business,October3,2022,https://www.eco-business.com/news/philippines-raises-minimum-renewable-energy-capacity-to-25-in-power-mix.53USEnergyInformationAdministration(EIA),“RenewableEnergyExplained–PortfolioStandards”,https://www.eia.gov/energyexplained/renewable-sources/portfolio-standards.php,accessedMay8,2023.54Food&WaterWatch,“MDLegislatorsAnnounceBilltoCleanUpRenewablePortfolioStandard”,January31,2023,https://www.foodandwaterwatch.org/2023/01/31/md-legislators-announce-bill-to-clean-up-renewable-portfolio-standard.55B.Santos,“EUWantsRooftopPVMandateforPublic,CommercialBuildingsby2027,Residentialby2029”,pvmagazine,May18,2022,https://www.pv-magazine.com/2022/05/18/eu-wants-rooftop-pv-mandate-for-public-commercial-buildings-by-2025-residential-by-2029.56REN21PolicyDatabase,op.cit.note5.57S.Rai-Roche,“EUSolarPlanSets2030Targetat740GWdcasRooftopPVMandates,PermittingPlansAreUnveiled”,PVTech,May18,2022,https://www.pv-tech.org/eu-solar-plan-sets-2030-target-at-600gw-as-rooftop-pv-mandates-permitting-plans-are-unveiled;Santos,op.cit.note55.58PublicSenat,“L’obligationdeposedepanneauxphotovoltaïquessurlesgrandsparkingsextérieursadoptéeauSénat”,November4,2022,https://www.publicsenat.fr/article/parlementaire/l-obligation-de-pose-de-panneaux-photovoltaiques-sur-les-grands-parkings.59SolarPowerEurope,“SolarMandatesinEurope”,https://api.solarpowereurope.org/uploads/SPE_Note_Solar_Mandates_in_Europe_4103dcc90d.pdf,accessedMay15,2023.60Ibid.61YaleEnvironment360,“TokyotoMandateRooftopSolarPanelsonNewHomes”,https://e360.yale.edu/digest/tokyo-rooftop-solar;H.Takahashi,“KawasakitoBecome2ndCityinJapantoRequireSolarPanelsonNewBuildings”,TheMainichi,February10,2023,https://mainichi.jp/english/articles/20230209/p2a/00m/0sc/004000c.62Kennedy,op.cit.note32.63Ibid.64R.Kennedy,“USTargets5MillionCommunitySolarHouseholdsby2025”,pvmagazine,March3,2022,https://www.pv-magazine.com/2022/03/03/us-targets-5-million-community-solar-households-by-2025.65AustralianGovernment,DepartmentofClimateChange,Energy,theEnvironmentandWater,“PoweringAustralia”,https://www.energy.gov.au/government-priorities/australias-energy-strategies-and-frameworks/powering-australia,accessedMay8,2023.66S.Jacobsen,“FourCountriesPledgeTenfoldRiseinEUOffshoreWindPowerCapacity”,Reuters,May18,2022,https://www.reuters.com/business/energy/four-eu-countries-increase-offshore-wind-power-capacity-tenfold-2022-05-17.67reNEWS,“EUApprovesGermanOffshoreWindPolicyChanges”,December22,2022,https://renews.biz/82706/eu-approves-german-offshore-wind-policy-changes.68NOPSEMA,“OffshoreElectricityInfrastructureRegulationsNowAvailable”,November2,2022,https://www.nopsema.gov.au/blogs/offshore-electricity-infrastructure-regulations-now-available.69H.Dung,“NewPowerDevelopmentPlanNeedsQualityMorethanSpeed:PM”,TheInvestor,February4,2023,https://theinvestor.vn/new-power-development-plan-needs-quality-more-than-speed-pm-d3579.html.70G.Rajgor,“LeadersPledgeSupporttoDeliverMeshedOffshoreGridsforEurope”,WindpowerMonthly,May4,2023,https://www.windpowermonthly.com/article/1821712.71Euractiv,“PolishParliamentVotes700MetreRuleforWindTurbines”,March10,2023,https://www.euractiv.com/section/energy-environment/news/polish-parliament-votes-700-metre-rule-for-wind-turbines.72P.Tisheva,“IrelandPresentsPolicyforSecondPhaseofOffshoreWind”,RenewablesNow,March10,2023,https://renewablesnow.com/news/ireland-presents-policy-for-second-phase-of-offshore-wind-817069.73REN21PolicyDatabase,op.cit.note5.74Ibid.75GovernmentoftheNetherlands,“JointstatementofChileandTheNetherlandsoncollaborationinthefieldofgreenhydrogenimportandexport”,July1,2021,https://www.government.nl/documents/diplomatic-statements/2021/07/01/joint-statement-of-chile-and-the-netherlands-on-collaboration-in-the-field-of-green-hydrogen-import-and-export.76IEA,“Hydrogen–Analysis”,2022,https://www.iea.org/reports/hydrogen.77GreenHydrogenOrganisation,“Argentina”,https://gh2.org/countries/Argentina,accessedApril7,2023.78FuelCellsWorks,“SouthAfricaLaunchesHydrogenSocietyRoadmap”,February21,2022,https://fuelcellsworks.com/news/south-africa-launches-hydrogen-society-roadmap.79A.Gupta,“AustriaTargets4TWhGreenHydrogenProductionAnnuallyUnderHydrogenStrategyby2030”,EQMagPro,June7,2022,https://www.eqmagpro.com/austria-targets-4-twh-green-hydrogen-production-annually-under-hydrogen-strategy-by-2030-eq-mag-pro.80MinisteriodeIndustria,EnergíayMinería,“HidrógenoVerde”,https://www.gub.uy/ministerio-industria-energia-mineria/hidrogenoverde,accessedMay8,2023.81C.Clifford,“TheCleanHydrogenEnergyEconomyWasaDream.TheClimateBillCouldMakeItaRealityThisDecade”,CNBC,September8,2022,https://www.cnbc.com/2022/09/08/clean-hydrogen-industry-got-huge-boost-from-inflation-reduction-act.html.82ClimateChampions,“AfricaGreenHydrogenAlliance”,https://climatechampions.unfccc.int/africa-green-hydrogen-alliance,accessedApril7,2023.83EuropeanHeatPumpAssociation,“ShapingEurope’sEnergyLandscape:ADeepDiveinto‘Fitfor55’andRenewableHeatingandCooling”,May19,2023https://www.ehpa.org/2023/05/19/ehpa_news/shaping-europes-energy-landscape-a-deep-dive-into-fit-for-55-and-renewable-heating.84Ibid.85EuropeanCommission,“TheGreenDealIndustrialPlan:PuttingEurope’sNet-zeroIndustryintheLead”,February1,2023,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_510.86Ibid.87EuropeanCommission,“StrategicEnergyTechnologyPlan”,https://energy.ec.europa.eu/topics/research-and-technology/strategic-energy-technology-plan_env,accessedMay2023.88IEA,“DistrictHeating–Analysis”,2022,https://www.iea.org/reports/district-heating.89B.Epp,“FundofEUR3BillionforDecarbonisingGermanDistrictHeating”,SolarThermalWorld,April6,2023,https://solarthermalworld.org/news/fund-of-eur-3-billion-for-decarbonising-german-district-heating.90C.Cariaga,“DanishParliamentAdoptsNewRulestoSupportGeothermal”,ThinkGeoEnergy,March2,2023,https://www.thinkgeoenergy.com/danish-parliament-adopts-new-rules-to-support-geothermal.91IEA,“NetZeroStrategy–HeatandBuildings–Policies”,October27,2021,https://www.iea.org/policies/14334-net-zero-strategy-heat-and-buildings.92IEA,“TheFutureofHeatPumps–Analysis”,2022,https://www.iea.org/reports/the-future-of-heat-pumps.93REN21PolicyDatabase,op.cit.note5.92BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIPOLICY94EuropeanHeatPumpAssociation,“REPowerEU:HeatPumpStrategyRequiredtoHelpSectorDeliver”,June12,2022,https://www.ehpa.org/2022/06/12/ehpa_news/repowereu-heat-pump-strategy-required-to-help-sector-deliver.95N.J.Kurmayer,“BrusselsPrepares‘Strategy’toBoostDeploymentofHeatPumps”,Euractiv,March10,2023,https://www.euractiv.com/section/energy-environment/news/brussels-prepares-strategy-to-boost-deployment-of-heat-pumps.96ConnexionFrance,“Recap:12ChangesinFrance–EyeTests,CovidRules,HeatPumps,Fuel”,February23,2023,https://www.connexionfrance.com/article/French-news/Recap-12-changes-in-France-eye-tests-Covid-rules-heat-pumps-fuel.97M.Willuhn,“Germany’sNewRebateProgramforResidentialHeatPumpsHasComeIntoEffect”,pvmagazine,January5,2023,https://www.pv-magazine.com/2023/01/05/germany-launches-rebate-program-for-residential-heat-pumps.98R.Desmornes,“TheInflationReductionAct‘PumpsUp’HeatPumps”,Hvac,November4,2022,https://live-hvac-ci.pantheonsite.io/resources/inflation-reduction-act-heat-pump-rebates.99MinistryofHousingandUrban-RuralDevelopmentofChina,“NoticeoftheMinistryofHousingandUrban-RuralDevelopmentonPrintingandDistributingthe‘14thFive-YearPlan’BuildingEnergyConservationandGreenBuildingDevelopmentPlan”,March1,2022,http://www.gov.cn/zhengce/zhengceku/2022-03/12/content_5678698.htm(usingGoogleTranslate).100NaturalResourcesCanada,“MakingHomeHeatingMoreAffordableforCanadiansWhileFightingClimateChange”,November21,2022,https://www.canada.ca/en/natural-resources-canada/news/2022/11/making-home-heating-more-affordable-for-canadians-while-fighting-climate-change.html;EnergyTech,“NewYorkInvesting$70Mfor30,000HeatPumpsforElectrifyingPublicHousing”,August4,2022,https://www.energytech.com/energy-efficiency/article/21248084/new-york-investing-70m-for-30000-heat-pumps-for-electrifying-public-housing.101IEA,op.cit.note92,p.23.93BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIINVESTMENTANDFINANCEENDNOTES–INVESTMENTANDFINANCE1BloombergNEF,“EnergyTransitionInvestmentTrends2023”,2023,https://about.bnef.com/energy-transition-investment.2Ibid.3Ibid.4InternationalRenewableEnergyAgency(IRENA)andClimatePolicyInitiative(CPI),“GlobalLandscapeofRenewableEnergyFinance2023”,2023,https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Feb/IRENA_CPI_Global_RE_finance_2023.pdf.5InternationalEnergyAgency(IEA),“Russia’sWaronUkraine–Topics”,https://www.iea.org/topics/russias-war-on-ukraine,accessedMarch29,2023.6Ibid.7N.Bullard,“CleanEnergySets$1.1TrillionRecordThat’sBoundtoBeBroken”,Bloomberg,January26,2023,https://www.bloomberg.com/news/articles/2023-01-26/clean-energy-fossil-fuel-investment-tied-for-first-time-in-2022.8Ibid.9IRENAandCPI,op.cit.note4.10Ibid.11Figure9fromBloombergNEF,op.cit.note1.12Ibid.13Ibid.;IEA,“RenewablePowerIsSettoBreakAnotherGlobalRecordin2022DespiteHeadwindsfromHigherCostsandSupplyChainBottlenecks”,May11,2022,https://www.iea.org/news/renewable-power-is-set-to-break-another-global-record-in-2022-despite-headwinds-from-higher-costs-and-supply-chain-bottlenecks;WindEurope,“WindEnergyinEurope2022StatisticsandtheOutlookfor2023-2027”,February2023,https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/#downloads.14A.Joshi,“InvestmentsinRenewablesReachNewHighin2022ButNeedMassiveIncrease”,MercomIndia,March16,2023,https://mercomindia.com/investments-renewables-2022-need-increase.15IRENAandCPI,op.cit.note4.16Joshi,op.cit.note14;IRENAandCPI,op.cit.note4.17IRENAandCPI,op.cit.note4.18BloombergNEF,op.cit.note1.19Ibid.20Ibid.21Ibid.22Ibid.23Ibid.24Ibid.25A.Izadi-Najafabadi,BloombergNEF,personalcommunicationwithREN21,April10,2023.26Ibid..27Ibid.28BloombergNEF,op.cit.note1.29WindEurope,“InvestmentsinWindEnergyAreDown–EuropeMustGetMarketDesignandGreenIndustrialPolicyRight”,January31,2023,https://windeurope.org/newsroom/press-releases/investments-in-wind-energy-are-down-europe-must-get-market-design-and-green-industrial-policy-right.30BloombergNEF,op.cit.note1.31Ibid.32Ibid.33F.Harvey,“UKInvestmentinCleanEnergyTransitionFalls10%,BuckingGlobalTrend”,TheGuardian,April27,2023,https://www.theguardian.com/environment/2023/apr/27/uk-investment-in-clean-energy-transition-falls-10-bucking-global-trend;H.Horton,“DeFactoBanonSolarFarmsinEnglandtoContinue,CoffeySignals”,TheGuardian,November17,2022,https://www.theguardian.com/environment/2022/nov/17/de-facto-ban-on-solar-farms-in-england-to-continue-therese-coffey-signals.34BloombergNEF,op.cit.note1.35Ibid.36Ibid.37Ibid.38Izadi-Najafabadi,op.cit.note25.39Ibid.40BloombergNEF,op.cit.note1.41Izadi-Najafabadi,op.cit.note25.42BloombergNEF,op.cit.note1.43Ibid.44R.Wiser,LawrenceBerkeleyNationalLaboratory,personalcommunicationwithREN21,February23,2023.45BloombergNEF,op.cit.note1.46Ibid.47Ibid.48Izadi-Najafabadi,op.cit.note25.49Ibid.50BloombergNEF,op.cit.note1.51Ibid.52J.Ellis,BloombergNEF,personalcommunicationwithREN21,March29,2023.53Ibid.54Ibid.55Ibid.56BloombergNEF,op.cit.note1.57Ibid.58Ibid.59Ellis,op.cit.note52.60Ibid.61Ibid.62Ibid.63BloombergNEF,op.cit.note1.64Ibid.65EuropeanCommission,“SouthAfricaJustEnergyTransitionInvestmentPlan”,November7,2022,https://ec.europa.eu/commission/presscorner/detail/en/statement_22_6664.66Ibid.67B.IreriandR.Shirley,“PoweringGrowth”,IMF,Finance&Development,Vol.58,No.3(September2021),https://www.imf.org/en/Publications/fandd/issues/2021/09/fighting-climate-change-in-Africa-ireri;IEA,“FinancingCleanEnergyTransitionsinEmergingandDevelopingEconomies”,2021,https://iea.blob.core.windows.net/assets/6756ccd2-0772-4ffd-85e4-b73428ff9c72/FinancingCleanEnergyTransitionsinEMDEs_WorldEnergyInvestment2021SpecialReport.pdf.68IEA,“TheCostofCapitalinCleanEnergyTransitions–Analysis”,December17,2021,https://www.iea.org/articles/the-cost-of-capital-in-clean-energy-transitions.69Ibid.70Figure11fromIEA.WorldEnergyInvestment2022,https://iea.blob.core.windows.net/assets/b0beda65-8a1d-46ae-87a2-f95947ec2714/WorldEnergyInvestment2022.pdf.71IRENAandCPI,op.cit.note4.72P.R.Shuklaetal.,"SummaryforPolicymakers.ClimateChange2022:MitigationofClimateChange.ContributionofWorkingGroupIIItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange",2022,https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf.73Ibid.74IRENAandCPI,op.cit.note4;BloombergNEF,“WindandSolarPropelNet-ZeroPowerSupplyInvestment”,January19,2023,https://about.bnef.com/blog/wind-and-solar-propel-net-zero-power-supply-investment.Figure12fromBloombergNEF,“EnergyTransitionInvestmentTrends2023”,2023,https://assets.bbhub.io/professional/sites/24/energy-transition-investment-trends-2023.pdf;IRENA,“GlobalLandscapeofRenewableEnergyFinance2023”,2023,https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Feb/IRENA_CPI_Global_RE_finance_2023.pdf,BloombergNEF,“WindandSolarPropel...",op.cit.thisnote.;Teskeet.al.,"OneEarthClimateModel",2022,https://doi.org/10.1007/978-3-030-99177-7.94BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIINVESTMENTANDFINANCE75Sidebar1basedonthefollowingsources:I.Robertson,“CleanerIsCheaper”,Innovators,June2,2020,https://www.innovatorsmag.com/cleaner-is-cheaper;IRENA,“RecordGrowthinRenewablesAchievedDespiteEnergyCrisis”,March21,2023,https://www.irena.org/News/pressreleases/2023/Mar/Record-9-point-6-Percentage-Growth-in-Renewables-Achieved-Despite-Energy-Crisis;900GWfromS.Osaka,“ThisLittle-KnownBottleneckIsBlockingCleanEnergyforMillions”,WashingtonPost,December21,2022,https://www.washingtonpost.com/climate-environment/2022/12/20/clean-energy-bottleneck-transmission-lines;C.Clifford,“WindandSolarPowerGeneratorsWaitinYearslongLinestoPutCleanElectricityontheGrid,ThenFaceHugeInterconnectionFeesTheyCan’tAfford”,CNBC,April6,2023,https://www.cnbc.com/2023/04/06/outdated-us-energy-grid-tons-of-clean-energy-stuck-waiting-in-line.html;8,100projectsfromB.Plumer,“TheU.S.HasBillionsforWindandSolarProjects.GoodLuckPluggingThemIn.”,NewYorkTimes,February23,2023,https://www.nytimes.com/2023/02/23/climate/renewable-energy-us-electrical-grid.html;Reuters,“GreekRenewablesFullyCoverPowerDemandforFirstTimeonRecord”,October10,2022,https://www.reuters.com/business/sustainable-business/greek-renewables-fully-cover-power-demand-first-time-record-2022-10-10;H.Aposporis,“GreekGovernmentAdoptsStricterRulesforRenewablesConnection”,BalkanGreenEnergyNews,October13,2022,https://balkangreenenergynews.com/greek-government-adopts-stricter-rules-for-connecting-renewables-to-grid;S.O’Farrell,“AustraliaInvestsBillionstoUpgradeGridInfrastructure”,FDIIntelligence,January17,2023,https://www.fdiintelligence.com/content/news/australia-invests-billions-to-upgrade-grid-infrastructure-81907;H.DempseyandG.Plimmer,“RenewablesGroupsSoundAlarmoverUKGridConnectionDelays”,FinancialTimes,February6,2023,https://www.ft.com/content/bc200569-cb85-4842-a59a-f04d342805fc;NorthCarolinafromClifford,op.cit.thisnote;N.J.Kurmayer,“GermanElectricityGridUpgrade‘WillBeExpensive’,ExpertsWarn–EU-SysFlex”,EU-SysFlex,February21,2022,https://eu-sysflex.com/german-electricity-grid-upgrade-will-be-expensive-experts-warn;BloombergNEF,“GlobalNetZeroWillRequire$21TrillionInvestmentInPowerGrids”,March2,2023,https://about.bnef.com/blog/global-net-zero-will-require-21-trillion-investment-in-power-grids;ThunderSaidEnergy,“Renewables:HowMuchTimetoConnecttotheGrid?”https://thundersaidenergy.com/downloads/renewables-how-much-time-to-connect-to-the-grid,accessedMay2,2023;GermanyfromKurmayer,op.cit.thisnote;GreecefromAposporis,op.cit.thisnote;USD20billionfromUSDepartmentofEnergy,“BuildingaBetterGridInitiative”,January12,2022,https://www.energy.gov/oe/articles/building-better-grid-initiative;JapaneseMinistryofEconomy,TradeandIndustry,AgencyforNaturalResourcesandEnergy,“Changehowtoconnecttothe‘grid’toincreaserenewableenergy”,March25,2021,https://www.enecho.meti.go.jp/about/special/johoteikyo/non_firm.html(usingGoogleTranslate);S.Dumitriu,“HowSpainEliminatedEnvironmentalImpactAssessmentsforMostRenewableProjects”,NotesonGrowth,February17,2023,https://samdumitriu.substack.com/p/how-spain-eliminated-environmental;D.Jordan,“Manchin’sPermitOverhaulFallsShortAgain”,RollCall,December15,2022,https://rollcall.com/2022/12/15/manchins-permit-overhaul-falls-short-again;UKfromDempseyandPlimmer,op.cit.thisnote;ElectricityMarketsandPolicyGroup,“QueuedUp:CharacteristicsofPowerPlantsSeekingTransmissionInterconnection",accessedJune5,2023,https://emp.lbl.gov/queues.95BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIBIOENERGYENDNOTES–BIOENERGY1InternationalEnergyAgency(IEA),“Bioenergy–Analysis”,2022,https://www.iea.org/reports/bioenergy2IEABioenergy,“Bioenergy,aSustainableSolution”,https://www.ieabioenergy.com/bioenergy-a-sustainable-solution,accessedApril4,2023.3IEA,“TechnologyRoadmap:DeliveringSustainableBioenergy”,2017,https://www.iea.org/reports/technology-roadmap-delivering-sustainable-bioenergy.4WorldHealthOrganization,“HouseholdAirPollution”,https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health,accessedApril4,2023.5IntergovernmentalPanelonClimateChange,“FAQsChapter6–SpecialReportonClimateChangeandLand”,https://www.ipcc.ch/srccl/faqs/faqs-chapter-6,accessedApril4,2023.6IEA,“Bioenergy–Fuels&Technologies”,https://www.iea.org/fuels-and-technologies/bioenergy,accessedApril4,2023.7IEA,op.cit.note1.8Figure13fromIEA,"EnergyStatisticsDataBrowser–DataTools”,https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser,accessedApril4,2023.9Ibid.10Ibid.11Ibid.12Ibid.13Ibid.14InternationalRenewableEnergyAgency(IRENA),“BioenergyandBiofuels”,https://www.irena.org/Energy-Transition/Technology/Bioenergy-and-biofuels,accessedApril4,2023.15IEA,op.cit.note1.16A.Nyambaneetal.,“EthanolasaCleanCookingAlternativeinSub-SaharanAfrica:InsightsfromSugarcaneProductionandEthanolAdoptionSitesinMalawiandMozambique”,inA.Gasparatosetal.,SustainabilityChallengesinSub-SaharanAfricaII:InsightsfromEasternandSouthernAfrica,2020,pp.115-44,https://doi.org/10.1007/978-981-15-5358-5_5;W.M.ChampionandA.P.Grieshop,“Pellet-FedGasifierStovesApproachGas-StoveLikePerformanceDuringIn-HomeUseinRwanda”,EnvironmentalScience&Technology,Vol.53,No.11(June4,2019),pp.6570-79,https://doi.org/10.1021/acs.est.9b00009;D.RamsayNjengaMary,“FiveThingstoKnowAboutBriquettesandSustainableBioenergyinAfrica”,CIFORForestsNews,May4,2021,https://forestsnews.cifor.org/72344/five-things-to-know-about-briquettes-and-sustainable-bioenergy-in-africa.17IEA,op.cit.note8.18Ibid.19Ibid.20IEA,op.cit.note8.Figure14fromIEA,"TransportBiofuels",inRenewables2022,2022,https://www.iea.org/reports/renewables-2022/transport-biofuels.21IEA,op.cit.note8.22Ibid.23BioenergyInternational,“HindustanUnileverSwitchesfromCoaltoBiomassandBiofuelsAcrossItsOperations”,December3,2021,https://bioenergyinternational.com/hindustan-unilever-switches-from-coal-to-biomass-and-biofuels-across-its-operations;akzente,“TheBreweryUsingBushBiomass”,https://akzente.giz.de/en/artikel/brewery-using-bush-biomass,accessedApril4,2023;ABInbev,“NetZeroExecutiveSummary”,https://www.ab-inbev.com/assets/pdfs/Net%20Zero%20Executive%20Summary_FINAL%2012pm.pdf,accessedApril14,2023;SerumInstituteofIndia,“GreenInitiativesatSERUMInstitute”,https://www.seruminstitute.com/about_green_initiatives.php,accessedApril4,2023;S.Seidel,“WoodGasifierinGermany”,SpannerRe2,https://www.holz-kraft.com/en/references/references-by-countries/germany/836-paletts-energy-biomass-power-plant.html,accessedApril4,2023.24KhmerTimes,“HeinekenOpensKingdom’sLargestBiomassPlant”,September22,2022,https://www.khmertimeskh.com/501156393/heineken-opens-kingdoms-largest-biomass-plant.25InternationalDistrictEnergyAssociation,“DistrictHeating”,https://www.districtenergy.org/topics/district-heating,accessedApril4,2023.26IEA,“DistrictHeating–Analysis”,2022,https://www.iea.org/reports/district-heating.27Ibid.28Ibid.29A.Sherrard,“GroundbreakingHeldforLithuania’sLargestRenewableEnergyProject”,BioenergyInternational,February15,2018,https://bioenergyinternational.com/groundbreaking-held-lithuanias-largest-renewable-energy-project;FreshMedia,“AboutthePlantVilniusCombinedHeatandPowerPlant”,https://www.vkj.lt/en/about-us/about-the-plant/129,accessedApril4,2023.30SBBA,“SBBAHeatingMarketReport2021”,2021,https://www.sbba.se/wp-content/uploads/sites/11/2021/09/Heating_Market_Sweden_2021_V1.0.pdf.31StatisticalDatabaseSweden,“ConsumptionofFuelsforSteamandHotWaterProduction,TJbyTypeofPowerPlants,TypeofFuelandYear.PxWeb”,https://www.statistikdatabasen.scb.se/pxweb/en/ssd/START__EN__EN0105__EN0105A/BrforangaAR/table/tableViewLayout1,accessedApril4,2023.32EgyptIndependent,“EgyptEstablishesIts1stPlanttoConvertWasteintoEnergy”,https://egyptindependent.com/egypt-establishes-its-1st-plant-to-convert-waste-into-energy.33EurObserv’ER,“SolidBiofuelsBarometer2022”,December22,2022,https://www.eurobserv-er.org/solid-biomass-barometer-2022.34Ibid.35Ibid.36Ibid.37Ibid.38Ibid.39Ibid.40WorldBank,“AccesstoCleanFuelsandTechnologiesforCooking(%ofPopulation)”,https://data.worldbank.org/indicator/EG.CFT.ACCS.ZS,accessedApril4,2023;SustainableEnergyforAll,“CleanCooking”,https://www.seforall.org/clean-cooking,accessedApril4,2023;IEA,“AccesstoCleanCooking–SDG7:DataandProjections–Analysis”,2019,https://www.iea.org/reports/sdg7-data-and-projections/access-to-clean-cooking.41KOKONetworks,https://kokonetworks.com,accessedApril4,2023;SolarCookersInternational,“WhySolarCooking”,https://www.solarcookers.org/why,accessedApril4,2023;SupaMoto,http://www.supamoto.co.zm,accessedApril4,2023;WorldBank,“Infographic–ModernEnergyCookingServices”,2020,https://www.worldbank.org/en/news/infographic/2020/09/24/infographic-modern-energy-cooking-services.42Seesourcesinendnote40.43CleanCookingAlliance,“AnnualReport2022”,2022,https://cleancooking.org/wp-content/uploads/2023/03/CCA-2022-Annual-Report.pdf.44CleanCookingAlliance,“ToStopClimateCatastrophe,InvestinCleanCooking:ExploringtheLackofFunding–andSignsofProgress–intheIndustry”,2019,https://cleancooking.org/news/to-stop-climate-catastrophe-invest-in-clean-cooking-exploring-the-lack-of-funding-and-signs-of-progress-in-the-industry.45EuropeanCommission,“Biofuels”,https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biofuels_en,accessedApril4,2023.46IEA,op.cit.note8.47EuropeanBiogas,“BiomethaneinTransport”,2019,https://www.europeanbiogas.eu/wp-content/uploads/2019/07/Biomethane-in-transport.pdf.48FuelIdentifiers,“FuelLabellingforRoadVehicles”,2021,https://fuel-identifiers.eu/wp-content/uploads/2021/02/QA-operators-EN.pdf;EuropeanCommission,“EUFuelLabelling:ClearerInformationforConsumersandOperators”,https://ec.europa.eu/commission/presscorner/detail/en/IP_18_6101,accessedApril4,2023;NITIAayog,“ExpertCommitteeonRoadmapforEthanolBlendinginIndiaby2025”,https://www.niti.gov.in/expert-committee-roadmap-ethanol-blending-india-2025,accessedApril4,2023;B.Christina,“IndonesiaAssuresB35BiodieselWon’tSqueezeCookingOilSupply”,Reuters,January31,2023,https://www.reuters.com/markets/commodities/indonesia-estimates-2-bln-needed-biodiesel-subsidies-2023-2023-01-31.49Sekab,“ED95”,https://www.sekab.com/en/products-services/product/ed95,accessedApril4,2023;f3centre,“B100(Biodiesel)”,August14,2017,https://f3centre.se/en/fact-sheets/b100-biodiesel.50IEA,“TransportBiofuels–Renewables2022–Analysis”,2022,https://www.iea.org/reports/renewables-2022/transport-biofuels.Figure15fromIRENA,"RenewableCapacityStatistics2023",2023,https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023.51Ibid.52Ibid.53IEA,op.cit.note50.96BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIBIOENERGY54ACIWorld,“PositiveandImmediateImpactonGlobalAirTravelDemandasRestrictionsRelax”,June28,2022,https://aci.aero/2022/06/28/positive-and-immediate-impact-on-global-air-travel-demand-as-restrictions-relax.55Ibid.56IEA,op.cit.note50.57IEA,op.cit.note8.58USEnergyInformationAdministration(EIA),International:Biofuels,https://www.eia.gov/international/data/world/biofuels/biofuels-production,accessedApril4,2023.59AlternativeFuelsDataCenter,“EthanolBlends”,https://afdc.energy.gov/fuels/ethanol_blends.html,accessedApril4,2023;S.Kelly,J.RenshawandS.Kelly,“EPAProposesExpandedSalesofHigherEthanolBlendGasolineinUSMidwest”,Reuters,March1,2023,https://www.reuters.com/markets/commodities/us-epa-proposes-expanded-sales-higher-ethanol-gasoline-midwest-states-2023-03-01.60TransportPolicy,“Brazil:Fuels:Biofuels”,https://www.transportpolicy.net/standard/brazil-fuels-biofuels,accessedApril4,2023;SugarCane,“Renovabio”,https://www.sugarcane.org/sustainability-the-brazilian-experience/renovabio,accessedApril4,2023.61EPure,“OverviewofBiofuelsPoliciesandMarketsAcrosstheEU”,2023,https://www.epure.org/wp-content/uploads/2023/02/230227-DEF-REP-Overview-of-biofuels-policies-and-markets-across-the-EU-February-2023-1.pdf.62EuropeanCommissionJointResearchCentre,“RenewableEnergy–Recastto2030(REDII)”,https://joint-research-centre.ec.europa.eu/welcome-jec-website/reference-regulatory-framework/renewable-energy-recast-2030-red-ii_en,accessedApril4,2023;IEA,op.cit.note50;EuropeanParliament,“EUBanonSaleofNewPetrolandDieselCarsfrom2035Explained”,March11,2022,https://www.europarl.europa.eu/news/en/headlines/economy/20221019STO44572/eu-ban-on-sale-of-new-petrol-and-diesel-cars-from-2035-explained.63EthanolProducer,“China’sFuelEthanolConsumptionExpectedtoFallin2022”,2022,https://ethanolproducer.com/articles/19622/chinaundefineds-fuel-ethanol-consumption-expected-to-fall-in-2022.64Ibid.65ETEnergyworld.com,“IndiaAchieved10perCentEthanolBlendingTargetAheadofSchedule:PMModi–ETEnergyWorld,”ETEnergyworld.com,August15,2022,https://energy.economictimes.indiatimes.com/news/oil-and-gas/india-achieved-10-per-cent-ethanol-blending-target-ahead-of-schedule-pm-modi/93568825.66PIB,“PrimeMinisterLaunchesE20Fuel&FlagsOffGreenMobilityRallyinBengaluruToday”,2022,https://pib.gov.in/pib.gov.in/Pressreleaseshare.aspx?PRID=1896729.67EnvironmentalandEnergyStudyInstitute,“IsCellulosicEthanolDead?DespiteSetbacks,SignsofProgress”,November9,2017,https://www.eesi.org/articles/view/is-cellulosic-ethanol-dead-despite-setbacks-signs-of-progress.68ShellGlobal,“ShellandRaízenSignLargeCellulosicEthanolDeal”,November7,2022,https://www.shell.com/business-customers/trading-and-supply/trading/news-and-media-releases/shell-and-raizen-sign-large-cellulosic-ethanol-deal.html;BiofuelsDigest,“TheBigLaunch:PMModiInauguratesIndia’sFirst2GEthanolProject,UsingPrajTechnology”,August11,2022,https://www.biofuelsdigest.com/bdigest/2022/08/11/the-big-launch-pm-modi-inaugurates-indias-first-2g-ethanol-project-using-praj-technology;ClariantLtdBasel,“ClariantProducesFirstCommercialSunliquid®CellulosicEthanolatNewPlantinPodari,Romania”,2022,https://www.clariant.com/en/Corporate/News/2022/06/Clariant-produces-first-commercial-sunliquid-cellulosic-ethanol-at-new-plant-in-Podari-Romania.69IEA,op.cit.note50.70USDepartmentofAgriculture,“BiofuelsAnnual”,2022,https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels%20Annual_The%20Hague_European%20Union_E42022-0048.pdf.71Ibid.72F.Nangoy,“IndonesiaMayStartUsingB35BiodieselfromJan2023–EnergyMinistry”,Reuters,December9,2022,https://www.reuters.com/business/energy/indonesia-may-start-using-b35-biodiesel-jan-2023-energy-ministry-2022-12-09.73BiofuelsInternational,“B20MandateCouldBoostBiodieselProductioninMalaysia”,March10,2023,https://biofuels-news.com/news/b20-mandate-could-boost-biodiesel-production-in-malaysia.74V.Hari,“AsiaNeedstoFaceUptotheDownsidesofBiofuels”,NikkeiAsia,March22,2023,https://asia.nikkei.com/Opinion/Asia-needs-to-face-up-to-the-downsides-of-biofuels;Oils&FatsInternational,“ThailandPuts5%LimitonBiodieselBlendingtoCounterRisingOilPrices",February15,2022,https://www.ofimagazine.com/news/thailand-puts-5-limit-on-biodiesel-blending-to-counter-rising-oil-prices.75VilniausKogeneracinėJėgainė,“AboutthePlantVilniusCombinedHeatandPowerPlant”,https://vkj.lt/en/about-us/about-the-plant/129,accessedApril4,2023.76f3centre,“HEFA/HVO,HydroprocessedEstersandFattyAcids”,August9,2016,https://f3centre.se/sv/faktablad/hefa-hvo-hydroprocessed-esters-and-fatty-acids.77Neste,“Neste’sHigh-QualityProductsAreManufacturedinFinland,theNetherlandsandSingapore”,April27,2020,https://www.neste.com/about-neste/who-we-are/production;Eni,“TheBiorefineriesofVeniceandGela”,https://www.eni.com/en-IT/operations/energy-evolution/biorefineries.html,accessedApril4,2023;TotalEnergies,“LaMède:AMultipurposeFacilityfortheEnergiesofTomorrow”,April3,2023,https://totalenergies.com/energy-expertise/projects/bioenergies/la-mede-a-forward-looking-facility;BP,“BPAcquires30%StakeintheUK’sLargestProviderofLowEmissionHydrogenatedVegetableOilFuels”,2022,https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-acquires-30-per-cent-stake-in-the-uks-largest-provide-of-low-emission-hydrogenated-vegetable-oil-fuels.html.78WorldBioenergy,“BiomethaneVisionDocument”,2022,https://www.worldbioenergy.org/uploads/221216%20Biomethane%20vision%20document.pdf;CaliforniaEnergyCommission,“Biofuels:Biomethane”,https://www.energy.ca.gov/programs-and-topics/programs/clean-transportation-program/clean-transportation-funding-areas-2-1,accessedApril4,2023;GovernmentofBrazil,"BrazilRoadmapforNaturalGasandBiomethaneHeavyDutyTrucks&BusesPart1Strengths,Weaknesses,Opportunities&Challenges(SWOC)",2021,https://www.gov.br/mme/pt-br/assuntos/noticias/1.BrazilHDNGVRoadmapPart14.pdf.79L.Klackenberg,“BiomethaneinSweden–MarketOverviewandPolicies”,2019,https://www.energigas.se/media/wm1osxcb/biomethane-in-sweden-230112.pdf.80Ibid.81L.Losson,“GlobalBiomethaneMarket2022Assessment+Database”,Cedigaz,May2,2022,https://www.cedigaz.org/global-biomethane-market-2022-assessment;PlaneteEnergies,“GlobalNaturalGasConsumption”,https://www.planete-energies.com/en/media/figures/global-natural-gas-consumption,accessedMay9,2023.82P.Serfass,“AmericanBiogasCouncilApplaudsPassageofInflationReductionActandHistoricInvestmentinCleanEnergy”,AmericanBiogasCouncil”,August12,2022,https://americanbiogascouncil.org/american-biogas-council-applauds-passage-of-inflation-reduction-act-and-historic-investment-in-clean-energy;Fluence,“InflationReductionActtoBoostBiogas”,November3,2022,https://www.fluencecorp.com/inflation-reduction-act-to-boost-biogas;EuropeanCommission,“Biomethane”,https://energy.ec.europa.eu/topics/renewable-energy/bioenergy/biomethane_en,accessedApril4,2023.83ETIPBioenergy,“Air”,https://www.etipbioenergy.eu/value-chains/products-end-use/end-use/air,accessedApril4,2023.84InternationalAirTransportAssociation,“FactSheetClimateChange”,https://www.iata.org/contentassets/713a82c7fbf84947ad536df18d08ed86/fact-sheet-climate-change.pdf,accessedApril4,2023.85ClimateChampions,“SAFpocketguideforcorporatecustomers”,2022,https://climatechampions.unfccc.int/wp-content/uploads/2022/11/heathrow_smi_saf-pocket-guide.pdf.86USDepartmentofEnergy,"SustainableAviationFuel:ReviewofTechnicalPathways",2020,https://www.energy.gov/eere/bioenergy/articles/sustainable-aviation-fuel-review-technical-pathways-report.87L.Harper,“EuropeanSAFDevelopment‘PutBackaDecade’byUSIRAMeasures”,FlightGlobal,March30,2023,https://www.flightglobal.com/airlines/european-saf-development-put-back-a-decade-by-us-ira-measures/152690.article.88StillwaterAssociates,“InflationReductionActSustainableAviationFuelCredit”,https://stillwaterassociates.com/inflation-reduction-act-sustainable-aviation-fuel-credit-carbon-intensity-matters,accessedApril6,2023.89EuropeanParliament,“ReFuelEUAviationInitiative:SustainableAviationFuelsandtheFitfor55Package”,2022,https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2022)698900.97BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIBIOENERGY90UNCTAD,“DecarbonizingtheMaritimeSector:MobilizingCoordinatedActionintheIndustryUsinganEcosystemsApproach”,June8,2022,https://unctad.org/news/decarbonizing-maritime-sector-mobilizing-coordinated-action-industry-using-ecosystems-approach.91InternationalMaritimeOrganization,“IMO’sWorktoCutGHGEmissionsfromShips”,https://www.imo.org/en/MediaCentre/HotTopics/Pages/Cutting-GHG-emissions.aspx,accessedApril4,2023.92EuropeanMaritimeSafetyAgency,“UpdateonPotentialofBiofuelsforShipping”,October18,2022,https://www.emsa.europa.eu/newsroom/latest-news/item/4834-update-on-potential-of-biofuels-for-shipping.html;M.Patrakka,“CleanerMarineFossilFuels–DoTheyExist?”Elomatic,June10,2020,https://blog.elomatic.com/en/cleaner-marine-fossil-fuels-do-they-exist.93T.I.Simonsenetal.,“ProgresstowardsBiofuelsforMarineShipping”,December2021,https://www.ieabioenergy.com/wp-content/uploads/2021/11/Progress-towards-biofuels-for-marine-shippingT39-report_June-2021_Final.pdf.94Valmet,“Asia’sLargestBiomassPowerPlantOperateswithValmetDNA”,January6,2016,https://www.valmet.com/insights/articles/all-articles/asias-largest-biomass-power-plant-operates-with-valmet-dna;UNIDO,“PromotingSmallScaleBiomassPowerPlantsinRuralThailand”,2021,https://www.unido.org/sites/default/files/files/2021-09/GEF_Biomass_Gasification_thailand_screen.pdf.95Ember,“GlobalElectricityReview2023”,April11,2023,https://ember-climate.org/insights/research/global-electricity-review-2023.96Ibid.97IEA,op.cit.note8.98Ibid.99IRENA,“RenewableCapacityStatistics2022”,2022,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf.100Ibid.Figure15fromIbid.101Ibid.102Ember,op.cit.note95;GovernmentofChina,“BiomassEnergytoProvideHeat,Fuel”,2021,http://english.www.gov.cn/news/topnews/202104/15/content_WS60778ff2c6d0df57f98d7d92.html;IEABioenergy,“ImplementationofBioenergyinChina–CountryReport”,2021,https://www.ieabioenergy.com/wp-content/uploads/2021/11/CountryReport2021_China_final.pdf.103GovernmentofBrazil,"MonthlyEnergyBulletin–Brazil",2022,https://www.gov.br/mme/pt-br/assuntos/secretarias/spe/publicacoes/boletins-mensais-de-energia/2022-2/ingles/3-boletim-mensal-de-energia-marco-2022.104R.Ireland,“TheRiseofUtilityWoodPelletEnergyintheEraofClimateChange”,2022;USInternationalTradeCommission,https://www.usitc.gov/publications/332/working_papers/wood_pellets_final_060622.pdf;PIB,“MinistryofPowerDecidestoSetUpaNationalMissiononUseofBiomassinCoalBasedThermalPowerPlants”,2021,https://www.usitc.gov/publications/332/working_papers/wood_pellets_final_060622.pdf.105PIB,op.cit.note104.106RenewableWatch,“Inter-MinisterialMeetingtoReviewProgressofBiomassCo-FiringinThermalPowerPlantsHeldinNewDelhiToday”,October6,2022,https://renewablewatch.in/2022/10/06/inter-ministerial-meeting-reviews-the-progress-of-biomass-co-firing-in-thermal-power-plants/.107K.Harris,“Section1:UKTotalEnergy”,March30,2023,https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1147249/Energy_Trends_March_2023.pdf.108EurObserv’ER,“21stAnnualOverviewBarometer”,February28,2023,https://www.eurobserv-er.org/21st-annual-overview-barometer.109Ibid.110Ibid.111F.Simon,“BiomassFightLeavesEURenewableEnergyTalksinaDeadlock”,Euractiv,February16,2023,https://www.euractiv.com/section/biomass/news/biomass-fight-leaves-eu-renewable-energy-talks-in-a-deadlock.112EuropeanCommission,“AcceleratetheRolloutofRenewableEnergy”,March30,2023,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_2061.113Figure16fromF.Mathews,“IndustrialPelletMarketUpdate”,HawkinsWright,2022,https://www.svebio.se/wp-content/uploads/2022/05/Matthews_Fiona_NPC2022.pdfandFoodandAgricultureOrganizationoftheUnitedNations,(FAO),“FAOSTAT”,https://www.fao.org/faostat/en/#data/FO,accessedApril4,2023.114FAO,op.cit.note113.115WorldBioMarketInsights,“BanonRussianWoodPelletExportsWouldHaveConsequencesonWaste”,July4,2022,https://worldbiomarketinsights.com/ban-on-russian-wood-pellet-exports-would-have-consequences-on-waste;S.HongandD.Sun,“Viewpoint:AsianWoodPelletDemandtoDiverge”,ArgusMedia,January6,2023,https://www.argusmedia.com/en/news/2406850-viewpoint-asian-wood-pellet-demand-to-diverge.116Ibid.98BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIGEOTHERMALPOWERANDHEATENDNOTES–GEOTHERMALPOWERANDHEAT1Estimatesbasedonthefollowingsources:powercapacitydataforIceland,Indonesia,Kenya,Philippines,TürkiyeandtheUnitedStatesfromsourcesnotedelsewhereinthissection;forNewZealandfromNewZealandMinistryofBusiness,InnovationandEmployment,“ElectricityStatistics”,https://www.mbie.govt.nz/building-and-energy/energy-and-natural-resources/energy-statistics-and-modelling/energy-statistics/electricity-statistics,accessedApril2023;capacitydataforothercountriesfromInternationalRenewableEnergyAgency(IRENA),“RenewableCapacityStatistics2023”,March2023,https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023;estimatedelectricitygenerationin2022basedonInternationalEnergyAgency(IEA),“Renewables2022DataExplorer”,December6,2022,https://www.iea.org/data-and-statistics/data-tools/renewables-data-explorer.Heatcapacityandoutputin2022areextrapolationsbasedonfive-yearaverageannualisedgrowthfrom2015through2019,fromJ.W.LundandA.N.Toth,“DirectUtilizationofGeothermalEnergy2020WorldwideReview”,October2020,https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01018.pdf.2Forheatapplications,geothermalfluidcanbeuseddirectlyorviaheatexchangers,wherethefluidisre-injectedintothecrust.Forelectricitygeneration,geothermalsteamisuseddirectlytodriveturbines(eitherdryorflashsteam),or,inthecaseofbinary-cycleplants,geothermalfluidisusedtoheatasecondaryworkingfluidthatpowerstheturbine.Sub-surfacegeothermalfluidundergoesflashevaporationtosteamaspressuredropsascendingawellboreandatthepowerplant.3End-2021capacitydataandcapacityadditionsin2022fromsourcesinendnote1.4RenewableEnergyPolicyNetworkforthe21stCentury(REN21),“RenewablesGlobalStatusReport”,2018-2022editions,https://www.ren21.net/reports/global-status-report.5Seesourcesinendnote1.Figure17basedonend-2021capacitydataandcapacityadditionsin2022fromsourcesinendnote1andfromsourcesnotedelsewhereinthissection.Forthepurposeofthisfigure,end-2021capacityisassumedtobeequaltoend-2022capacitylessnewcapacityinstalled(orcapacityexpansion)during2022.6End-2021capacitydatafromsourcesinendnote1;capacityadditionsin2022,bycountry,fromsourcesnotedelsewhereinthissection.7Insomeinstances,theeffectivegeothermalgeneratingcapacity(achievableorrunningcapacity)maybelowerthanindicatedvalues,duetogradualdegradationofthesteam-generatingcapabilityofgeothermalfieldsortoinsufficientdrillingofmake-upwellstoreplenishsteamflowovertime.Ifageothermalpowerplantextractsheatandsteamfromthereservoirataratethatexceedstherateofreplenishmentacrossallitsboreholes,additionalwellsmaybedrilledovertimetotapadditionalsteamflow,providedthatthegeothermalfieldoveralliscapableofsupportingadditionalsteamflow.Forexample,theeffectivenetgenerationcapacityintheUnitedStateswas2.6GWattheendof2022,asresourcedepletioninparticularhaslimitedtheeffectiveoutputfarbelowthestatedgrossnameplatecapacityof3.9GW.Thisresource-limitedcapabilityofageothermalplantdefinesitsdependablerunningcapacity,asopposedtothetotalnameplatecapacityofitsgenerator(s).FortheUnitedStates,mostofthedifferencebetweennameplateandrunningcapacity(about800MW)resultsfromplantde-ratingattheGeysersgeothermalfieldinCalifornia,whichisnotabletoproduceenoughsteam,duetoproductivitydecline,tooperateatnameplatecapacity.NetsummercapacityfromUSEnergyInformationAdministration(EIA),“ElectricPowerMonthly”,February2022,Table6.2.B,https://www.eia.gov/electricity/monthly;nameplatecapacityfromUSEIA,“FormEIA-860M(PreliminaryMonthlyElectricGeneratorInventory)”,December2021,https://www.eia.gov/electricity/data/eia860m;USDepartmentofEnergy,OfficeofScientificandTechnicalInformation,“GeoVision:HarnessingtheHeatBeneathOurFeet”,June2019,https://www.energy.gov/eere/geothermal/downloads/geovision-harnessing-heat-beneath-our-feet.Ingeneral,apowerplant’snetcapacityequalsgrosscapacitylesstheplant’sownpowerrequirementsandanyseasonalde-rating.Inthecaseofgeothermalplants,netcapacityalsowouldreflecttheeffectivepowercapabilityoftheplantasdeterminedbythecurrentsteamproductionofthegeothermalfield.8KenyaGeneratingCompany(KenGen),“GoodNewsforKenyaasKenGenCompletesConstructionofOlkariaIUnit6GeothermalPowerPlant”,March29,2022,https://www.kengen.co.ke/index.php/information-center/news-and-events-3/good-news-for-kenya-as-kengen-completes-construction-of-olkaria-i-unit-6-geothermal-power-plant.html;KenGen,“GoodNewsforKenyansasPresidentUhuruKenyattaSwitchesonKenGen’s86MWOlkariaGeothermalPowerPlant”,July26,2022,https://www.kengen.co.ke/index.php/information-center/news-and-events-3/good-news-for-kenyans-as-president-uhuru-kenyatta-switches-on-kengen%E2%80%99s-86mw-olkaria-geothermal-power-plant.html.9Energy&PetroleumRegulatoryAuthority,“BiannualEnergyandPetroleumStatisticsReportfortheFinancialYear2022/2023”,April25,2023,https://www.epra.go.ke/biannual-energy-and-petroleum-statistics-report-for-the-financial-year-2022-2023/.10KenGen,“Olkaria1Units1,2&3RehabilitationProject”,https://www.kengen.co.ke/index.php/business/projects/ongoing.html,accessedApril2023;KenGen,“KenGenReports11%RevenueGrowthfortheFirstHalfof2022(2)”,March1,2023,https://www.kengen.co.ke/index.php/information-center/news-and-events/kengen-reports-11-revenue-growth-for-the-first-half-of-2023.html.11KenGen,“KenGenReports11%RevenueGrowthfortheFirstHalfof2022(2)”,op.cit.note10.12Netcapacityandgenerationforyears2016and2021fromUSEIA,“ElectricPowerMonthly”,February2018andFebruary2023,Table1.1.AandTable6.2.B,https://www.eia.gov/electricity/monthly.13Ibid.14OrmatTechnologies,“OrmatTechnologiesReportsFirstQuarter2022FinancialResults”,May2,2022,https://investor.ormat.com/news-events/news/news-details/2022/Ormat-Technologies-Reports-First-Quarter-2022-Financial-Results/default.aspx.Reportedas13MWbythedeveloper,theadditionhasrecordednameplatecapacityof25.5MWandnetsummercapacityof17MW,fromUSEIA,“ElectricPowerMonthly”,op.cit.note7,Table6.2.B,https://www.eia.gov/electricity/monthly;andfromUSEIA,“FormEIA-860M(PreliminaryMonthlyElectricGeneratorInventory)”,December2022,https://www.eia.gov/electricity/data/eia860m.15OrmatTechnologies,“OrmatCommencesCommercialOperationofthe30MWCD4GeothermalProject”,July18,2022,https://investor.ormat.com/news-events/news/news-details/2022/Ormat-Commences-Commercial-Operation-of-the-30MW-CD4-Geothermal-Project/default.aspx.16Generationfor2022fromUSEIA,“ElectricPowerMonthly”,op.cit.note7,TablesES1.B,1.1and1.1.A.17C.Augustineetal.,“EnhancedGeothermalShotAnalysisfortheGeothermalTechnologiesOffice”,NationalRenewableEnergyLaboratory,January2023,https://www.nrel.gov/docs/fy23osti/84822.pdf.18KSOrka,“NewsStream”,https://ksorka-sorikmarapi.com,accessedApril2022;PertaminaGeothermalEnergy,“Acceleratingtheenergytransition,PGEcompletesthebinaryorganicrankinecyclegeothermalpowerplantprojectinNorthSulawesi”,December8,2022,https://www.pge.pertamina.com/en/press-release/accelerating-the-energy-transition-pge-completes-the-binary-organic-rankine-cycle-geothermal-power-plant-project-in-north-sulawesi;PertaminaGeothermalEnergy,“PGEsoontooperatePLTPutilizinggeothermalwetsteam”,February18,2022,https://www.pge.pertamina.com/en/press-release/pge-soon-to-operate-pltp-utilizing-geothermal-wet-steam;PertaminaGeothermalEnergy,“PGE'sJourney”,https://www.pge.pertamina.com/en/pge-history,accessedMay2023.19Ibid.20Ibid.21Capacityatyear-end2018-2022fromESDM,“CapaianKinerjaSektorESDMTahun2022&TargetTahun2023”,January30,2023,https://www.esdm.go.id/id/media-center/arsip-berita/pnbp-lampaui-target-menteri-esdm-sampaikan-rincian-torehan-esdm-di-tahun-2022-;capacityatyear-end2017-2021fromESDM,“CapaianKinerjaSektorESDMTahun2021&Rencana2022”,January12,2022,https://www.esdm.go.id/assets/media/content/content-capaian-kinerja-sektor-esdm-tahun-2021-dan-rencana-tahun-2022.pdf.22ESDM,“HandbookofEnergy&EconomicStatisticsofIndonesia”,April2022,https://www.esdm.go.id/id/publikasi/handbook-of-energy-economic-statistics-of-indonesia.23ESDM,“CapaianKinerjaSektorESDMTahun2022&TargetTahun2023”,January30,2023,https://www.esdm.go.id/id/media-center/arsip-berita/pnbp-lampaui-target-menteri-esdm-sampaikan-rincian-torehan-esdm-di-tahun-2022-.24ESDM,“RencanaPengembanganPembangkitNasionalBeriPorsiEBTLebihBesar”,February1,2023,https://www.esdm.go.id/id/media-center/arsip-berita/rencana-pengembangan-pembangkit-nasional-beri-porsi-ebt-lebih-besar;ESDM,“PemerintahPerkuatKomitmenTransisiEnergiMelaluiPeraturanPresiden99BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIGEOTHERMALPOWERANDHEATPengembanganEBT”,October8,2022,https://www.esdm.go.id/id/media-center/arsip-berita/pemerintah-perkuat-komitmen-transisi-energi-melalui-peraturan-presiden-pengembangan-ebt.25C.Cariaga,“BinaryUnitatSanJacintoGeothermalProject,NicaraguaCommencesOperations",January3,2023,https://www.thinkgeoenergy.com/binary-unit-at-san-jacinto-geothermal-project-nicaragua-commences-operations.26A.Richter,“TheSan-Jacinto-TizateGeothermalPowerPlantinNicaragua",ThinkGeoenergy,May31,2020,https://www.thinkgeoenergy.com/the-san-jacinto-tizate-geothermal-power-plant-in-nicaragua.27A.D.Frondaetal.,“Geothermalenergydevelopment:ThePhilippinescountryupdate”,ProceedingsWorldGeothermalCongress2020,https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01065.pdf;RepublicofthePhilippines,DepartmentofEnergy,“Grid-connectedcapacityasofDecember31,2022”,2022,https://www.doe.gov.ph/sites/default/files/pdf/electric_power/04_LVM%20Grid%20Summary.pdf.28Frondaetal.,op.cit.note27;EnergyDevelopmentCorporation,“EDCinaugurates3.6MWMindanao-3geothermalbinaryplanttoday”,April27,2022,https://www.energy.com.ph/2022/04/27/edc-inaugurates-3-6-mw-mindanao-3-geothermal-binary-plant-today.29EnergyDevelopmentCorporation,op.cit.note28.30M.M.Velasco,“PHtoopenREfor100%foreignownership”,ManilaBulletin,July13,2020,https://mb.com.ph/2020/07/12/ph-to-open-re-for-100-foreign-ownership;M.M.Velasco,“Gov’topensfullforeignownershiptointegratedgeothermalprojects”,ManilaBulletin,October28,2020,https://mb.com.ph/2020/10/28/govt-opens-full-foreign-ownership-to-integrated-geothermal-projects;M.M.Velasco,“DOEeyes100%foreignREownershiptospurmanufacturinginvestments”,ManilaBulletin,August14,2022,https://mb.com.ph/2022/8/14/doe-eyes-100-foreign-re-ownership-to-spur-manufacturing-investments;M.M.Velasco,“DOJsustains40%foreignREownershiprule”,ManilaBulletin,September30,2022,https://mb.com.ph/2022/9/30/doj-sustains-40-foreign-re-ownership-rule.31M.M.Velasco,“EDCrampsupgeothermalcapacity”,ManilaBulletin,December17,2022,https://mb.com.ph/2022/12/17/edc-ramps-up-geothermal-capacity;J.L.Mayuga,“Lackofincentivescrimpsinvestmentsingeothermal”,BusinessMirror,March2,2020,https://businessmirror.com.ph/2020/03/02/lack-of-incentives-crimps-investments-in-geothermal;M.M.Velasco,“Geothermalinvestorsseek‘riskinsuranceperks’fornewprojects”,ManilaBulletin,January19,2021,https://mb.com.ph/2021/01/19/geothermal-investors-seek-risk-insurance-perks-for-new-projects.32Climeon,“CaseStudy:TheSansuiPowerPlant”,https://climeon.com/case-study-the-sansui-power-plant,accessedApril2023;BaseloadPower,“SansuigeothermalpowerplantbeginsoperationsinKumamoto–renewableenergymadepossiblewithhotspringoperatortogetherwithlocalandglobalpartners”,April26,2022,https://www.baseloadpower.jp/en/sansui-geothermal-power-plant-begins-operations-in-kumamoto.33Ibid.34TurkishEnergyMarketRegulatoryAuthority(EMRA/EPDK),“ElectricityMarketSectorReport”,http://www.emra.org.tr,accessedApril2023;TurkishElectricityTransmissionCompany(TEİAŞ),http://www.teias.gov.tr,accessedApril2023.35Ibid.36Ibid.37JESDER,“JeotermalEnerjideYatırımlarAncakTeşvikleYapılabilir”,March7,2022,http://jesder.org/jeotermal-enerjide-yatirimlar-ancak-tesvikle-yapilabilir;JESDER,“YEKDEMGüncellenecekJESYatırımlarıBaşlayacak”,February2,2023,https://jesder.org/yekdem-guncellenecek-jes-yatirimlari-baslayacak.38JESDER,“YEKDEMgüncellemesindesonaşamayagelindi”,March9,2023,https://jesder.org/yekdem-guncellemesinde-son-asamaya-gelindi.39CalculationbasedonLundandToth,op.cit.note1.Growthof2.7GWin2022basedonfive-yearcompoundannualgrowthrateof7.8%from2014through2019(totalcapacityhavinggrownfrom20,627MWin2014to30,080MWin2019).40Ibid.41CalculationbasedonLundandToth,op.cit.note1.Growthof14.2TWhin2022basedondifferentiatedfive-yearcompoundannualgrowthrateacrossnineend-usecategoriesfrom2014through2019(totaloutputhavinggrownfrom265,790TJin2014to420,906TJin2019).42Figure18basedonIbid.43DistributionandcalculationofsharebasedonLundandToth,op.cit.note1.44LundandToth,op.cit.note1.45ProjectionbasedonhistoricaldatafromT.Tianetal.,“RapidDevelopmentofChina’sGeothermalIndustry–ChinaNationalReportofthe2020WorldGeothermalConference”,ProceedingsWorldGeothermalCongress2020,2020,http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01068.pdf.46ProjectionbasedonhistoricaldatafromLundandToth,op.cit.note1.47MinistryofHousingandUrban-RuralDevelopment,“‘14thFive-Year’BuildingEnergyEfficiencyandGreenBuildingDevelopmentPlan”,March11,2022,https://www.mohurd.gov.cn.48O.Mertoglu,“GeothermalEnergyUse:ProjectionsandCountryUpdateforTurkey”,ProceedingsWorldGeothermalCongress2020,2020,http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01049.pdf;projectionbasedonLundandToth,op.cit.note1.49Valuefor2019fromO.Mertoglu,“GeothermalEnergyUse:ProjectionsandCountryUpdateforTurkey”,ProceedingsWorldGeothermalCongress2020,2020,http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01049.pdf;valuefor2020fromO.Mertogluetal.,“GeothermalEnergyUse,CountryUpdateforTürkiye–2022”,EuropeanGeothermalCongress2022,Berlin,17-21October2022,https://www.europeangeothermalcongress.eu.50LundandToth,op.cit.note1.51NationalEnergyAuthority,“OrkustofnunDataRepositoryOS-2021-T012-01”,September10,2021,https://orkustofnun.is/orkustofnun/gagnasofn/talnaefni;NationalEnergyAuthority,“OrkustofnunDataRepositoryOS-2022-T002-01”April22,2022,https://orkustofnun.is/orkustofnun/gagnasofn/talnaefni;Á.Ragnarsson,B.SteingrímssonandS.Thorhallsson,“GeothermalEnergyUse,CountryUpdateforIceland”,EuropeanGeothermalCongress2022,Berlin,October17-21,2022,https://www.europeangeothermalcongress.eu.52NationalEnergyAuthority,“OrkustofnunDataRepositoryOS-2021-T012-01”,op.cit.note51.53Ragnarsson,SteingrímssonandThorhallsson,op.cit.note51.54RARIK,“NýHitaveitaRARIKáHöfníHornafirði”,December18,2020,https://www.hornafjordur.is/stjornsysla/sveitarfelagid/frettasafn/ny-hitaveita-i-hornafirdi;RARIK,“MikilvægtFramfaraskrefFyrirByggðinaíHornafirði”,October21,2021,https://www.rarik.is/frettir/mikilvaegt-framfaraskref-fyrir-byggdina-i-hornafirdi.55GrowthpercentagefromGeothermieNederland,“Productiecijfersaardwarmte2022opnieuwgestegen,maargroeiblijftachter”,February23,2023,https://geothermie.nl/actueel/nieuws/productiecijfers-aardwarmte-2022-opnieuw-gestegen-maar-groei-blijft-achter;numberofprojectsandcapacityfromM.ProvoostandF.Agterberg,“GeothermalEnergyUse,CountryUpdateforTheNetherlands”,EuropeanGeothermalCongress2022,Berlin,October17-21,2022,https://www.europeangeothermalcongress.eu.56GeothermieNederland,op.cit.note55.57ProvoostandAgterberg,op.cit.note55.58Ibid.59Ibid.60V.Schmidlé-Blochetal.,“GeothermalEnergyUse,CountryUpdateforFrance”,EuropeanGeothermalCongress2022,Berlin,October17-21,2022,https://www.europeangeothermalcongress.eu.61VilledeMeudon/EngieSolutions,“ENGIESolutionsetlaVilledeMeudonaccélèrentlatransitionénergétiqueduterritoiremeudonnaisgrâceàlaSASLTEGéoMeudon”,October28,2022,https://www.engie-solutions.com/sites/default/files/assets/2022-11/cp_signature_de_la_convention_geomeudon_vf.pdf;C.Bentzmann,“InaugurationdeGéoMarne:LaGéothermieSurLeTerritoiredeParis–ValléedeLaMarne”,ENGIESolutions,October19,2021,https://www.engie-solutions.com/sites/default/files/assets/2021-12/2021.12.07%20CP%20Mise%20en%20service%20Ve%CC%81lige%CC%81o.pdf;C.Bentzmann,“MiseEnServicedeLaGéothermiedeVélizy-VillacoublayPourUnChauffageUrbainPropreetDurable”,ENGIESolutions,December7,2021,https://www.engie-solutions.com/fr/actualites/cp-veligeo;GENYO,“MiseEnServiceDuRéseaudeChaleurGényo:LesVillesdeBobignyetDrancyChaufféesàLaGéothermie”,March9,2021,https://genyo.fr/wp-content/uploads/2021/03/CP-GENYO-09.03.2021-VF.pdf.62VilledeMeudon/EngieSolutions,op.cit.note61.63BundesverbandGeothermie,“TiefeGeothermieprojekteinDeutschland”,February2023,https://www.geothermie.de/geothermie/geothermie-in-zahlen.html.100BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIGEOTHERMALPOWERANDHEAT64BundesministeriumfürWirtschaftundKlimaschutz,“GeothermiefürdieWärmewende–BundeswirtschaftsministeriumstartetKonsultationsprozess”,November11,2022,https://www.bmwk.de/Redaktion/DE/Pressemitteilungen/2022/11/20221111-geothermie-fuer-die-waermewende.html.65BayerischesStaatsministeriumfürWirtschaft,LandesentwicklungundEnergie,“Glauber:BayernBeschleunigtAusbauderGeothermie”,December9,2022,https://www.stmuv.bayern.de/aktuell/presse/pressemitteilung.htm?PMNr=200/22.66S.Fuchs,A.FörsterandB.Norden,“EvaluationoftheterrestrialheatflowinGermany:Acasestudyforthereassessmentofglobalcontinentalheat-flowdata”,Earth-ScienceReviews,Vol.235(December2022),https://www.sciencedirect.com/science/article/pii/S0012825222003154.67See,forexample,M.Schreib,“GrünwaldbautneueFernwärmeleitungdurchdenForst”,Merkur.de,January17,2023,https://www.merkur.de/lokales/muenchen-lk/gruenwald-ort28770/geothermie-gruenwald-fernwaerme-energie-energiekrise-ausbau-laufzorn-ewg-forst-92030984.html.68WienEnergy,“DieersteTiefengeothermie-AnlagefürWien”,https://www.wienenergie.at/tiefengeothermie-aspern,accessedApril2023.69Ibid.70AlpineGeothermalPowerProduction,“Premierprojetsuissedegéothermiehydrothermalevisantàproduireélectricitéetchaleur”,https://www.agepp.ch,accessedMay2023.71R.McRae,“AusfürGeothermieprojektinKirchanschöring”,InformationsportalTiefeGeothermie,June10,2022,https://www.tiefegeothermie.de/news/aus-fuer-geothermieprojekt-kirchanschoering;R.McRae,“RückschlagfürGeothermieprojektinWilhelmsburg?”September2,2022,https://www.tiefegeothermie.de/news/rueckschlag-fuer-geothermieprojekt-wilhelmsburg.101BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHEATPUMPSENDNOTES–HEATPUMPS1InternationalEnergyAgency(IEA),“TheFutureofHeatPumps”,November2022,https://www.iea.org/reports/the-future-of-heat-pumps.2Ibid.3Ibid.4IEA,“HeatPumps–Analysis”,2022,https://www.iea.org/reports/heat-pumps.5IEA,op.cit.note1.6IEA,op.cit.note4.7IEA,op.cit.note1.8Y.Monschauer,C.DelmastroandR.Martinez-Gordon,“GlobalHeatPumpSalesContinueDouble-DigitGrowth–Analysis”,IEA,2023,https://www.iea.org/commentaries/global-heat-pump-sales-continue-double-digit-growth.9Ibid.10IEA,op.cit.note1.11AHRI,“AHRIReleasesDecember2022U.S.Heating,CoolingEquipmentShipmentData”,February10,2023,https://www.ahrinet.org/news-events/news/ahri-releases-december-2022-us-heating-cooling-equipment-shipment-data.Figure19fromIEA,op.cit.note8.12Ibid.13M.V.Olano,“Chart:AmericansBoughtMoreHeatPumpsthanGasFurnacesLastYear”,CanaryMedia,February10,2023,https://www.canarymedia.com/articles/heat-pumps/chart-americans-bought-more-heat-pumps-than-gas-furnaces-last-year.14J.RosenowandD.Gibb,“GuestPost:HowtheEnergyCrisisIsBoostingHeatPumpsinEurope”,CarbonBrief,March21,2023,https://www.carbonbrief.org/guest-post-how-the-energy-crisis-is-boosting-heat-pumps-in-europe.15Ibid.16Ibid.17Ibid.18PolskaOrganizacjaRozwojuTechnologiiPompCiepła(PORTPC),“PonaddwukrotnywzrostsprzedażypowietrznychpompciepławIpoł.2022roku!”August17,2022,https://portpc.pl/ponad-dwukrotny-wzrost-sprzedazy-powietrznych-pomp-ciepla-w-i-pol-2022-roku.Snapshot:Polandfromthefollowingsources:PORTPC,op.cit.thisnote;RosenowandGibb,op.cit.note14;PORTPC,“PORTPC:2022–theyearofheatpumpsinPoland”,February8,2023,https://portpc.pl/port-pc-2022-rok-pomp-ciepla-w-polsce;https://www.gov.pl/web/climate/clean-air-20-programme-launched(usingGoogleTranslate);D.GibbandM.Morawiecka,“CleaningupHeat:TheChangingEconomicsforHeatPumpsinPoland”,RegulatoryAssistanceProject,November2022,https://www.raponline.org/knowledge-center/cleaning-up-heat-the-changing-economics-for-heat-pumps-in-poland;L.SunderlandandD.Gibb,“TakingtheBurnOutofHeatingforLow-IncomeHouseholds”,RegulatoryAssistanceProject,December15,2022,https://www.raponline.org/knowledge-center/taking-burn-out-of-heating-low-income-households;SolarPowerEurope,“EUMarketOutlookforSolarPower2022-2026”,2022,https://www.solarpowereurope.org/insights/market-outlooks/eu-market-outlook-for-solar-power-2022-2026-2;InternationalRenewableEnergyAgency(IRENA),“RenewableCapacityandGenerationStatistics2022”,2022,https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022.Figure20fromPORTPC,op.cit.thisnote,andfromIRENA,op.cit.thisnote.19EuropeanHeatPumpAssociation(EHPA),“HeatPumpRecord:3MillionUnitsSoldin2022,ContributingtoREPowerEUTargets”,February20,2023,https://www.ehpa.org/press_releases/heat-pump-record-3-million-units-sold-in-2022-contributing-to-repowereu-targets.20IEA,op.cit.note1.21Y.Monschauer,IEA,personalcommunicationwithREN21,March15,2023.22J.Rosenow,RegulatoryAssistanceProject,personalcommunicationwithREN21,March18,2023.23T.DiChristopherandA.Duquiatan,"Statesthatoutlawgasbansaccountfor31%ofUSresidential/commercialgasuse",S&PGlobalJune9,2022,https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/states-that-outlaw-gas-bans-account-for-31-of-us-residential-commercial-gas-use-70749584.24IEA,op.cit.note4.25IRENA,“RenewableSolutionsinEnd-Uses:HeatPumpCostsandMarkets”,November28,2022,https://www.irena.org/Publications/2022/Nov/Renewable-solutions-in-end-uses-Heat-pump-costs-and-markets.26Ibid.;IEA,op.cit.note1.27BASF,“AHeatpumpasBigasaSoccerField”,https://www.basf.com/global/en/who-we-are/change-for-climate/heatpump.html,accessedApril10,2023;P.Hockenos,“InEurope’sCleanEnergyTransition,IndustryTurnstoHeatPumps”,Greenbiz,February1,2023,https://www.greenbiz.com/article/europes-clean-energy-transition-industry-turns-heat-pumps;AmericanCouncilforanEnergy-EfficientEconomy,“IndustrialHeatPumps:ElectrifyingIndustry’sProcessHeatSupply”,2022,https://www.aceee.org/research-report/ie2201;A.Ivanova,“BASFPlans120-MWHeatPumptoDecarboniseLudwigshafenSite”,RenewablesNow,July4,2022,https://renewablesnow.com/news/basf-plans-120-mw-heat-pump-to-decarbonise-ludwigshafen-site-790457.28IRENA,op.cit.note25.29DW,“CanHeatPumpsReplaceFossilFuelsforHeat?”September16,2022,https://www.dw.com/en/heat-pumps-district-heating-decarbonize-energy-crisis-russian-oil-and-gas/a-63053664.30E.Townend,“TheEnormousHeatPumpsWarmingCities”,January31,2023,https://www.bbc.com/future/article/20230131-can-city-dwellers-ever-have-heat-pumps?ocid=global_future_rss&utm_source=flipboard&utm_content=user%2Fbbcfuture.31Eneco,“StartofConstructionofLargestHeatPumpintheNetherlands”,July5,2022,https://news.eneco.com/start-of-construction-of-largest-heat-pump-in-the-netherlands;Helsinginkaupunki,“HelenrakentaaEiranrantaanuudenlämpöpumppulaitoksen”,December20,2022,https://www.hel.fi/fi/uutiset/helen-rakentaa-eiranrantaan-uuden-lampopumppulaitoksen;T.GualtieriandK.Pohjanpalo,“HowColdSeawaterCanHeatHelsinki’sHomes”,Bloomberg,October18,2022,https://www.bloomberg.com/news/articles/2022-10-18/helsinki-utility-finds-a-surprising-heat-source-icy-seawater;DerStandard.at,“EuropasGrößteWärmepumpeHoltEnergieAusWiensAbwasser”,February2,2023,https://www.derstandard.at/story/2000143180017/europas-groesste-waermepumpe-holt-energie-aus-wiens-abwasser;energie-experten,“WärmepumpenutztRheinfürMannheimerFernwärme”,https://www.energie-experten.org/projekte/waermepumpe-nutzt-rhein-fuer-mannheimer-fernwaerme,accessedApril10,2023;Vahterus,“40MWAmmoniaHeatPumpsAreRevolutionisingDistrictHeatinginSweden”,https://vahterus.com/resources/cases/40-mw-ammonia-heat-pumps-are-revolutionising-district-heating-in-sweden,accessedMarch29,2023.32IEA,op.cit.note1,p.43.33IEA,op.cit.note1,p.79;T.Nowak,EHPA,personalcommunicationwithREN21,May8,2023.34DaikinEurope,“DaikinEuropeInvests€300MillioninNewPolishHeatPumpHeatingFactory”,July7,2022,https://www.daikin.eu/en_us/press-releases/daikin-europe-invests-300-million-in-new-polish-heat-pump-heatin.html;IEA,op.cit.note1.35IEA,op.cit.note1;VaillantGroup,“VaillantGroupOpensMegaFactoryforHeatPumps”,March10,2023,https://www.vaillant-group.com/news-stories/vaillant-group-opens-mega-factory-for-heat-pumps.html.36EnergieundManagement,“Wärme:Wärmepumpenbauersteckt600Mio.EuroindieProduktion”,August30,2022,https://www.energie-und-management.de/nachrichten/energietechnik/detail/waermepumpenbauer-steckt-600-mio.-euro-in-die-produktion-162386.37A.Mannweiller,“WerstelltdieWärmepumpenher?“tagesschau,August12,2022,https://www.tagesschau.de/wirtschaft/waermepumpen-hersteller-deutschland-international-101.html;BDRThermaGroup,“BDRThermeaGrouprampsupheatpumpproductiontomeetrisingmarketdemand”,October11,2022,https://www.bdrthermeagroup.com/en/stories/bdr-thermea-group-ramps-up-heat-pump-production-to-meet-rising-market-demand;I.Haluza,"Slovakiaisbecominganewheatpumpparadise.Inashorttime,asecondlargeinvestorwantstoproducethemhere",Dennik,July9,2020,https://e.dennikn.sk/2926736/slovensko-sa-stava-novym-rajom-tepelnych-cerpadiel-v-kratkom-case-ich-tu-chce-vyrabat-uz-druhy-velky-investor;T.Nowak,“HeatPumpInvestmentsinEurope–AnOverview”,September2022,https://www.linkedin.com/posts/thomasnowakeu_conversation-activity-6970985100586950657-VNc1;J.Dumez,"DanslePas-de-Calais,Atlanticinvestit25millionsd’eurosdansuncentretechnique”,1February2023,https://www.102BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHEATPUMPSlemoniteur.fr/article/dans-le-pas-de-calais-atlantic-investit-25-millions-d-euros-dans-un-centre-technique.2252706;IEA,op.cit.note1;P.Tisheva,“PanasonicincreasingheatpumpoutputatCzechplant”,RenewablesNow,April15,2022,https://renewablesnow.com/news/panasonic-increasing-heat-pump-output-at-czech-plant-781193.38Nowak,op.cit.note37.39RewiringAmerica,“WhattheIRAMeansforHeatPumpManufacturers”,https://assets.ctfassets.net/v4qx5q5o44nj/E5eXsBxtn4IyCYpKqt6nJ/f4a0d89a8bf6bff9f385d51b6f15e0a9/IRA_OEMs_Fact_Sheet.pdf,accessedMay5,2023;USDepartmentofEnergy,“Biden-HarrisAdministrationAnnounces$250MillionInvestmentfromInflationReductionActforDomesticHeatPumpManufacturing”,November2,2022,https://www.energy.gov/articles/biden-harris-administration-announces-250-million-investment-inflation-reduction-act.40B.Santos,“LGrevealsplansforUSheatpumpfactory”,pvmagazine,April5,2023,https://www.pv-magazine.com/2023/04/05/lg-reveals-plans-for-us-heat-pump-factory.41R.Lowesetal.,“APolicyToolkitforGlobalMassHeatPumpDeployment”,RegulatoryAssistanceProject,November14,2022,https://www.raponline.org/knowledge-center/policy-toolkit-global-mass-heat-pump-deployment.42IRENA,op.cit.note25;IEA,op.cit.note1.43IEA,op.cit.note1.44Lowesetal.,op.cit.note41.45J.Rosenowetal.,“LevellingthePlayingField:AligningHeatingEnergyTaxesandLeviesinEuropewithClimateGoals”,RegulatoryAssistanceProject,July12,2022,https://www.raponline.org/knowledge-center/aligning-heating-energy-taxes-levies-europe-climate-goals.46Ibid.47Forexample,in2022theelectricutilityElectricIrelandintroducedanight-timeratearoundhalfthepriceofitsdayratetoencourageheatpumpuserstooperatetheirdevicesduringthenight,fromIEA,op.cit.note1.Inearly2023,Ontario(Canada)introducedan“ultra-low”overnighttariffthatsignificantlyimprovedtherunningcostsforheatpumpscomparedtofossilfuelsystems.SeeCBC,"Ontariorollsout'ultralow'overnighthydroratetoencouragedemandshift",April11,2023,https://www.cbc.ca/news/canada/toronto/ontario-ultra-low-overnight-hydro-rate-1.6806693.48IEA,op.cit.note1.49Ibid.50Ibid.51Ibid.52EuropeanParliament,“FluorinatedGases:ReinforcedEUActiontoCutEmissions”,March30,2023,https://www.europarl.europa.eu/news/en/press-room/20230327IPR78543/fluorinated-gases-reinforced-eu-action-to-cut-emissions;EHPA,“F-GasBanJeopardisesREPowerEUTargets”,https://www.ehpa.org/press_releases/f-gas-ban-jeopardises-repowereu-targets,accessedMarch30,2023;IEA,op.cit.note1;Nowak,personalcommunication,op.cit.note33.53Nowak,personalcommunication,op.cit.note33.103BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHYDROGENENDNOTES–HYDROGEN1InternationalRenewableEnergyAgency(IRENA),“GlobalHydrogenTradetoMeet1.5°ClimateGoal”,2022,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Global_hydrogen_trade_part_1_2022_.pdf.2InternationalEnergyAgency(IEA),“GlobalHydrogenReview2022”,2022,https://www.iea.org/reports/global-hydrogen-review-2022.3A.dePee,“Thecleanhydrogenopportunityforhydrocarbon-richcountries”,McKinsey&Company,November23,2023,https://www.mckinsey.com/industries/oil-and-gas/our-insights/the-clean-hydrogen-opportunity-for-hydrocarbon-rich-countries;A.Holland,“CanGreenHydrogenBeCostCompetitive?”IDTechEx,March17,2023,https://www.idtechex.com/en/research-article/can-green-hydrogen-be-cost-competitive/28876;P.Day,“Hydrogenasabackupforrenewablesremainsadistantproposition”,Reuters,February1,2023,https://www.reuters.com/business/energy/hydrogen-backup-renewables-remains-distant-proposition-2023-02-01.4R.Davey,“GreenHydrogen’sRoleinElectrifyingtheHeavyIndustry”,AZOCLEANTECH,April11,2023,https://www.azocleantech.com/article.aspx?ArticleID=1676;T.Casey,“TinyMass.StartupCooksUpBig,GreenHydrogenPlan”,CleanTechnica,June27,2022,https://cleantechnica.com/2022/06/27/tiny-mass-startup-cooks-up-big-green-hydrogen-plan;J.WalshandM.DiFelice,“HowMuchofThisHypeforHydrogen‘Energy’isJustSmokeandMirrors?”Food&WaterWatch,December13,2022,https://www.foodandwaterwatch.org/2022/12/13/hydrogen-energy-hype.5IEA,op.cit.note2.6Ibid.7IEA,“Electrolysers”,2022,https://www.iea.org/reports/electrolysers.8IEA,op.cit.note2.9A.Habibic,“GlobalData:Hydrogenmarkettowitnessgrowthsurgein2023”,OffshoreEnergy,February13,2023,https://www.offshore-energy.biz/globaldata-hydrogen-market-to-witness-growth-surge-in-2023.10Ibid.11GovernmentofAustralia,DepartmentofClimateChange,Energy,theEnvironmentandWater,“StateofHydrogen2022”,2022,https://www.dcceew.gov.au/energy/publications/state-of-hydrogen-2022.12Mckinsey&Company,“HydrogenInsights2022:Anupdatedperspectiveonhydrogenmarketdevelopmentandactionsrequiredtounlockhydrogenatscale”,September2022,https://hydrogencouncil.com/wp-content/uploads/2022/09/Hydrogen-Insights-2022-2.pdf13L.Wan,“Energyfromgreenhydrogenwillbeexpensive,evenin2050”,CRU,February24,2023,https://sustainability.crugroup.com/article/energy-from-green-hydrogen-will-be-expensive-even-in-2050;IEA,“Globalaveragelevelisedcostofhydrogenproductionbyenergysourceandtechnology,2019and2050”,October26,2022,https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050.14Figure21fromREN21PolicyDatabase.SeeGSR2023DataPack,availableatwww.ren21.net/gsr2023-data-pack/supply.15METI,“Japan’sRoadmapto‘Beyond-Zero’Carbon”,2017,https://www.meti.go.jp/english/policy/energy_environment/global_warming/roadmap/innovation/thep.html;D.Akimoto,“JapanLookstoPromoteaHydrogenSociety”,TheDiplomat,January4,2023,https://thediplomat.com/2023/01/japan-looks-to-promote-a-hydrogen-society.16RenewableEnergyInstitute,“Re-examiningJapan’sHydrogenStrategy”,September22,2022,https://www.renewable-ei.org/en/activities/reports/20220922.php.17N.Coca,“Ahalf-decadeafteritsfirstplan,Japan'shydrogengoalsremaindistant”,EnergyMonitor,March29,2023,https://www.energymonitor.ai/tech/hydrogen/a-half-decade-after-its-first-plan-japans-hydrogen-goals-remain-distant;D.Orf,“JapanTriedtoBuildaHydrogenSociety.ItBackfiredSpectacularly”,PopularMechanics,January26,2023,https://www.popularmechanics.com/science/green-tech/a42665011/japan-hydrogen-energy-failure;A.Cohen,“TheBidenAdministrationShouldLearnJapan’sPainfulLessonsonHydrogen”,Forbes,February13,2023,https://www.forbes.com/sites/arielcohen/2023/02/13/the-biden-administration-should-learn-japans-painful-lessons-on-hydrogen.18J.Nakano,“China’sHydrogenIndustrialStrategy”,CenterforStrategicandInternationalStudies,February3,2022,https://www.csis.org/analysis/chinas-hydrogen-industrial-strategy.19NationalDevelopmentandReformCommission,“ChinaHydrogenNationalStrategy”,March23,2022,https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/202203/t20220323_1320038.html;Y.Yu,“China’sNationalHydrogenDevelopmentPlan”,EnergyIceberg,April6,2022,https://energyiceberg.com/national-hydrogen-development-plan.20A.Lee,“Modipledgesmassivegreenhydrogen‘quantumleap’toIndianenergyindependence”,Recharge,August16,2021,https://www.rechargenews.com/energy-transition/modi-pledges-massive-green-hydrogen-quantum-leap-to-indian-energy-independence/2-1-1052701.21MinistryofNewandRenewableEnergyofIndia,“Budget2021-22augmentscapitalofSECIandIREDAtopromotedevelopmentofREsector”,February9,2021,https://pib.gov.in/PressReleasePage.aspx?PRID=1696498.22EuropeanCommission,“Ahydrogenstrategyforaclimate-neutralEurope”,July8,2020,https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0301&from=EN.23Ibid.24DW,“GermanytojoinMediterraneanhydrogenpipelineproject”,January22,2023,https://www.dw.com/en/germany-to-join-mediterranean-hydrogen-pipeline-project/a-64483071;I.Shumkov,“EUtodeepencleanhydrogencooperationwithJapan”,RenewablesNow,December2,2022,https://renewablesnow.com/news/eu-to-deepen-clean-hydrogen-cooperation-with-japan-807033.25I.Shine,“Whichcountriesareleadingthewaywithhydrogen?”WorldEconomicForum,May16,2023,https://www.weforum.org/agenda/2023/03/hydrogen-innovation-patents-technology.26BMWK,“NationalHydrogenStrategy”,June2020,https://www.bmwk.de/Redaktion/EN/Publikationen/Energie/the-national-hydrogen-strategy.pdf.27Bundesregierung,“Reliefforelectricityconsumers”,April27,2022,https://www.bundesregierung.de/breg-en/news/renewable-energy-sources-act-levy-abolished-2011854;BMBF,“NationalHydrogenStrategy:Greenhydrogenasenergysourceofthefuture”,May6,2022,https://www.bmbf.de/bmbf/en/news/national-hydrogen-strategy.html.28TheMaritimeExecutive,“GermanySignsLandmarkDealtoBuyDenmark'sGreenHydrogen”,March26,2023,https://maritime-executive.com/article/germany-signs-landmark-deal-to-buy-denmark-s-green-hydrogen.29GovernmentofFrance,“NationalstrategyforthedevelopmentofdecarbonisedandrenewablehydrogeninFrance”,2020,https://www.bdi.fr/wp-content/uploads/2020/03/PressKitProvisionalDraft-National-strategy-for-the-development-of-decarbonised-and-renewable-hydrogen-in-France.pdf.30K.Abnett,“FranceleadspushforEUtoboostnuclear-producedhydrogen”,Reuters,February3,2023,https://www.reuters.com/business/energy/france-leads-push-eu-boost-nuclear-produced-hydrogen-2023-02-03;A.Nussbaum‘France’sHydrogenPipelineWithSpainIsatRiskOverGreenRules”,Bloomberg,February14,2023,https://www.bloomberg.com/news/articles/2023-02-14/france-s-hydrogen-pipeline-with-spain-at-risk-over-green-rules.31ConsejodeMinistros,“ElGobiernoapruebala‘HojadeRutadelHidrógeno:unaapuestaporelhidrógenorenovable’”,October6,2020,https://www.miteco.gob.es/es/prensa/ultimas-noticias/el-gobierno-aprueba-la-hoja-de-ruta-del-hidr%C3%B3geno-una-apuesta-por-el-hidr%C3%B3geno-renovable/tcm:30-513814.32Ibid.33BP,“BPlaunchesplansforlow-carbongreenhydrogenclusterinSpain’sValenciaregion”,February28,2023,https://www.bp.com/en/global/corporate/news-and-insights/press-releases/bp-launches-plans-for-low-carbon-green-hydrogen-cluster-in-spains-valencia-region.html;M.Wetselaar,“7reasonswhySpainandPortugalareabouttobecomeagreenhydrogenpowerhouse”,WorldEconomicForum,January11,2023,https://www.weforum.org/agenda/2023/01/spain-portugal-green-hydrogen-powerhouse-davos23.34USDepartmentofEnergy,“CleanHydrogenStrategyRoadmap”,September2022,https://www.hydrogen.energy.gov/pdfs/clean-hydrogen-strategy-roadmap.pdf;L.Collins,“USunveilsdraftnationalcleanhydrogenstrategyandroadmap–withthreekeypriorities”,Recharge,September23,2022,https://www.rechargenews.com/energy-transition/analysis-us-unveils-draft-national-clean-hydrogen-strategy-and-roadmap-with-three-key-priorities/2-1-1308355;Warner,“U.S.DepartmentofEnergyAnnouncesHistory$7BillionFundingOpportunitytoJump-StartAmerica’sCleanHydrogenEconomy”,September26,2022,https://www.warner.senate.gov/public/index.cfm/2022/9/u-s-department-of-energy-announces-history-7-billion-funding-opportunity-to-jump-start-america-s-clean-hydrogen-economy.104BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHYDROGEN35KatyJane,“Hydrogenproductiontoincreasein2023asglobalinterestcontinues.”,DolphinN2,January4,2023,https://dolphin-n2.com/hydrogen-production-to-increase-in-2023-as-global-interest-continues.36J.Wood,“Whichcountriescouldbecometheworld’shydrogensuperpowers?”WorldEconomicForum,February14,2022,https://www.weforum.org/agenda/2022/02/clean-hydrogen-energy-low-carbon-superpowers.37AustralianGovernment,op.cit.note11.38Ibid.39BrazilianGovernment,“BrazilpublishesNationalHydrogenProgram”,August29,2022,https://www.gov.br/en/government-of-brazil/latest-news/2022/brazil-publishes-national-hydrogen-program.40Ibid.41P.SánchezMolina,“Brazilsetsupsecretariattodevelopgreenhydrogen”,pvmagazine,August9,2022,https://www.pv-magazine.com/2022/08/09/brazil-sets-up-secretariat-to-develop-green-hydrogen;A.Čučuk,“UnigelandThyssenKrupptoincreasecapacityofBrazilhydrogenplant”,OffShoreEnergy,March13,2023,https://www.offshore-energy.biz/unigel-and-thyssenkrupp-to-increase-capacity-of-brazil-hydrogen-plant.42MinistryofEnergy,GovernmentofChile,“NationalGreenHydrogenStrategy”,November2020,https://energia.gob.cl/sites/default/files/national_green_hydrogen_strategy_-_chile.pdf.43HIFGlobal,https://www.hifglobal.com,accessedMay2023.44Unigel,“Unigelinstallsthefirstindustrial-scalegreenhydrogenproductionsiteinBrazilusingthyssenkruppnuceratechnology”,PRNewsWire,July26,2022,https://www.prnewswire.com/news-releases/unigel-installs-the-first-industrial-scale-green-hydrogen-production-site-in-brazil-using-thyssenkrupp-nucera-technology-301593261.html.45H.Regensburg,“HaruOnie-fuelsdemoplantinChileofficiallyopens”,GreenCarCongress,December21,2022,https://www.greencarcongress.com/2022/12/haru-oni-e-fuels-demo-plant-in-chile-officially-opens.html.46F.LaCamera,“TheGeopoliticsoftheEnergyTransformation:TheHydrogenFactor”,IRENA,January15,2021,https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/12A_Geopolitics_MS.pdf.47S.Matalucci,“Hydrogenischangingpowerdynamicsinenergysector”,DW,December28,2022,https://www.dw.com/en/is-hydrogen-changing-the-power-dynamics-in-the-energy-world/a-64224508;G.Cantini,“HydrogenintheMENAregion:Prioritiesandstepsforward”,EnergySource,February14,2023,https://www.atlanticcouncil.org/blogs/energysource/hydrogen-in-the-mena-region-priorities-and-steps-forward.Snapshot:Chilebasedonthefollowingsources:V.Eckert,“GermanyandChilesignaccordtoboosthydrogencooperation”,Reuters,June29,2021,https://www.reuters.com/business/energy/germany-chile-sign-accord-boost-hydrogen-cooperation-2021-06-29;GovernmentoftheNetherlands,“JointstatementofChileandTheNetherlandsoncollaborationinthefieldofgreenhydrogenimportandexport”,July1,2021,https://www.government.nl/documents/diplomatic-statements/2021/07/01/joint-statement-of-chile-and-the-netherlands-on-collaboration-in-the-field-of-green-hydrogen-import-and-export;S.Pekic,“BelgianportsandChiletocollaborateongreenhydrogen”,OffshoreEnergy,November5,2021,https://www.offshore-energy.biz/belgian-ports-and-chile-to-collaborate-on-green-hydrogen.105BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHYDROPOWERENDNOTES–HYDROPOWER1InternationalHydropowerAssociation(IHA)andInternationalRenewableEnergyAgency(IRENA),throughpersonalcommunicationswiththeRenewableEnergyPolicyNetworkforthe21stCentury(REN21)duringApril–May2023,unlessotherwisestated.2Hydropowergenerationdatain2022forallcountriesfromIHAandEmber,personalcommunicationswithREN21,April–May2023,unlessotherwisestated.Chinagenerated1,352TWhin2022,fromNationalBureauofStatisticsofChina,“China’sEconomicandSocialDevelopmentStatistics”,February27,2023,http://www.stats.gov.cn/english/PressRelease/202302/t20230227_1918979.html;UnitedStatesfromUSEIA,op.cit.note1;2021globalgenerationfromREN21,“Renewables2022GlobalStatusReport”,2022,https://www.ren21.net/gsr-2022.3IHA,“SlowHydropowerGrowthIsaStarkWake-UpCalltoGovernmentsonClimate”,May7,2022,https://www.hydropower.org/news/slow-hydropower-growth-is-a-stark-wake-up-call-to-governments-on-climate.4Sharesofhydropowercapacityandgenerationintheglobalenergymixbasedontotalrenewableenergycapacityof3,372GW,andtotalrenewableenergygenerationof4,311TWh;seeendnotesinrespectivesectionsofthisreport.Ember,“GlobalElectricityReview2023”,2023,https://ember-climate.org/insights/research/global-electricity-review-2023/#supporting-material;IRENA,“RenewableCapacityStatistics2023”,2023,https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023.5Seeendnotesthroughoutthissectiononregionaldroughtlevelsandtheireffectsonwaterlevels.6E.Martin,“World’sLargestMan-MadeDamHasLessThan1%ofUsableWater”,Bloomberg,January3,2023,https://www.bloomberg.com/news/articles/2023-01-03/world-s-largest-man-made-dam-has-less-than-1-of-usable-water.7X.Zhou,S&PGlobalCommodityInsights,personalcommunicationwithREN21,March24,2023.8TheConversation,“Hydropower’sFutureIsCloudedbyDroughts,Floods,andClimateChange.It’sAlsoEssentialtotheUSElectricGrid.”May17,2022,https://theconversation.com/hydropowers-future-is-clouded-by-droughts-floods-and-climate-change-its-also-essential-to-the-us-electric-grid-182314.Sidebar2basedonthefollowingsources:P.Bogaart,“Thepotentialforsustainablehydropower”,NatureWater,Vol.1(2023),pp.22-23,https://doi.org/10.1038/s44221-022-00018-9;InternationalEnergyAgency,“TheRoleofCriticalMineralsinCleanEnergyTransitions:MineralRequirementsforCleanEnergyTransitions”,2021,https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions/mineral-requirements-for-clean-energy-transitions;betweeninfrastructure,supplychainemissionsandlife-cycleemissions(maintenanceandrepair),materialsrepresent33%oftotalemissionsperkWhoverthelifetimeofhydropowerprojects,fromS.Schlömeretal.,“AnnexIII:Technology-specificcostandperformanceparameters”,inO.Edenhoferetal.,eds.,ClimateChange2014:MitigationofClimateChange.ContributionofWorkingGroupIIItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange,2014,https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_annex-ii.pdf;M.Barnard,“Hydroelectricdamshaveenvironmentalchallenges”,TheFutureIsElectric,September1,2018,https://medium.com/the-future-is-electric/hydroelectric-dams-have-environmental-challenges-901a6dbbdb53;emissionsbasedonestimateof24gofCO2equivalentperkWh,fromIPCC’sFifthAssessmentReport;Schlömeretal.,op.cit.thisnote,andon103milliontonnesofCO2fromEmber,“ElectricityDataExplorer”,https://ember-climate.org/data/data-tools/data-explorer,accessed26May2023;ClimateBondsInitiative,“HydropowerCriteria:TheHydropowerCriteriafortheClimateBondsStandard&CertificationScheme”,March2021,https://www.climatebonds.net/files/files/Hydropower-Criteria-doc-March-2021-release3.pdf;IHA,“ClimateBondsforHydropower”,https://www.hydropower.org/iha/climate-bonds,accessedMay25,2023;USD150millionfromClimateBondsInitiative,“CertifiedBondsDatabase”,https://www.climatebonds.net/certification/certified-bonds,accessedMay25,2023;InternationalHydropowerAssociation(IHA).“HESGFund”,accessedMay27,2023,https://www.hydrosustainability.org/hesg-fund;UnitedNationsDepartmentofEconomicandSocialAffairs,“GoodPracticeHydropower:TheKeytoSustainability”,https://www.un.org/esa/sustdev/sdissues/energy/op/hydro_lochergoodpracticepaper.pdf,accessedMay24,2023;assessmentsvaryfromY.Liu,X.LiandY.Chen,“ExploringtheimpactofCOVID-19onglobaltourismthroughonlinereviewanalysis”,TourismManagement,Vol.89(2022),p.104892,https://doi.org/10.1016/j.tourman.2021.104892;M.Hariyadi,“CentralJava,arrestsatBenerdamprotests”,AsiaNews,October2,2022,https://www.asianews.it/news-en/Central-Java,-arrests-at-Bener-dam-protests-55117.html;Z.Trkanjec,“Germany’sKfWbankdropsfinancingofBiHhydropowerproject”,Euractiv,January30,2022,https://www.euractiv.com/section/politics/short_news/germanys-kfw-bank-drops-financing-of-bih-hydropower-project/"https://www.euractiv.com/section/politics/short_news/germanys-kfw-bank-drops-financing-of-bih-hydropower-project;IHA,“Howinvestorscanavoidfundingthewronghydropowerprojects”,March22,2022,https://www.hydropower.org/blog/how-investors-can-avoid-funding-the-wrong-hydropower-projects;Reuters,“China’sThreeGorgesDam,AlreadyTroubled,FacesNewTests”,August22,2012,"https://www.reuters.com/article/us-china-threegorges-idUSBRE87L0ZW20120822"https://www.reuters.com/article/us-china-threegorges-idUSBRE87L0ZW20120822;D.Gelles,“Hydro-QuébecFindsaNewExportMarket:CleanEnergyforMaine”,NewYorkTimes,May6,2022,https://www.nytimes.com/2022/05/06/climate/hydro-quebec-maine-clean-energy.html;HydropowerSustainabilityCouncil,“HydropowerSustainabilityStandard”,June2021,https://static1.squarespace.com/static/5c1978d3ee1759dc44fbd8ba/t/60ddb3a844b5887d18fe2341/1625142194189/HS+Standard_July+2021.pdf;PowerMagazine,“IndianHydropowerProjectanExampleofGoodPracticeinSustainability”,August7,2019,https://www.powermag.com/press-releases/indian-hydropower-project-an-example-of-good-practice-in-sustainability/"https://www.powermag.com/press-releases/indian-hydropower-project-an-example-of-good-practice-in-sustainability;WaterPower&DamConstruction,“WorldfirstasSebzorprojectcertifiedagainsthydropowersustainabilitystandard”,March22,2023,https://www.waterpowermagazine.com/news/newsworld-first-as-sebzor-project-certified-against-hydropower-sustainability-standard-10695971;HydropowerSustainabilityAssessmentCouncil,“CertifiedUserTraining–November2023”,https://training.hydrosustainability.org/courses/certified-user-training-november-2023;IHA,“NepaltoBecomeaCentreofExcellenceinSustainableHydropower”,March25,2021,https://www.hydropower.org/news/nepal-to-become-a-centre-of-excellence-in-sustainable-hydropower.9CapacitiesforBrazil,theUnitedStates,Canada,theRussianFederationandIndiabasedonIHA,op.cit.note1.Figures22and23fromIHA,op.cit.note1.Chinaadded13GWofhydropower,bringingthetotalto368GWofinstalledcapacityin2022,fromNationalEnergyAdministration(NEA),“RecordofthepressconferenceoftheNationalEnergyAdministrationinthefirstquarterof2023”,February13,2023,http://www.nea.gov.cn/2023-02/13/c_1310697149.htm(usingGoogleTranslate);UnitedStatesdataonaddedcapacityandtotalcapacityarefromUSEnergyInformationAdministration,“ElectricPowerMonthlywithDataforDecember2022”,February2023,Tables6.2.Band6.3,https://www.eia.gov/electricity/monthly/index.php;TürkiyedataarefromIRENA,personalcommunicationwithREN21,andfromEnergyMarketRegulatoryAuthorityofTürkiye,“ElektrikPiyasasiAylıkSektörRaporu(MonthlyElectricityMarketSectorReport)”,2023,https://www.epdk.gov.tr/Detay/Icerik/3-0-23/elektrikaylik-sektor-raporlar;FrancetotalandaddedcapacityarefromRéseaudeTransportd’Électricité(RTE),“ProductionInstalledCapacity”,https://www.services-rte.com/en/view-data-published-by-rte/production-installed-capacity.html,accessedMay2023.10NEA,op.cit.note1;USEIA,“HowmuchofU.S.energyconsumptionandelectricitygenerationcomesfromrenewableenergysources?”October28,2022,https://www.eia.gov/tools/faqs/faq.php?id=427&t=3;IHA,op.cit.note1.11InstitutoCostarricensedeElectricidad,DivisiónOperaciónyControldelSistemaEléctrico,“GeneraciónyDemanda(InformeAnual)”,2022.apps.grupoice.com/CenceWeb/documentos/3/3008/19/Informe%20Anual%20DOCSE%202022.pdf;IHA,op.cit.note1.12NEA,op.cit.note1.13NorwegianEnergyandEnvironmentConsortium,“StateEnergyAdministrationheldpressconferencetoreleaserenewableenergyin2022”,January10,2022,https://neec.no/国家能源局举行新闻发布会,发布2022年可再生能源;E.Ingram,“Twelveof16unitsnowoperatingat16-GWBaihetanhydropowerstationinChina”,HydroReview,June29,2022,https://www.hydroreview.com/hydro-industry-news/twelve-of-16-units-now-operating-at-16-gw-baihetan-hydropower-station-in-china.14Reuters,“China’sSurgingHydropoweraBoonforItsClimateGoals,EnergyBills”,July12,2022,https://www.reuters.com/world/china/chinas-surging-hydropower-boon-its-climate-goals-energy-bills-2022-07-12;NationalBureauofStatisticsofChina,op.cit.note1.15A.HirtensteinandK.Blunt,“GlobalDroughtSapsHydropower,ComplicatingCleanEnergyPush”,WallStreetJournal,July20,2022,https://ww.wsj.com/articles/global-drought-saps-hydropower-complicating-clean-energy-push-11662758968;H.Davidson,“ChinaDroughtCausesYangtzeRivertoDryUp,SparkingShortageof106BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHYDROPOWERHydropower”,TheGuardian(UK),August22,2022,https://www.theguardian.com/world/2022/aug/22/china-drought-causes-yangtze-river-to-dry-up-sparking-shortage-of-hydropower.16GreenFinanceandDevelopmentCenter,“CountriesoftheBeltandRoadInitiative(BRI)”,https://greenfdc.org/countries-of-the-belt-and-road-initiative-bri,accessedApril9,2023.17BostonUniversityGlobalDevelopmentPolicyCenter,“China’sGlobalEnergyFinanceDatabase”,http://www.bu.edu/cgef,accessedApril11,2023.18BostonUniversityGlobalDevelopmentPolicyCenter,“China’sGlobalPowerDatabase”,https://www.bu.edu/cgp,accessedApril11,2023.19“ChinaGlobalMega-Projects’InfrastructureFallingApart”,WallStreetJournal,November25,2021,https://www.wsj.com/articles/china-global-mega-projects-infrastructure-falling-apart-11674166180;HumanRightsWatch,“Cambodia:China’s‘BeltandRoad’DamaRightsDisaster”,August10,2021,https://www.hrw.org/news/2021/08/10/cambodia-chinas-belt-and-road-dam-rights-disaster.20IHA,IRENAandEmber,personalcommunicationswithREN21,op.cit.notes1and2.21Ibid.22L.Morais,“RenewablesAccountfor92%ofBrazil’sPowerProductionin2022”,RenewablesNow,February2,2023,https://renewablesnow.com/news/renewables-account-for-92-of-brazils-power-produciton-in-2022-813298.23IHA,IRENAandEmber,personalcommunicationswithREN21,op.cit.notes1and2.24GlobalEnergyMonitor,“Romaine4hydroelectricplant”,https://www.gem.wiki/Romaine_4_hydroelectric_plant,accessedMay25,2023;IHAandIRENA,op.cit.note125M.Lowrie,“Quebec’sHydropowerEraEndsasLastBigMegaprojectNearsCompletion”,TheEnergyMix,January3,2022,https://www.theenergymix.com/2022/01/03/quebecs-hydropower-era-ends-as-last-big-megaproject-nears-completion.26USEIA,op.cit.note1.27N.Rott,“StudyFindsWesternMegadroughtIstheWorstin1,200Years”,NPR,February14,2022,https://www.npr.org/2022/02/14/1080302434/study-finds-western-megadrought-is-the-worst-in-1-200-years;J.Plautz,“WhattheWesternDroughtRevealsAboutHydropower”,E&ENews,September13,2022,https://www.eenews.net/articles/what-the-western-drought-reveals-about-hydropower.28WesternAreaPowerAdministration,“PowerProjects”,https://www.wapa.gov/About/Pages/power-projects.aspx,accessedApril9,2023;Plautz,op.cit.note27.29J.Ryan,“HydropowerintheWesternU.S.BouncedBackLastYearAftera20-YearLow”,KUOW,April29,2022,https://www.kuow.org/stories/hydropower-in-the-western-u-s-bounced-back-last-year-after-a-20-year-low;Drought.gov,“CurrentConditions”,https://www.drought.gov/current-conditions,accessedMay8,2023;E.Bush,“SnowBringsNeededWatertotheWest”,NBCNews,April8,2022,https://www.nbcnews.com/science/environment/snow-brings-needed-water-west-rcna72786.30USEIA,“Hydroelectric(Conventional)PowerbyStatebySector,Year-to-Date”,ElectricPowerMonthly,February2023,https://www.eia.gov/electricity/monthly/archive/february2023.pdf.31USEIA,“NewUtilityScaleGeneratingUnitsbyOperatingCompany,Plant,andMonth,2023”,ElectricPowerMonthly,February2023,https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_03;USEIA,“RetiredUtilityScaleGeneratingUnitsbyOperatingCompany,Plant,andMonth,2023”,ElectricPowerMonthly,February2023,https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_04.32USEIA,“PlannedU.S.ElectricGeneratingUnitAdditions”,ElectricPowerMonthly,February2023,https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=table_6_05.33USEIA,op.cit.note1.34Ember,“EuropeanElectricityReview2023.SupportingMaterial”,2023,https://ember-climate.org/insights/research/european-electricity-review-2023/#supporting-material.35S&PGlobal,“DroughtsrattleEurope’shydropowermarket,intensifyingenergycrisis”,August5,2022,https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/electric-power/080522-droughts-rattle-europes-hydropower-market-intensifying-energy-crisis;Plautz,op.cit.note27.36Ember,“EuropeanElectricityReview2023”,January2023,https://ember-climate.org/insights/research/european-electricity-review-2023.37Ibid.38Ibid.39IHAandIRENA,op.cit.note1.40Enerdata,“Pakistan’s720MWKarothydropowerplantstartscommercialoperation”,February7,2022,https://www.enerdata.net/publications/daily-energy-news/pakistans-720-mw-karot-hydropower-plant-starts-commercial-operation.html;HydroReview,“720-MWKarothydropowerprojectinPakistanbeginsoperating.HydroReview”,January28,2022,https://www.hydroreview.com/dams-and-civil-structures/720-mw-karot-hydropower-project-in-pakistan-begins-operating.41GovernmentofIndia,PressInformationBureau,“PowerMinistryorganisesapowerministers’conferencetodiscusselectricitysectorreformsandinitiatives”,May5,2022,https://pib.gov.in/PressReleasePage.aspx?PRID=1877233.42P.ManShrestha,“NepalreducespowerexporttoIndiaasproductiondips”,KathmanduPost,November15,2022,https://kathmandupost.com/national/2022/11/15/nepal-reduces-power-export-to-india-as-production-dips;REN21,op.cit.note2.43EnergyMarketRegulatoryAuthorityofTürkiye,op.cit.note1.44I.Todorović,“Erdoganinaugurates34hydropowerplants”,BalkanGreenEnergyNews,December11,2020,https://balkangreenenergynews.com/erdogan-inaugurates-34-hydropower-plants.45I.Todorović,“Turkeycompletesworld’sfifthhighestarchdamwithhydropowerplant”,BalkanGreenEnergyNews,November28,2022,https://balkangreenenergynews.com/turkey-completes-worlds-fifth-highest-arch-dam-with-hydropower-plant.46S.Kullab,“ClimatepoliticsdoublethreatasTigris,Euphratesshrivels”,ABCNews,November11,2022,https://abcnews.go.com/International/wireStory/climate-politics-double-threat-tigris-euphrates-shrivels-93540084.47Ember,“TürkiyeElectricityReview2023”,2022,https://ember-climate.org/insights/research/turkiye-electricity-review-2023/#supporting-material-downloads.48IHAandIRENA,op.cit.note1.49IHA,“Africa”,https://www.hydropower.org/region-profiles/africa,accessedApril9,2023;A.Wastietal.,“Climatechangeandthehydropowersector:Aglobalreview”,WileyInterdisciplinaryReviews:ClimateChange,Vol.13,No.2(2022),p.e757,https://doi.org/10.1002/wcc.757.50D.Dunne,“Analysis:Africa’sunreportedextremeweatherin2022andclimatechange”,CarbonBrief,October26,2022,https://www.carbonbrief.org/analysis-africas-unreported-extreme-weather-in-2022-and-climate-change;NASAEarthObservatory,“WorstDroughtonRecordParchesHornofAfrica”,December14,2022,https://earthobservatory.nasa.gov/images/150712/worst-drought-on-record-parches-horn-of-africa.51J.Gavin,“Kenyaseekstomaximisebenefitsfrombaseloadrenewables”,AfricanBusiness,July7,2022,https://african.business/2022/07/energy-resources/kenya-seeks-to-maximise-benefits-from-baseload-renewables;IHA,op.cit.note49.52AfricanEnergyPortal,“LargesthydropowerprojectinAfrica,GERD,tobefullyoperationalin2023”,August17,2022,https://africa-energy-portal.org/news/largest-hydropower-project-africa-gerd-be-fully-operational-2023.53G.Paravicini,“EthiopiacompletesthirdphasefillingofgiantNiledam”,Reuters,August12,2022,https://www.reuters.com/world/africa/ethiopia-completes-third-phase-filling-giant-nile-dam-2022-08-12.54P.Ndawi,“Tanzania:JuliusNyererehydroelectricdamimpoundmentlaunched”,Afrik21,April7,2022,https://www.afrik21.africa/en/tanzania-julius-nyerere-hydroelectric-dam-impoundment-launched.55R.J.Kuhudzai,“TanzaniastartsfillingtheJuliusNyerereDamfor2,115MWhydropowerplant”,CleanTechnica,December26,2022,https://cleantechnica.com/2022/12/26/tanzania-starts-filling-the-julius-nyerere-dam-for-2115-mw-hydropower-plant.56USDepartmentofCommerce,“Tanzania–Energy”,CountryCommercialGuides,June2,2021,https://www.trade.gov/country-commercial-guides/tanzania-energy.57IHA,“HydropowerStatusReport2022”,2022,https://www.hydropower.org/publications/2022-hydropower-status-report;GlobalEnergyMonitor,“Zungeruhydroelectricplant”,https://www.gem.wiki/Zungeru_hydroelectric_plant,accessedApril9,2023.58BureauofPublicEnterprisesNigeria,“ZungeruHydropowerProject”,https://www.bpe.gov.ng/zungeru-hydropower-project,accessedApril9,2023.59IHA,op.cit.note57.107BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIHYDROPOWER60IHAandIRENA,op.cit.note1.61C.Sass,J.ObergandM.Hiller,hosts,“Theroleofhydropowerintheenergytransition”,Insider’sGuidetoEnergy,March2022,https://open.spotify.com/episode/2j0eYVMGvynNv1AXpd9EZz?si=541a3ddf96794240.62Ibid.63AfricaHydropowerandRenewableEnergyPartnership,https://www.ahmpafrica.org,accessedApril27,2023.64IHA,“SustainableHydropowerIstheSolutiontoDeliveringLatinAmericanandCaribbeanCleanEnergyGoals”,February14,2023,https://www.hydropower.org/news/sustainable-hydropower-is-the-solution-to-delivering-latin-american-and-caribbean-clean-energy-goals.108BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIOCEANPOWERENDNOTES–OCEANPOWER1InternationalEnergyAgencyOceanEnergySystems(IEA-OES),“Vision2017”,2017,https://www.ocean-energy-systems.org/ocean-energy/international-vision-for-ocean-energy.2OceanEnergyEurope(OEE),“OceanEnergyKeyTrendsandStatistics2022”,March2023,https://www.oceanenergy-europe.eu/wp-content/uploads/2023/03/Ocean-Energy-Key-Trends-and-Statistics-2022.pdf.3Ibid.4RenewableEnergyPolicyNetworkforthe21stCentury(REN21),“Renewables2021GlobalStatusReport”,2021,https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf;IEA-OES,“AnnualReport:AnOverviewofOceanEnergyActivitiesin2022”,March2023,https://www.ocean-energy-systems.org/publications/oes-annual-reports/document/oes-annual-report-2022/;OEE,op.cit.note2.5OEE,op.cit.note2.6Ibid.7EuropeanCommission,“StudyonLessonsforOceanEnergyDevelopment”,2017,https://doi.org/10.2777/389418.8OEE,op.cit.note2.9Forexampleforuseintheoilandgasindustry,aquaculture,anddefence.OEE,“OceanEnergy:KeyTrendsandStatistics2019”,March2020,https://www.oceanenergy-europe.eu/wp-content/uploads/2020/03/OEE_Trends-Stats_2019_Web.pdf.10OEE,op.cit.note2.11Ibid.12Ibid.13Seetao,“ZhejiangZhoushanTidalEnergyPowerStationSuccessfullyLaunched”,February28,2023,https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fwww.seetao.com%2Fdetails%2F141111.html.14E.Bellini,“FloatingSolar,TidalEnergyPlantGoesOnlineinChina”,pvmagazine,May31,2022,https://www.pv-magazine.com/2022/05/31/floating-solar-tidal-energy-plant-goes-online-in-china.15“MinestoLaunchesDragonTidalPowerPlantinFaroeIslands”,HydroReview,May25,2022,https://www.hydroreview.com/hydro-industry-news/minesto-launches-dragon-tidal-power-plant-in-faroe-islands.16A.Garanovic,“Minesto’sTidalEnergyKiteReachesNewHeightsinFaroeIslands”,OffshoreEnergy,March7,2023,https://www.offshore-energy.biz/minestos-tidal-energy-kite-reaches-new-heights-in-faroe-islands.17IEA-OES,op.cit.note4.18Ibid.19Ibid.20OEE,“SabellaandNovaInnovationCelebrateTidalSuccessinWales”,January27,2022,https://www.oceanenergy-europe.eu/industry-news/sabella-and-nova-innovation-celebrate-tidal-success-in-wales.21AkuoEnergyandSABELLA,“AkuoEnergyandSABELLAsignapartnershipagreementwithintheframeworkofthePHARESproject”,May22,2019,https://www.sabella.bzh/wp-content/uploads/cp_renouvellement_accord_de_partenariat_akuo_sabella.pdf.22A.Frangoul,“TheWorld’sMostPowerfulTidalTurbineJustGotaMajorFundingBoost”,CNBC,July4,2022,https://www.cnbc.com/2022/07/05/the-worlds-most-powerful-tidal-turbine-just-got-a-major-funding-boost.html.23A.Garanovic,“MeyGenSetforAdditional28MWofTidalEnergy”,OffshoreEnergy,July7,2022,https://www.offshore-energy.biz/meygen-set-for-additional-28mw-of-tidal-energy.24OEE,op.cit.note19.25IEA-OES,op.cit.note4.26EcoWavePower,"EcoWavePowerAnnouncesKeyMilestone,ProgressesTowardtheFinalStagesoftheEWP-EDFOneProjectInstallation",January5,2022,https://www.ecowavepower.com/eco-wave-power-announces-key-milestone-progresses-toward-the-final-stages-of-the-ewp-edf-one-project-installation;OEE,op.cit.note2.27OEE,op.cit.note2.28IEA-OES,op.cit.note4.29A.Garanovic,“Wave-PoweredBreakwaterDIKWEStartsSeaTrialsinFrance”,OffshoreEnergy,July12,2022,https://www.offshore-energy.biz/wave-powered-breakwater-dikwe-starts-sea-trials-in-france.30IEA-OES,“AnnualReport:AnOverviewofOceanEnergyActivitiesin2022”,op.cit.note4.31AWSOceanEnergy,“AWSWaveswingTrialsExceedExpectations”,November1,2022,https://awsocean.com/2022/11/aws-waveswing-trials-exceed-expectations.32Ibid.33IEA-OES,op.cit.note4.34Ibid.35A.Garanovic,“SpanishMutrikuplantsetsrecordforcontinuouswavepowerproduction”,OffshoreEnergy,July27,2021,https://www.offshore-energy.biz/spanish-mutriku-plant-marks-a-decade-of-continuous-wave-power-production.36BiMEP,“MutrikuSite–Services”,https://www.bimep.com/en/mutriku-area/services,accessedMarch2023.37SeeREN21,op.cit.note4.AnewIEA-OESwhitepaperconcludesthatthebiggestbarriertoOTECdevelopmentisfinancial,asthereisalackoffinancialsupporttomovebeyondsmalldemonstrationplantstowardpre-commercialprototypes.IEA-OES,“WhitePaperonOceanThermalEnergyConversion(OTEC)”,October2021,https://www.ocean-energy-systems.org/publications/oes-position-papers/document/white-paper-on-otec.38IEA-OES,op.cit.note4.39Ibid.40EuropeanCommission,“MarketStudyonOceanEnergy”,2018,https://op.europa.eu/en/publication-detail/-/publication/bf225f11-d89d-481a-9643-5af5c8e6a675/language-en.41D.Magagna,“OceanEnergyTechnologyDevelopmentReport”,EuropeanCommissionLowCarbonEnergyObservatory,2018,https://doi.org/10.2760/158132.42EuropeanCommission,“SET-PlanOceanEnergyImplementationPlan”,March2018,1-50,https://setis.ec.europa.eu/implementing-actions/ocean-energy_en.43EuropeanCommission,op.cit.note40.44Horizon2020,“Sustainable,SecureandCompetitiveEnergySupply(HORIZON-CL5-2023-D3-01)”,https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl5-2023-d3-01-08;callCode=HORIZON-CL5-2023-D3-01,accessedMarch2023;OEE,op.cit.note2.45GovernmentoftheUnitedKingdom,“UKGovernmentAnnouncesBiggestInvestmentintoBritain’sTidalPower”,November24,2021,https://www.gov.uk/government/news/uk-government-announces-biggest-investment-into-britains-tidal-power.46P.Tisheva,“FourTidalProjectstoDeliver41MWinUKUnderCfDScheme”,RenewablesNow,July7,2022,https://renewablesnow.com/news/four-tidal-projects-to-deliver-41-mw-in-uk-under-cfd-scheme-790888.47IEA-OES,op.cit.note4.48Ibid.49ETIPOcean,“OceanEnergyandtheEnvironment:ResearchandStrategicActions”,EuropeanUnion,2020,https://www.etipocean.eu/knowledge_hub/ocean-energy-and-the-environment-research-and-strategic-actions.50A.Copping,“TheStateofKnowledgeforEnvironmentalEffects:DrivingConsenting/PermittingfortheMarineRenewableEnergyIndustry”,IEA-OES,2018,https://tethys.pnnl.gov/sites/default/files/publications/Copping-2018-Environmental-Effects.pdf.51A.Coppingetal.,“AnInternationalAssessmentoftheEnvironmentalEffectsofMarineEnergyDevelopment”,Ocean&CoastalManagement,April2014,pp.1-11,https://doi.org/10.1016/j.ocecoaman.2014.04.002.109BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESISOLARPVENDNOTES–SOLARPV1Figure24fromInternationalEnergyAgency(IEA)PhotovoltaicPowerSystemsProgramme(PVPS),“SnapshotofGlobalPVMarkets2023”,2023,p.4,https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf.2S.Enkhardt,“GlobalSolarCapacityAdditionsHit268GWin2022,SaysBNEF”,pvmagazine,December23,2022,https://www.pv-magazine.com/2022/12/23/global-solar-capacity-additions-hit-268-gw-in-2022-says-bnef.3InternationalEnergyAgency(IEA)PhotovoltaicPowerSystemsProgramme(PVPS),“SnapshotofGlobalPVMarkets2023”,2023,p.7,https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf;McKinsey&Company,“Renewable-energydevelopmentinanet-zeroworld:Disruptedsupplychains”,February2023,https://www.mckinsey.com/industries/electric-power-and-natural-gas/our-insights/renewable-energy-development-in-a-net-zero-world-disrupted-supply-chains.4IEAPVPS,op.cit.note1,p.14;IEAPVPS,“SnapshotofGlobalPVMarkets2022”,2022,p.18,https://iea-pvps.org/wp-content/uploads/2022/04/IEA_PVPS_Snapshot_2022-vF.pdf.5IEAPVPS,op.cit.note1,p.14;IEAPVPS,op.cit.note4,p.18.6Ibid.,bothreferences.7Ember,“EuropeanElectricityReview2023”,January2023,p.46,https://ember-climate.org/app/uploads/2023/01/Report-European-Electricity-Review-2023.pdf.8IEAPVPS,op.cit.note1,pp.10-11.9Figure25fromIbid.,p.8.10Figure26and27fromIbid.,p.8.11Ibid.,p.5.12Ibid.,p.9;IEAPVPS,op.cit.note4,p.14.13IEAPVPS,op.cit.note1,p.9.14E.Bellini,“NorwayIncreasesSupportforResidentialPV”,pvmagazine,February2,2022,https://www.pv-magazine.com/2022/02/02/norway-increases-support-for-residential-pv.15P.MolinaandS.Enkhardt,“GermanySlashesVATforResidentialPVto0%”,pvmagazine,December8,2022,https://www.pv-magazine.com/2022/12/08/germany-slashes-vat-for-residential-pv-to-0.16E.Bellini,“BelgiumExtendsVATReductionforResidentialPV,HeatPumps”,pvmagazine,March24,2022,https://www.pv-magazine.com/2022/03/24/belgium-extends-vat-reduction-for-residential-pv-heat-pumps.17E.Bellini,“ItalySpeedsUpPermitsforSolarupto200kW,Allocates€267MillionforRebates”,pvmagazine,March4,2022,https://www.pv-magazine.com/2022/03/04/italy-speeds-up-permits-for-solar-up-to-200kw-allocates-e267-million-for-rebates.18P.Molina,“PortugalStreamlinesPermitsforRenewables”,pvmagazine,April21,2022,https://www.pv-magazine.com/2022/04/21/portugal-streamlines-permits-for-renewables;P.Molina,“SpainStreamlinesPermitsforUtilityScaleSolar,SupportsAnother7GWUnderSelf-consumption”,pvmagazine,March31,2022,https://www.pv-magazine.com/2022/03/31/spain-streamlines-permits-for-utility-scale-solar-supports-another-7gw-under-self-consumption;S.Enkhardt,“AustriaLaunches€240MillionRebateSchemeforRooftopPV”,pvmagazine,April7,2022,https://www.pv-magazine.com/2022/04/07/austria-launches-e240-million-rebate-scheme-for-rooftop-pv.19IEAPVPS,op.cit.note1,p.420ChinaNationalEnergyAdministration(NEA),“Constructionandoperationofphotovoltaicpowergenerationin2021”,February17,2023,http://www.nea.gov.cn/2023-02/17/c_1310698128.htm;ChinaNEA,“Constructionandoperationofphotovoltaicpowergenerationin2021”,March9,2022,http://www.nea.gov.cn/2022-03/09/c_1310508114.htm;ChinaNEA,“TranscriptoftheonlinepressconferenceoftheNationalEnergyAdministrationinthefirstquarterof2023”,February13,2022,http://www.nea.gov.cn/2023-02/13/c_1310697149.htm(usingGoogleTranslate).21ChinaNEA,“Constructionandoperationofphotovoltaicpowergenerationin2021”,February17,2023,op.cit.note20.22Ibid.;ChinaNEA,“Constructionandoperationofphotovoltaicpowergenerationin2021”,March9,2022,op.cit.note20.23Ember,“GlobalElectricityReview2023”,April12,2023,p.29,https://ember-climate.org/insights/research/global-electricity-review-2023.24S&PGlobalCommodityInsights,“ChinaData:2022powerdemandgrowtheasesto3.6%in2022from10.3%ayearearlier”,January19,2023,https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/coal/011923-china-data-2022-power-demand-growth-eases-to-36-in-2022-from-103-a-year-earlier;Ember,op.cit.note23,p.74;ChinaEnergyPortal,“2021electricity&otherenergystatistics(preliminary)”,January27,2022,https://chinaenergyportal.org/en/2021-electricity-other-energy-statistics-preliminary.25Ember,op.cit.note23,p.63.26Indiaadded13,955.78MW(probablyallinalternatingcurrent,althoughthisisnotspecified)in2022basedonend-2021capacityof49,346.71MWandend-2022capacityof63,302.49MW,fromGovernmentofIndia,MinistryofPower,CentralElectricityAuthority(CEA),“AllIndiaInstalledCapacity(inMW)ofPowerStations(asof31.12.2021)(utilities)”,https://cea.nic.in/wp-content/uploads/installed/2021/12/installed_capacity.pdf,accessedMarch27,2023,andatend2022fromCEA,“AllIndiaInstalledCapacity(inMW)ofPowerStations(ason31.12.2022)(utilities)”coveringdatauptoDecember31,2022,https://cea.nic.in/wp-content/uploads/installed/2022/12/IC_Dec_2022.pdf,accessedMarch27,2023.Seealsothefollowing:U.Gupta,“IndiaInstalled15GWofSolarin2022,SaysBridgetoIndia”,pvmagazine,February28,2023,https://www.pv-magazine.com/2023/02/28/india-installed-15-gw-of-solar-in-2022-says-bridge-to-india;U.Lee,“SolarandWindDominateIndia’sCapacityAdditionsin2022”,Ember,March17,2023,https://ember-climate.org/insights/research/india-data-story-2023;J.Gulia,A.ThayillamandV.Garg,“RooftopSolarLagging:WhyIndiaWillMissIts2022SolarTarget”,JMKResearch&AnalyticsandInstituteforEnergyEconomicsandFinancialAnalysis,April2022,https://ieefa.org/wp-content/uploads/2022/04/Rooftop-Solar-Lagging_Why-India-Will-Miss-Its-2022-Solar-Target_April-2022.pdf.27MercomIndiaResearch,“2022Q4andAnnualIndiaSolarMarketUpdate–13GWinstalledin2022”,https://www.mercomindia.com/product/q4-2022-india-solar-market-update.28IEAPVPS,op.cit.note1,p.8.29Gulia,ThayillamandGarg,op.cit.note26.30Ibid.,op.cit.note26.31I.Kaizuka,“StillBiginJapan?”pvmagazine,March14,2023,https://www.pv-magazine.com/2023/03/14/still-big-in-japan.32E.Bellini,“TokyoIntroducesMandatoryPVRequirementsforNewBuildings,Homes”,pvmagazine,December16,2022,https://www.pv-magazine.com/2022/12/16/tokyo-introduces-mandatory-pv-requirements-for-new-buildings-homes.33R.EfroymsonandJ.Scurlock,“TheInternationalLandscapeofSolarFarmsandAgrivoltaics”,AgriSolarClearinghouse,November9,2022,https://www.agrisolarclearinghouse.org/the-international-landscape-of-solar-farms-and-agrivoltaics.34E.Bellini,“JapanonTracktoHit90GWofPVCapacityby2023”,pvmagazine,December6,2022,https://www.pv-magazine.com/2022/12/06/japan-on-track-to-hit-90-gw-of-pv-capacity-by-end-2023.35IEAPVPS,op.cit.note1,p.8.36SolarEnergyIndustriesAssociation(SEIA)andWoodMackenzie,“U.S.SolarMarketInsightReport2022YearinReview”,March9,2023,https://www.seia.org/research-resources/solar-market-insight-report-2022-year-review.37Ibid.38USEnergyInformationAdministration,“WhatIsU.S.ElectricityGenerationbySource?”February2023,https://www.eia.gov/tools/faqs/faq.php?id=427&t=4.39T.Sylvia,“USGovernmenttoMoveForwardwithPVAnti-circumventionInvestigation”,pvmagazine,March29,2022,https://www.pv-magazine.com/2022/03/29/us-government-to-move-forward-with-pv-anti-circumvention-investigation;P.DvorakandK.Blunt,“TheMost-HatedSolarCompanyinAmerica”,WallStreetJournal,May5,2022,https://www.wsj.com/articles/the-most-hated-solar-company-in-america-11651752180.40A.Fischer,“AfteraSuppressedFirstQuartertheUSSolarMarketIsBuoyedbyTariffSuspension”,pvmagazine,June8,2022,https://www.pv-magazine.com/2022/06/08/after-a-suppressed-first-quarter-the-us-solar-market-is-buoyed-by-tariff-suspension.41R.Kennedy,“MoreThan3GWofSolarPanelsHeldbyUSCustomsUnderForcedLaborLaw”,pvmagazine,August16,2022,https://www.pv-magazine.com/2022/08/16/more-than-3-gw-of-solar-panels-held-by-us-customs-under-forced-labor-law.42U.S.Congress,“H.R.5376–inflationReductionActof2022”,2022,https://www.congress.gov/bill/117th-congress/house-bill/5376;SEIA,“ImpactoftheInflationReductionAct”,https://www.seia.org/research-resources/impact-inflation-reduction-act,accessedMay24,2023.110BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESISOLARPV43J.Weaver,“What’stheInflationReductionActfortheSolarIndustry?”pvmagazine,August15,2022,https://www.pv-magazine.com/2022/08/15/whats-in-the-inflation-reduction-act-for-the-solar-industry.44ABSOLAR,“EnergiasolarfotovoltaicanoBrasil–InfográficoABSOLAR”,February7,2023,https://www.absolar.org.br/mercado/infografico.45Ibid.46L.Neves,“BrazilMayAddAnother12GWofPVThisYear”,pvmagazine,January14,2022,https://www.pv-magazine.com/2022/01/14/brazil-may-add-another-12-gw-of-pv-this-year.47L.Neves,“BrazilIntroducesNewRulesforDistributedGeneration,NetMetering”,pvmagazine,January10,2022,https://www.pv-magazine.com/2022/01/10/brazil-introduces-new-rules-for-distributed-generation-net-metering.48P.Molina,“CentralAmerica’sLargestPVPlantGoesOnline”,pvmagazine,January27,2022,https://www.pv-magazine.com/2022/01/07/central-americas-largest-pv-plant-goes-online.49SolarPowerEurope,“EUMarketOutlookforSolarPower2022-2026”,December2022,p.7,https://www.solarpowereurope.org/insights/market-outlooks/eu-market-outlook-for-solar-power-2022-2026-2.50IEAPVPS,op.cit.note1,p.11.51M.Hall,“TheEUPlantoDrasticallyRampRenewablestoReplaceRussianGas”,pvmagazine,March9,2022,https://www.pv-magazine.com/2022/03/09/eu-plan-to-drastically-ramp-renewables-to-replace-russian-gas;EuropeanCommission,“REPowerEU:NewIndustrialAlliancetoboosttheEU’ssolarpowerandenergysecurity”,December9,2022,https://ec.europa.eu/commission/presscorner/detail/en/IP_22_7617.52SolarPowerEurope,op.cit.note49,p.7.53Ibid,p.7.54IEAPVPS,op.cit.note1,p.8.55SolarPowerEurope,op.cit.note49,p.56.56Ibid.,p.57;S.Enkhardt,“GermanyInstalled7.19GWofNewSolarin2022”,pvmagazine,February2,2023,https://www.pv-magazine.com/2023/02/02/germany-installed-7-19-gw-of-new-solar-in-2022.57Energy-Charts,“AnnualSolarShareofPublicNetElectricityGenerationinGermany”,March26,2023,https://energy-charts.info/charts/renewable_share/chart.htm?l=en&c=DE&share=solar_share&interval=year.58GermanFederalMinistryforEconomicAffairsandClimateAction,“FederalministerRobertHabecksaysEasterpackageisacceleratorforrenewableenergyastheFederalCabinetadoptskeyamendmenttoacceleratetheexpansionofrenewables”,April6,2022,https://www.bmwk.de/Redaktion/EN/Pressemitteilungen/2022/04/20220406-federal-minister-robert-habeck-says-easter-package-is-accelerator-for-renewable-energy.html.59SolarPowerEurope,op.cit.note49,p.7.60P.Molina,“SpainInstalled6.93GWofPVin2022”,pvmagazine,March6,2023,https://www.pv-magazine.com/2023/03/06/spain-installed-6-93-gw-of-pv-in-2022.61P.Molina,“SpainInstalled2.5GWofDistributedPVsystemsin2022”,pvmagazine,January23,2023,https://www.pv-magazine.com/2023/01/23/spain-installed-2-5-gw-of-distributed-pv-systems-in-2022.62SolarPowerEurope,op.cit.note49,p.59.63Molina,op.cit.note60.64SolarPowerEurope,op.cit.note49,pp.62-63;M.Maisch,“ShiftingSandsofthePolishPVMarket”,pvmagazine,March27,2023,https://www.pv-magazine.com/2023/03/27/shifting-sands-of-the-polish-pv-market;IEAPVPS,op.cit.note1,p.8.65SolarPowerEurope,op.cit.note49,pp.62-63;Maisch,op.cit.note64.66SolarPowerEurope,op.cit.note49,p.63.67IEAPVPS,op.cit.note1,p.5.68K.TaylorandS.Leeson,“TheNetherlands‘UnquestionableSolarEnergyLeader’of2022:Study”,Euractiv,January31,2023,https://www.euractiv.com/section/politics/news/the-netherlands-unquestionable-solar-energy-leader-of-2022-study.69Ember,op.cit.note7,p.46;preliminarydatafromIEAPVPS,“SnapshotsofGlobalPVMarkets2023”,op.cit.note4,p.17.70IEAPVPS,op.cit.note1,p.8.71CleanEnergyCouncil,“CleanEnergyAustraliaReport2023”,April2023,p.7,https://assets.cleanenergycouncil.org.au/documents/Clean-Energy-Australia-Report-2023.pdf.72B.Peacock,“AustraliaHitsNewRooftopSolarRecord”,pvmagazine,March28,2023,https://www.pv-magazine.com/2023/03/28/australia-hits-new-rooftop-solar-record.73CleanEnergyCouncil,op.cit.note71,p.7.74Ibid.,pp.7-9.75D.Carroll,“WesternAustraliaRollsOutNewRulestoManageRooftopSolarSector”,pvmagazine,February18,2022,https://www.pv-magazine.com/2022/02/18/western-australia-rolls-out-new-rules-to-manage-booming-rooftop-solar-sector.76IEAPVPS,op.cit.note1,p.11.77AfricanSolarIndustryAssociation(AFSIA),“AnnualSolarOutlook2023”,January2023,http://afsiasolar.com/wp-content/uploads/2023/01/AFSIA-Annual-Outlook-Report-2023-Full-digital-final_compressed-1.pdf.78Ibid.79IEAPVPS,“TrendsinPVApplications2021”,2021,p.21,https://iea-pvps.org/trends_reports/trends-in-pv-applications-2021.80Y.Jinetal.,“EnergyProductionandWaterSavingsfromFloatingSolarPhotovoltaicsonGlobalReservoirs”,pvmagazine,March2023,https://www.researchgate.net/publication/369201558_Energy_production_and_water_savings_from_floating_solar_photovoltaics_on_global_reservoirs.81U.Gupta,“India’sLargestFloatingPVPlantGoesOnline”,pvmagazine,June27,2022,https://www.pv-magazine.com/2022/06/27/indias-largest-floating-pv-plant-goes-online;E.Bellini,“Czechia’sFirstFloatingPhotovoltaicPlant”,pvmagazine,January24,2022,https://www.pv-magazine.com/2022/01/24/czechias-first-floating-photovoltaic-plant.82SolarPowerEurope,op.cit.note49,p.56-57.83J.Gifford,“AgrivoltaicstoShineinFranceAfterPresidentialRecognition”,pvmagazine,February21,2022,https://www.pv-magazine.com/2022/02/21/agrivolaics-to-shine-in-france-after-presidential-recognition;E.Bellini,“FranceDefinesStandardsforAgrivoltaics”,pvmagazine,April28,2022,https://www.pv-magazine.com/2022/04/28/france-defines-standards-for-agrivoltaics;ADEMELibraire,“Characterizingphotovoltaicprojectsonagriculturallandandagrivoltaism”,2021,https://librairie.ademe.fr/energies-renouvelables-reseaux-et-stockage/4992-caracteriser-les-projets-photovoltaiques-sur-terrains-agricoles-et-l-agrivoltaisme.html.84E.Bellini,“ItalianSolarSectorDefinesStandardsforAgrivoltaics”,pvmagazine,March11,2022,https://www.pv-magazine.com/2022/03/11/italian-solar-sector-defines-standards-for-agrivoltaics.85V.ShawandM.Hall,“ChinesePVIndustryBrief:50GWPlanforRooftop,BIPV”,pvmagazine,March11,2022,https://www.pv-magazine.com/2022/03/11/chinese-pv-industry-brief-50-gw-plan-for-rooftop-bipv.86E.Bellini,“SeoulLaunchesBIPVIncentiveScheme”,pvmagazine,May2,2022,https://www.pv-magazine.com/2022/05/02/seoul-launches-bipv-incentive-scheme.87IEA,“SpecialReportonSolarPVGlobalSupplyChains”,July2022,https://iea.blob.core.windows.net/assets/2d18437f-211d-4504-beeb-570c4d139e25/SpecialReportonSolarPVGlobalSupplyChains.pdf.88IEA,“SpecialReportonSolarPVGlobalSupplyChains”,July2022,https://iea.blob.core.windows.net/assets/2d18437f-211d-4504-beeb-570c4d139e25/SpecialReportonSolarPVGlobalSupplyChains.pdf.89J.Gifford,“HigherPVModulePricesMayPointtoStableDemandandMoreSustainablePricingTrends”,pvmagazine,January4,2022,https://www.pv-magazine.com/2022/01/04/higher-pv-module-prices-may-point-to-stable-demand-and-more-sustainable-pricing-trends.90V.Shaw,“ChineseIndustryBrief:PolysiliconPriceReachesaNewHighatUSD45.4/kg,GovernmentTakesAction”,pvmagazine,August26,2022,https://www.pv-magazine.com/2022/08/26/chinese-pv-industry-brief-polysilicon-price-reaches-new-high-at-45-4-kg-government-takes-action.91J.Weaver,“SolarPowerPricesRisingwithDemand”,pvmagazine,February15,2022,https://www.pv-magazine.com/2022/02/15/solar-power-prices-rising-with-demand.92D.Carroll,“ShippingCostsRemainKeyChallengeforSolarSector”,pvmagazine,July14,2022,https://www.pv-magazine.com/2022/07/14/shipping-costs-remain-key-challenge-for-solar-sector.93U.Gupta,“IndiaTargetsDomesticProductionwith40%PVImportDuty,BoosttoManufacturing-linkedIncentive”,pvmagazine,February3,2022,https://www.pv-magazine.com/2022/02/03/india-targets-domestic-production-with-40-pv-import-duty-boost-to-manufacturing-linked-incentive.111BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESISOLARPV94EuropeanCommission,“CommissionMovestoBanProductsMadewithForcedLabourontheEUMarket”,September14,2022,https://ec.europa.eu/commission/presscorner/detail/en/ip_22_5415.95M.Hutchins,“GermanyLaunchedFeasibilityStudyonPVManufacturing”,pvmagazine,March28,2023,https://www.pv-magazine.com/2023/03/28/germany-launches-feasibility-study-on-pv-manufacturing.96N.Groom,“Exclusive:U.S.blocksmorethan1,000solarshipmentsoverChineseslavelaborconcerns”,Reuters,November11,2022,https://www.reuters.com/world/china/exclusive-us-blocks-more-than-1000-solar-shipments-over-chinese-slave-labor-2022-11-11.97R.KennedyandTimSylvia,“BidenHaltsSolarTariffsforTwoYears.What’sNext?”pvmagazine,June15,2022,https://www.pv-magazine.com/2022/06/15/biden-halts-solar-tariffs-for-two-years-whats-next.98USDepartmentofEnergy,“Biden-HarrisAdministrationAnnouncesUSD56MilliontoAdvanceU.S.SolarManufacturingandLowerEnergyCosts”,July14,2022,https://www.energy.gov/articles/biden-harris-administration-announces-56-million-advance-us-solar-manufacturing-and-lower.99J.Gifford,“2022ReviewinTrends:Modules(PartI)”,pvmagazine,December28,2022,https://www.pv-magazine.com/2022/12/28/2022-review-in-trends-modules-part-i.100Ibid.101J.Gifford,“2022ReviewinTrends:Modules(PartII)”,pvmagazine,December29,2022,https://www.pv-magazine.com/2022/12/29/2022-review-in-trends-modules-part-ii.112BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESICONCENTRATINGSOLARTHERMALPOWERENDNOTES–CONCENTRATINGSOLARTHERMALPOWER1DataarecompiledfromSolarPACES,“CSPProjectsAroundtheWorld”,https://www.solarpaces.org/csp-technologies/csp-projects-around-the-world,accessedthroughoutAprilandMay2023,andfromR.Thonig,A.GlimanovaandJ.Lilliestam,“CSP.guru2023-01-01”,2023,https://doi.org/10.5281/zenodo.1318151.Insomecases,informationfromthesesourceswasverifiedagainstadditionalcountry-specificsources,ascitedintheendnotesforthissection.Figure28fromsourcesinthisnoteandthroughoutthissection,aswellaspreviouseditionsoftheRenewablesGlobalStatusReport.GlobalCSPdataarebasedoncommercialfacilitiesonly;demonstrationandpilotfacilitiesaswellasfacilitiesof5MWorlessareexcludedfromcapacitydata,exceptforcertainplantsinChinathataredescribedas“demonstration”plantsbygovernmentbutarenonethelesslarge(utility-scale),grid-connectedplantsthatareoperatingorwilloperatecommercially.DatadiscrepanciesbetweenREN21andotherreferencesourcesaredueprimarilytodifferencesincategorisationandthresholdsforinclusionofspecificCSPfacilitiesinoverallglobaltotals.2REN21,"Renewables2022GlobalStatusReport",2022,https://www.ren21.net/gsr-2022.3Seesourcesinendnote1.4Ibid.5ZawyaProjects,“Dubai’sConcentratedSolarPowerProjectStartsSupplyingElectricitytotheGrid–Statement”,November29,2022,https://www.zawya.com/en/projects/utilities/dubais-concentrated-solar-power-project-starts-supplying-electricity-to-the-grid-statement-hv2el4px;ZawyaProjects,“DubaiSolarPowerPlant’s100MWCentralTowerIsOperational–ACWAPower”,February23,2023,https://www.zawya.com/en/projects/utilities/dubai-solar-power-plants-100mw-central-tower-is-operational-acwa-power-p6zwwkq3.6ZawyaProjects,"Dubai’sConcentratedSolarPowerProject...",op.cit.note5.7J.Santamarta,“Dubaiinstallsworld’stallestconcentratedsolarpowertower”,HELIOSCSP,June12,2020,https://helioscsp.com/dubai-installs-worlds-tallest-concentrated-solar-power-tower;ChinaNationalSolarThermalAlliance,“Dubai’sConcentratedSolarPowerProjectStartsSupplyingElectricitytotheGrid”,December5,2022,http://en.cnste.org/html/news/2022/1205/1360.html;evwind,“Dubai’sConcentratedSolarPowerProjectStartsSupplyingElectricitytotheGrid”,November30,2022,https://www.evwind.es/2022/11/30/dubais-concentrated-solar-power-project-starts-supplying-electricity-to-the-grid/89005;SinaFinance,“ShanghaiElectricDubaiCSPProjectTroughUnitNo.1ConnectedtotheGrid”,November30,2022,https://finance.sina.cn/2022-11-30/detail-imqmmthc6493662.d.html.8SolarPACES,“ChinaNowHas30CSPProjectswithThermalEnergyStorageUnderway”,October8,2022,https://www.solarpaces.org/china-now-has-30-csp-projects-with-thermal-energy-storage-underway.9ChinaSolarThermalAlliance(CSTA),“BlueBookofChina'sConcentratingSolarPowerIndustry2022”,2023,https://www.solarpaces.org/wp-content/uploads/Blue-Book-on-Chinas-CSP-Industry-2022.pdf.10CSTA,“50MWHamiTowerConcentratedSolarPowerProjectwithNovelSTELLIOHeliostatsCommissionedinChina”,February13,2023,http://en.cnste.org/html/news/2023/0213/1387.html.11HELIOSCSP,“WhatIsBehindChina’sConcentratedSolarPowerRecordsandGrowth?”May7,2022,https://helioscsp.com/what-is-behind-chinas-concentrated-solar-power-records-and-growth;CSTA,op.cit.note9.12CSTA,op.cit.note9.13Ibid.14Ibid.15Ibid.16Thonig,GlimanovaandLilliestam,op.cit.note1.17Ibid.18J.Regan,“AustralianSolarThermalTechnologyWinsUSBackingtoCutIndustrialEmissions”,RenewEconomy,October11,2022,https://reneweconomy.com.au/australian-solar-thermal-technology-wins-us-backing-to-cut-industrial-emissions.19SolarPACES,“AuctionFailureCurtailsCSPinSpain’sEcologicalTransition”,November19,2022,https://www.solarpaces.org/auction-failure-curtails-csp-in-spains-ecological-transition.20C.Dolz,“LafaltadeentendimientoentreRiberaylaindustriatermosolarcomprometeelplandeenergíadelGobierno”,EconomiaDigital,November14,2022,https://www.economiadigital.es/economia/falta-entendimiento-gobierno-termosolar-compromete-pniec.html;SolarPACES,op.cit.note19.21MinisteriodeTransiciónEcológica,“PlanNacionalIntegradodeEnergíayClima2021-2030”,2020,p.241,https://www.miteco.gob.es/images/es/pnieccompleto_tcm30-508410.pdf;Thonig,GlimanovaandLilliestam,op.cit.note1.22InternationalRenewableEnergyAgency(IRENA),“RenewablePowerGenerationCostsin2021”,2022,https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021;Thonig,GlimanovaandLilliestam,op.cit.note1.23C.Moraes,“RedstoneconcentratedsolarpowerprojectontrackinSouthAfrica”,HELIOSCSP,June3,2023,https://helioscsp.com/redstone-concentrated-solar-power-project-on-track-in-south-africa.24HELIOSCSP,“Fourbiddersshortlistedfor200MWconcentratedsolarpowerplantinBotswana”,November24,2022,https://helioscsp.com/four-bidders-shortlisted-for-200-mw-concentrated-solar-power-plant-in-botswana;HELIOSCSP,“LetlhakaneConcentratedSolarPowerPlantinBotswana”,August9,2022,https://helioscsp.com/letlhakane-concentrated-solar-power-plant;HELIOSCSP,“NamPowerstartsfeasibilitystudyforConcentratedSolarPowerplant”,April26,2022,https://helioscsp.com/nampower-starts-feasibility-study-for-concentrated-solar-power-plant.25J.Purtill,“ConcentratedSolarPowerIsanOldTechnologyMakingaComeback.Here’sHowItWorks”,ABCNews,April5,2023,https://amp-abc-net-au.cdn.ampproject.org/c/s/amp.abc.net.au/article/102184372;HELIOSCSP,“VastSolartobuildworld-leadingsolarthermalprojectinSouthAustralia”,April29,2022,https://helioscsp.com/vast-solar-to-build-world-leading-solar-thermal-project-in-south-australia.26Seesourcesinendnote1.27IRENA,op.cit.note22.28Ibid.29Ibid.30R.Thonig,IASSPotsdam,personalcommunicationwithREN21,April19,2023.31IRENA,op.cit.note22.32CSTA,op.cit.note9.33C.HernándezMorisetal.,“ComparisonBetweenConcentratedSolarPowerandGas-BasedGenerationinTermsofEconomicandFlexibility-RelatedAspectsinChile”,Energies,Vol.14,No.4(2021),p.1063,https://doi.org/10.3390/en14041063.34AdvancedEnergyTechnologies,“SolarEnergyStorageTechnologies.PatentAnalysis”,January9,2023,https://aenert.com/news-events/energy-news-monitoring/n/solar-energy-storage-technologies-patent-analysis.35USDepartmentofEnergy,OfficeofEnergyEfficiencyandRenewableEnergy,“DOEBreaksGroundonConcentratingSolarPowerPilotCulminating$100MillionResearchEffort”,February17,2023,https://www.energy.gov/eere/articles/doe-breaks-ground-concentrating-solar-power-pilot-culminating-100-million-research.36CSTA,op.cit.note9.37Ibid.113BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESICONCENTRATINGSOLARTHERMALPOWERENDNOTES–SOLARTHERMALHEATING1BasedondatafromW.WeissandM.Spörk-Dür,“SolarHeatWorldwide,GlobalMarketDevelopmentandTrends2022,DetailedMarketFigures2021,2023Edition”,InternationalEnergyAgency(IEA)SolarHeatingandCoolingProgramme(SHC),2023,pp.6,58,60,https://www.iea-shc.org/solar-heat-worldwide,andfromM.Spörk-Dür,AEE–InstituteforSustainableTechnologies(AEEINTEC),personalcommunicationwithRenewableEnergyPolicyNetworkforthe21stCentury(REN21),May2023.2AdditionsonthecountrylevelwereprovidedtoREN21duringJanuary-May2023fromthefollowingsources:France,ItalyandSouthAfricafromWeissandSpörk-Dür,op.cit.note1;GreecefromC.Travasaros,GreekSolarIndustryAssociation(EBHE);GermanyfromA.Liesen,BundesverbandSolarwirtschafte.V.(BSWSolar);PolandfromJ.Starościk,AssociationofManufacturersandImportersofHeatingAppliances(SPIUG).3AdditionsonthecountrylevelwereprovidedtoREN21duringJanuary-May2023fromthefollowingsources:ChinafromWeissandSpörk-Dür,op.cit.note1,andfromSpörk-Dür,op.cit.note1;IndiafromJ.Malaviya,SolarThermalFederationofIndia(STFI);PortugalfromP.Dias,SolarHeatEurope;SpainfromP.Polo,AsociacióndelaIndustriaSolarTérmica(ASIT).4J.P.Meyer,“SurveyofGermansolarcollectorindustry:‘dailystruggletoprocurematerials’”,SolarThermalWorld,August4,2022,https://solarthermalworld.org/news/survey-of-german-solar-collector-industry-daily-struggle-to-procure-materials.AtleastinGermany,thesituationwasparticularlychallengingformanufacturersofvacuumtubecollectors,mostofwhichpurchasetubesfromChina,fromidem.5E.Engelniederhammer,“Gas-freeindustrialheatwithPVTcollectorsandheatpumps”,SolarThermalWorld,December12,2022,https://solarthermalworld.org/news/gas-free-industrial-heat-with-pvt-collectors-and-heat-pumps;WeissandSpörk-Dür,op.cit.note1;P.Dias,SolarHeatEurope,personalcommunicationwithREN21,March17,2023;Epp,“HighinterestinPVandheatpumpshasreducedcollectorsalesinIndia”,SolarThermalWorld,March14,2023,https://solarthermalworld.org/news/high-interest-in-pv-and-heat-pumps-has-reduced-collector-sales-in-india.Small-scalesolarwaterheatingsystemsandsolarcombi-systems(providehotwaterandspaceheating)forsingle-andmulti-familyhouses,apartmentbuildings,hotelsandpublicbuildingsinlargepartsofEuropeandChinahavelostmarketsharetosolarPVsystemsandheatpumpsinrecentyears,fromWeissandSpörk-Dür,op.cit.note1.UtilityincentivesareusedinPortugal,forexample,whereelectricutilitiesarepromotingtheinstallationofheatpumps,fromDias,op.cit.thisnote;inIndia’scommercialandhospitalitymarkets,heatpumps,whichcanprovideconstanthotwater,werethetechnologyofchoice,fromEpp,op.cit.thisnote;inAustralia,heatpumpsarechallengingsolarthermalforboththeresidentialhotwatermarketandforpoolheating,fromD.Ferrari,ExemplaryEnergy,personalcommunicationwithREN21,May5,2023.Foradditionalexamples,seetextandsourcesthroughoutthissection.6WeissandSpörk-Dür,op.cit.note1,p.15.NotethatChina’ssmallretailmarketdeclinedin2022,butthespaceheatingmarketincreased.7B.Epp,solrico,personalcommunicationwithREN21,May10,2023.Forexample,seeB.Epp,“Constructionimminenton77MWsolarheatplantforleisureresort”,SolarThermalWorld,April30,2022,https://solarthermalworld.org/news/construction-imminent-on-77-mw-solar-heat-plant-for-leisure-resort;B.Epp,“37MWsolardistrictheatingplantintheNetherlandswithoutstandingfeatures”,SolarThermalWorld,November11,2022,https://solarthermalworld.org/news/37-mw-solar-district-heating-plant-in-the-netherlands-with-outstanding-features;B.Epp,“Welcometoanewyearandanotherchanceforsolarheattogetbig”,SolarThermalWorld,January17,2023,https://solarthermalworld.org/news/welcome-to-a-new-year-and-another-chance-for-solar-heat-to-get-big.8Seetextandsourcesthroughoutthissection.9Solarthermalworld.orgreportedonsolarthermalsalesactivitiesinmorethan150countriesworldwideduring2008-2022,basedonsearchofwebsite,accessedApril7,2023.10Basedon542GWthattheendof2022,fromWeissandSpörk-Dür,op.cit.note1,andon523GWthatend-2021,fromSpörk-Dür,op.cit.note1.Figure29fromthefollowing:globalsolarthermalcapacityforglazedandunglazedwatercollectorsisbasedonhistoricaldatafromW.WeissandM.Spörk-Dür,“SolarHeatWorldwide,GlobalMarketDevelopmentandTrends,DetailedMarketFigures”,multipleeditions,IEASHC,https://www.iea-shc.org/solar-heat-worldwide,andonREN21,“RenewablesGlobalStatusReport2022”,dataforFigure40,p.138,https://www.ren21.net/reports/global-status-report;datafor2022arefromWeissandSpörk-Dür,op.cit.note1,andarebasedonthelatestmarketdatafromthefollowingsolarthermalmarkets–Australia,Austria,Brazil,China,Cyprus,Denmark,Germany,Greece,India,Italy,Mexico,StateofPalestine,Poland,SouthAfrica,Spain,TürkiyeandtheUnitedStates–whichrepresented96%ofthecumulativeinstalledcapacityinoperationin2021,fromSpörk-Dür,op.cit.note1.Notethatthedifferencebetweenannuallyinstalledcapacityandnetannualadditionsformostcountriesisthecapacitysubtractedeachyeartoaccountfortheassumedcollectorlifetime(generally25years),allfromWeissandSpörk-Dür,op.cit.note1.11Figureof442TWhfromWeissandSpörk-Dür,op.cit.note1,pp.4,84.Equivalenceof442TWhand260millionbarrelsofoilequivalentfromKyle’sConverter,https://www.kylesconverter.com/energy,-work,-and-heat/terawatt-hours-to-barrels-of-oil-equivalent.12Figureof73%forChinabasedondatafromWeissandSpörk-Dür,op.cit.note1,andfromSpörk-Dür,op.cit.note1;topfivecountriesandrankingbasedondatafromIbid.andonadditionsandcumulativedatafortop20countriesfromsourcescitedthroughoutthissection.13Top20countriesandFigure30basedonthelatestmarketdataavailableforgrossadditionsofglazedandunglazedwatercollectors(notincludingconcentrating,photovoltaic-thermalandaircollectors),atthetimeofpublication,forcountriesthattogetherrepresentaround97%oftheworldtotal.DatafromoriginalcountrysourcesincludegrossnationaladditionsandwereprovidedtoREN21duringFebruary-May2023fromthefollowingsources:AustraliafromD.Ferrari,SustainabilityVictoria;Austria,China,Italy,MexicoandSouthAfricafromSpörk-Dür,op.cit.note1,andfromWeissandSpörk-Dür,op.cit.note1;BrazilfromD.Johann,AssociaçãoBrasileiradeEnergiaSolarTérmica(ABRASOL);CyprusfromP.Kastanias,CyprusUnionofSolarThermalIndustrialists(EBHEK);FrancefromSpörk-Dür,op.cit.note1,andbasedondatafromUniclima,“DossierdePresse:Bilan2022etperspectives2023desindustriesthermiques,aérauliquesetfrigorifiques”,February2,2023,p.9,andfromAgencedelatransitionécologique(ADEME);GermanyfromBSWSolarandFederationofGermanHeatingIndustry(BDH),citedinJ.P.Meyer,“TheGermansolarthermalmarketonlygrewslightlyintheenergycrisisyear2022”,February14,2023,https://solarthermalworld.org/news/the-german-solar-thermal-market-only-grew-slightly-in-the-energy-crisis-year-2022,andfromA.Liesen,BSWSolar;GreecefromC.Travasaros,EBHE;IndiafromJ.Malaviya,STFI;Israeldataarefor2021andfromE.Shilton,Elsol;A.Fadlallah,LebaneseCenterforEnergyConservation;forMoroccoa13%decreaseinadditionsin2022wasestimatedbasedontheimportvalueinmillionUSDforthemonthsJanuarytoSeptember2022,fromTrademap,https://www.trademap.org,andprovidedbyEpp,solrico(theshareofvacuumtubeandflatplatecollectorsforMoroccowasnotavailable);PolandfromWeissandSpörk-Dür,op.cit.note1,andfromJ.Starościk,SPIUG;PortugalfromP.Dias,SolarHeatEurope;SpainfromP.Polo,ASIT;TürkiyefromK.Ulke,BuralSolar,andfromWeissandSpörk-Dür,op.cit.note1,Tables11and12;UnitedStatesfromB.Heavner,CaliforniaSolar&StorageAssociation(CALSSA),personalcommunicationwithREN21,May2023.ForMexico,dataare2021installationsbecause2022statisticswerenotavailableattimeofpublication.14InstallationsinLebanonwereup385%in2022basedondatafor2021additionsfromWeissandSpörk-Dür,op.cit.note1,Table13,andonatotalof86.3MWth(123,329.8m2)addedduring2022,fromA.Fadlallah,LebaneseCenterforEnergyConservation,personalcommunicationwithREN21,May12,2023.TheLebanesegovernmentremovedsubsidiesforfuelandelectricity,causingpricestoriseandtriggeringadrasticincreaseinsolarthermalsysteminstallationsrelativetopreviousyears.Almostallsystemsareusedfordomestichotwaterinsingle-familyhomes,fromFadlallah,op.cit.thisnote.DataarenotyetavailableforTunisia,whichwasincludedamongthetop20for2021inREN21,op.cit.note10,Figure31;however,itislikelythatthiscountrywasnotamongthetop20installersin2022.15SunRealmThinkTank,“‘2022ChinaSolarThermalIndustryOperationStatusReport’officiallyreleased”,March16,2023,https://mp.weixin.qq.com/s/1jXYS-8iMpstP2-3ddSerw(usingGoogleTranslate);H.Cheng,ShandongSunVisionManagementConsulting,personalcommunicationwithB.Epp,solrico,May2023.16BasedondatafromWeissandSpörk-Dür,op.cit.note1,andfromSpörk-Dür,op.cit.note1.17WeissandSpörk-Dür,op.cit.note1;Spörk-Dür,op.cit.note1,May16,2023.Installationdataareslightlyhigher(usingadifferentmethodology),butstillestimatedmarketdeclineof12.3%,fromSunRealmThinkTank,op.cit.note15.Totalinstalledcapacity114BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESICONCENTRATINGSOLARTHERMALPOWERreflectsanimprovementinthequalityofmostbrandsofhouseholdsolarheatingsystems,withlifespansexceeding15yearsand,insomecases,lastingformorethan20years,fromidem.18SunRealmThinkTank,op.cit.note15.Energysavingsamounttoanestimated1,001.66milliontonnesofstandardcoal,ortheequivalentof27,846GWhofelectricity,fromidem.19BasedondatafromWeissandSpörk-Dür,op.cit.note1,andfromSpörk-Dür,op.cit.note1.Vacuumtubesalesin2022totalled17.968millionm2andflatplatecollectorsaleswere5.757millionm2,withvacuumtubesaccountingfor75.7%oftotalsales,basedondatafromSunRealmThinkTank,op.cit.note15.20SunRealmThinkTank,op.cit.note15.ThesharesarebasedonasamplesurveyofenterprisesinseveralprovincesandkeyregionsofChina,fromidem.21Ibid.22Ibid.23ABRASOL,“PesquisadeproduçaoeVendasdeSistemasdeAquecimentoSolar2023,Base2022”,April2023,p.2,https://abrasol.org.br/wp-content/uploads/2023/04/Pesquisa-de-Producao-e-Vendas-de-2023-ano-base-2022.pdf;E.Engelniederhammer,“HotelsectorisimportantsaleschannelforsolarindustryinBrazil”,SolarThermalWorld,April21,2023,https://solarthermalworld.org/news/hotel-sector-is-important-sales-channel-for-solar-industry-in-brazil.Salesrose28%in2021,drivenbytheenergycrisisandrisingelectricrates,whichencouragedpeopletoinvestintheirhomesand,asofearly2022,theexpectationwasthatBrazil’smarketwouldseeanincreaseof30%fortheyear,fromABRASOL,“Produçãodeaquecedorsolardeáguacresce28%em2021”,Boletim24,February2022,https://abrasol.org.br/boletim-i-fevereiro-i-no24-2022-2(usingGoogleTranslate).24ABRASOL,“Pesquisadeproduçao…”,op.cit.note23,p.6.25D.Johann,ABRASOL,personalcommunicationwithREN21,March2023.Braziladded920,463m2ofunglazedcollectorarea,821,248m2ofglazedcollectorsand38,124m2ofvacuumtubecollectors(bringingtotaladditionsto1,779,835m2),fromidem.Theresidentialsectorremainedtheprimarymarket(73%),followedbythecommercialsector(19%);theindustrialsectorrepresented6%andsocialprojectsonly2%,fromABRASOL,“Pesquisadeproduçao…”,op.cit.note23,p.2.26Theresidentialsectorremainedtheprimarymarket(73%),followedbythecommercialsector(19%);theindustrialsectorrepresented6%andsocialprojectsonly2%,fromABRASOL,“Pesquisadeproduçao…”,op.cit.note23,p.2.Useinhotelsand2-4yearpayback,fromL.A.dosSantosPinto,ABRASOLandSolis,citedinEngelniederhammer,op.cit.note23.27Figureof8.5%fromABRASOL,“Pesquisadeproduçao…”,op.cit.note23,p.4;cumulativecapacitybasedon9,066MWthfromSpörk-Dür,op.cit.note1,andfromWeissandSpörk-Dür,op.cit.note1.28BasedondatafromJ.Malaviya,MalaviyaSolarEnergyConsultancy,personalcommunicationwithREN21,March2023.29Additionsin2022basedondatafromJ.Malaviya,MalaviyaSolarEnergyConsultancy,citedinEpp,op.cit.note5;year-endtotals(watercollectorsonly)basedon19,827,079m2(15,246,893m2ofvacuumtubecollectorareaand4,580,186m2offlatplatecollectorarea),fromWeissandSpörk-Dür,op.cit.note1.ThethirdphaseoftheJawaharlalNehruNationalSolarMissionrequired20millionm2ofsolarthermalcollectorareatobeinoperationattheendof2022,fromB.Epp,“IndiaclosetotheSolarMissiontargetof20millionm2collectorarea”,SolarThermalWorld,February22,2022,https://solarthermalworld.org/news/india-close-to-the-solar-mission-target-of-20-million-m2.30BasedondatafromMalaviya,citedinEpp,op.cit.note5.Alittleover75,000m2offlatplatecollectorareawasinstalledduring2022,fromidem.31Epp,op.cit.note5.32Ibid.33Importanceofsmall-scalefromY.Akay,SolimpeksSolarCorp,personalcommunicationwithB.Epp,solrico,February2022;secondafterChinaforlargesystemsfromWeissandSpörk-Dür,op.cit.note1.Türkiyehad18large-scalesystems(>350kWth;500m2)withatotalinstalledcapacityof14.2MWth,fromWeissandSpörk-Dür,op.cit.note1.India’smainsolarthermalapplicationcontinuedtobethermosiphonsystemsforsingle-familyhouses,fromEpp,op.cit.note5.34Akay,op.cit.note33.35Theparabolictroughsystemhasacoolingcapacityof3.5MWthandisoperatingatapackagingfactoryinIzmir,fromWeissandSpörk-Dür,op.cit.note1.SeealsoB.Epp,“SolarsteamtocoolproductionhallsinsouthernTurkey”,SolarThermalWorld,July5,2022,https://solarthermalworld.org/news/solar-steam-to-cool-production-halls-in-southern-turkey.36Estimatedadditionsin2022fromK.Ulke,BuralSolar,personalcommunicationwithREN21,May16,2023;estimatedmarketdeclinebasedon2021additionsfromWeissandSpörk-Dür,op.cit.note1,Tables11and12;end-2022capacityfromSpörk-Dür,op.cit.note1,andfromWeissandSpörk-Dür,op.cit.note1.37Ulke,op.cit.note36.38AdditionsbasedondatafromHeavner,op.cit.note13(USnewadditionsofvacuumtubecollectorswerenotavailable);estimatedtotalcapacityfromSpörk-Dür,op.cit.note1.39Brazilfrominformationandsourcesinthissection;AustraliafromFerrari,op.cit.note5;UnitedStatesfromHeavner,op.cit.note13.40USunglazedbasedon839,122m2ofcollectorareainstalledin2022,accountingfornearly95%ofadditions,basedondatafromHeavner,op.cit.note13;Australiabasedonanestimated350,000m2ofunglazedcollectorareainstalledin2022,accountingfor71.5%oftheyear’sinstallations,fromFerrari,op.cit.note5.41B.Epp,solrico,personalcommunicationwithREN21,April2022andMay2023.ForItaly,forexample,seeR.Battisti,“ContoTermico:Goodincentivebutwithroomforimprovement”,SolarThermalWorld,April25,2023,https://solarthermalworld.org/news/conto-termico-good-incentive-but-with-room-for-improvement.42BasedonpreliminarydatafromL.Mico,SolarHeatEurope/EuropeanSolarThermalIndustryFederation,personalcommunicationwithREN21,May5,2023.ThepreliminarydatashowaslightincreaseinSpainrelativeto2021.43BasedonP.Dias,SolarHeatEurope,personalcommunicationwithB.Epp,solrico,April2022.InGermany,morethanhalfofnewinstallationsin2022werewaterheatingsystemsonrooftops,withsinglefamilyhousesaccountingforthelargestshareofdemand,basedondatafromA.Liesen,BSWSolar,personalcommunicationwithREN21,February28andMarch2,2023;estimatebyD.Lange,citedinMeyer,op.cit.note13;anddatafromGermanindustryassociationsBSWSolarandBDH,citedinMeyer,op.cit.note13.InGreece,themarketismostlyhotwatersystemsforsingle-familyhomes,fromC.Travasaros,EBHE,personalcommunicationwithREN21,April11,2023.InItaly,asof2020,76%ofsolarthermalheatwasusedbyresidentialcustomers,fromBattisti,op.cit.note41,and90%ofnewcollectorareain2021wastoprovidehotwater,fromR.Battisti,“SuperbonushaspushedsolarheatinItaly”,SolarThermalWorld,March9,2022,https://solarthermalworld.org/news/superbonus-has-pushed-solar-heat-in-italy.InPoland,themajorityofsystemsinstalledin2022werefordomestichotwater,with64%forsingle-familyand20%formulti-familyresidences,fromWeissandSpörk-Dür,op.cit.note1.InSpain,most2022installationswereflatplatecollectors(almost94%)andusedbyhouseholds,fromP.Polo,ASIT,personalcommunicationwithREN21,March3,2023.FlatplatecollectorswerefollowedinSpainbyvacuumtubecollectors(4.8%)andunglazedcollectorsforswimmingpoolheating(1.4%);multi-familyhousesaccountedforalmosthalfofdemand(45%),withsinglefamilyhousesaccountingfor35%,allfromPolo,op.cit.thisnote.44Basedondataandsourcesthroughoutthissection.45DatafromGermanindustryassociationsBSWSolarandBDH,citedinMeyer,op.cit.note13,andfromLiesen,op.cit.note43.The2022additionswereupfrom448MWthin2021,fromMeyer,op.cit.note13.46DatafromGermanindustryassociationsBSWSolarandBDH,citedinMeyer,op.cit.note13.Germany’sannualmarketheldevenin2021relativeto2020,inwhichthemarketexpanded26%over2019,fromidem.47D.Lange,citedinMeyer,op.cit.note13;Liesen,op.cit.note43.ThegovernmentcontinuedtofundresidentialinstallationsthroughtheFederalOfficeforEconomicAffairsandExportControl(BAFA),fromidem.Notethatgrowthwasdueprimarilytotheenergycrisisbecausesubsidiesenactedin2021didnothavemucheffectonmarketin2022,fromLange,op.cit.thisnote.Germanysawnearly77,000applicationsforfederalfundingthatincludedasolarthermalsystemin2022,up75%over2021;thegreatestincreaseinapplicationssubmittedwasforheatpumps(up429%),fromMeyer,op.cit.note13.48Totalcapacityinoperationatend-2022,fromLiesen,op.cit.note43.49C.Travasaros,op.cit.note43,January29,2023.50C.Travasaros,op.cit.note43,April11,2023.51E.Engelniederhammer,“Greekfactories:anewcollectorevery72seconds”,SolarThermalWorld,May31,2022,https://solarthermalworld.org/news/greek-factories-a-new-collector-every-72-seconds.52Ibid.115BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESICONCENTRATINGSOLARTHERMALPOWER53Travasaros,op.cit.note43,January29,2023.54WeissandSpörk-Dür,op.cit.note1,andfromSpörk-Dür,op.cit.note1.55Battisti,op.cit.note43.56Battisti,op.cit.note41;R.Battisti,“NationalRoundTablediscussesmarketdevelopmentandpoliciesinItaly”,SolarThermalWorld,November2022,https://solarthermalworld.org/news/national-round-table-discusses-market-development-and-policies-in-italy;Battisti,op.cit.note43.Themarketin2021alsowasdrivenbyconstruction,with2021beingarecordyearforthebuildingindustry,fromidem.TheSuperbonuswasextendedin2022tobeineffectuntiltheendof2025,withratesdecreasingovertime,fromANIMAConfindustriaMeccanicaVaria,“GuidaalnuovoSuperbonus”,https://www.anima.it/media/news/superbonus/superbonus-anima.kl,accessedMay8,2023(usingGoogleTranslate).However,theSuperbonusdoesnotcoversolarthermaldistrictheatingsystems,fromBattisti,op.cit.thisnote.57J.Starościk,SPIUG,personalcommunicationwithREN21,February1,2023;WeissandSpörk-Dür,op.cit.note1.The210,000m2ofsolarwatercollectorsincluded208,500m2ofglazedcollectorsand1,500m2ofvacuumtubecollectors,fromidem,bothsources.58WeissandSpörk-Dür,op.cit.note1.59Ibid.Ofthetotalinoperationattheendof2022,85%wereflatplateandtheremaindervacuumtubecollectors,fromidem.60ConfirmedbyP.Polo,ASIT,peerreviewcomment,April2023.61Figureof12%andestimated2022additions,fromPolo,op.cit.note43;declineforperiod2017-2021,fromP.Polo,ASIT,citedinA.D.Rosell,“MorethanEUR1billionofincentivesavailableinSpain”,SolarThermalWorld,October12,2022,https://solarthermalworld.org/news/more-than-eur-1-billion-of-incentives-available-in-spain.Flatplatecollectorswerefollowedbyvacuumtubecollectors(4.8%)andunglazedcollectorsforswimmingpoolheating(1.4%);multi-familyhousesaccountedforalmosthalfofdemand(45%),withsinglefamilyhousesaccountingfor35%,allfromPolo,op.cit.note43.62Polo,op.cit.note43.63Ibid.Spainhasfivesubsidyschemesthatsupportsolarthermal(andotherrenewabletechnologiesandheatpumps),andthatwereimplementedbetweenlate2021andtheendof2022,withfundsavailablethrough2023,fromRosell,op.cit.note61.64WeissandSpörk-Dür,op.cit.note1.65Austriaextendedalarge-scalesysteminGraz,fromWeissandSpörk-Dür,op.cit.note1;DenmarkfromD.Trier,PlanEnergi,personalcommunicationwithREN21,February27,2023;Italycommissionedtwosolarthermalplants,inthedistrictheatingnetworksofTurinandVerona,fromBattisti,op.cit.note41.66WeissandSpörk-Dür,op.cit.note1,p.17.Year-endtotalinstallationsofconcentratingcollectortechnologies(linearFresnel,parabolictroughanddish)werereportedbyapertureareaandconvertedintosolarthermalcapacityusingtheinternationallyacceptedconventionforstationarycollectors,1millionm2=0.7GWth.67WeissandSpörk-Dür,op.cit.note1.Thefigureof25isbasedonanaveragereportedsizeof4.86MWth(6,945m2)perfacility,fromidem.In2021,Chinacommissionedaround20large-scalesolarheatingsystemsintotal,includingsolarthermaldistrictheatingsystems;bytheendof2022,571large-scalesolarthermalsystems(>350kWth,500m²)wereinoperation(totalling2,148MWth;3.1millionm2),includingdistrictheatingsystemsandthoseforindividualbuildings.Thetotalinstalledcapacityofthesesystemsequaled2,148MWth,correspondingto3.1millionm²collectorarea,fromidem,pp.4,17.NotethatChina’snationalstatisticsdonotdistinguishbetweenthetwodifferentusesoflarge-scalesystems,fromSunRealmThinkTank,“2021SolarHeatingMarketYearbook”,April7,2022,https://mp.weixin.qq.com/s/o66GAR8KQMK7I7DB_yapPQ.68BasedondatainFigure9,fromWeissandSpörk-Dür,op.cit.note1.69WeissandSpörk-Dür,op.cit.note1.SeealsoB.Epp,“Concentratingsolarheatcapacityquadruplesin2022”,SolarThermalWorld,August29,2022,https://solarthermalworld.org/news/concentrating-solar-heat-capacity-quadruples-in-2022.70RecordyearbasedondatafromSteinbeisResearchInstituteSolites,citedinSolarWärmeNetze,“2022RekordjahrfürsolareWärmenetzeinDeutschland”,March28,2023,https://www.solare-waermenetze.de/2023/03/28/solare-waermenetze-in-betrieb-2023(usingGoogleTranslate);dataforGermanyin2022fromMeyer,op.cit.note13,andfromLiesen,op.cit.note43;allEuropein2021fromSpörk-Dür,op.cit.note1,April2022.71DatafromLiesen,op.cit.note43;andfromGermanindustryassociationsBSWSolarandBDH,citedinMeyer,op.cit.note13.DriversfromH.Huther,districtheatingassociationAGFW,citedinSolarWärmeNetze,op.cit.note70.AgrowingnumberofdistrictheatingsystemsinGermanyandincreasedinterestamonghomeownershasledtoarapidincreaseindemandforvacuumtubecollectorsinrecentyears,risingfrom15%ofnewlyinstalledcollectorareain2020to26%in2022(130MWth,185,000m2).Around130MWth(185,000m2)ofvacuumtubecollectorswereaddedin2022andnearly367MWth(524,000m2)offlatplatecollectors,fromLiesen,op.cit.note43.72Liesen,op.cit.note43;E.Augsten,“WillsmartdistrictheatingbringsolarthermalbackintofocusinGermany?”SolarThermalWorld,October11,2022,https://solarthermalworld.org/news/will-smart-district-heating-bring-solar-thermal-back-into-focus-in-germany.Othersystemsthatcameintooperationin2022wereinLemgo(9,118m2),Aschersleben(3,717m2),Schönwald(2,860m2),HorbamNeckar(2,416m2),MarktErlbach(2,400m2),andDettenhausenandSigmaringen(both2,312m2),fromLiesen,op.cit.note43.LemgoalsofromAugsten,op.cit.thisnote.73M.Berberich,Solites,citedinB.Epp,“Solardistrictheatingsolutionsprovidinghighertemperatures”,SolarThermalWorld,December4,2022,https://solarthermalworld.org/news/solar-district-heating-solutions-providing-higher-temperatures.Capacityoffurther9plantsunderconstructionorinadvancedplanningisbasedongrosscollectorareaof31,200m2,andofthe50plantsinpreparationisbasedongrosscollectorareaof286,400m2,andsourcedfromidem.NotethatthetotalcollectorareafordistrictheatinginGermanygrewby30%relativeto2021,fromSolites,citedinWeissandSpörk-Dür,op.cit.note1.74F.Stier,“SuccessfuloperatormodelsforsolardistrictheatinginGermany”,SolarThermalWorld,January5,2023,https://solarthermalworld.org/news/operator-models-for-solar-district-heating;F.Stier,“FromLECstoTECs–citizenenergyinfocus”,SolarThermalWorld,May28,2022,https://solarthermalworld.org/news/from-lecs-to-tecs-citizen-energy-in-focus;policyinformationfromAugsten,op.cit.note72;B.Epp,“FundofEUR3billionfordecarbonisingGermandistrictheating”,SolarThermalWorld,August30,2022,https://solarthermalworld.org/news/fund-of-eur-3-billion-for-decarbonising-german-district-heating.75Trier,op.cit.note65,February27,2023.Theplantthatbeganoperationsin2021wasa5.6MWth(8,013m2)projectinPræstø,fromidem.76Worldleaderintermsofnumberandinstalledareaofsystemsandfigureof123,fromWeissandSpörk-Dür,op.cit.note1.Capacityinoperation,fromTrier,op.cit.note65,February2023.Bytheendof2022,Denmarkhadinstalledatotalof1,128MWth(1,611,065m2);accountingfordecommissioning,atotalof1,125MWth(1,607,015m2)wasinoperation;inaddition,anotherthreeprojectstotalling8.3MWth(11,910m2)wereunderconstructionwithplanstocomeonlinein2023,fromTrier,op.cit.note65,February2023.77Trier,op.cit.note65,March2,2023.78A.D.Rosell,“Heatpumps:Competitionorcomplementindistrictheating?”SolarThermalWorld,September13,2022,https://solarthermalworld.org/news/heat-pumps-competition-or-complement-in-district-heating.79Ibid.80WeissandSpörk-Dür,op.cit.note1,p.13.TheGrazextensionincreasedthecollectorareaby2,134m2,bringingthetotalto6,134m2,fromidem.Notethatanotherestimateputsthedeclinein2022at25%,fromF.Stier,“Feasibilitystudiesforlargesolarheatplantstotallingalmost1millionm2underway”,SolarThermalWorld,April6,2023,https://solarthermalworld.org/news/feasibility-studies-for-large-solar-heat-plants-totalling-almost-1-million-m2-underway.81Stier,op.cit.note80.82Ibid.ThestudiesweresupportbythenationalClimateandEnergyFund,andtheplantsaretosupplyheattoenergysuppliersandindustrialcompanies,fromidem.83B.Bogdanovic,EuropeanBankforReconstructionandDevelopment,citedinB.Epp,“EUR65millionprovidedforsolardistrictheatinginKosovo”,SolarThermalWorld,July7,2022,https://solarthermalworld.org/news/eur-65-million-provided-for-solar-district-heating-in-kosovo.84Epp,op.cit.note83.NotethattwosolarthermaldistrictheatingplantswereplannedforSerbiaasofearly2023.ThefeasibilitystudyforaplantinthecityofPancevo(24.5MWth/35,000m2ofcollectorarea)wascompleted,andaplantintherangeof45-136MWthwasplannedforNoviSad,allfromWeissandSpörk-Dür,op.cit.note1.116BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESICONCENTRATINGSOLARTHERMALPOWER85B.Epp,“BigSolarinKosovoreplacescoal-basedelectricheating”,SolarThermalWorld,January25,2023,https://solarthermalworld.org/news/big-solar-in-kosovo-replaces-coal-based-electric-heating;Epp,op.cit.note83.PlannedfundsamounttoEUR80million(USD85million);theprojectwillreplaceacoal-firedheatandpowerplant,andtheheatpumpsandstorageshouldenablethenetworktoreachhighsolarshares,fromEpp,op.cit.thisnote.86FraunhoferISE,PlanEnergiandChalmersUniversity,citedin“SolarThermalShowsHighestEnergyYieldPerSquareMetre”,SolarThermalWorld,July31,2017,https://solarthermalworld.org/news/solar-thermal-shows-highest-energy-yield-square-metre.AnothersourcessaysuptofourtimessolarPVand50timesbiomass,fromAugsten,op.cit.note72.87ChallengescompetingfromAugsten,op.cit.note72;lackofawarenessfrom,forexample,Stier,op.cit.note80,andfromB.Epp,“Solardistrictheatingsolutionsprovidinghighertemperatures”,SolarThermalWorld,December4,2022,https://solarthermalworld.org/news/solar-district-heating-solutions-providing-higher-temperatures;permittingprocessesandsuitablesitesfromF.Stier,“Accesstolandisoneofthekeybottlenecksforrollingoutrenewables”,SolarThermalWorld,November22,2022,https://solarthermalworld.org/news/access-to-land-is-one-of-the-key-bottlenecks-for-rolling-out-renewables,andfromB.Epp,“FundofEUR3billionfordecarbonisingGermandistrictheating“,SolarThermalWorld,August30,2022,https://solarthermalworld.org/news/fund-of-eur-3-billion-for-decarbonising-german-district-heating;bottlenecksalsofromM.Berberich,Solites,citedEpp,“Solardistrictheatingsolutions...”,op.cit.thisnote.88TemperaturerangesfromSolarPayback,“SuppliersofTurnkeySolarProcessHeatSystems”,https://www.solar-payback.com/suppliers,accessed31January2023.89J.Byström,AbsoliconSolarCollector,personalcommunicationwithB.Epp,solrico,February2022;B.Epp,“Concentratingsolarheatcapacityquadruplesin2022”,SolarThermalWorld,August29,2022,https://solarthermalworld.org/news/concentrating-solar-heat-capacity-quadruples-in-2022(updatedinNovember2022);energypricestabilityandvolatilityfromS.Papa,SolarHeatEurope,personalcommunicationwithREN21,May2,2023.90DataassessedbyasurveyamongthecompanieslistedinSolarPayback,op.cit.note88,andcitedinB.Epp,“HighlevelofdynamismontheSHIPworldmarketin2022”,SolarThermalWorld,March27,2023,https://solarthermalworld.org/news/high-level-of-dynamism-on-the-ship-world-market-in-2022.91Ibid.CapacitywascalculatedbyEppusingthefactor0.7kW/m2forallcollectortypes.Figureof78in2021fromWeissandSpörk-Dür,op.cit.note1.92Epp,op.cit.note90.CapacitywascalculatedbyEppusingthefactor0.7kW/m2forallcollectortypes.93WeissandSpörk-Dür,op.cit.note1.94Epp,op.cit.note90.Theninetypesincludeflatplate,whichaccountedfor39%ofnewlyinstalledcollectorarea,followedbyvacuumtube(24%),parabolictrough(12%),aircollectors(11%),hightemperatureflatplate(6%),linearFresnel(4%),photovoltaic-thermal(3%),unglazedpolymer(1%)andconcentratingdish(0.4%);concentratingcollectorsrepresentedacombined16%innineprojects;thesubstantialshareofaircollectorswasduemainlytogenerousfundinginAustria,GermanyandSpain,allfromidem.95WeissandSpörk-Dür,op.cit.note1.Parabolictroughcollectorsaccountforthehighestinstalledarea,butdueprimarilytothe330MWthMiraahplantinOman,whichwascommissionedin2017,fromidem.96Epp,op.cit.note89.97See,forexample,“TwoconcentratingsolarindustrialheatplantsinoperationinBarcelona”,SolarThermalWorld,June19,2022,https://solarthermalworld.org/news/two-concentrating-solar-industrial-heat-plants-in-operation-in-barcelona.AlinearFresnelcollectorfieldforGivaudan,aSpanishcompanythatproducesflavoursandfragrances,includeshybridheatpumps(withelectricandthermalcompressors),fromidem.98DataassessedbyasurveyamongthecompanieslistedinSolarPayback,op.cit.note88,andcitedinEpp,op.cit.note90.Leadingmarketsfornumberofsystemsinstalledin2022arebasedondataassessedbyasurveyamongthecompanieslistedontheSHIPSupplierWorldMapinMarch/April2022,fromSolarPayback,“SHIPSupplierMapofTurnkeySolarProcessHeatSystems”,April2022,https://www.solar-payback.com/suppliers.Chinapossiblyunder-reportedfromEpp,op.cit.note90,andfromWeissandSpörk-Dür,op.cit.note1.TheChinaAcademyofBuildingResearchreportedthat,in2021alone,atotalof359SHIPsystems(256,000m2)wereadded;becausedetaileddataarenotavailable,thesystemsarenotincludedindatafromWeissandSpörk-Dür,op.cit.note1,p.26.99Epp,op.cit.note90;B.Epp,“MoodontheSHIPmarket:Highinterestbutslowdecisionmaking”,SolarThermalWorld,March28,2023,https://solarthermalworld.org/news/mood-on-the-ship-market-high-interest-but-slow-decision-making.100SolarThermalPlantsDatabase,http://ship-plants.info/solar-thermal-plants,accessedApril13,2023.101DataassessedbyasurveyamongthecompanieslistedinSolarPayback,op.cit.note88,andcitedinEpp,op.cit.note90.102Ibid.AkeydriverintheNetherlandsisanationalsupportschemeforsolarthermalsystemsupto200m2,withatargetednaturalgasphase-outalsoplayingarole,fromEpp,op.cit.note99.103FournewsystemsfromEpp,op.cit.note90.Thecountry’sfirstsolarsteamboiler(170°C)a2.3MWth(4,000m2)parabolictroughplantforpasteurisationatanalmondprocessingfacility,meets100%ofthefactory’sdemandduringthedaytime,fromB.Epp,“2.3MWsolarsteamboilerforalmondpasteurizationinCalifornia”,SolarThermalWorld,March3,2022,https://solarthermalworld.org/news/2-3-mw-solar-steam-boiler-for-almond-pasteurization-in-california.104Epp,op.cit.note89.105Epp,op.cit.note99.106A.D.Rosell,“HeatpurchaseagreementsontheriseinSpain”,SolarThermalWorld,August10,2022,https://solarthermalworld.org/news/heat-purchase-agreements-on-the-rise-in-spain.107Epp,op.cit.note99.108FossilfuelcostsfromA.D.Rosell,“ZeroCAPEXsolarheatforMexicanindustry”,SolarThermalWorld,March18,2022,https://solarthermalworld.org/news/zero-capex-solar-heat-for-mexican-industry;carbonemissionsfromEpp,op.cit.note99.TherelativedeclineinthenumberofsystemscompletedinMexicoin2022wasduetoimplementationdelaysstemmingfromsupplychainissuesanddelaysinpaymentsbyclients.Atotalof13projectswerecompletedin2022,comparedwith18projectsin2021and16in2020,allfromEpp,idem.109Rosell,op.cit.note108.110See,forexample:B.Epp,“Welcometoanewyear…”,op.cit.note7;Rosell,op.cit.note108;Rosell,op.cit.note106.111Epp,“Welcometoanewyear…”,op.cit.note7.Internaldecarbonisationtargetsalsohavebeenimportantfactors,fromidem.EvenwhereSHIPsystemsareverycompetitivewithfossilfuels,suchasinsouthernSpain,thelackofawarenessaboutthebenefitsofsolarheatremainsachallenge.OnecompanyinsouthernSpainoffersheatforEUR15-20perMWh,whichcomparestogasatEUR80-90perMWh,fromRosell,op.cit.note106.112B.Epp,“Structuralchangesinsolarindustrialheatsupplyindustry”,SolarThermalWorld,July6,2022,https://solarthermalworld.org/news/structural-changes-in-solar-industrial-heat-supply-industry.Asurveyofdevelopersshowed25companiesreportingatleastoneprojectcompletedin2022,upfrom19in2021,fromEpp,op.cit.note90.113Epp,op.cit.note112.Applyingforgovernmentsubsidiesslowingrolloutofprojects,fromS.PapaandP.Dias,SolarHeatEurope,personalcommunicationwithREN21,May2023.114B.Epp,“NewGlasspointannouncesfirst1.5GWparabolictroughfield”,SolarThermalWorld,June10,2022,https://solarthermalworld.org/news/new-glasspoint-announces-first-1-5-gw-parabolic-trough-field;GlassPoint,“MA’ADENandGlassPointsignaMemorandumofUnderstanding(“MOU”)todeveloptheworld’slargestsolarprocesssteamplant”,June2,2022,https://www.glasspoint.com/maaden-press-release.TheplantistheMa’adenfacilityinRasalKhair,andtheSHIPprojectwillbeaparabolictroughfield,fromEpp,op.cit.thisnote.117BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERENDNOTES–WINDPOWER1Globaladditionsin2022aregross(notaccountingfordecommissionedcapacity),andalldataarebasedonthefollowing:GlobalWindEnergyCouncil(GWEC),“GlobalWindReport2023”,March27,2023,p.10,https://gwec.net/globalwindreport2023;GWEC,“GlobalWindReport2023”,March2023,unpublisheddocument;AmericanCleanPower(ACP),“CleanPowerQuarterly2022Q4–MarketReport”,February2023,p.5,https://cleanpower.org/resources/clean-power-quarterly-market-report-q4-2022;WindEurope,“WindEnergyinEurope:2022StatisticsandtheOutlookfor2023-2027”,February2023,pp.10,11,https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027;G.Costanzo,WindEurope,Brussels,personalcommunicationwithREN21,March13,2023.NotethatGWECreportsinstallationswithturbineslargerthan200kW;projectswithsmallerturbinesarenotincluded.Inaddition,GWECdataincludeinstalledandfullycommissionedcapacity.During2022,1,860MWwasdecommissioned,upfrom1,132MWdecommissionedin2021,fromGWEC,“GlobalWindReport2023”,March2023,op.cit.thisnote.Annualinstallationsreportedinthissectionaregrossadditionsunlessotherwisenoted(butmostcountriesdidnotdecommissioncapacityduringtheyear),andyear-endtotalsaccountfordecommissionedcapacity.Also,netglobaladditionsin2022were74,653MWforayear-endtotalof898,824MW,basedondatafromInternationalRenewableEnergyAgency(IRENA),“RenewableCapacityStatistics2023”,March2023,p.14,https://www.irena.org/Publications/2023/Mar/Renewable-capacity-statistics-2023;globaladditionswere88,631MWforayear-endtotalof934,443MW(representingthefirstmarketdeclinesince2016),includingcapacityinstalledinChinabutnotyetgrid-connectedbyend-2022,fromWorldWindEnergyAssociation(WWEA),“WWEAAnnualReport2022:Windpowerinstallations2022staybelowexpectations”,March23,2023,https://wwindea.org/wp-content/uploads/2023/03/WWEA_WPR2022WEB.pdf;annualinstallationsweredown15%,followingtworecordyears,to86GW(withoffshoreinstallationsdown46%to9.1GW),fromBloombergNEF,“GoldwindandVestasinPhotoFinishforTopSpotasGlobalWindPowerAdditionsFall”,March23,2023,https://about.bnef.com/blog/goldwind-and-vestas-in-photo-finish-for-top-spot-as-global-wind-power-additions-fall.Figure31basedonhistoricaldatafromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.thisnote,pp.100-102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.thisnote;datafor2022basedonsourcesprovidedinthisnote.2Capacityinstalledduringtheyearwas88,631MW,includingcapacityinstalledinChinabutnotofficiallygrid-connectedbytheendof2022,foratotalof934,443MW,fromWWEA,op.cit.note1.Capacitythatwasmechanicallyinstalledduring2022was90.3GWforatotalofnearly940GW,including13GWofnewinstallationsin(mostly)ChinaandVietnamthatwerenotgrid-connectedbyyear’send,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.92,andadjustingforlowerinstallationsinSweden,fromCostanzo,op.cit.note1.ThehigherglobalcapacitynumbersfrombothWWEAandGWECinclude44.7GWmechanicallyinstalledonshoreinChina,fromChineseWindEnergyAssociation(CWEA),citedinGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.98;thisnumberis12.1GWhigherthanthe32.6GWofgrid-connectedcapacityasreportedbyChina’sNationalEnergyAgency(NEA),perGWEC,idem.PreviouseditionsoftheRenewablesGlobalStatusReportusedtheCWEAdata(includingmechanicallyinstalledandofficiallygrid-connectedcapacityinChina)forChinaaswellasglobaltotals.TheCWEAbelievedthesenumberstobestreflectthestateoftheindustryinChina.SeeendnotesinpreviouseditionsofthissectioninpastGSRsformoredetails.StartingwiththeGSR2023,onlyNEAdataforChinaareincluded,exceptwhereotherwisenoted.Thechangereflectsthefactthatmanyotherorganisations,includingIRENAandnowGWEC,reportonlygrid-connecteddata;inaddition,Vietnamalsomechanicallyinstalledcapacitythatwasnotcommissionedin2022becauseofgridconnectiondelays,soitmadesensetoshifttocountingonlyfullycommissioned,grid-connectedadditionsandtotalinstallations.3ThirdlargestyearfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.10.4Marketdeclinewasanestimated17.5%basedonadditionsof77.2GWin2022andof93.6GWin2021,calculatedusingdatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.Rateofdeclineinonshoreandoffshoreinstallations,China,UnitedStatesandEuropeallfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.8,97.Installationsweredown17%relativeto2021,fromGWEC,idem,p.10.ThelargestdeclinesinannualinstallationswereinNorthAmerica(down28%,or3.8GW),AfricaandtheMiddleEast(down75%,or1.4GW)andLatinAmericaandtheCaribbean(down10%,0.6GW).AfricaandtheMiddleEastconnected453MW,thelowestlevelsince2013;LatinAmericaandtheCaribbeanwerestablewith5.2GWinstalled(mostlyinBrazil),allfromGWEC,idem,p.109.5M.Dyrholm,Foreword,inGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.2;W.Mathis,R.BeeneandJ.Saul,“WindPower’s‘ColossalMarketFailure’ThreatensClimateFight”,Bloomberg,April25,2022,https://www.bnnbloomberg.ca/wind-power-s-colossal-market-failure-threatens-climate-fight-1.1756429.Despiterisingwindcosts,windenergyremainscost-competitiveduetorisingfossilfuelprices,fromC.Richard,“WindturbinemakerVestasexpects2022lossand‘profitchallenge’in2023”,WindpowerMonthly,January27,2023,https://www.windpowermonthly.com/article/1811536/wind-turbine-maker-vestas-expects-2022-loss-profit-challenge-2023;Reve,“Thewindpowerindustry’schallengingperiodcontinuedin2022”,EVWind,January27,2023,https://www.evwind.es/2023/01/27/the-wind-power-industrys-challenging-period-continued-in-2022/89892.Offshorewindalsoiscost-competitivewithfossilgenerationinspiteofrecentcostinflation,fromGWEC,“GlobalOffshoreWindReport2022”,June29,2022,p.5,https://gwec.net/gwecs-global-offshore-wind-report.6GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.93,94;F.Zhao,GWEC,personalcommunicationwithREN21,May1,2023.7See,forexample:A.Symons,“Finland:Windpowerincreasedby75%lastyear,boostingenergysecurityandclimategoals”,EuroNews,January12,2023,https://www.euronews.com/green/2023/01/12/finland-wind-power-increased-by-75-last-year-boosting-energy-security-and-climate-goals;KyodoNews,“Japanaimstospeedupstartofnewoffshorewindpowerplants”,March18,2022,https://english.kyodonews.net/news/2022/03/9e13148b7dc4-japan-aims-to-speed-up-start-of-new-offshore-wind-power-plants.html;A.Morales,“U.K.torampupoffshorewindtargetsinenergysecuritypush”,Bloomberg,March17,2022,https://www.bloomberg.com/news/articles/2022-03-17/u-k-to-ramp-up-offshore-wind-targets-in-energy-security-push;GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1;WWEA,op.cit.note1.Cost-competitivenessalsofromW.Mathis,“RenewablePower’sBigMistakeWasaPromisetoAlwaysGetCheaper”,Bloomberg,November7,2022,https://www.bloomberg.com/news/articles/2022-11-07/wind-giant-rues-promise-that-renewable-power-could-be-free.Electricitygenerationfromwindpowerischeaperthanthatfromcoalinalmosteverycountry,evenwithoutconsideringthecostofcarbon,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.21.8See,forexample,Statista,“Companieswiththelargestcontractedrenewablecapacitythroughcorporatepowerpurchaseagreements(PPAs)worldwidein2022,bytechnology”,https://www.statista.com/statistics/1375971/renewable-ppa-capacity-worldwide-by-company-and-technology,accessedApril1,2023;10.9GW(including4.8GWintheAmericas;4.6GWinEurope,theMiddleEastandAfrica;and1.5GWinAsia-Pacific)fromBloombergNEFandprovidedbyZhao,op.cit.note6.Ofthis,about6.6GWwascontractedinEurope,fromCostanzo,op.cit.note1,May3,2023.9Globaltargetsbasedondataandsourcesthroughoutthissection;challengesfrom,forexample,C.Mapes,TheLincolnElectricCompany,inGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.6;GWEC,idem,p.16;WindEurope,“EUwindinstallationsupbyathirddespitechallengingyearforsupplychain”,January11,2023,https://windeurope.org/newsroom/press-releases/eu-wind-installations-up-by-a-third-despite-challenging-year-for-supply-chain;B.Woods,“FromGEtoSiemens,thewindenergyindustryhopesbillionsinlossesareabouttoend”,CNBC,April17,2023,https://www.cnbc.com/2023/04/17/from-ge-to-siemens-wind-energy-hopes-its-crisis-is-about-to-end.html;O.Jenkinson,“CriticalriskstoEuropeanwindsupplychainthreatentoderailgreentransition”,WindpowerMonthly,April19,2023,https://www.windpowermonthly.com/article/1820082/critical-risks-european-wind-supply-chain-threaten-derail-green-transition.10J.Saul,W.MathisandR.Morison,“Planet-SavingWindFarmsFallVictimtoGlobalInflationFight”,Bloomberg,March10,2023,https://www.bloomberg.com/news/articles/2023-03-10/offshore-wind-farms-face-fresh-hurdles-around-the-world-because-of-inflation;W.Mathis,R.BeeneandJ.Saul,“Wind118BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERPower’s‘ColossalMarketFailure’ThreatensClimateFight”,Bloomberg,April25,2022,https://www.bloomberg.com/news/articles/2022-04-25/wind-power-s-colossal-market-failure-threatens-climate-fight;B.Backwell,“WemustinvestinsupplychaintobuildthenextTW”,inGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.3;ReutersEvents,“Lossesmountatturbinemakers;U.S.windinstallsdiveonsupplychainwoes”,November16,2022,https://www.reutersevents.com/renewables/wind/losses-mount-turbine-makers-us-wind-installs-dive-supply-chain-woes;ReutersEvents,“EuropecountersU.S.withcleanenergypackage;Inflationhoundsturbinesuppliers”,February1,2023,https://www.reutersevents.com/renewables/wind/europe-counters-us-clean-energy-package-inflation-hounds-turbine-suppliers.11Permittingfrom,forexample,Saul,MathisandMorison,op.cit.note10;W.Mathis,“RenewablePower’sBigMistakeWasaPromisetoAlwaysGetCheaper”,Bloomberg,November7,2022,https://www.bloomberg.com/news/articles/2022-11-07/wind-giant-rues-promise-that-renewable-power-could-be-free;N.Ferris,“WhattheclosureofGermany’sonlywindbladefactorysaysaboutitsenergytransition”,EnergyMonitor,May20,2022,https://www.energymonitor.ai/tech/renewables/what-the-closure-of-germanys-only-wind-blade-factory-says-about-its-energy-transition.Projectshavestalledorbeendelayedinmuchoftheworld,includingcountriesinEurope,theUnitedStates,India,Japanandelsewhere,fromB.Backwell,Foreword,inGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.3.Globally,theaveragetimeforpermittingofwindprojectsexceedsfiveyears,andpermittingisoneofthemainbarrierstoachievingclimateneutralitythroughwindpower,fromS.Gsänger,inWWEA,“WWEAWebinar:WindPowerMarketsAroundtheWorld2023”,Part1,April27,2023,https://www.youtube.com/watch?v=WsRW1y_FwLk.Inmanycountriesittakessignificantlylonger;forexample,inSwedenthepermittingprocesstakes5-8years,fromA.Wickmann,SwedishWindPowerAssociation,inWWEA,idem.GridplanningfromJ.LeeandM.Blanch,“‘Threebigbarriersstopnationsquicklyadoptingwindpower–it'stimetobreakthemdown’”,REchargeNews,March13,2023,https://www.rechargenews.com/energy-transition/-three-big-barriers-stop-nations-quickly-adopting-wind-power-its-time-to-break-them-down-/2-1-1418216;A.Lee,“’Badpermittingprimeexample’Italyinwindindustryfiringlineaftergreenpowerauctionflops”,REchargeNews,February1,2022,https://www.rechargenews.com/wind/bad-permitting-prime-example-italy-in-wind-industry-firing-line-after-green-power-auction-flops/2-1-1161131;ReutersEvents,“Europecounters…”,op.cit.note10;RenewableUK,citedinM.Mace,“Report:UK‘wasted’enoughwindenergytopower1.2millionhomesthiswinter”,edie,February6,2023,https://www.edie.net/report-uk-wasted-enough-wind-energy-to-power-1-2-million-homes-this-winter.Connectionqueuesfrom,forexample,R.Kessler,“USclean-powerbuildtumblestothree-yearlowamid‘policyandregulatorychallenges’:ACP”,REchargeNews,November2,2022,https://www.rechargenews.com/wind/us-clean-power-build-tumbles-to-three-year-low-amid-policy-and-regulatory-challenges-acp/2-1-1345060,andfromC.Clifford,“Windandsolarpowergeneratorswaitinyearslonglinestoputcleanelectricityonthegrid,thenfacehugeinterconnectionfeestheycan’tafford”,CNBC,April6,2023,https://www.cnbc.com/2023/04/06/outdated-us-energy-grid-tons-of-clean-energy-stuck-waiting-in-line.html.12H.Zaremba,“Europe’swindenergyindustryhashitaroughpatch”,https://www.baystreet.ca/articles/commodities/82836/112822;WindEurope,op.cit.note1,p.54.13Downstreampricepressures,pandemicchallengesandskilledlabourfromB.Lepic,“Windindustryfeelingtightsqueezeonsupplychain”,RigZone,August10,2022,https://www.rigzone.com/news/wind_industry_feeling_tight_squeeze_on_supply_chain-10-aug-2022-169917-article.PandemicchallengesandskilledlabouralsofromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.14;Kessler,op.cit.note11.InflationandwarinUkrainefromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.5;A.F.Rochas,“EUwindtargetsunderthreatfromvolatilecosts”,ReutersEvents,November16,2022,https://www.reutersevents.com/renewables/wind/eu-wind-targets-under-threat-volatile-costs;ReutersEvents,“Lossesmount…”,op.cit.note10;D.Peterson,“TheEuropeanwindsectoris‘struggling’inthefaceofescalatingcosts”,EnergyNews,October11,2022,https://www.energy-news.net/the-european-wind-sector-is-struggling-in-the-face-of-escalating-costs;GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1;SiemensGamesa,“European’senergyindependenceimpossibleunlesswindpowerconsideredastrategicindustry”,September26,2022,https://www.siemensgamesa.com/en-int/newsroom/2022/09/092622-siemens-gamesa-press-release-europe-wind-energy-security-white-paper.Profitabilityofoffshoreaswellasonshore,fromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.14.Forexample,the1.2GWCommonwealthWindprojectneartheUScoastofMassachusettswasdelayedin2022foratleastayear,and6GWofprojectsoffthecoastofGermanydidnotadvance,fromSaul,MathisandMorison,op.cit.note10.14UnfavourablepoliciesandregulatorylandscapefromWWEA,op.cit.note1;Rochas,op.cit.note13;ReutersEvents,“Lossesmount…”,op.cit.note10;Peterson,op.cit.note13;Kessler,op.cit.note11;developersfromSaul,MathisandMorison,op.cit.note10;turbineordersfromWindEurope,“Investmentsinwindenergyaredown–Europemustgetmarketdesignandgreenindustrialpolicyright”,January31,2023,https://windeurope.org/newsroom/press-releases/investments-in-wind-energy-are-down-europe-must-get-market-design-and-green-industrial-policy-right;investmentfromWindEurope,op.cit.note1,p.8,andfromWindEurope,“Europeinvested€17bninnewwindin2022,thelowestsince2009“,March29,2023,https://windeurope.org/newsroom/press-releases/europe-invested-e17bn-in-new-wind-in-2022-the-lowest-since-2009.15E.Ng,“ChinesewindturbinemakerseyeAsia,Europeforgrowthasclimatechange,energysecuritytakecentrestage”,SouthChinaMorningPost,August29,2022,https://www.scmp.com/business/china-business/article/3190585/chinese-wind-turbine-makers-eye-asia-europe-growth-climate;Peterson,op.cit.note13.16See,forexample:GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.20,22;WindEurope,op.cit.note1,p.54;ReutersEvents,“Lossesmount…”,op.cit.note10;Zaremba,op.cit.note12;Mathis,op.cit.note11;Mathis,BeeneandSaul,op.cit.note10;S.Mody,“GEislayingoff20%ofitsU.S.workforcedevotedtoonshorewindpower,costinghundredsofjobs”,CNBC,October6,2022,https://www.cnbc.com/2022/10/06/ge-layoff-20percent-of-onshore-wind-workforce-hundreds-of-jobs.html;A.Lee,“WindpowergiantSiemensGamesatoaxealmost3,000jobsinturnaroundbid”,REchargeNews,September29,2022,https://www.rechargenews.com/wind/wind-power-giant-siemens-gamesa-to-axe-almost-3-000-jobs-in-turnaround-bid/2-1-1323294;NordexAccionaWindpower,“NordexSE:NordexGroupachievesconsolidatedsalesofEUR5.7billion”,March31,2023,https://www.nordex-online.com/en/2023/03/nordex-se-nordex-group-achieves-consolidated-sales-of-eur-5-7-billion;NordexGroup,“NordexGroupgeneratesorderintakeof6.3GWinthefiscalyear2022”,January17,2023,https://www.nordex-online.com/en/2023/01/nordex-group-generates-order-intake-of-6-3-gw-in-the-fiscal-year-2022;A.Lee,“Acyberattackandmarketheadwinds:Loss-making2022ayeartoforgetforNordex”,REchargeNews,March9,2023,https://www.rechargenews.com/wind/a-cyberattack-and-market-headwinds-loss-making-2022-a-year-to-forget-for-nordex/2-1-1416787;N.Ferris,“WhattheclosureofGermany’sonlywindbladefactorysaysaboutitsenergytransition”,EnergyMonitor,May20,2022,https://www.energymonitor.ai/tech/renewables/what-the-closure-of-germanys-only-wind-blade-factory-says-about-its-energy-transition.17See,forexample:Mathis,op.cit.note11;GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.10,20,22;WindEurope,op.cit.note1,p.54;ReutersEvents,“Lossesmount…”,op.cit.note10;Zaremba,op.cit.note12;Mathis,op.cit.note11;Mathis,BeeneandSaul,op.cit.note10;Mody,op.cit.note16;Lee,“Windpowergiant…”,op.cit.note16;NordexAccionaWindpower,“NordexSE:NordexGroupachievesconsolidatedsalesofEUR5.7billion”,March31,2023,https://www.nordex-online.com/en/2023/03/nordex-se-nordex-group-achieves-consolidated-sales-of-eur-5-7-billion;NordexGroup,“NordexGroupgeneratesorderintakeof6.3GWinthefiscalyear2022”,January17,2023,https://www.nordex-online.com/en/2023/01/nordex-group-generates-order-intake-of-6-3-gw-in-the-fiscal-year-2022;Lee,“Acyberattack…”,op.cit.note16;Ferris,op.cit.note16.18PredictablepoliciesandsteelfromPeterson,op.cit.note13;erodingprofitsfromLepic,op.cit.note13.Goldwind,China’slargestfirm,sawweakerprofitsforthefirsthalfof2022andaprofitdeclinewasexpectedforthefullyear,fromW.MathisandJ.Saul,“WindFarmsNeedtoBoomtoHitClimateTargets,ButGrowthIsStalling”,BloombergNEF,March23,2023,https://financialpost.com/pmn/business-pmn/wind-farms-need-to-boom-to-hit-climate-targets-but-growth-is-stalling.Thisshiftwasdespitestronggrowthinsalesvolumeduringtheyear,fromNg,op.cit.note15.19WesternmanufacturersfromMathis,BeeneandSaul,op.cit.note10.Betweenlate2020andlate2022,windturbineprices(atleastinEurope)increased40%duetoinflationincommoditypricesandotherinputcosts,fromWindEurope,“Investments119BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERinwindenergy…”,op.cit.note14.GoldwindfromBloombergNews,“China’swindturbinepriceshavehitbottom,Goldwindsays”,April8,2022,https://www.bloomberg.com/news/articles/2022-04-08/china-s-wind-turbine-prices-have-hit-bottom-goldwind-says.AccordingtoBloombergNEF,turbinepricesinChinahavefallenfromaboutUSD700,000perMWinearly2020toaboutUSD470,000perMWattheendof2021,withbidsfornewprojectsaveragingaboutUSD370,000perMWinearly2022,fromidem.20See,forexample:GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.11,22;A.Frangoul,“Theenergytransitionwillfailunlessindustryfixeswindpowerissues,SiemensEnergyCEOsays”,CNBC,November17,2022,https://www.cnbc.com/2022/11/17/energy-transition-will-fail-unless-wind-power-fixes-problems-ceo.html;Ferris,op.cit.note16;SiemensGamesa,op.cit.note13;GWEC,“GlobalwindindustryunitestoaddressclimateandenergycrisesaheadofCOP27”,July15,2022,https://gwec.net/global-wind-industry-unites-to-address-climate-and-energy-crises-ahead-of-cop27.21In2022,allsuccessfulauctionsforoffshorewindpowerinEuropeincludednon-pricecriteriaaspartoftheevaluation,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.77.SeealsoWindEurope,“WindEuropepositiononnon-pricecriteriainauctions”,April13,2022,https://windeurope.org/policy/position-papers/windeurope-position-on-non-price-criteria-in-auctions.22S.Gsänger,WWEA,personalcommunicationwithREN21,May2,2023.23BasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.24Ibid.;ACP,op.cit.note1,p.5;WindEurope,op.cit.note1,pp.10,11;Costanzo,op.cit.note1;WWEA,op.cit.note1.25RegionalsharesbasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromACP,op.cit.note1,p.5,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.NumbersintextarebasedonregionalgroupingsthatincludeTürkiyeaspartofAsia,ratherthanEurope;otherregionalsharesincludePacificwithjustover2%ofthetotaladdedin2022,andAfricaandtheMiddleEastwith1.9%,basedondatafromidem,allsources.26Thetopfivemarketsaccountedfor71.9%ofglobalinstallationsin2022,basedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromACP,op.cit.note1,p.5,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.27BasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromACP,op.cit.note1,p.5,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.Figureof1.6GWtorankamongtop10isbasedondatafromidem,allsources.Figureof1.4GWin2021(and1.1GWin2020)basedondatafromGWEC,“GlobalWindReport2022”,April4,2022,https://gwec.net/global-wind-report-2022,p.112,andfromGWEC,“GlobalWindReport2022”,April2022,unpublisheddocument.Figure32basedoncountry-specificdataandsourcesprovidedthroughoutthissection,anddrawnlargelyfromthefollowing:GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1;GWEC,“GlobalWindReport2023”,March2023,op.cit.note1;WindEurope,op.cit.note1,pp.10,11;Costanzo,op.cit.note1;WWEA,op.cit.note1;ACP,op.cit.note1.28BasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromACP,op.cit.note1,p.5https://cleanpower.org/resources/clean-power-quarterly-market-report-q4-2022/,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.29GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.52.30Agrosstotalof37,631MW(including32,579MWonshoreand5,052MWoffshore)wasinstalledandgridconnectedin2022,with1,1214MWofonshorecapacitydecommissionedduringtheyear,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.52,106,fromChina’sNEA,“NationalEnergyAdministrationPressConference”,February13,2023,http://www.nea.gov.cn/xwfb/202301zb/index.htm(usingGoogleTranslate),andfromChinaDaily,“Solar,windprojectstoaccelerate”,February21,2023,http://english.www.gov.cn/statecouncil/ministries/202302/21/content_WS63f41dafc6d0a757729e6fc7.html.TheCWEAreportedtheinstallationof44.7GWonshore,butChina’sNEAannouncedthat32.6GWwasgrid-connectedin2022,meaningthat12.1GWinstalledwerenotyetgrid-tiedattheendoftheyear,fromidem,p.93,andfromNEA,citedinMathisandSaul,op.cit.note18.NotethatWWEAcontinuestoreportdatafortotalmechanicallyinstalledcapacity,reportingthat48,960MWwasaddedforayear-endtotalof395.6GW,basedondatafromtheCWEA,citedinWWEA,op.cit.note1;alsonotethatabout50GWwasadded(43.8GWonshoreand5.16GWoffshore)foryear-endtotalofabout400GW,fromF.Guo,CWEA,participantinWWEA,op.cit.note11.31GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.52,106,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.32Zhao,op.cit.note6.33BasedondatafromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.AlsoseeE.Ng,“Climatechange:Chinasetsanothersolarpowerinstallationrecordwhileputtingthebrakesonfossilfuelcapacity”,SouthChinaMorningPost,January18,2023,https://www.scmp.com/business/article/3207250/climate-change-china-sets-another-solar-power-installation-record-while-putting-brakes-fossil-fuel.34Figureof16.3%basedon762,400GWhin2022,and655,600GWhin2021,fromChinaElectricityCouncil,providedbyZhao,op.cit.note6.Windpenetrationwas8.8%bytheendof2022,upfrom7.8%in2021and6.1%in2020;itpassednuclearpowerin2018tobecomeChina’sthirdlargestsourceofelectricity,aftercoalandhydropower,allfromF.Guo,CWEA,inWWEA,op.cit.note11.Windenergyaccountedfor9.3%ofChina’selectricitymixin2022,fromEmber,citedinSRBhandari,“Chinaleads,aswindandsolarreachrecordpowergenerationin2022”,RadioFreeAsia,April12,2023,https://www.globalsecurity.org/wmd/library/news/china/2023/04/china-230412-rfa03.htm.35Ng,op.cit.note33.36GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.11-12,24.37Ibid.,pp.25,54;Ng,op.cit.note15.Morethan15manufacturersareactiveinChina,andChina(includingcapacityfromthreewesternturbinemanufacturers)represents60%ofwindturbinemanufacturingcapacity(nacelleassemblycapability)asofearly2023;mostoftherestisininEurope(19%),theUnitedStates(9%),India(7%)andLatinAmerica(4%),allfromGWECMarketIntelligence,February2023,citedinGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1.38GWEC,“GlobalWindReport2023”,op.cit.note1,pp.25,54;Ng,op.cit.note15.FiercecompetitiondrivingdownpricesalsofromMathisandSaul,op.cit.note18.AsofJanuary2022,theaveragepriceofanonshorewindturbineinChinawasabouthalfthatoutsideofChina,whileChinese-madeoffshoreturbinesavailableinthemarketalsocostlessthanthosemadeelsewhere,fromBloombergNEF,“WindTurbinePriceIndex”,citedinBloombergNEF,“Wind–10predictionsfor2022”,January28,2022,https://about.bnef.com/blog/wind-10-predictions-for-2022.Anestimated4,224turbineshadbeenexportedfromChinaasofend-2022,foracumulativecapacityof12GW,fromF.Guo,CWEA,inWWEA,op.cit.note11.Lessthan3%ofcapacityoutsideofChinabasedon12GWandestimateof540,392MWinstalledgloballyoutsideofChina,basedondatafromGWEC,“GlobalWindReport2023”,March2023,unpublisheddocument.39Sixoftop10fromBloombergNEF,“GoldwindandVestasinPhotoFinishforTopSpotasGlobalWindPowerAdditionsFall”,March23,2023,https://about.bnef.com/blog/goldwind-and-vestas-in-photo-finish-for-top-spot-as-global-wind-power-additions-fall,andfromGWEC,“GlobalWindMarketDevelopment:SupplySideData2022”,p.7,unpublisheddocument.EstimatesfromBloombergNEFarebasedon49GWofnewwindcapacityaddedinChinaduring2022;notallofthiscapacitywasgrid-connectedbyyear’send.Goldwindsupplied12.7GWofturbinesforprojectsin2022,followedcloselybyVestas(12.3GW),andthenGE(UnitedStates,with9.3GW),Envision(China,8.3GW),SiemensGamesa(Spain,6.8GW)tiedwithMingYang(China,6.8),followedbyWindey(China,6.4GW),Nordex(Germany,4.7),Sany(China,4GW)andCRRC(China,3.2GW),fromBloombergNEF,op.cit.thisnote.GWECestimatesbasedontotalof89,890MWinstalledin2022(butnotallgridconnectedbyyear’send),withVestasstillintheleadwith12.6GW,followedbyGoldwind(11.8GW),SiemensGamesa(9.3GW),GERenewableEnergy(8.8GW),Envision(8.4GW),MingYang(6.5GW),Windey(6.3GW),NordexGroup(4.9GW),SANY(4.5GW)andCRRC(3.9GW),fromGWEC,op.cit.thisnote,pp.3,7.40Figureof3.1GWfromJ.Hensley,ACP,Washington,DC,personalcommunicationwithREN21,April20,2023;otherdatafromACP,op.cit.note1,pp.5,7.PartialandfullrepoweringfromR.Davidson,“AmericanCleanPowerAssociation:Policyvacuumfeedsfive-yearlowforUSonshorewind”,WindpowerMonthly,February17,2023,https://www.windpowermonthly.com/120BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERarticle/1813784/american-clean-power-association-policy-vacuum-feeds-five-year-low-us-onshore-wind.41GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.93,fromACP,op.cit.note1,pp.5,7,andfromDavidson,op.cit.note40.NotethattheProductionTaxCreditwasextendedandincreasedforprojectsthatbeginconstructionbytheendofDecember2024;in2025,thewindcreditswillbereplacedbytechnology-neutralcreditsforlow-carbonelectricitygeneration,whichwillphaseoutin2032(orwhenUSpowersectorgreenhousegasemissionsfalltoone-quarterof2022levels),fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.108.However,asofearly2023,theUSInternalRevenueServicehadnotissuedguidanceonhowcompaniescanaccessthetaxcredits,fromDavidson,op.cit.note40.42ACP,op.cit.note1,p.7.43Figureof10.2%basedonpreliminarydataof434,812GWhofutility-scalewindgenerationand4,243,136GWhgenerationfromallutility-scalesourcesduring2022;upfrom9.2%basedon378,197GWhofutility-scalewindgenerationand4,108,303GWhgenerationfromallutility-scalesourcesduring2021,allfromUSEnergyInformationAdministration(EIA),“ElectricPowerMonthlywithDataforDecember2022”,February2023,TableES1.B,https://www.eia.gov/electricity/monthly/archive/february2023.pdf.44Down13%,fromACP,op.cit.note1,p.13;advanceddevelopmentpipelinefromDavidson,op.cit.note4045Davidson,op.cit.note40.46Increased27%fromIbid.;felllate2022,fromReutersEvents,“EUleadersagree‘targeted’supportforcleantech;U.S.windpowerpricesfall”,February15,2023,https://www.reutersevents.com/renewables/wind/eu-leaders-agree-targeted-support-clean-tech-us-wind-power-prices-fall.CapitalexpenditurerequirementsfordevelopingwindfarmsonshoreintheUnitedStatesalsoincreased,bymorethan16%between2020and2022,fromSaul,MathisandMorison,op.cit.note10.47Almosthalfisbasedonthefollowing:Braziladdedaround8.5GWofnewgeneratingcapacityin2022,fromS.Djunisic,“Brazilexpects10.3GWofnewcapacityin2023,mainlywindandsolar”,RenewablesNow,January23,2023,https://renewablesnow.com/news/brazil-expects-103-gw-of-new-capacity-in-2023-mainly-wind-and-solar-812111,andadded8.2GWfromreve,“Brazilhopestohave10GWinstalledinwindpowerandsolarenergyby2023”,January20,2023,https://www.evwind.es/2023/01/20/brazil-hopes-to-have-10-gw-installed-in-wind-power-and-solar-energy-by-2023/89813.Figureof4.1GWbasedonGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.98,andonfigureof4,065MW(allonshore),fromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.48GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.109.49Ibid.,pp.85,109.Auctionsfortheregulatedelectricitymarkethavebeendeclininginrecentyears,soPPAshavebecomethedominantmarketforwindpower,fromE.Feitosa,Eolica,Brazil,inWWEA,“WWEAWebinar:WindPowerMarketsAroundtheWorld2023”,Part2,April27,2023,https://www.youtube.com/watch?v=-QR-ijAgg9Y.50Feitosa,op.cit.note49.51GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.Totalyear-endcapacitywas25,632MW,fromFeitosa,op.cit.note49.52SecondlargestfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.84;shareofelectricitymixfromAssociaçãoBrasileiradeEnergiaEólica(ABEEólica),providedbyZhao,op.cit.note6.Thiswasupfrom72.3TWh,or11.4%ofthemix,in2021,fromEPE,“BrazilianEnergyBalance2022,BaseYear2021/EmpresadePesquisaEnergética–RiodeJaneiro”,2022,providedbyA.R.J.Esparta,peerreviewcomment,undated.53Basedondataforcapacityaddedin2022,fromWindEurope,op.cit.note1,pp.10,11,13,andfromCostanzo,op.cit.note1;figureof16GWaddedin2021basedondatafromWindEurope,“WindEnergyinEurope:2021StatisticsandtheOutlookfor2022-2026,”February24,2022,p.11,https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2021-statistics-and-the-outlook-for-2022-2026,andfromI.Komusanac,WindEurope,Brussels,personalcommunicationwithREN21,April2022.NotethattheGSRdoesnotincludeTürkiyeaspartofEurope,sothecountry’sdataarenotincludedinthesenumbers.54BasedondatafromWindEurope,op.cit.note1,pp.10,11,13,14,17,andfromCostanzo,op.cit.note1.AllofEuropeinstalled17,874MW(15,414MWonshoreand2,460MWoffshore)in2022,anddecommissioned454MW,forayear-endtotalof242,432MW(212,165MWonshoreand30,267MWoffshore),fromidem,bothsources.NotethatthesedatadonotincludeTürkiye,whichthisGSRincludeswithAsia;theyassumepre-2022capacityforUkraineandtheRussianFederation;andtheyaccountforupdatedstatisticsforSweden.NotethatGermanywasresponsibleformostdecommissionedcapacity(266MW),followedbytheNetherlands(80MW),Austria(39MW)andDenmark(27MW),fromidem,p.17.55BasedondatafromWindEurope,op.cit.note1,p.10,andfromCostanzo,op.cit.note1.EUMemberStatesadded15,761MW(14,540MWonshoreand1,221MWoffshore)in2022forayear-endtotalof204,112MW(187,829MWonshoreand16,283MWoffshore),fromidem,bothsources.56WindEurope,op.cit.note1,pp.8,9,44.57Ibid.,pp.8,9,44.58Ibid.,p.53.59Figuresof36%and10.7GWbasedonordersof16.9GW(less322MWinTürkiye)in2021and10.9GW(less155MWinTürkiye)in2022,fromWindEurope,“WindTurbineOrdersMonitoring,2022Statistics”,January2023,unpublisheddocument(formembersonly);WindEurope,“WindTurbineOrdersMonitoring,2021statistics”,January2022,unpublisheddocument(formembersonly);andfromCostanzo,op.cit.note1,May3and4,2023.Notethattherewereundisclosedorderstotalling2.1GWin2021and2.6GWin2022,andsomeofthatcapacitycouldhavebeenforTürkiye(whichtheGSRdoesnotincludewithEurope),fromCostanzo,op.cit.thisnote.Declineinordercapacityalsoin2021,fromWindEurope,“WindTurbineOrdersMonitoring,2021Statistics”,op.cit.thisnote.InvestmentfromWindEurope,op.cit.note1,p.8,andfromWindEurope,“Europeinvested€17bn…”,op.cit.note14.NotethattheEUR17billioninvestmentreportedbyWindEuropeincludesEUR1billioninTürkiyeandEUR0.3billioninAzerbaijan,whichthisreportdoesnotclassifyasbeingpartofEurope;87%oftheEUR17billionwereintheEU,fromWindEurope,“FinancingandInvestmentTrends:TheEuropeanWindIndustryin2022”,March2023,pp.8,24,https://windeurope.org/intelligence-platform/product/financing-and-investment-trends-2022.60Figuresof36%and10.7GWbasedonordersof16.9GW(less322MWinTürkiye)in2021and10.9GW(less155MWinTürkiye)in2022,fromWindEurope,"WindTurbineOrdersMonitoring,2022Statistics",January2023,unpublisheddocument(formembersonly);WindEurope,"WindTurbineOrdersMonitoring,2021Statistics",January2022,unpublisheddocument(formembersonly);andfromG.Costanzo,WindEurope,personalcommunicationswithREN21,May3and4,2023.Notethattherewereundisclosedorderstotalling2.1GWin2021and2.6GWin2022,andsomeofthatcapacitycouldhavebeenforTürkiye(whichtheGSRdoesnotincludewithEurope),fromCostanzo,op.cit.thisnote.Declineinordercapacityalsoin2021,fromWindEurope,“WindTurbineOrdersMonitoring,2021Statistics",op.cit.thisnote.InvestmentfromWindEurope,op.cit.note1,p.8,andfromWindEurope,“Europeinvested€17bn…”,op.cit.note14.NotethattheEUR17billioninvestmentreportedbyWindEuropeincludesEUR1billioninTürkiyeandEUR0.3billioninAzerbaijan,whichthisreportdoesnotclassifyasbeingpartofEurope;87%oftheEUR17billionwereintheEuropeanUnion,fromWindEurope,“FinancingandInvestmentTrends…”,op.cit.note59,pp.8,24.61WindEurope,op.cit.note1,p.7,andfromCostanzo,op.cit.note1.TheleaderswereFinland(added2.4GW),theUnitedKingdomandGermany(both2.3GW),Sweden(2GW),Spain(1.7GW),andFranceandPoland(both1.5GW),fromWWEA,op.cit.note1.62BasedondatafromWindEurope,op.cit.note1,pp.10-11,andfromCostanzo,op.cit.note1.63BasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,fromWindEurope,op.cit.note1,pp.10-11,andfromCostanzo,op.cit.note1.64WindEurope,op.cit.note1,pp.10,14.Germanyadded2,403MWonshoreand342MWoffshore(anddecommissioned266MW)forayear-endtotalof66,322MW(including58,267MWonshoreand8,055MWoffshore),fromidem,pp.10,17.Germanyadded2,318MWforatotalof66,242MW,fromWWEA,op.cit.note1.Germanyinstalled2.4GWin2022,upfrom1.9GWin2021,with266MWdecommissioned,resultingin2.1GWofnetadditionsandtotalyear-endcapacityof58.1GW,fromDeutscheWindGuard,citedinB.Radowitz,“Germanwindsectorurgesto‘overcomepermitbottlenecks’despiteriseinonshoreadditions”,REchargeNews,January18,2023,https://www.rechargenews.com/wind/german-wind-sector-urges-to-overcome-permit-bottlenecks-despite-rise-in-onshore-additions/2-1-1389722.121BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERThecountryalsorepowered423MW,fromBundesverbandWindEnergie(BWE),citedinRadowitz,idem.65BasedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.LastyearofFITfromWindEurope,“WindinPower2017:AnnualCombinedOnshoreandOffshoreWindStatistics”,February2018,p.18,https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2017.pdf;EurObserv’ER,“WindEnergyBarometer”,February2018,p.10,https://www.eurobserv-er.org/wind-energy-barometer-2018.66Generationfromwindenergywas100.164TWhonshoreand25.123TWhoffshore,accountingfor18.2%and4.6%respectivelyofGermany’sgrosselectricityconsumption,fromGeschäftsstellederArbeitsgruppeErneuerbareEnergien-Statistik(AGEE-Stat)andUmweltbundesamt,“ErneuerbareEnergieninDeutschlandDatenzurEntwicklungimJahr2022”,February2023,pp.9,19,https://www.umweltbundesamt.de/publikationen/erneuerbare-energien-in-deutschland-2022.Germany’sgenerationfromwindenergyin2021was114.6TWh,fromidem.Generationin2022wasdownrelativeto2019and2020,fromUmweltbundesamt,“ErneuerbareEnergieninZahlen”,March17,2023,https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen#uberblick,viewedApril3,2023;andthisrelativedeclinewasduetolowwindspeedsformuchoftheyear,fromG.Maguire,“Column:WindsettoeaseGermany'spowercrunch,fornow”,Reuters,December13,2022,https://www.reuters.com/markets/commodities/wind-set-ease-germanys-power-crunch-now-2022-12-13.67G.Rajgor,“OnshorewindbreakthroughasGermanygreenlights10GWayearfrom2025”,WindpowerMonthly,July11,2022,https://www.windpowermonthly.com/article/1792723/onshore-wind-breakthrough-germany-green-lights-10gw-year-2025.Thenewlawaimstodoubleonshorecapacityto115GWby2030,callsonGermanstatestosetaside2%oflandforonshorewind,andsetsoffshoretargetsof30GWinoperationby2030,40GWby2035and70GWby2045),fromidem.AlsoseeDW,“GermanypresentsnewUkraine-acceleratedrenewablesplan”,April6,2022,https://www.dw.com/en/germany-presents-new-ukraine-accelerated-renewables-plan/a-61383714.68UndersubscribedfromSaul,MathisandMorison,op.cit.note10.During2022,3.2GWofonshorecapacitywassecuredfromatotalavailablecapacityof4.6GW,throughtechnology-specificauctionsinGermanywithfeed-inpremiums,fromWindEurope,op.cit.note1,pp.24,26.TheGermanlevywouldtake90%ofwind(andsolar)powerprofitsaboveEUR130/MWh,oraboveabenchmarkbasedontheFITassignedtoaspecificproject,fromN.Ford,“Germany’swindfalltaxcurtailsshort-termwindgrowth”,Reuters,December14,2022,https://www.reutersevents.com/renewables/wind/germanys-windfall-tax-curtails-short-term-wind-growth.AlsoseeReutersEvents,“EUcapswindrevenuesabovecostsbutnationallimitscouldbite”,October5,2022,https://www.reutersevents.com/renewables/wind/eu-caps-wind-revenues-above-costs-national-limits-could-bite.69Saul,MathisandMorison,op.cit.note10.70Finlandadded2,430MW,allonshore,forayear-endtotalof5,678MW(including5,607MWonshoreandtherestoffshore),fromWindEurope,op.cit.note1,pp.10,14;rankingsbasedondatafromidem,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.Finlandadded2,421MWforatotalof5,677MW,fromWWEA,op.cit.note1.71Increaseover2021basedondatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1;5.7GWfromWindEurope,op.cit.note1,pp.10,14;netzeroandinvasionfromSymons,op.cit.note7.72WindEurope,op.cit.note1,p.10.73Ibid.,pp.10,14.RecordalsobasedonhistoricaldatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.74Franceadded1,590MWonshoreand480MWoffshoreforayear-endtotalof21,135MW(including20,653MWonshoreand482MWoffshore),WindEurope,op.cit.note1,pp.10,14.Franceadded1,516MWforatotalof20,600MW,fromWWEA,op.cit.note1.75BasedondatafromENTSO-E,fromWindEurope,op.cit.note1,p.19.76BasedondatafromWindEurope,op.cit.note1,p.10,andonhistoricaldatafromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.Swedenadded2,054MWforatotalof14,227MW,fromWWEA,op.cit.note1,andfromA.Wickmann,SwedishWindPowerAssociation,inWWEA,op.cit.note11.77RankingsbasedondatafromWindEurope,op.cit.note1,pp.10,11,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.78WindEurope,op.cit.note1,p.38.79F.Jones,“Swedensetsnewrecordforwindenergy”,PowerTechnology,March29,2023,https://www.power-technology.com/news/sweden-wind-energy-record.Sweden’swindgenerationin2022wasabout33,000GWh(upfromabout27,100GWhin2021),andwindenergyaccountsforaboutone-thirdofthecountry’selectricitygeneration,oraboutthesameshareashydro-andnuclearpower,fromA.Wickmann,SwedishWindPowerAssociation,inWWEA,op.cit.note11.80BasedondatafromWindEurope,op.cit.note1,p.11,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.81GWEC,“GlobalWindReport2023”,March2023,op.cit.note1.In2022,theUnitedKingdomadded1,682MW,ofwhich502MWwasonshoreand1,179MWwasoffshore,anddecommissioned1MW;thisisupfrom2021additionsof328MWonshore(and2.9MWdecommissioned)anddownfrom2,316.5MWoffshore,totaling2,641.6MWnet.Theend-2022totalwas28,292.8MW(including14,574.9MWonshoreand13,917.9MWoffshore),allfromGWEC,op.cit.thisnote.TheUnitedKingdomadded2,339MWforatotalof28,087MW,fromWWEA,op.cit.note1.Thedeclineinoffshorecapacitybroughtonlinewasduetothegapbetweenexecutionofprojectsunderrounds2and3oftheUKContractsforDifference,fromZhao,op.cit.note6.Inaddition,offshorewindismorecyclicalthanonshore,withfewerbutlargerprojects,resultinginfluctuationsininstallations,fromCostanzo,op.cit.note1,May3,2023.82BBCNews,“OnshorewindrulestoberelaxedafterToryrevolt”,December6,2022,https://www.bbc.com/news/uk-politics-63880999;A.Lee,“UKwindpowerbreaksrecordsin2022aspressuregrowstoliftonshoreban”,REcharge,January6,2023,https://www.rechargenews.com/wind/uk-wind-power-breaks-records-in-2022-as-pressure-grows-to-lift-onshore-ban/2-1-1384290.83BasedondatafromWindEurope,op.cit.note1,p.11,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.In2022,theUnitedKingdomadded1,682MW,ofwhich502MWwasonshoreand1,179MWwasoffshore,anddecommissioned1MW;thisisupfrom2021additionsof328MWonshore(and2.9MWdecommissioned)and2,316.5MWoffshore,totalling2,641.6MWnet.Theend-2022totalwas14,574.9MWonshoreand13,917.9MWoffshore,allfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.84W.Mathis,“TheUKproducedarecordamountofwindpowerin2022,easinggascrisis”,Bloomberg,December22,2022,https://www.bloomberg.com/news/articles/2022-12-22/record-wind-power-spares-uk-even-worse-energy-crisis.85Spainadded1,659MWin2022,upfrom750MWin2021,foranend-2022totalof29,803MW(allonshoreexceptfor10MWoffshore),fromWindEurope,op.cit.note1,p.14,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.Spainadded1,670MWforatotalof29,813MW,fromWWEA,op.cit.note1.86Costanzo,op.cit.note1,May3,2023.87PreliminaryestimatesfromRedEléctrica,“LaeólicaylafotovoltaicabatenrécorddegeneracióneléctricaenEspañaen2022”,December22,2022,https://www.ree.es/sites/default/files/paragraph/2022/12/file/Sistema_Electrico_Pevision_2022.pdf(usingGoogleTranslate).88Ember,“EuropeanElectricityReview2023”,January31,2023,p.53.89WindEurope,op.cit.note1,pp.9,18,34.ForallofEurope,outputin2022wasupover2021duetobetterwindconditions,especiallyinnorthernregionsandstronginstallationsinsomecountries;bycountry,outputwasupexceptinEstonia,Hungary,Italy,theSlovakRepublic,SloveniaandSpain,allofwhichgeneratedmoreelectricityfromthewindin2021thanin2022.Windenergy’sshareofdemandalsoroseinEuropebecausedemandwasdownduetohighelectricitypricesandgovernmentmeasurestoreducedemandinresponsetotheRussianFederation’sinvasionofUkraine.Allfromidem,pp.18,20.ElectricitygenerationfromwindenergyacrosstheEUandUnitedKingdomhasincreasedfrom370TWhin2018to489TWhin2022,whileelectricitydemandhasfallen(from2,960TWhin2018to2,830TWhin2022)duetothepandemicandthewarinUkraine.Theoneanomalousyearwas2021,whengenerationfellrelativeto2020,fromWindEurope,op.cit.note1,p.34.Notethatwindenergygeneratedanestimated420TWh,or15%,ofEUelectricityduring2022,andLithuaniamet38%ofitsdemandwithwindenergy,fromEmber,op.cit.note88,p.50.122BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWER90WindEurope,op.cit.note1,pp.9,19.NotethatWindEuropedatafornationalsharesofelectricitymixineachcountryrepresenttheaverageoftheshareofwindinfinalelectricitydemand,capturedhourlyfromENTSO-Eandcorrectedwithdatafromnationaltransmissionsystemoperatorsandgovernments,fromidem,p.19.NotethatshareofwindenergyinBritain’selectricitymixwas26.8%in2022,upfrom21.8%in2021,fromNationalGrid,citedinS.Twidale,“Britainproducedrecordamountofwindpowerin2022,NationalGridsays”,January6,2023,https://www.reuters.com/business/energy/britain-produced-record-amount-wind-power-2022-national-grid-2023-01-06.91Germanyendedtheyearwith66,322MW,followedbySpain(29,798MW),theUnitedKingdom(28,493MW),France(21,135MW)andSweden(14,198MW),basedondatafromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.92Basedontotalcombinedcapacityintopfivecountriesof159,946MWandtotalregionalcapacityof242,432MW,fromWindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.93BasedondatafromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.94Indiaadded1,458.6MWin2021andadded1,847MWin2022foratotalof41,929.8MW,allonshore,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.NotethatIndiaadded1,846.71MWin2021basedonthecountry’syear-end2020totalof40,083MW,fromGovernmentofIndia,MinistryofPower,“PowerSectorataGlanceALLINDIA”,February11,2022,https://powermin.gov.in/en/content/power-sector-glance-all-india,andonyear-end2020totalof40,082.7MWfromGovernmentofIndia,MinistryofNewandRenewableResources(MNRE),citedinCentralElectricityAuthority,“AllIndiainstalledcapacity(inMW)ofpowerstations(ason31.12.2021)”,https://cea.nic.in/wp-content/uploads/installed/2021/12/installed_capacity.pdf.NotethatIndiaadded2,183MWin2022foratotalof41,983MW,fromWWEA,op.cit.note1.Almost10GWofwindpowercapacityhasbeenaddedsinceauctionswereinitiatedin2017,fromJ.Hossain,WWEA,India,inWWEA,op.cit.note11.India’sreversebiddingpolicywashaltedin2022;itwasconsideredareasonforthedeclineininstallationsbecauseaggressivebiddingencouragedbythepolicymadeprojectsunviablefordevelopers,fromG.Mishra,“India’swindinstallationsincreased8%YoYto229MWinQ42022”,January23,2023,https://mercomindia.com//india-wind-installations-increased-8-yoy-q4-2022.Thedeclineininstallationswasdrivenprimarilybythecancellationofprojectsthatbecameunviableasaresultofhighinflationanddelaysresultingfromlackofgridavailabilityandtimelineextensionsinscheduledcommissioningdates,fromZhao,op.cit.note6.95A.Joshi,“Indiamissed2022renewablestargetasrooftopsolarandwindfellshort”,MercomIndia,March24,2023,https://www.mercomindia.com/india-missed-2022-renewables-target.96Offshoreinstallationswere8,771MWforanend-2022totalof64,320MW,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.92,95,102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.97BasedondatafromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.92,102,fromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1,WindEurope,op.cit.note1,pp.10,11,andfromCostanzo,op.cit.note1.98Globaladditionsin2021amountedtonearly21.5GW,with16.9GWofthatcapacityinstalledinChinaalone,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.92,102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.99Figureof58%basedonglobal2022installationsof8,771MWandinstallationsinChinaof5,052MW;therestwasinstalledintheUnitedKingdom(added1,179MW),ChineseTaipei(1,175MW),France(480MW),theNetherlands(369MW),Germany(342MW),Japan(84MW),Norway(60MW)andItaly(30MW),allfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.100Chinaadded5,052MW,followedintheregionbyChineseTaipei(1,175MW)andJapan(84MW),fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.FirsttoachievecommercialoperationsinChineseTaipeifromC.Hsu,“Offshorewindpowerleapingforward:officials”,TaipeiTimes,October18,2022,https://www.taipeitimes.com/News/biz/archives/2022/10/18/2003787220.SnapshotJapanbasedonthefollowingsources:M.Lewis,“Japan’sFirstLarge-ScaleOffshoreWindFarmJustCameOnline”,Electrek,December27,2022,https://electrek.co/2022/12/27/japan-first-large-scale-offshore-wind-farm;A.Memija,“Japan’sFirstCommercial-ScaleOffshoreWindFarmFullyUpandRunning”,OffshoreWind,January31,2023,https://www.offshorewind.biz/2023/01/31/japans-first-commercial-scale-offshore-wind-farm-fully-up-and-running;MinistryofEconomy,TradeandIndustry,“Japan’sRoadmapto‘Beyond-Zero’Carbon”,https://www.meti.go.jp/english/policy/energy_environment/global_warming/roadmap/index.html,accessedApril28,2023;EU-JapanCentreforIndustrialCooperation,“JapaneseGovernmentAnnouncesResultsforFirstLarge-ScaleOffshoreWindparkAuctions”,December24,2021,https://www.eu-japan.eu/news/japanese-government-announces-results-first-large-scale-offshore-windpark-auctions;Infolink,“MarketAnalysis:JapantoReach10GWOffshoreWindCapacityby2030”,November17,2021,https://www.infolink-group.com/energy-article/Market-analysis-Japan-to-reach-10-GW-offshore-wind-capacity-by-2030;JapanWindDevelopmentCo.Ltd.,“ConcludedacooperationagreementwithAkitaUniversityregardinglocalcontributionandhumanresourcedevelopmentthroughoffshorewindpowergenerationbusiness”,February9,2023,https://www.jwd.co.jp/info(usingGoogleTranslate);AkitaPrefecture,“FY2020AkitaPrefectureWindPowerGenerationRelatedIndustryEntrySupportProjectSubsidyAnnouncementofRecruitmentofEligibleProjects”,April5,2023,https://www.pref.akita.lg.jp/pages/archive/71956(usingGoogleTranslate);Kahoku,“Offshorewindpowerwillcreate37,000jobs.AkitaPrefectureestimateeconomiceffectis382billionyen”,March9,2022,https://kahoku.news/articles/20220308khn000025.html(usingGoogleTranslate).101GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.8,95,andfromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.7.Rushtocommissionin2021alsofromF.Guo,CWEA,inWWEA,op.cit.note11,andfromN.Weekes,“BumperYear-EndforChineseOffshoreWindasFeed-inTariffExpires”,WindpowerMonthly,January5,2022,https://www.windpowermonthly.com/article/1736674/bumper-year-end-chinese-offshore-wind-feed-in-tariff-expires.Pandemic-relatedrestrictionsfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,pp.52,106;othersourcesblametheendofgovernmentsubsidiesforthedeclineoffshore.Forexample,seeNg,op.cit.note33.Provincial-levelsubsidies(althoughsmallcomparedtotheexpiredfederalincentives)mayhaveplayedaroleinongoingdevelopmentin2022,fromB.Lepic,“Chineseoffshorewindcapacityboomdrivenbystatesubsidies”,Rigzone,November23,2022,https://www.rigzone.com/news/chinese_offshore_wind_capacity_boom_driven_by_state_subsidies-23-nov-2022-171136-article.102GlobalTimes,“China’slargestunsubsidizedoffshorewindpowerprojectcompleted”,December21,2022,https://www.globaltimes.cn/page/202212/1282301.shtml.103GWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102;GWEC,“GlobalWindReport2023”,March2023,op.cit.note1.104WindEurope,op.cit.note1,pp.10,11;lowestsince2016fromWindEurope,“OffshoreWindEnergy2022Statistics”,March2023,p.4.105TheUnitedKingdomadded1,179MWin2022,fromWindEurope,op.cit.note1,p.13.TheUKcommissioned924MWatHornseaTwoin2022;thetotalprojectis1,386MW,fromidem,p.18.106J.Timperley,“Floatingoffshorewindpreparestogocommercial”,EnergyMonitor,May16,2022,https://www.energymonitor.ai/tech/renewables/floating-offshore-wind-prepares-to-go-commercial;TheCrownEstate,“Governmentapproves8GWofoffshorewindinmajormilestoneforrenewableenergy”,July19,2022,https://www.thecrownestate.co.uk/en-gb/media-and-insights/news/2022-government-approves-8gw-of-offshore-wind-in-major-milestone-for-renewable-energy;floatingwindcantriplethesizefromGWEC,“GlobalOffshoreWindReport2021”,2021,p.6,https://gwec.net/global-offshore-wind-report-2021.107FrancefromWindEurope,op.cit.note1,p.14.Thiswasthe480MWSaintNazaireproject,fromidem;TheNetherlandsfromA.Durakovic,“Subsidy-FreeOffshoreWindPowerStartsFlowingintoDutchGrid”,OffshoreWindBiz,August2,2022,https://www.offshorewind.biz/2022/08/02/subsidy-free-offshore-wind-power-starts-flowing-into-dutch-grid;NorwayfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.9.TheHywindTampenprojectproduceditsfirstpowerin2022,fromA.Frangoul,“The‘world’slargestfloatingwindfarm’producesitsfirstpower”,CNBC,November14,2022,https://www.cnbc.com/2022/11/14/the-worlds-largest-floating-wind-farm-produces-its-first-power.html.Whencompleted,itwillbetheworldlargestfloatingoffshorewindproject,fromWindEurope,123BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWER“OffshoreWindEnergy2022Statistics”,op.cit.note104,p.47.Itwasnotcompletedin2022duetosupplychainissues,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.95;ItalyfromWindEurope,op.cit.note1,p.13,andfromMaritimeExecutive,“ItalyInauguratestheFirstOffshoreWindFarmintheMediterranean”,April25,2022,https://www.maritime-executive.com/article/italy-inaugurates-the-first-offshore-wind-farm-in-the-mediterranean.Newoffshorecapacitiescommissionedin2022totaled1,179MWintheUnitedKingdom,followedbyFrance(480MW),theNetherlands(369MW),Germany(342MW),Norway(60MW)andItaly(30MW),fromWindEurope,op.cit.note1.108Germanyadded342MWin2022,followingayearinwhichnonewoffshorecapacitycameonline,basedondatafromWindEurope,op.cit.note1,p.10,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.109WindEurope,op.cit.note1,p.10-11,14;WindEurope,“OffshoreWindEnergy2022Statistics”,op.cit.note104,pp.4,10.110WindEurope,op.cit.note1,pp.51,53;WindEurope,“OffshoreWindEnergy2022Statistics”,op.cit.note104,p.40.UKfloatingwindtargetwasincreasedin10GWin2022,fromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.3.FormoreonoffshorewindtargetsinEuropeanddevelopmentsin2022,see,forexample:InstituteforEnergyEconomicsandFinancialAnalysis,“Netherlandstargets70gigawattsofoffshorewindenergyby2050”,September19,2022,https://ieefa.org/articles/netherlands-targets-70-gigawatts-offshore-wind-energy-2050;REnews,“NorthSeacountriesset260GWoffshorewindtargetNorthSeacountriesset260GWoffshorewindtarget”,September12,2022,https://renews.biz/80395/north-sea-countries-set-260gw-offshore-wind-target;A.Fine,“NewGreekLawFocusesonReaching2GWofOffshoreWindDevelopmentby2030”,NorthAmericanWindpower,August4,2022,https://nawindpower.com/new-greek-law-focuses-on-reaching-2-gw-of-offshore-wind-development-by-2030;MaritimeExecutive,“Swedentargets120TWhfromacceleratedoffshorewindfarmdevelopment”,February15,2022,https://www.maritime-executive.com/article/sweden-targets-120-twh-from-accelerated-offshore-wind-farm-development.111WindEurope,“OffshoreWindEnergy2022Statistics”,op.cit.note104,pp.4,35.Notoneprojectreachedfinalinvestmentdecisionin2022,fromWindEurope,“TheEUbuiltonly16GWnewwindin2022:mustrestoreinvestorconfidenceandrampupsupplychain”,February28,2023,https://windeurope.org/newsroom/press-releases/the-eu-built-only-16-gw-new-wind-in-2022-must-restore-investor-confidence-and-ramp-up-supply-chain.112reNEWSBiz,“USoffshorewinddemanddoublesin2022”,February21,2023,https://renews.biz/83969/us-offshore-wind-demand-doubles-in-2022;R.Davidson,“US‘tripledoffshorewindinvestment’to$10bnin2022”,WindpowerMonthly,February22,2023,https://www.windpowermonthly.com/article/1814179/us-tripled-offshore-wind-investment-10bn-2022.ThisincludedUSD4.4billionforportinfrastructure,supplychaindevelopmentandtransmissioninfrastructure,fromreNEWSBiz,op.cit.thisnote.113Morethan13GW,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.96.Alsosee:R.Davidson,“RhodeIslandutilityissuesRfPforupto1GWoffshorewind”,WindpowerMonthly,October17,2022,https://www.windpowermonthly.com/article/1802233/rhode-island-utility-issues-rfp-1gw-offshore-wind;RenewableEnergyWorld,“The5cleanenergystoriesthatdefined2022”,December28,2022,https://www.renewableenergyworld.com/solar/the-5-clean-energy-stories-that-defined-2022;D.Kovaleski,“NewYorkBightoffshorewindsalenetslargesthaulinU.S.history”,DailyEnergyInsider,March1,2022,https://dailyenergyinsider.com/news/34036-new-york-bight-offshore-wind-sale-nets-largest-haul-in-u-s-history;A.Fine,“BNOW:U.S.OffshoreWindIndustryFinished2022onaStrongNote”,NorthAmericanWindPower,January12,2023,https://nawindpower.com/bnow-reports-u-s-offshore-wind-industry-finished-2022-on-a-strong-note.Inaddition,theUSgovernmentdesignatedareasforoffshorewindintheGulfofMexico,fromOEDigital,“U.S.DesignatesOffshoreWindFarmDevelopmentAreasinGulfofMexico”,October31,2022,https://www.oedigital.com/news/500593-u-s-designates-offshore-wind-farm-development-areas-in-gulf-of-mexico.114ACP,op.cit.note1,pp.5,16.Theadvanceddevelopmentpipelineatend-2022was16,696MW,andthefirstcommercial-scaleproject(806MWVineyardWind)beganinstallingoffshorecablingduringtheyear,fromidem.115ACP,op.cit.note1,p.29.StatesincludedCalifornia(25GW),NewJersey(11GW),NewYork(9GW),NorthCarolina(8GW),Massachusetts(5.6GW),Virginia(5.2GW),Louisiana(5GW),Connecticut(2.3GW),Maryland(1.6GW)andRhodeIsland(1.4GW),fromidem.USoffshoreofficialtargetsincreased79%in2022,duetoaCaliforniatarget(25GW),Louisiana,NewJerseyandRhodeIslandallannouncingnewstatelevelgoals,fromREnewsBiz,op.cit.note112.Californiaalsohasfloatingwindpowertargetsof3GWby2030,15GWby2045,andpossibly20GWby2050,fromreNEWSBiz,“Californiasets3GWfloatergoalfor2030”,May9,2022,https://renews.biz/77679/california-sets-3gw-floater-goal-for-2030.Inadditiontostateprocurementtargets,theBidenadministrationtargetshaving30GWoffshorewindonlineintheUnitedStatesby2030,fromH.J.Mai,“Biden’soffshorewindplancouldcreatethousandsofjobsbutchallengesremain”,OregonPublicBroadcasting,January24,2023,https://www.opb.org/article/2023/01/24/offshore-wind-energy-jobs-biden;ontopofthistarget,theAdministrationtargets15GWoffloatingwindcapacityby2035,fromA.Frangoul,“TheU.S.lookstorivalEuropeandAsiawithmassivefloatingoffshorewindplan”,CNBC,September16,2022,https://www.cnbc.com/2022/09/16/the-us-looks-to-rival-europe-and-asia-with-massive-floating-offshore-wind-plan.html.116Figureof16governmentsfromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.70.GovernmentswithneworincreasedtargetsweretheRepublicofKorea,China,Victoria(Australia),NovaScotia(Canada),Belgium,Denmark,France,Germany,Ireland,Luxembourg,theNetherlands,Norway,Sweden,Portugal,NewJerseyandLouisiana(UnitedStates),fromidem.NovaScotiasetatargettoofferleasesfor5GWofoffshorewindpowerby2030toaddressclimatechangeandcreatelocaljobs,fromA.Fine,“NovaScotiaSetsOffshoreWindLeaseGoalof5GW”,NorthAmericanWindpower,September22,2022,https://nawindpower.com/nova-scotia-sets-offshore-wind-lease-goal-of-5-gw.Australia’sVictoriaStatesetatargetof9GWby2030,fromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.3.ThePhilippinessetatargetfor21GWoffshoreby2040,fromPinsentMasons,“Philippinestargets21GWoffshorewindby2040”,April29,2022,https://www.pinsentmasons.com/out-law/news/philippines-targets-21gw-offshore-wind-by-2040.Globaltargetsapproaching380GWfromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.4.117AustraliafromB.Symons,“FederalgovernmentdeclaresAustralia’sfirstsixoffshorewindenergyzones”,ABCGippsland,August5,2022,https://www.abc.net.au/news/2022-08-05/offshore-windfarms-climate-renewable-energy-turbines/101303944;IndiafromreNEWSBiz,“Indiaunveils4GWoffshorewindtenderplan”,November15,2022,https://renews.biz/81829/india-unveils-4gw-offshore-wind-tender-plan,andfromMercomIndia,“Bidsfor12GWofOffshoreWindEnergytobeIssuedinTamilNaduandGujaratinThreeYears”,June10,2022,https://mercomindia.com/bids-for-12-gw-of-offshore-wind-energy;BrazilfromE.Gannoum,PresidentofABEEólica,Forward,inGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.5,andfromreve,“Abeeólica:Brazilwillenter2023withregulatedoffshorewindenergy”,February17,2023,https://www.evwind.es/2023/02/17/abeeolica-brazil-will-enter-2023-with-regulated-offshore-wind-energy/90271.Asofmid-2022,Brazilhadapipelineof97.4GWofoffshorecapacityunderdevelopment,fromC.Richard,“CorioGenerationunveils5GWoffshorewindpipelineoffBrazil”,WindpowerMonthly,June13,2022,https://www.windpowermonthly.com/article/1789527/corio-generation-unveils-5gw-offshore-wind-pipeline-off-brazil.InAustralia,constructionstartedin2022ontheMacIntyreWindPrecinct(1,026MW),whichwasexpectedtocomeonlinein2024,fromM.Lewis,“ConstructionofficiallystartsonthelargestwindfarminAustralia”,Electrek,June2,2022,https://electrek.co/2022/06/02/largest-wind-farm-in-australia.Andyet,Australia’sStaroftheSouth(2.2GW)wasstillontracktobecomethecountry’sfirstoperatingoffshorewindfarm,withthefirstpowerexpectedin2028,fromA.Durakovic,“AustraliaPuttingWindProjectsOffshoreVictoriaonFastTrack”,OffshoreWindBiz,October21,2022,https://www.offshorewind.biz/2022/10/21/australia-putting-wind-projects-offshore-victoria-on-fast-track.118GlobaloffshorepipelinefromrenewableUK,“UKoffshorewindpipelinereachesnearly100gigawatts–whileglobalpipelinehitsover1,100GW”,February15,2023,https://www.renewableuk.com/news/632004/UK-offshore-wind-pipeline-reaches-nearly-100-gigawatts---while-global-pipeline-hits-over-1100GW-.htm;floatingwindfromGWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.96.119Totalof19in2022includesChina,Japan,theRepublicofKorea,ChineseTaipeiandVietnaminAsia;Germany,Spain,theUnitedKingdom,France,Italy,Sweden,Portugal,Denmark,theNetherlands,Ireland,Belgium,NorwayandFinlandinEurope;andtheUnitedStates.Samecountriesin2021exceptforItaly;also,notethatFrancehadonly2MWofcapacityandNorwayonly5.9MWattheendof2021.AllbasedondatafromWindEurope,op.124BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERcit.note1,p.10-11,14,fromWindEurope,“OffshoreWindEnergy2022Statistics”,op.cit.note104,pp.4,10,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.120BasedondatafromWindEurope,op.cit.note1,p.10-11,14,fromWindEurope,“OffshoreWindEnergy2022Statistics”,op.cit.note104,pp.4,10,andfromGWEC,“GlobalWindReport2023”,March2023,op.cit.note1.121Sharesattheendof2022and2021basedondatafromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.102.Attheendof2021,Europehadslightlymorethan50%ofglobalinstalledoffshorewindpowercapacity;thisfelltojustover47%in2022,basedondatafromidem.122GWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.14.123ChallengesassociatedwithscalingupfromT.Casey,“Woodentowerstohelpcutthecostofwindturbines,evenmore”,CleanTechnica,May31,2022,https://cleantechnica.com/2022/05/31/wooden-towers-to-help-cut-the-cost-of-wind-turbines-even-more;I.Griggs,“Firmstoproducewoodenturbinebladestogivewindindustry‘sustainablefuture’”,WindpowerMonthly,November15,2022,https://www.windpowermonthly.com/article/1805271/firms-produce-wooden-turbine-blades-give-wind-industry-sustainable-future;T.Casey,“Nomoreexcuses:spiralweldingcanbringtallerwindturbinestoUSsoutheast”,CleanTechnica,May16,2022,https://cleantechnica.com/2022/05/16/no-more-excuses-spiral-welding-can-bring-taller-wind-turbines-to-us-southeast;H.Everett,“NewGEfacilityfocusesonR&Dof3Dprintedwindturbinetowers”,3DPrintingIndustry,April25,2022,https://3dprintingindustry.com/news/new-ge-facility-focuses-on-rd-of-3d-printed-wind-turbine-towers-208125;T.Casey,“TallerwindturbinestogetTLCfrom3Dprinting”,CleanTechnica,April21,2022,https://cleantechnica.com/2022/04/21/taller-wind-turbines-to-get-tlc-from-3d-printing;C.RichardandI.Griggs,“2022:Innovationsthatcouldshapethewindindustry”,WindpowerMonthly,December22,2022,https://www.windpowermonthly.com/article/1808918/2022-innovations-shape-wind-industry.Foroffshore,seealso,forexample,GWEC,“GlobalOffshoreWindReport2022”,op.cit.note5,p.14.ForChinaspecifically,see,forexample:D.Snieckus,“’Newglobalmilestone’China'sCSSCHaizhuangrollsoutworld’slargestwindturbine”,REchargeNews,January9,2023,https://www.rechargenews.com/wind/new-global-milestone-chinas-cssc-haizhuang-rolls-out-worlds-largest-wind-turbine/2-1-1384424.Also,seesourcesforinformationprovidedinendnotesbelow.124Reddie&Grose,citedinM.Ahmad,“Chinaleadsglobalincreaseinwindpowergenerationpatents”,EnergyDigital,January18,2023,https://energydigital.com/renewable-energy/china-leads-global-increase-in-wind-power-generation-patents.Overthepastdecade,Chinesefirmshavefiledforfarmorepatentsthanhavethoseinanyotherregion;Chinesefirmsaccountedfor23,737patentfilings,followedbyEurope(16,396),theUnitedStates(16,074),theRepublicofKorea(6,611)andJapan(3,809),fromidem.125See,forexample,USDepartmentofEnergy(USDOE),“Land-BasedWindMarketReport:2022Edition”,August2022,p.viii,https://www.energy.gov/sites/default/files/2022-08/land_based_wind_market_report_2202.pdf,andLepic,op.cit.note101;M.Lewis,“GEisdevelopingamassive18MWoffshorewindturbine”,Electrek,March13,2023,https://electrek.co/2023/03/13/ge-is-developing-a-massive-18-mw-offshore-wind-turbine.BenefitsofLarger,higher-efficiencyturbinesfrom,forexample,B.Backwell,GWEC,“Takingoffshorewindglobal”,March4,2020,slide10,https://www.renewable-ei.org/pdfdownload/activities/11_BenBackwell.pdf;USDOE,“Land-BasedWindMarketReport…”,op.cit.thisnote,p.43;USDOE,“Windturbines:thebigger,thebetter”,August16,2022,https://www.energy.gov/eere/articles/wind-turbines-bigger-better.126PreliminarydatafromGWEC,“GlobalWindMarketDevelopment:SupplySideData2022”,p.25,unpublisheddocument,providedbyZhao,op.cit.note6.127Ibid.TheregionswiththelargestaverageturbinesizeswereLatinAmerica(4,482MW),followedbyAsiaPacific(4,343MW),withbothregionspassingEurope(4,313MW);theregionwiththelowestaveragewasNorthAmerica(3,140MW),fromidem,p.26.128Zaremba,op.cit.note12.129A.Frangoul,“Vestaslaunches‘world’stallestonshoretowerforwindturbines’”,CNBC,September29,2022,https://www.cnbc.com/2022/09/29/vestas-launches-worlds-tallest-onshore-tower-for-wind-turbines.html;M.Lewis,“GEisdevelopingamassive18MWoffshorewindturbine”,Electrek,March13,2023,https://electrek.co/2023/03/13/ge-is-developing-a-massive-18-mw-offshore-wind-turbine.130PressurestoinnovatefromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.54.SeealsoSnieckus,op.cit.note123.131Onshore,MingYang’s8.5MWturbine,fromA.Lee,“Chinaraiseswindpowerstakesagainas‘world'sbiggestonshoreturbine’busts8MW”,REchargeNews,January4,2023,https://www.rechargenews.com/wind/china-raises-wind-power-stakes-again-as-worlds-biggest-onshore-turbine-busts-8mw/2-1-1383010;itwasquicklysurpassedbyEnvisonEnergy(10MW),fromJ.S.Hill,“World’slargestonshorewindturbine,andthefirsttoreach10MW,debutsinChina”,RenewEconomy,February14,2023,https://reneweconomy.com.au/worlds-largest-onshore-wind-turbine-and-the-first-to-reach-10mw-debuts-in-china;twoweekslater,SANY’s11MWprototypewasrolledout,fromGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.54.Offshore,China’sThreeGorgesCorporationandXinjiangGoldwindproducedtheworld’sfirst16-MWturbineinlate2022,fromXinhua,“World’slargestoffshorewindturbineoffassemblylineinChina”,November23,2022,https://english.news.cn/20221123/89eea57690ea4d4083ee365e0d1af2cf/c.html;Goldwindannouncedtheproductionofa13.6MWturbinewitharecord252-metrerotordiameter,fromM.Lewis,“Chinadebutsanoffshorewindturbinewiththeworld’slargestrotordiameter”,Electrek,October17,2022,https://electrek.co/2022/10/17/offshore-wind-turbine-worlds-largest-rotor-diameter;alsoinlate2022,ChinaStateShipbuildingCorp(CSSC)Haizhuangbeganmarketingaturbinewithan18GWrating,fromSnieckus,op.cit.note123;WindpowerMonthly,“Theworld’slargestandmostpowerfuloffshorewindturbineunveiled–andmore”,March7,2023,https://www.windpowermonthly.com/article/1815513/worlds-largest-powerful-offshore-wind-turbine-unveiled--;andMingYangunveiledan18MWturbineinearly2023,fromBloomberg,“ChinaCleanEnergyGiantsUnveilWorld’sLargestWindTurbines”,January10,2023,https://www.bloomberg.com/news/articles/2023-01-11/china-clean-energy-giants-unveil-world-s-largest-wind-turbines.SeealsoD.Proctor,“New18-MWModelTakesOverasWorld’sLargestOffshoreWindTurbine”,PowerMagazine,January6,2023,https://www.powermag.com/new-18-mw-model-takes-over-as-worlds-largest-offshore-wind-turbine.132LittleopportunitytolearnfromH.Richards,“Offshorewindturbinesaregrowinglarger.Howbigistoobig?”EENews,March2,2023,https://www.eenews.net/articles/offshore-wind-turbines-are-growing-larger-how-big-is-too-big;R.BeeneandJ.Saul,“WindTurbinesTallerThantheStatueofLibertyAreFallingOver”,Bloomberg,January23,2023,https://www.bloomberg.com/news/articles/2023-01-23/wind-turbine-collapses-punctuate-green-power-growing-pains;R.Morison,“Windturbinesarebigenoughfornow,VestasCEOsays”,Bloomberg,January16,2023,https://www.bloomberg.com/news/articles/2023-01-16/wind-turbines-are-big-enough-for-now-vestas-ceo-says.PermittingchallengesfromA.Lee,“Chinaraiseswindpowerstakesagainas‘world'sbiggestonshoreturbine’busts8MW”,REchargeNews,January4,2023,https://www.rechargenews.com/wind/china-raises-wind-power-stakes-again-as-worlds-biggest-onshore-turbine-busts-8mw/2-1-1383010.SeealsoHill,op.cit.note131.Fortheoffshoresector,thetrendcoulddiscourageinvestmentinnewinstallationvesselsthatmightbetoosmalloncecompleted,fromRichards,op.cit.thisnote.133Morison,op.cit.note132;Mathis,BeeneandSaul,op.cit.note10;BeeneandSaul,op.cit.note132.Chinesemanufacturersalsoarefocusingonreducingmanufacturingcostsandexpectingsmallerprofitsduetogridparityconditions,fromLepic,op.cit.note101.134L.M.LombranaandT.Gualtieri,“MakingWindTurbinesGreenerCouldAlsoMakeThemMoreExpensive”,Bloomberg,November2,2021,https://www.bloomberg.com/news/articles/2021-02-11/making-wind-turbines-greener-could-also-make-them-more-expensive;DyrholminGWEC,“GlobalWindReport2023”,March27,2023,op.cit.note1,p.2.SeealsoGlobalAllianceforSustainableEnergy,https://sustainable-energy.eco,accessedApril12,2023,andGlobalAllianceforSustainableEnergy,“ReducingRawMaterials’EnvironmentalandSocialimpactsinElectricalEnergyTechnologies”,CircularDesignCriteriaWorkingGroupPositionPaper,undated,https://energycentral.com/c/enelfoundation/global-alliance-sustainable-energy-%E2%80%93-position-paper-release.135See,forexample,thefollowing:GE,“Environmental,socialandgovernance:Sustainabilityatcore”,https://www.ge.com/sustainability,accessedApril12,2023;Vestas,“Oursustainabilitystrategy:Sustainabilityineverythingwedo”,https://www.vestas.com/en/sustainability/sustainability-strategy,accessedApril12,2023;SiemensGamesa,“SiemensGamesaputsdecarbonization,recyclabilityandtechnologicaleducationatheartofambitiousnewsustainabilitystrategy”,July21,2021,https://www.siemensgamesa.com/newsroom/2021/07/210721-siemens-gamesa-press-release-launches-new-sustainability-strategy;NordexAccionaWindpower,“Sustainabilityreportpublished”,April6,2023,https://www.nordex-online.com/en/2023/04/sustainability-report-2022-published;125BACKENDNOTES·RENEWABLESINENERGYSUPPLY2023ENDNOTESIWINDPOWERreve,“Goldwindreleasesits2021sustainabilityreport”,May10,2022,https://www.evwind.es/2022/05/10/goldwind-releases-its-2021-sustainability-report/86034.136AmericanChemicalSociety,“Windturbinebladescouldsomedayberecycledintosweettreats”,ScienceDaily,August23,2022,https://www.sciencedaily.com/releases/2022/08/220823095518.htm.137Forexamplesofrecyclingfromtraditionalmaterials,seethefollowing:M.Gallucci,“Vestashasanewwaytokeepwindturbinebladesoutofthedump”,CanaryMedia,February16,2023,https://www.canarymedia.com/articles/wind/vestas-has-a-new-way-to-keep-wind-turbine-blades-out-of-the-dump;M.Lewis,“Thiscompanyturnswindturbinebladesintoconcrete”,Electrek,January12,2023,https://electrek.co/2023/01/12/this-company-turns-wind-turbine-blades-into-concrete;Goldwind,“Goldwindrecyclesturbinebladesinto3Dprintingmaterials”,July28,2022,https://www.goldwind.com/en/news/focus-article/?id=737300515733524480;A.Lee,“’Goldenratio’China'sGoldwindclaimsbreakthroughusingoldturbinebladesfor3Dprinting”,REcharge,July28,2022,https://www.rechargenews.com/wind/golden-ratio-chinas-goldwind-claims-breakthrough-using-old-turbine-blades-for-3d-printing/2-1-1267998;A.Frangoul,“GE,OrstedandnowIberdrola:Thecompetitiontorecyclewindturbinebladesheatsup”,CNBC,June6,2022,https://www.cnbc.com/2022/06/06/iberdrola-sets-up-firm-focused-on-recycling-wind-turbine-blades.html;RichardandGriggs,op.cit.note123.Forexamplesofnewmaterials,seealso:idem;N.Weekes,“LMWindPowerlaunchesfullyrecyclablethermoplasticwindturbineblade”,WindpowerMonthly,March17,2022,https://www.windpowermonthly.com/article/1749931/lm-wind-power-launches-fully-recyclable-thermoplastic-wind-turbine-blade,A.Paleja,“Theworld’sfirstturbinewithrecyclablebladesisnowoperational”,InterestingEngineering,August3,2022,https://interestingengineering.com/innovation/the-worlds-first-turbine-with-recyclable-blades-is-now-operational;Griggs,op.cit.note123.126BACKREN21Secretariatc/oUNEnvironmentProgramme1rueMiollisBuildingVII75015ParisFrancewww.ren21.netISBN978-3-948393-08-3RENEWABLES2023GLOBALSTATUSREPORTCOLLECTION2023RENEWABLESINENERGYSUPPLY