IEF-关键矿产前景比较(英文原版)VIP专享VIP免费


Critical Minerals
Outlooks Comparison
A Report by the International Energy Forum and The Payne
Institute of Public Policy at the Colorado School of Mines
A report by the International Energy Forum and The Payne Institute
of Public Policy at the Colorado School of Mines
August 2023
____________________________________________________________________________
Written and produced by:
Juliet Akamboe jsakamboe@mines.edu
Ebenezer Manful-Sam manfulsam@mines.edu
Felix Ayaburi fzayaburi@mines.edu
Mason Hamilton mason.hamilton@ief.org
Morgan Bazilian mbazilian@mines.edu
____________________________________________________________________________
About the International Energy Forum
The International Energy Forum (IEF) is the world's largest international organization of
energy ministers from 71 countries and includes both producing and consuming nations. The
IEF has a broad mandate to examine all energy issues including oil and gas, clean and
renewable energy, sustainability, energy transitions and new technologies, data
transparency, and energy access. Through the Forum and its associated events, officials,
industry executives, and other experts engage in a dialogue of increasing importance to
global energy security and sustainability.
____________________________________________________________________________
About The Payne Institute
The mission of the Payne Institute at Colorado School of Mines is to provide world-class
scientific insights, helping to inform and shape public policy on earth resources, energy, and
environment. The Institute was established with an endowment from Jim and Arlene Payne,
and seeks to link the strong scientific and engineering research and expertise at Mines with
issues related to public policy and national security. The Payne Institute extends to public
policy Mines’ conviction that energy and the environment must and can fruitfully coexist.
_____________________________________________________________________________
2
Table of Contents
Introduction ............................................................................................................... 3
Key Findings .............................................................................................................. 5
Aluminum ............................................................................................................................. 5
Cobalt ................................................................................................................................... 7
Copper ................................................................................................................................. 9
Graphite ............................................................................................................................. 11
Lithium ............................................................................................................................... 13
Neodymium ........................................................................................................................ 15
Nickel ................................................................................................................................. 16
Silver .................................................................................................................................. 18
Energy Scenarios .................................................................................................... 20
Climate Outcome Driven .................................................................................................... 20
Shared Economic Pathways .............................................................................................. 20
Speed of Transition and Technological Progress .............................................................. 20
Technology mixes ................................................................................................... 20
Other technologies with influence ...................................................................................... 21
Resource Requirements ......................................................................................... 21
Top Down vs. Bottom Up ................................................................................................... 23
Intensity and Resource Efficiency Assumptions ................................................................ 23
Sub-Technologies and Chemistry Shifts ............................................................................ 23
Recycling ........................................................................................................................... 25
Conclusions ............................................................................................................. 25
References ............................................................................................................... 27
Appendix: Backgrounds of Surveyed Reports .................................................... 28
CriticalMineralsOutlooksComparisonAReportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMinesAreportbytheInternationalEnergyForumandThePayneInstituteofPublicPolicyattheColoradoSchoolofMinesAugust2023____________________________________________________________________________Writtenandproducedby:JulietAkamboejsakamboe@mines.eduEbenezerManful-Sammanfulsam@mines.eduFelixAyaburifzayaburi@mines.eduMasonHamiltonmason.hamilton@ief.orgMorganBazilianmbazilian@mines.edu____________________________________________________________________________AbouttheInternationalEnergyForumTheInternationalEnergyForum(IEF)istheworld'slargestinternationalorganizationofenergyministersfrom71countriesandincludesbothproducingandconsumingnations.TheIEFhasabroadmandatetoexamineallenergyissuesincludingoilandgas,cleanandrenewableenergy,sustainability,energytransitionsandnewtechnologies,datatransparency,andenergyaccess.ThroughtheForumanditsassociatedevents,officials,industryexecutives,andotherexpertsengageinadialogueofincreasingimportancetoglobalenergysecurityandsustainability.____________________________________________________________________________AboutThePayneInstituteThemissionofthePayneInstituteatColoradoSchoolofMinesistoprovideworld-classscientificinsights,helpingtoinformandshapepublicpolicyonearthresources,energy,andenvironment.TheInstitutewasestablishedwithanendowmentfromJimandArlenePayne,andseekstolinkthestrongscientificandengineeringresearchandexpertiseatMineswithissuesrelatedtopublicpolicyandnationalsecurity.ThePayneInstituteextendstopublicpolicyMines’convictionthatenergyandtheenvironmentmust–andcan–fruitfullycoexist._____________________________________________________________________________2TableofContentsIntroduction...............................................................................................................3KeyFindings..............................................................................................................5Aluminum.............................................................................................................................5Cobalt...................................................................................................................................7Copper.................................................................................................................................9Graphite.............................................................................................................................11Lithium...............................................................................................................................13Neodymium........................................................................................................................15Nickel.................................................................................................................................16Silver..................................................................................................................................18EnergyScenarios....................................................................................................20ClimateOutcomeDriven....................................................................................................20SharedEconomicPathways..............................................................................................20SpeedofTransitionandTechnologicalProgress..............................................................20Technologymixes...................................................................................................20Othertechnologieswithinfluence......................................................................................21ResourceRequirements.........................................................................................21TopDownvs.BottomUp...................................................................................................23IntensityandResourceEfficiencyAssumptions................................................................23Sub-TechnologiesandChemistryShifts............................................................................23Recycling...........................................................................................................................25Conclusions.............................................................................................................25References...............................................................................................................27Appendix:BackgroundsofSurveyedReports....................................................28_____________________________________________________________________________3IntroductionHistorically,theenergysectorconstitutedonlyaminorpartofcriticalmineralssupplychainsandmarkets.However,withtheaccelerationofenergytransitions,cleanenergytechnologieshaverapidlyemergedasthesegmentwiththefastestgrowthindemand.Thishascapturedpublicattentionglobally,andcreatedvarioustrade,market,andgeopoliticalissues.Asaresult,numerousanalyticalscenarioshavebeenproducedtobetterunderstandthisrapidlychangingandcomplexlandscape.Inafuturetrajectoryalignedwithclimategoals,theproportionoftotalmineralsdemandaccountedforbycleanenergytechnologieswillrisesignificantlyovertheforthcomingtwodecades.Electricvehicles(EVs)andbatterystoragetechnologieshavealreadysupersededconsumerelectronicstobecomethelargestconsumersoflithium,andtheyareprojectedtosurpassstainlesssteeltobecometheprimaryendusersofnickelby2040,andbatteryanodesshareofgraphitedemandhasincreased250%since2018.Asaresult,severalquantitativedemandmodelshavebeendevelopedtohelpunderstandthescaleofgrowth,andwhethermaterialshortageswillbecomeanobstacletothedeploymentofcleanenergytechnologies.Thisreportisanon-comprehensivemeta-analysisof11publiclyavailablereportswhichincludevariousassumptionsforenergyandtechnologyscenarios,andtheirresultingcriticalmineralrequirements.Thisexerciseismeanttohighlightkeyinsightsforcriticalmineralsdecisionmakers.Thereportsarefromeightagenciesandorganizationsacrossdifferentgeographies,spanningfrom2019to2023.•InternationalRenewableEnergyAgency(IRENA)oWorldEnergyTransitionsOutlook,2023oGeopoliticsoftheEnergyTransition,2023oCriticalMineralsfortheEnergyTransition,2021•InternationalEnergyAgency(IEA)oTheRoleofCriticalMineralsinCleanEnergyTransitions,2022oCriticalMineralsMarketReview,2023•WorldBankoMineralsforClimateAction,2020•InstituteforSustainableFuture(ISF)oTheRoleofCriticalMineralsinCleanEnergyTransitions,2019•McKinsey&CompanyoTheFutureofCriticalMineralsintheNet-ZeroTransition,2021•CatholicUniversityofLuven(KULuven)oMetalsforCleanEnergy:PathwaystoSolvingEurope’sRawMaterialsChallenge,2022•EnergyTransitionsCommission(ETC)oMineralandResourceRequirementsfortheEnergyTransition,2023•GermanMineralResourcesAgency(DERA)oRawMaterialsforEmergingTechnologies,2021_____________________________________________________________________________4All11reportsconsideredconcurontheincreasingdemandformineralsandtheircentralroleintheenergytransition.However,acrossthe11reports,28differentmineralsandmetalsarementioned,withsufficientdatatocompareonlyeight:aluminum,cobalt,copper,graphite,lithium,neodymium,nickel,andsilver.Thesedemandprojectionsareinherentlysubjecttolargevariations.Disparitiesintheirspecificmineraldemandprojectionsreflectthedifferenttypesofenergyscenarioschosen,themixoftechnologiesdeployed,assumptionsonresourceintensity,technologydevelopments,andrecyclingrates.Whileoutsidethescopeofthisreport,thesupplysidealsopresentsconsiderablechallengestolong-termforecaststhatmeritadditionalstudyanddiscussion.Manyofthereportssurveyedhighlightedtheriskstotheirprojectionsfromsupplysiderisks,butonlyafewincorporatedsupplyforecastsalongsidetheirdemandprojections.Allreportssurveyednotedtheimportanceofresponsiblesourcing,supplychaintransparency,recycling,andimprovedminingandprocessingefficiency.Understandingthepotentialmineraldemandsassociatedwiththecleanenergytransitioniscrucialforpolicymakers,mineralproducers,renewableenergydevelopers,andcivilsocietyorganizationstounlockinvestment,setachievableclimatepolicies,andgainpublicacceptanceofnewmines._____________________________________________________________________________5KeyFindingsAluminum_____________________________________________________________________________6_____________________________________________________________________________7Cobalt_____________________________________________________________________________8_____________________________________________________________________________9Copper_____________________________________________________________________________10_____________________________________________________________________________11Graphite_____________________________________________________________________________12_____________________________________________________________________________13Lithium_____________________________________________________________________________14_____________________________________________________________________________15NeodymiumNote:ProductiondataofNeodymiuminU.S.GeologicalSurveydataiscategorizedwithother“RareEarthElements”andnotpublishedindividually._____________________________________________________________________________16Nickel_____________________________________________________________________________17_____________________________________________________________________________18Silver_____________________________________________________________________________19_____________________________________________________________________________20EnergyScenariosThevariousreportshavedifferentenergyandtechnologyscenariostocalculatecriticalmineralrequirementsunderarangeofconditions.ClimateOutcomeDrivenMultiplescenarioswerecreatedwithaspecificclimate-basedoutcomebyacertaindateasthegoal,andthenmodelstheenergysystemrequiredtoachievethatgoal.Inthiscollectionofreports,climateoutcomedrivenscenariosrangedfromlimitingglobalaveragetemperatureriseto1.5°Cby2050,alignedwiththeIPCCspecialreport,to1.7°C,orto2°Cincrease.CommonlyusedscenarioswerederivedfromInternationalEnergyAgencyscenarios,suchastheAnnouncedPoliciesScenario(APS),associatedwitha1.7°Ctemperatureriseby2100,andtheNet-ZeroEnergyScenario(NZE),associatedwitha1.5°Ctemperaturerise.Additionally,severalreportsusedIEAscenariosdevelopedpriortotheuseofAPSandNZE,suchastheStatedPoliciesScenario(SPS),andtheSustainableDevelopmentScenario(SDS).TheSTEPSscenarioembodiesthepresentpolicylandscape,basedonasector-wiseappraisalofspecificpoliciesinplaceandthoseannouncedbygovernmentsglobally.Incontrast,theSDSscenarioenvisionsapathwaythatfullyrealizesglobalgoalstocombatclimatechangeinaccordancewiththeParisAgreement,ensuresuniversalenergyaccess,andsignificantlycurbsairpollution.Thisscenariopresupposesthefulfilmentofallexistingnet-zeropledges,withconcertedeffortstoachievenear-termemissionsreductions;advancedeconomiesareprojectedtoreachnet-zeroemissionsby2050,Chinaby2060,andallothernationsby2070atthelatest.SharedEconomicPathwaysTheSharedSocioeconomicPathways(SSPs),werecreatedaspartofthe5thAssessmentReportoftheIntergovernmentalPanelonClimateChange(IPCC)forclimatepolicyissues.EachSSPembodiesdifferentassumptionsabouttheglobalenergysystem'sfuture,andconsequentlycanbeusedtocalculatemineraldemandestimates.SpeedofTransitionandTechnologicalProgressOtherreportscreatedscenariosthatvariedthespeedandintensityoftheenergytransition,technologicalprogress,andincreasesinbothtechnologyandresourceefficiency.TechnologymixesTechnologiesemphasizedinthesereportsareunanimous,solarphotovoltaics(PV),windturbines,electricvehicles(EVs),batterystoragesystems,andelectricalgridexpansionareallcorecomponentsoftheseprojections.Thesetechnologiesarekeytoloweringgreenhousegasemissionsandsubsequentlydrivethedemandgrowthforcriticalmineralsthroughouttheprojectionperiod._____________________________________________________________________________21OthertechnologieswithinfluenceOtherclimate-orientedtechnologieslikecarboncaptureuse&sequestration(CCUS),hydrogen,orkeydevelopmentsinotherrenewableenergysourceslikegeothermal,canmakepreviouslylesssustainableoptionsmorefavorableforthefuture,ordrasticallyaltertheneedandcompetitivenessofothers.Whilenotallthereportssurveyeddirectlydelveintoalternativetechnologiesortheirdeployments,theyshouldbeconsideredwhencomparingcriticalmineraldemandprojections.ResourceRequirementsWhilethetechnologiesacrossthesurveyedreportswerenearlyunanimous,thetranslationofthosetechnologiesintodemandforcriticalmineralsiswherekeymethodologicaldifferencesarise.Forexample,atotaloftwenty-eight(28)mineralsandmetalswerementionedinallthereportssurveyed,echoingthediversityofwhatpolicymakersconsidertobe“critical”minerals.Governmentshaveindependentlydevelopedlistsofwhichmaterialsconstitutesa“criticalmineral”dependingondomesticallyavailableresources,importdependencies,importancetodomesticenergysystems,manufacturingbase,energypolicypriorities,andothercriteria._____________________________________________________________________________22_____________________________________________________________________________23TopDownvs.BottomUpTherearealsodifferingapproachestoestimatedemandforcriticalmineralsacrossthevarioustechnologies.The“bottom-up"approachinvolvesestimatingthematerialrequirementsforeachtechnologydeployed,thenmodelingthegrowthofeachtechnologyacrosstheprojectionperiodandscenariostoarriveatanestimateforthequantityofcriticalmineralsrequired.The“top-down”approachinvolvesestimatingthegrowthrateofvarioustechnologiesacrossascenario,andthenestimatingtherequiredcriticalmineralsbasedonthisgrowth.IntensityandResourceEfficiencyAssumptionsWithbothbottom-upandtop-downapproaches,assumptionsneedtobemadeontheintensityofmaterialspertechnologydeployed–kilogramsoflithiumperelectricvehicle,forexample.Aswellasassumptionsonifthatmaterialintensitychangesovertime.Theseestimatescanvarywidelyacrossscenariosandprojectionsandareamajorcontributortovarianceacrossthedifferentreportssurveyed.Conservativeassumptionsarelikelytotakepresentratesofmaterialintensityandholdthemmoreorlessconstantacrossaprojectionperiod.Meaning,thequantityofamaterialrequiredperunitofrenewableenergytechnologyisthesamein2050asitistoday.Moreprogressiveassumptionsincludegradualorrapidincreasesinresourceefficiencyacrosstheprojectionperiod.Inotherwords,thequantityofmaterialrequiredperunitofrenewableenergytechnologyislessin2050thanitistoday.Sub-TechnologiesandChemistryShiftsEstimatesofrequiredcriticalmineralscanalsovarybasedonchangeswithinarenewableenergytechnologycategory.Factorssuchascost,energyintensity,andconsumerbehaviorandpreferencescanshapefuturemarketsandsub-technologies.Thesesub-technologiesinturncanfurtherinfluencethespecificmineralsrequiredfortheenergytransition.Forinstance,acrosssolarenergytherearedifferentsub-technologiesthathavevariouschemistriesandresourcerequirements.Thepotentialpreferenceforcadmiumtelluride(CdTe)solarcellsoverthecurrentlyprevalenttechnology-crystallinesiliconphotovoltaiccells-couldshiftthedemandformineralslikecadmiumandtelluriuminthefuture.However,themostprevalentexampleofsub-technologiesdrivingchemistryshiftsoccursinbatteries.Changesinmineralprices,processingexpenses,policyincentives,technologicaldevelopment,andotherfactorshaveresultedinamultitudeofbatterycathodechemistrymixessuchasnickel,manganese,cobalt(NMC),nickel,cobalt,aluminumoxide(NCA),andlithium,iron,phosphate(LFP)batteries.Ingeneral,NMCcathodesrequirenearlyeighttimesmorecobaltthanNCAlithiumbatteries,butonlyhalfthenickelamount.LFPbatteries,whichdonotrequirenickel,manganese,orcobalt,requiremorecopperthanNMCbatteriesandphosphorus,akeyingredientinlarge-scalefertilizerproduction._____________________________________________________________________________24Asaresultofthediversityinbatterycathodechemistry,changesinthepriceforoneormorebatteryrawmaterialscangreatlyinfluencetheprevailingorpredominantbatterytypedeployed.Suchshiftshavealreadyoccurredoverthecourseofthepast5-10yearsandarelikelytooccuragaininthefuture.Withinthepast5-years,highcobaltpricesandsupplychainissuesresultedinmanybatterymanufacturersshiftingtolow-cobaltbatterychemistries.Thenhighnickelpricesreducedthepricecompetitivenessofhigh-nickelcontentbatterychemistriesversusLFPbatteries.Thenin2022,asurgeinlithiumpricesledtoanincreaseinLFPbatterycostscomparedwithotherchemistries.WhileLFPbatteriesremainthemostaffordablebatterytechnologyperkilowatt-hour,asustainedincreaseinlithiumpricescouldslowdownthedeploymentofLFPasbatterychemistrypreference.Thesedifferencesandthechangingadvancementsintechnologymakemineraldemandmodelsdifficulttoestimate.Thisresultsinawiderangeofmineraldemandestimates,evenwhen_____________________________________________________________________________25researchersagreeonthewidescaledeploymentofaspecificlow-carbonorrenewableenergytechnology.RecyclingWhileallreportssurveyedinthisstudysuggestthatrecyclingcanbeausefultoolinmanagingcriticalmaterialssupply,itisalsoamajorsourceofvarianceacrosscriticalmineralrequirementestimates.Recyclingratesvarygreatlyacrossdifferentmineralsbecauseofcosts,complexities,compromisedqualityoffinalproduct,ormaterialavailability.Aluminumandcopperaretwoofthemostwidelyrecycledmaterialsaswellastwomaterialsthatoverlapacrossnumerouslow-carbonandrenewableenergytechnologies.Meanwhile,recyclingtechnologyforcertaincriticalmaterialsisstillbeingdevelopedandnotyetatscale.Additionally,dataisoftenlackingforrecyclingratesbeiteitherbymaterial,feedstocksource(batteries,solarpanels,scrap,etc.),orregion.However,theassumptionsmadeonrecyclingratesintheseprojectionsgreatlyinfluencetheimplicationsfornewminerequirements,supplychaindiversity,sustainability,andpolicy.Conservativeassumptionsofstagnantrecyclingratesintothefutureformanymineralswouldlikelytranslateintoprojectionsshowingafargreaterneedfornewmines,mininginvestment,andsupplychainexpansion.Progressiveassumptionsofincreasingrecyclingratesornearfully-cycleclosedloopsupplychainswouldlikelyresultinprojectionswithfewerlong-termnewminesrequirements.Cobaltandlithiumaretwocriticalmaterialsthathavethehighestnear-termriskofdemandoutpacingsupplyaccordingtomanyofthereportssurveyedinthisstudy.Asignificantfuturesourceofbothcouldbefromincreasedrecyclingratesofend-of-lifeelectricvehiclebatteries.However,recyclinginfrastructureforEVbatteriesisstillinitsinfancy,andtherearestilltechnologicalchallengestoovercome.Forexample,lithiumistechnicallyrecyclablebutischallengingtoisolatefromothercathodematerialswithouttheuseofcostlyorganicreagents.Acrosstheprojectionssurveyed,themedium-term,~2035-2045,isthekeymakeorbreakpointforEVrecyclingratesandthuslithium,cobalt,andseveralothermineralsupplyrequirements.ThisreflectsboththetimeneededforrecyclinginfrastructureandtechnologytomatureaswellasthetimeneededforEV’sshareofglobalvehiclefleetstogeneratesufficientfeedstock(end-of-lifebatteries)forascaled-uprecyclingindustry.ConclusionsTheimpendingtransitiontolow-carbonenergytechnologieshasalreadyaffectedcriticalmineralsupplychains,prices,anddemand.Still,itwillcontinuetobeverydifficulttoaccuratelyforecast.Whileprojectionsunanimouslyenvisionintensedeploymentofbatteryelectricvehicles,wind,solar,andothermineral-intenseenergytechnologiestoachieveclimategoals.Continuousvariationsinenergymarkets,technologicaladvancements,costs,emissions,andconsumerpreferencesresultinanever-changingmineraldemandlandscape.Althoughoutsidethescopeofthisreport,therearesignificantrisksonthesupplysidetotheseprojections.Whilemostmodelsdonotanticipatescarcityanddepletionofmineralresources,factorssuchasgeopolitics,decades-longdevelopmenttimelinesfornewmines,highcapital_____________________________________________________________________________26requirements,increasingESGpressures,anddecliningorequalityindicateahighriskforperiodsofdemandexceedingsupply.Whileprojectionsoffuturecriticalmineralsdemandrequirementsarenecessarytounderstandthescaleofthechallengeamineral-drivenenergytransitionpresents,itisequallynecessarytounderstandthevastamountofuncertaintythatisinherentinsuchprojections.Thereportssurveyedforthisreportshouldbeconsideredthefirstgenerationoftheirkind.Improveddatacollectionandincreasedcollaborationbetweentheenergymodelingcommunityandthemetalsandminingcommunitywillyieldbetter,standardized,andmorecomprehensiveoutlooksinthefuture._____________________________________________________________________________27References•Bain,J.(2021).GridParity:TheArtofFinancingRenewableEnergyProjectsintheU.S.Springer.•Bingoto,P.,Foucart,M.,Gusakova,M.,Hundertmark,T.,&VanHoey,M.(2021).Thefutureofcriticalmineralsinthenet-zerotransition.McKinsey&Company.•Dominish,E.,Florin,N.,&Teske,S.(2019).ResponsibleMineralsSourcingforRenewableEnergy.ReportpreparedforEarthworksbytheInstituteforSustainableFutures,UniversityofTechnologySydney.•EnergyTransitionsCommission.(2023).MaterialandResourceRequirementsfortheEnergyTransition.•GermanMineralResourcesAgency(DERA).(2021).Rawmaterialsforemergingtechnologies2021.CommissionedbytheFederalInstituteforGeosciencesandNaturalResources(BGR),Berlin.•Gielen,D.(2021).Criticalmineralsfortheenergytransition.InternationalRenewableEnergyAgency,AbuDhabi.•InternationalEnergyAgency(2021).TheRoleofCriticalMineralsinCleanEnergyTransitions.InternationalEnergyAgency.•InternationalEnergyAgency(2023).CriticalMineralsMarketReview2023.InternationalEnergyAgency.•InternationalRenewableEnergyAgency(2023).Geopoliticsoftheenergytransition:Criticalmaterials.InternationalRenewableEnergyAgency,AbuDhabi.•InternationalRenewableEnergyAgency(2023).WorldEnergyTransitionsOutlook2023:1.5°CPathway,Volume1.InternationalRenewableEnergyAgency,AbuDhabi.•KULeuven.(2022).MetalsforCleanEnergy.MetalsCleanEnergy.•WorldBank(2020).MineralsforClimateAction:TheMineralIntensityoftheCleanEnergyTransition.WorldBank.•UnitedStatesGeologicSurvey,USGS(2023).MineralCommoditySummaries,variousmetals._____________________________________________________________________________28Appendix:BackgroundsofSurveyedReports•IRENA(2021;2023),broadlydiscusshowinnovationwillaffectdemandforcriticalmaterialsandtheneedforacomprehensivepolicyframeworkthatnotonlytransformsenergysystemsbutalsoprotectspeople,livelihoods,andjobs.IRENA(2023),uniquelyhighlightsthegeopoliticalaspectsofcriticalminerals,includingtheconcentrationofproductioninafewcountriesandthepotentialforsupplydisruptionsduetotradetensionsorotherfactors.AllthreereportsfromIRENAdepictstrategiestomitigatecriticalmaterialsdependencies,includingrecycling,substitution,anddiversificationofsupplysources.•IEAreports(2022;2023)highlighttheimportanceofcriticalmineralsforthetransitiontoalow-carbonenergysystemandidentifypotentialrisksandchallengesassociatedwiththeirsupplyanddemand.IEAprovidessomeofthemoredetailedanalysisanddeepdivesintothekeymineraldemandandsupplyprojections.Also,thesereportsprovideacomprehensiveoverviewofthecurrentstateofcriticalmineralsinvestmentsandmarkettrends,andtheyresponddirectlytotherequestsintheG7Five-PointPlanforcriticalmineralssecurity.•WorldBank(2020)MineralsforClimatereportexaminesthepotentialfordifferentcountriesandregionstodeveloptheirowncriticalmineralresourcesandsupplychains,andthepotentialimplicationsforglobaltradeandgeopolitics.Thepaperisuniqueinitscomprehensiveanalysisofthemineralintensityofthecleanenergytransition,itsdetailedexaminationofthepotentialenvironmentalandsocialimpactsofcriticalmineralproductionanddisposal,anditsglobalperspectiveontheimplicationsofthecleanenergytransitionformineralmarkets,trade,andgeopolitics.•UniversityofTechnologySydney:InstituteforSustainableFutures,ISF(2019),offersforecastsregardingthefutureneedformetals,whicharedesignedbasedonanaggressiverenewableenergysituation.Thestudyevaluatesthesupplyuncertaintiesconnectedwiththecentralizedproductionandreserves,thepercentageofrenewableenergyinend-use,andthecriticalnatureofthesupplychain.Moreover,thereportcriticallyexaminestheidentifiedimpactsofminingontheenvironment,health,andhumanrights.•McKinsey&Company(2021)emphasizestheimportanceofsustainabilityinthetransitiontoanet-zeroemissionseconomyandhowtheindustryshouldcomplywithorexceedtheenvironmental,social,andgovernancestandards.Thepaperprovidesrecommendationsforpolicymakersandindustryleaderstoensureasecureandsustainablesupplyofcriticalminerals.Theauthorsproposestrategiesforincreasingtheproductionofcriticalminerals,improvingtherecyclingandreuseofthesematerials,andreducingtheenvironmentalandsocialimpactsofminingandprocessingthesematerials.•GermanMineralResourcesAgency(DERA)(2021)drawsonacombinationofliteraturereviews,expertconsultation,andscenarioanalysistoprovideacomprehensiveanalysisofthecriticalmaterialsrequiredfortheenergytransition.Thepaperhighlightssomeglobalperspectivesincludingtheimportanceofinternationalcooperationandcoordinationinmanagingcriticalmaterialsupplychains.Italsoprovidesguidancetopolicymakersandotherstakeholdersonstrategiesforensuringcriticalmineralsavailabilityandsustainabilityinarapidlychanginggloballandscape._____________________________________________________________________________29•EnergyTransitionsCommission(ETC)(2023)ThispaperintroducesfourhypotheticalenergypathwaystoprobeintotheprospectivedemandforcriticalmineralsduringtheEnergyTransition.TheseincludetheBaselineDecarbonizationScenario,theRapidInnovationScenario,theResourceEfficiencyScenario,andtheDelayedTransitionScenario.TheBaselineDecarbonizationScenariopredicatesanet-zeroeconomybymid-century,congruentwiththeEnergyTransitionsCommission'sprojections,coupledwithconservativeassumptionsabouttechnology'sefficiencyandinnovativecapacity,materialintensity,andrecyclingrates.ThefindingsofthisscenariomaybeinterpretedasthepeakpossiblerequirementformaterialsduringtheEnergyTransition.TheRapidInnovationScenario,ontheotherhand,positsaspeediertrajectoryofinnovationandtechdevelopmentthantheBaselineDecarbonizationScenario,whichresultsinreducedmaterialdemandsfortheEnergyTransition.TheResourceEfficiencyScenarioprioritizesresourceconservationandrecycling,leadingtoadecreaseinthematerialrequirementsfortheEnergyTransition.TheDelayedTransitionScenarioanticipatesamoregradualevolutiontowardsalow-carbonenergyframework,therebyreducingtheimmediatedemandforcriticalmineralsbutpotentiallyamplifyingitinthelongrun.•CatholicUniversityofLuven(KULuven)(2022)ThepaperhighlightsthatEurope'sambitionstocultivatedomesticproductionofcleanenergytechnologieswillescalateitsdemandforanarrayofmetals.Thisincludesbolsteringexistingbasemetalmarketslikealuminum,copper,andnickel,andpavingthewayfornovelcommoditymarketssuchaslithiumandrareearthelements,referredtointhepaperasTier1(shortlist)orTier2(longlist)minerals.Whilethispaperdoesnotexplicitlydefineitsownenergyscenarios,itreferstotwoprimaryenergyscenariosestablishedbytheInternationalEnergyAgency(IEA):theStatedPoliciesScenario(STEPS)andtheSustainableDevelopmentScenario(SDS).

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱