ADBIWorkingPaperSeriesHISTORY,STATUS,ANDFUTURECHALLENGESOFHYDROGENENERGYINTHETRANSPORTATIONSECTORWen-LongShang,XuewangSong,QiLiao,MengYuan,JieYan,andYaminYanNo.1404July2023AsianDevelopmentBankInstituteTheWorkingPaperseriesisacontinuationoftheformerlynamedDiscussionPaperseries;thenumberingofthepaperscontinuedwithoutinterruptionorchange.ADBI’sworkingpapersreflectinitialideasonatopicandarepostedonlinefordiscussion.Someworkingpapersmaydevelopintootherformsofpublication.TheAsianDevelopmentBankrefersto“China”asthePeople’sRepublicofChinaandto“SouthKorea”astheRepublicofKorea.Suggestedcitation:Shang,W.-L.,X.Song,Q.Liao,M.Yuan,J.Yan,andY.Yan.2023.History,Status,andFutureChallengesofHydrogenEnergyintheTransportationSector.ADBIWorkingPaper1404.Tokyo:AsianDevelopmentBankInstitute.Available:https://doi.org/10.56506/VTUD5388Pleasecontacttheauthorsforinformationaboutthispaper.Email:shangwl_imperial@bjut.edu.cnWen-LongShangisanassistantprofessoratBeijingUniversityofTechnologyandSeniorResearchFellowatImperialCollegeLondon.XuewangSongisapostgraduatestudentatBeijingUniversityofTechnology.QiLiaoisalecturerattheChinaUniversityofPetroleum(Beijing).MengYuanisapostdoctoralcandidateatAalborgUniversity,Denmark.JieYanisanassociateprofessorattheStateKeyLaboratoryofAlternateElectricalPowerSystemwithRenewableEnergySources,NorthChinaElectricPowerUniversity.YaminYanisalecturerattheChinaUniversityofPetroleum(Beijing).TheviewsexpressedinthispaperaretheviewsoftheauthoranddonotnecessarilyreflecttheviewsorpoliciesofADBI,ADB,itsBoardofDirectors,orthegovernmentstheyrepresent.ADBIdoesnotguaranteetheaccuracyofthedataincludedinthispaperandacceptsnoresponsibilityforanyconsequencesoftheiruse.TerminologyusedmaynotnecessarilybeconsistentwithADBofficialterms.Discussionpapersaresubjecttoformalrevisionandcorrectionbeforetheyarefinalizedandconsideredpublished.AsianDevelopmentBankInstituteKasumigasekiBuilding,8thFloor3-2-5Kasumigaseki,Chiyoda-kuTokyo100-6008,JapanTel:+81-3-3593-5500Fax:+81-3-3593-5571URL:www.adbi.orgE-mail:info@adbi.org©2023AsianDevelopmentBankInstituteADBIWorkingPaper1404W.-L.Shangetal.AbstractInrecentyears,extremeweatheraroundtheworldduetoclimatechangehasoccurredincreasinglyfrequently,andcountriesgloballyhavegraduallyrealizedtheharmcausedbyglobalwarming.Allcountriesarealsomakingeffortstopromotelessconsumptionoffossilfuelenergyandtheuseinsteadofrenewableenergytechnologiesthatareenvironmentallyfriendlyandhavelowercarbonemissions.Thetransportationsector,asamaincontributortoenergyconsumptionandpollutionemissions,isreceivingincreasingattention.Atthesametime,newenergyvehiclesaremoreenergyefficientandenvironmentallyfriendlythanfuelvehicles,makingthemmoreprevalentintheautomotivemarket,whichisflourishing.Greenhydrogenenergycanbeusedasarenewable,clean,andefficientenergysourcefornewenergyvehiclesandisalsograduallybeingusedintransportationtopromotethegoalofcarbonneutrality.Thispaperreviewstheresearchonhydrogenenergyinthetransportationfield,summarizesthepreviousresearchresults,andpresentsthechallengestothefutureapplicationofhydrogenenergy.Keywords:carbonneutrality,hydrogen,climatechange,renewableenergy,transportationJELClassification:R40ADBIWorkingPaper1404W.-L.Shangetal.Contents1.INTRODUCTION.......................................................................................................11.1Background....................................................................................................11.2ResearchStatus............................................................................................12.THEAPPLICATIONOFHYDROGENENERGY........................................................32.1TheHydrogenEnergyProductionProcess....................................................32.2ClassificationofHydrogenEnergyApplications.............................................42.3ProcessesandTechnologiesforHydrogenEnergyinTransportation............52.4History,Status,andControversiesofHydrogenEnergyinTransportation.....63.LITERATURESEARCHANDANALYSIS..................................................................83.1LiteratureSearch...........................................................................................83.2LiteratureAnalysis.........................................................................................84.FUTURECHALLENGES.........................................................................................165.CONCLUSIONANDPOLICYRECOMMENDATIONS.............................................18REFERENCES...................................................................................................................20ADBIWorkingPaper1404W.-L.Shangetal.11.INTRODUCTION1.1BackgroundOn12December2015,theParisClimateConferencereachedanagreementonglobalclimatechangeandsetthegoaltolimitlong-termglobalwarmingtolessthan2degreesCelsius,andpreferablybelow1.5degreesCelsius,comparedtopreindustriallevels(Masson-Delmotteetal.2018).InordertoachievethetargetsfortemperaturecontrolproposedintheParisAgreement,manycountrieshaveproposedpathwaysforcarbonneutrality,whichhasbecomeacommonvisionandongoingworldwideactionplan.Amongtheemissionreductionmeasuresadoptedbymanycountriesandregions,encouragingthedevelopmentandadoptionofrenewableenergyhasbecomeacommonchoice(News2022),andthereisnowahugeandhistoricalopportunitytodevelopthelatter.Inthemeantime,asatypeofrenewableandcleanenergysource,greenhydrogenenergyhasreceivedmuchattention,anditcanplayanimportantroleinreducingcarbonemissionsinthetransportationsector,inindustrialpower,andinotherareasthatgeneratelargeamountsofcarbonemissions(Yuetal.2022).InSeptember2020,atthe75thsessionoftheUnitedNationsGeneralAssembly,PresidentXiJinpingannouncedthatthePeople’sRepublicofChina(PRC)wouldstrivetopeakitscarbondioxide(CO2)emissionsby2030andachievecarbonneutralityby2060(Jinping2020).Therefore,theresearchrelatedtohydrogenenergyisextremelyimportantandofgreatsignificance,butalsopresentschallenges(Zouetal.2022).Asexpected,theresearchanddevelopmentofhydrogenenergyinthefieldoftransportationkeepsincreasing.Thetransportationindustryisanimportantpartofoursocietyandunderpinstheprosperityofthedifferenteconomies(SelvakkumaranandLimmeechokchai2015).However,itisresponsibleforvarioustypesofenergyconsumptionandgreenhousegasemissions,whichaccountfor15%oftotalcarbonemissions(Zhang2022b).DuringthecurrentperiodofthePRC’s14thFive-YearPlan,theMinistryofTransporthasreleasedaworkplanthatincludestheimplementationof11majorprojects,includingthe“GreenLowCarbonTransportSustainabilityProject.”Aroundtheoverallgoalofreducingthecarbonintensityoftransportation,itisnecessarytosupportthelarge-scaleuseofnewenergyvehiclesandships.Therefore,hydrogenenergyplaysamoreimportantroleinthetransportationsectorandcontributestosustainableurbandevelopment(Bietal.2021).Hydrogenfuelcellvehicles(HFCVs)havebeendevelopingrapidlyinrecentyears,andmanycountriessuchasthePRC,Germany,andtheUnitedStatesarealsoacceleratingthelayoutandconstructionofhydrogenrefuelingstationsforHFCVssoastovigorouslypromotetheindustrializationofhydrogenfuelcells.InadditiontoHFCVs,aviationandshippingarealsoactivelyexploringtheapplicationofhydrogenenergy(Zhang2022a).Thedevelopmentofhydrogenenergyapplicationsinthetransportationsectorwillundoubtedlygreatlyfacilitateextensiveanddeepdecarbonizationinthisfield.1.2ResearchStatusInordertoobtainageneralunderstandingoftheresearchstatusofhydrogen,wesearchedtheWebofSciencedatabasewith“hydrogen”asthekeyword,obtainedmorethanonemillionrelatedpapers,andselected8,000fromthem.ThekeywordADBIWorkingPaper1404W.-L.Shangetal.2“co-occurrenceanalysis”wasusedbyVOSviewersoftwarefortheabove-listedpapers.TheanalysisresultsareshowninFigures1.1and1.2.Figure1.1:KeywordCo-occurrenceAnalysisBasedonHydrogenAscanbeseeninFigure1.1,theterms“catalyst,”“structure,”“emission,”“molecule,”“formation,”and“technology”appearmostfrequently,whichindicatesthatscholarsandresearcherspaymoreattentiontotheproductionmethod,productionefficiency,andenergystructureofhydrogen.Inaddition,thepollutionandemissionsgeneratedduringthehydrogenproductionprocessarealsothefocusofresearchers’attention.Figure1.2:Co-occurrenceAnalysisofKeywordsasTimeEvolvesADBIWorkingPaper1404W.-L.Shangetal.3TheevolutionoftheresearchtopicsovertimecanbeseeninFigure1.2.Accordingtotheabovefigure,theresearchtopicsinthepreviousyearsweremainlyfocusedonstructure,molecules,formation,catalysts,etc.Inrecentyears,asresearchhasintensifiedandmoreattentionhasbeenpaidtoenvironmentalandclimateissues,researchtopicshavetendedtofocusonemissions,power,energysystems,cost,etc.Thisstudyfirstanalyzesandsummarizestheresearchbackgroundandsignificanceofhydrogenenergy,thenanalyzesandsummarizesthecurrentsituationandthehottopicsofhydrogenenergyresearchbysettingkeywordstosearchrelevantpapers,and,basedonthis,selectspapersrelatedtohydrogenenergyinthefieldoftransportationforfurtheranalysis.Throughareviewoftheliterature,thisstudybrieflyintroducestheproductionandmanufacturingprocessofhydrogenenergy,theclassificationofhydrogenenergy,andthetechnologiesappliedtothetransportationfield;inaddition,thehistory,currentsituation,andcontroversiesofitsapplicationinthetransportationsectorarealsointroduced.Followingthis,thesearchedpapersarefurtherclassifiedandorganizedtoanalyzetheapplicationofhydrogenenergy.Finally,thechallengesofhydrogenenergyinthefieldoftransportationinthefuturearepresented.2.THEAPPLICATIONOFHYDROGENENERGY2.1TheHydrogenEnergyProductionProcessTheindustrychainofhydrogenenergyincludesitsproduction,storage,transportation,refueling,anduse.Amongtheseprocesses,hydrogenproductiontechnologyincludesitsproductionfromfossilenergy,fromelectrolyticwater,fromindustrialbyproducts,andfromrenewableenergy,asshowninFigure2.1.Figure2.1:MethodsforProducingHydrogenGasHydrogenproductionfromfossilenergysourcesmainlyinvolvestheuseoffossilfuelstoproducehydrogenbychemicalpyrolysisorgasification.Thistechnologyisrelativelymatureandinexpensive,anditiscurrentlythemainmethodusedforproducinghydrogen.Todate,hydrogenproducedfromfossilfuelshasbeenemployedmainlyasafeedstockforindustrialprocessessuchasfertilizersandmetallurgy.SincecarbonADBIWorkingPaper1404W.-L.Shangetal.4dioxideisproducedandemittedduringtheproductionofhydrogen,itiscalled“grayhydrogen”andcanbecombinedwithcarboncaptureandstorage(CCS)technologytoconvert“grayhydrogen”into“bluehydrogen.”Theadvantageofthistechnologyisthatitissuitableforlarge-scalehydrogenproduction,buttheemissionsarehighandthegasimpuritiesneedtobepurified(Zouetal.2022).Hydrogenproductionbyelectrolysisistheproductionofhydrogenbydecomposingwater.Thistechnologyallowstheuseofelectricityfromrenewablesourceswithoutemittingcarbondioxideorothertoxicsubstances,andisthereforeknownas“greenhydrogen”inthetruesenseoftheword.Electrolyticwaterhashightheoreticalconversionefficiencyandthehydrogenobtainedisextremelypure.Hydrogenproductionfromelectrolyticwatercanbeclassifiedintoalkalineelectrolyticwater,acidicprotonexchangemembraneelectrolyticwater,high-temperaturesolidoxideelectrolyticwater,andotherelectrolyticwatertechnologies(Zouetal.2022).Leietal.(2019)effectivelyincreasedtherateandpurityofhydrogenproductionbydevelopingatechniquetoproducehydrogeninacid-basetwo-phasesolutions.Dossowetal.(2021)designedaprocessthatcanreducegreenhousegasemissionsby76–78%.Electrolytichydrogengeneratedfromoffshorewindenergycanalsocontributetolow-carbonsystemsandeffectivelyreducecarbonemissions(Chenetal.2021).Theindustrialproductionprocess,suchasinthechlor-alkaliindustry,willproducealargenumberofhydrogenbyproducts,butthepurityofthesebyproductsisnothigh,andthepurificationprocessrequireshigh-endequipmentandalargecapitalinvestment.Withthecontinuousadvanceofthehydrogenenergyindustryandrelatedscientifictechnologies,theadvantagesofindustrialbyproducthydrogengasareexpanding.Thismethodhassignificantadvantages,suchasitslowcost,thewiderangeofsources,andlow-carbonemissionsintherecoveryprocess,butthepurificationprocessismorecomplicated(Yang2022).Photocatalytichydrogenproductionreferstoasustainable,clean,andrenewablemethodofproducinghydrogen,andoneofthemostwidelystudiedandpromisingtechnologiesisphotolytichydrogenproduction(Zouetal.2022).Theessenceofphotolytichydrogenproductiontechnologyistheuseofsemiconductormaterialsascatalyststodrivethedecompositionofwater.Microbialhydrogenproductiontechnologyhasemergedasaprospectivewaytoproducehydrogenduetoitsconvenientmanufacturingtechnologyandwideavailabilityofsources.Commonfermentativehydrogenproductionmicroorganismsincludevarioustypesofhydrogen-producingClostridium,thermophilicbacteria,andEscherichiacoli(Vasconcelos,Leitão,andSantaella2016;Pugazhendhi,Kumar,andSivagurunathan2019).Sadvakasovaetal.(2020)investigatedtheprocessofproducinghydrogenfromcyanobacterialcells,andthisprocessistheresultofsolarenergyconversion.Theyconcludedthatcyanobacterialgenemutantswithgreatpotentialforproducinghydrogenshouldbeconstructedbygeneticengineeringinordertoincreasehydrogenproduction.2.2ClassificationofHydrogenEnergyApplicationsTheproduction,manufacture,andapplicationofhydrogenenergyisoneoftheimportantwaystoachievethegoalofcarbonneutrality,toguaranteenationalenergysecurity,andtorealizelow-carbontransformation(Zhang2022c).Currently,hydrogenenergyismainlyusedinenergy,ironandsteelmetallurgy,thepetrochemicalindustry,andsoon.Alongwiththecontinuousadjustmentofnationaleconomicpolicyandthecontinuousdevelopmentofhydrogenenergyindustrytechnology,hydrogenenergywillbeappliedtoawiderrangeoffields.ADBIWorkingPaper1404W.-L.Shangetal.52.2.1HydrogenEnergyStorageTodayweshouldvigorouslydevelopwindenergyandsolarphotovoltaicpowergenerationandcompletethedevelopmentofrenewableenergybyproducinggreenhydrogenenergy(Cope2022).However,theintermittentandrandomnatureofwindpowerandphotovoltaicpowergenerationaffectsthecontinuityandstabilityoftheirgrid-connectedpowersupply,andweakensthepeakregulationofthepowersystem(Zhouetal.2022).Withthecontinuousprogressandimprovementofgreenhydrogenenergytechnology,theuseofrenewableenergytogenerateelectricityandproducegreenhydrogenisincreasinglyreceivingattention.Meanwhile,thecostofmanufacturinggreenhydrogenisdecreasing,andithasfurthercontributedtothepaceoftheenergytransition.2.2.2HydrogenFuelAstheultimateenergysourcefortheelectricpowersector,hydrogenenergytransformschemicalenergyintoelectricalandkineticenergythroughaseriesofreactions,providingpowerforvehicles.Atthesametime,greenhydrogenalsohasadvantagesintermsofzero-carbonemissions,andtheapplicationinthevehicleindustryofbatteriesbasedongreenhydrogenhasbecomeverypromising(Zouetal.2022).2.2.3HydrogenChemicalRawMaterialsThecurrentglobaldemandforhydrogenismainlyusedforammoniasynthesis,refineryhydrogenationproduction,methanolproduction,andsoon(Zouetal.2022).Withthecontinuousdevelopmentofrelevanttechnologies,hydrogenationtechnologywillbeincreasinglyusedinpetroleumrefinementandotherpetrochemicalfields.Hydrogenationisalsoanimportanttechnologicalapproachtothemanufactureofgreenoil.Hydrogenisalsocommonlyusedforthesynthesisofchemicalproductsandcompoundscontainingcarbon,suchasureaandindustrialalcohols.Thesecompoundscanbeeasilystoredandtransportedwhenliquefied,havehighenergydensity,arelessexplosive,andcanreachnearlyzero-carbonemissionsasliquidfuels,whichmakesthemasuitablerenewableenergysourceforstorageandtransportationotherthanelectricitytransmission.2.3ProcessesandTechnologiesforHydrogenEnergyinTransportationThemainapplicationofhydrogenenergyintransportationisusinghydrogenasanenergysourcetopowervehiclesinordertoreducecarbonemissionsandairpollutioncausedbytransportationvehicles.Sincehydrogenenergycanpowertransportationvehicleswithzerogreenhousegasemissions(e.g.,CO2andNOx),manycountriesarecurrentlyacceleratingthespeedwithwhichtheyaredeployingnewenergyvehiclessuchashydrogen-poweredones.Withtherapiddevelopmentoffuelcellandrenewableenergygenerationtechnologies,theapplicationofgreenhydrogenenergyintransportationisalsograduallyincreasing(Greene,OgdenandLin2020;Baietal.2022;Bietal.2022;Yangetal.2022).RoseandNeumann(2020)investigatedanetworkofhydrogenrefuelingfacilitiesforheavy-dutyvehiclesbycombininganinfrastructurelocationplanningmodelwithapowersystemoptimizationmodelthatincorporatesgridexpansionoptions.Thestudydiscussedtheinteractionsbetweenhydrogenrefuelingstationsandtheelectricpowersystem,andshowsthatwhenbothareconsideredsystematicallyandinsynergywithmultiplesectorsitcaneffectivelyreduceinfrastructureconstructioncosts,whichcanbeamainconsiderationinbuildingADBIWorkingPaper1404W.-L.Shangetal.6hydrogenrefuelingstations.Taoetal.(2020)exploredthecollaborativeplanningofadistributionnetworkandtransportationsystemforhydrogenfuelcellvehicles.Hydrogenfuelcellvehiclesareintroducedinthetransportationnetwork,andthesimulationisperformedbyplanningthelocationofhydrogenrefuelingstations,optimizingtheratioofinternalcombustionenginevehicles,electricvehicles,andfuelcellvehicles,andsolvingthisoptimizationmodelusingthemixed-integerlinearprogrammingandsubgradientmethod.Thesimulationresultsshowthattheproposedmodelcanachievethelowestemissionsduetothegoodcoordinationbetweenthepowerandtransportationsystems.Pyza,Gołda,andSendek-Matysiak(2022)studiedstrategiesfortheuseofhydrogenenergyinpublictransportsystems.Throughstudyingthemethodofhydrogenproductionandtheimpactonvehicleoperatingcosts,itwasfoundthattheuseofhydrogenenergyvehiclesinpublictransportsystemscanbeeffectiveinimprovingairqualityaswellasoptimizingthemobilityofthepopulationduetothewiderangeofhydrogenenergysources.Asanalternativeenergysourceinpublictransportationsystems,theuseofhydrogenisreasonableandeffective.LiandTaghizadeh-Hesary(2022)exploredtheeconomicfeasibilityofgreenhydrogenfuelcellelectricvehiclesforroadtransportationinthePRCandproposedamodeltoestimatethecarbonemissionsofthehydrogensupplychainandfuelcells.Abalancedhydrogencostmodelwasalsodevelopedtoanalyzethetotalcostofsupplyinghydrogenfromrenewableenergysourcestovehiclehydrogenfillingstations,andthecostoffuelcellelectricvehiclesperkilometer.Theresultssuggestthatgreenhydrogen-fueledvehicleswillbecomeincreasinglyimportantinthePRCinthelongrun.Wickham,Hawkes,andJalil-Vega(2022)studiedtheoptimizationofthehydrogensupplychaininthetransportationsector.Aspatiallyresolvedoptimizationmodelwasproposedtoevaluatetheoptimalcostconfigurationsofthehydrogensupplychainby2050,includinghydrogengradesandseparationandpurificationtechnologies.Theresultsshowthatundergiventechno-economicassumptions,anoptimalconfigurationofthehydrogensupplychainincludesusingsteammethanereformingwithcarboncaptureandsequestration,theinstallationofnewhydrogentransmissionpipelines,modificationofthenaturalgasdistributionnetworktosupplyhydrogen,andtheinstallationoflocalizedVPSsystemsatrefuelingstations.Thestudyfoundthatitwasimportanttoincludepurificationtechnologiesinthemodel.Farahanietal.(2019)proposedanintegratedhydrogen-basedenergyandtransportmodelthatfacilitatesthepenetrationofintermittentrenewableenergysourceswithoutcompromisingthereliabilityofelectricity,heat,andtransportenergysupplies,whilealsoreducingthecostofthesystem.2.4History,Status,andControversiesofHydrogenEnergyinTransportationHerewetrytoinvestigatetheresearchstatusofhydrogenenergyinthetransportationsector,andarticlesintransportationjournalsaresearched,withtheaimofconcentratingontheresearchofhydrogeninthefieldoftransportation.Researchliteratureinthefieldoftransportationwassearchedusingthekeywords“hydrogen”and“transport”,andthekeyword“co-occurrenceanalysis”wasusedthroughVOSviewer.Theresultsareshowninthefigurebelow.ADBIWorkingPaper1404W.-L.Shangetal.7Figure2.2:KeywordsCo-occurrenceAnalysisBasedonHydrogenandTransportationfromtheContentDimensionFigure2.3:KeywordsCo-occurrenceAnalysisBasedonHydrogenandTransportationfromtheTimeDimensionADBIWorkingPaper1404W.-L.Shangetal.8AsshowninFigures2.2and2.3,wecanconcludethatthehydrogenresearchinthefieldoftransportationmainlyfocusesonhydrogenfuelcellvehicles,batteryelectricvehicles,fuelconsumption,process,production,policy,efficiency,stations,andgovernment.Inthepastfewyears,scholarshaveconcentratedontheareasofefficiency,components,operation,andprocess,particularlyfocusingontheproductionofhydrogenfuelandthebenefitsofhydrogenvehicles.Inrecentyears,researchhasbeenconductedintheareasofgreenhousegases,hydrogenfuelcellvehicles,batteryelectricvehicles,government,emissionreduction,andpreferences,withresearchdirectionsfallingmainlyongovernmentpolicies,fuelvehicles,hydrogenrefuelingstationsiting,energyconservation,andemissionreduction.3.LITERATURESEARCHANDANALYSISInthissection,wemainlysystematicallyinvestigatedtheliteraturerelatedtohydrogenandtransportation,andtheseselectedpapersareanalyzedaccordingtotheclassificationsoftheirresearchdirection.3.1LiteratureSearchInordertoconductacomprehensivereview,wefirstsystematicallysearchforpapersthatconcentrateonhydrogenandtransportationsystems.Weconductaliteraturesearchfromspecificdatabasesandjournalsduetothedifficultyindeterminingappropriatekeywords.TheliteraturesearchprocedureispresentedinFigure3.1.Inthisreview,WebofScience,ScienceDirect,andIEEEXploreareselectedasthesearchdatabases.Thekeywords“hydrogen”and“transport”aresearchedintitles,abstracts,andkeywords,andthetimerangeisrestrictedtobetween1996and2022.Allthepaperssearchedfromthethreedatabasesareintegratedtogether,andafterdeletingreduplicativeandirrelevantpapers,190papersareobtained.Inaddition,thekeyword“transport”isusedforsearchinginthreedatabases,andsomepaperswiththenameofspecifictransportationmodessuchas“railway,”“roadnetwork,”or“aviation”arepossiblymissed.Tocopewiththissituation,ajournal-basedliteraturesearchisconducted.Thesearchscopeislimitedtoacademicjournalsinthefieldoftransportation.Thesameselectionrulesasinthedatasetsearchareapplied.Eventually,aftertheabstractreview,65morepapersareadded.Therefore,148corepapersbasedondatabaseandjournal-basedsearchareobtained.3.2LiteratureAnalysisAfteracomprehensiveanalysisofthesearchedliterature,themaintopicsonhydrogenenergyintransportationaretheproblemoflocatinghydrogenrefuelingstations,theimpactsofhydrogenfuelcellsongreenhousegasemissions,theuseoffuelcellvehicles,andtheenvironmentalimpactonhydrogenfuelcellvehicles.Basedontheresearchfocusofselectedpapers,wedividethemintoseveralcategoriesforanalysesanddiscussions.3.2.1ProblemofLocatingHydrogenRefuelingStationsAreasonablelayoutofhydrogenrefuelingstationscanreduceusers’refuelingtimeandimprovetravelconvenience(Shangetal.2022).Scholarshaveconductedaconsiderablenumberofstudiesontheproblemoflocatinghydrogenrefuelingstations.ADBIWorkingPaper1404W.-L.Shangetal.9Figure3.1:LiteratureSearchProcedurePenev,Zuboy,andHunter(2019)conductedaneconomicanalysisofhigh-pressurepipelineswithinurbanareas,andtheyconcludedthatpipelinedeliveryismoreadvantageousthanvehicletransportwhenthehydrogendemandforfuelcellvehiclesinagivenareaissufficientlyhigh.Inconsideringthetimeproblem,FangandTorres(2011)andBreyetal.(2016)conductedoptimizationstudiesofthehydrogenrefuelingstationsitingandlayoutproblemwithaviewtoreducingtraveltime.Followingthis,Zhaoetal.(2019)investigatedamodelingframeworkforalternativefuelstationsystemlocationsbasedonpathandmulti-scalescenarioplanning.Itprovideseffectiveinformationforplanninghydrogenrefuelingstationinfrastructure.Meanwhile,Roseetal.(2020)studiedtheoptimaldevelopmentofalternativefuelingstationnetworksbyconsideringnodecapacityconstraints.Stationcapacityconstraintswerefoundtohavearelativelylargeimpactonthenumberandutilizationofstations,andthediversityofstationcombinations.Coppittersetal.(2022)investigatedtheoptimaldesignofhydrogenrefuelingstationsundertechno-economicandenvironmentaluncertainties.Theresultsshowthatitachievesgoodenvironmentalperformancebutincreasesthecostoffuelinahydrogenrefuelingstationforfuelcellelectricbuses,whichcouldbestudiedinthefutureinregardtointegrationtechnologywithfullyelectricbuses.Afterthis,Tabandeh,Hossain,andLi(2022)studiedtheplanningofhydrogenrefuelingstationsforfuelcellvehiclesincombinationwithrenewableenergysources,andestablishedagreenmodelconsideringon-sitehydrogenproductioncapability.Thelocationandsizeofhydrogenrefuelingstationscanbewelldetermined,andthegreenproductionofgreenhydrogenisalsoensured.Bezrodniy,Rezchikov,andDranko(2021)proposedanalgorithmtooptimizehydrogenrefuelingservicesathydrogenrefuelingstations.Kelleyetal.(2020)studiedthegeographicperceptionsofearlyusersofhydrogenfuelcellsinevaluatinganetworkofgasstationsinCalifornia.ThestudyADBIWorkingPaper1404W.-L.Shangetal.10suggeststhatinselectingsites,otherfactorsshouldalsobeconsideredsuchaslanduse,populationdensity,andtrafficpatterns.Reußetal.(2017)conductedaspatialresolution-basedinfrastructureassessmentbycomparingtheinfrastructureofthehydrogenenergysupplychaininGermany.Theresultsshowthatsaltcavernsandgastransmissionpipelinesarethekeytechnologiesforfuturehydrogeninfrastructuresystems.Followingthis,d’Amore-Domenech,Leo,andPollet(2021)conductedacostcomparisonbetweenelectricalenergyandhydrogen,whichconsideredthescenarioofanenergysourceforlarge-scalepowertransmissionatsea.Theresultsofthestudyshowedthatthetransmissionofhydrogenbypipelineischeaperthanusingelectricityindeep-waterareasatdistancesofmorethan1000km,andthattransportingliquefiedhydrogenbyshipisthebestoptionamongthevarioushydrogentransportmethods.AlazemiandAndrews(2015)summarizedthecurrentstatusanddeploymentofhydrogenfuelingstationnetworks.Theyconcludedthatfromaneconomic,social,andenvironmentalperspective,itisveryreasonabletoplananetworkofhydrogenstationswhilehydrogen-fueledsalesaregrowing.Chenetal.(2021)usedanoptimaldesignandtechno-economicevaluationmethodtoassessalow-carbonhydrogensupplychainforrefuelingstationsinShanghai.Theresultsshowedthatgrid-connectedgreenhydrogenproductionviaaPV-windhybridsysteminarenewableenergy-richarea(QinghaiProvince,PRC)anddeliveringtorefuelingstationsintheeasterncoastalregionofthePRC(Shanghai)viaaliquidhydrogentruckarefeasiblesolutions.Xu,Wu,andDai(2020)analyzedthekeybarrierstothedevelopmentofhydrogenrefuelingstationsinthePRC.Thehighinitialcapitalcost,limitedfinancingchannels,immaturehydrogenstoragetechnology,imperfecthydrogentransportationtechnology,alackofrelevantstandards,andanimperfectsubsidymechanismwereconsideredthesixkeyfactors.SunandHarrison(2021)proposedaschemetooperatehydrogenfuelingstationsinrenewableenergy-richareas.Theelectrolyteofthehydrogenfuelingstationscanbeadaptivelyincreasedtoproduceexcesselectricity,whichcanconvertlow-carbonelectricityintogreenhydrogenfuel.Zhaoetal.(2021)proposedanoptimalschedulingframeworkforcross-energysystemstoevaluatetheadvantagesofthesupplychainfromwaterelectrolysis,compressedstorage,andtransportationtotheutilizationofgreenhydrogenforfuelcellvehicles.Dijkstra’salgorithmisusedtosearchfortheshortestpathforgreenhydrogentransportation,andthestudyshowsthatitcanreducetheoperationcostofthetrans-energysystemandpromotetheuseofrenewableenergy.Caoetal.(2021)studiedthehydrogen-basednetworkmicrogridplanningproblemandproposedanoptimalplanningmodelforelectro-hydrogenmicrogridswithrenewablegreenhydrogenproduction,storage,andrefuelingfacilities.Theresultsshowthatthecomputationaltimecanbegreatlyreduced,andthisplanningmethodcanalsobeappliedtodecarbonizationofenergyandtransportationsystemsinthefuture.BezrodniyandRezchikov(2021)exploredthecontrolofhydrogensupplynetworksinthetransportsector,consideringrelevantaspectsofthehydrogentransportsystemandprovidingamethodfortheoptimizationofhydrogensupplynetworks.Somescholarsintegratehydrogenrefuelingstationswiththepowergridtostudythefeasibilityofthelayout,whileothersplanhydrogenrefuelingstationsbyconsideringthereductionoftraveltime.Differentscholarstakeintoaccountthevariousfactors,butallofthemtendtoresolvetheproblemconcerningthelayoutofhydrogenrefuelingstations.ADBIWorkingPaper1404W.-L.Shangetal.113.2.2TheImpactofHydrogenEnergyonGreenhouseGasEmissionsThetransportationindustryhasasignificantimpactongreenhousegasemissions,andapplyinghydrogenenergytothissectorwillhaveaprofoundeffectonenergyconservationandemissionreductioninthefieldoftransportation(Liuetal.2022a).Theapplicationofhydrogenenergyintransportationcaneffectivelyreducegreenhousegasemissions(McKenzieandDurango-Cohen2012;McDonaghetal.2019;Loganetal.2020;Navas-Anguitaetal.2020;Benitezetal.2021).Low-emissionalternativefuelsareofimportanceforthelow-carbondevelopmentofthetransportsector,andintheirstudy,Fernández-Dacostaetal.(2019)comparedandevaluatedalternativefuelsinthetransportsector.Theresultsshowedthatgreenhydrogenproductionfromsteammethanereformingisthemosteconomicaloption,andgreenhydrogenproductionfromelectrolysisusingrenewableenergysourcesisthemostenvironmentallyfriendlyone.Moreover,Heetal.(2021)analyzedthegreenhousegas,airpollutantemissionstandardsforlight-dutyfuelcellvehiclesinthePRC.Thegreenhousegas,volatileorganiccompoundemissionsofallfuelcellvehicleswerelowerthan,orcomparableto,thoseofgasolinevehicles,exceptforthegridelectricelectrolysisorliquefiedhydrogenpathways.Yehetal.(2006)analyzedtheimpactofhydrogenenergyontransportation,energyuse,andairemissions,concludingthatalthoughcarboncaptureandsequestrationtechnologiesfortheirproductionandrenewabletechnologiesforgreenhydrogenproductionhavetheabilitytoachievegreaterCO2emissionreductions,theyarenoteconomicallycompetitivebasedontheirmodelingframework.Inaddition,Sunetal.(2022)proposedandmodeledacontrolstrategybasedonahydrogenrefuelingservicechargeforthesmartcitysectortoguidetheselectionofhydrogenrefuelingstationsforhydrogenfuelcellelectricvehicles.Theresultsshowthatpromotinghydrogenfuelcellvehiclescanhelpreduceemissions.Lietal.(2022)exploredtheprospectofapplyinghydrogenelectric-to-gastechnologyinpowerandtransportationsystemsandproposedaregional-scaleintegratedpowerandtransportationsystemlong-termcoordinationplanningmodel.TheresultsshowthatthesystemcaneffectivelyreduceCO2emissions.Furthermore,Booto,AamodtEspegren,andHancke(2021)exploredtheenvironmentalimpactsofconventionaldieseltrucks,batteryelectrictrucks,andfuelcellelectrictrucksintheirrespectivelifecyclesintermsofenergytype,energysource,andproductionroute.Theresultsshowthathydrogenfuelcellelectrictruckscanreducegreenhousegasemissionsby48%underthesameconditions.Theapplicationofhydrogenenergyasafueltovehiclescanalsosignificantlyincreaseemissionreductions(Freyetal.2007;Janic2008;TittleandQu2013;Yazdanieetal.2016;Booto,AamodtEspegren,andHancke2021;MingollaandLu2021;ChenandLam2022).Sundvoretal.(2021)studiedalternativewaysofpoweringhigh-speedpassengershipsunderazero-emissionsscenariointhecontextofNorwegianhigh-speedpassengerships,developingamodelbasedonAISdata.Theresultssuggestthatfurtherrouteoptimizationandinfrastructureimprovementsareneededtobetteraddressgreenhousegasemissions.Followingthis,Hensher(2021)studiedtheprocessoftransitioningtoagreenbusfleet.Alongwiththeincreasingdemandforenergyefficiencyandgreentravel(Liuetal.2022a),thecostofbusesprovidinggreentravelisunknown,notonlyinrelationtovehicletechnology(especiallyhydrogenfuelcelltechnology),butalsointermsoftheinfrastructureforhydrogenenergy.Theuseofcleanandrenewableenergysourcesasfeedstockforgreenhydrogenproductionhasbecomeparticularlyimportant.Followingthis,Freyetal.(2007)comparedtheactualfuelconsumptionandimpactonemissionsofdiesel-andhydrogen-fueledbuses.Theeffectsofspeed,acceleration,androadgradientwereintegratedintoasingleparameterusingtheVSPmethodtoanalyzefuelconsumptionchanges.TheresultsshowthatreplacingADBIWorkingPaper1404W.-L.Shangetal.12dieselwithmethanesteamreformingtohydrogenincreasesthefuelcycleandwillsignificantlyreduceCO,NOx,andHCemissions.Janic(2008)exploredthepotentialofliquidhydrogenin“carbon-neutral”airtransportandarguedthattheinfrastructureinairtransportshouldbeincreased.Zhangetal.(2020)studiedthecostandgreenhousegasemissionsofgrid-basedelectrolytichydrogenfuelcellvehicles,simulatingthetime-varyinghydrogenfuelreplenishmentdemandforthesevehicles.TheresultsshowthatincreasingtheflexibilityofhydrogenproductioncanreducethecostofhydrogenandpowergenerationaswellasCO2emissions.Meanwhile,Liuetal.(2022b)studiedtheeconomicandenvironmentalbenefitsgeneratedbygreensupplychains.Theresultsshowedthatunderregulation,greensupplychainscandriveupstreamanddownstreamfirmstoreduceemissionsfaster.Inaddition,Longdenetal.(2022)comparedtheemissionsandcostsofgreenhydrogenproductionfromfossilfuelswiththosefromrenewableelectricity.Comparingthetwo,theproductionofgreenhydrogenusingelectrolysisandzero-emissionelectricitydoesnotproducegreenhousegasemissions.Usingfossilfuelstoproducegreenhydrogen,evenwithcarboncaptureandstoragetechnology,thegreenhousegasemissionswouldbehigh.DollandWietschel(2008)analyzedtheroleofhydrogenenergyinasustainabletransportvision,concludingthattheuseofhydrogencansignificantlyreduceCO2emissionsinthetransportsector,evenwhentailpipeandupstreamemissionsandthedevelopmentofalternativetechnologiesaretakenintoaccount.Kim,Kim,andLee(2020)studiedtheissueofgreenhousegasemissionsfromelectricandhydrogen-fueledvehiclesandtheirmarketsharechanges.Theanalysisshowedthathydrogenfuelcellvehicleshelptoreducegreenhousegasemissions,butaffectthemarketshareofelectricvehicles,andrequireoptimizationofefficientinfrastructure.Edwardsetal.(2008)analyzedthedevelopmentofhydrogenenergyandfuelcelltechnologies,concludingthathydrogenfuelcellspossesstheabilitytoeliminateCO2emissionsandtriggeragreenrevolutionintransportation.Afterthis,SalviandSubramanian(2015)proposedmeasurestocontroltransportationfuelpollutionusinghydrogenenergysystems.Theuseofhydrogenasafuelinvehicleswasconsideredtoimproveenergysecurityandreducegreenhousegasemissions.Janić(2014)studiedtheapplicationofhydrogenenergyintheaviationsector.Usingliquidhydrogenasanaviationfuel,itspotentialforgreencommercialairtransporttosolveproblemsandtheimpactofusingliquidhydrogenasafuelongreenhousegasemissions,especiallycarbondioxide,wereexplored.Theresultsshowthattheuseofliquidhydrogenasaviationtransportationfuelcanreducegreenhousegasemissionsinthefutureandthatthegoalofgreencommercialairtransportationisachievable.Alotofresearchonhydrogenenergyintermsofgreenhousegasemissionshasbeenconducted,andgreenhydrogenenergyisagoodalternativefuelasacleanandrenewableenergysource.Varioustransportmodessuchashighways,watertransportation,andaviationcansaveenergyconsumptionandreducegreenhousegasemissionssignificantlyifhydrogenenergyisusedasfuelfortransportation(Shangetal.2021).3.2.3ApplicationofHydrogenEnergyinTransportationTransportationisthemainapplicationforhydrogenenergy,whilethemainapplicationofhydrogenenergyintransportationisnewenergyvehicleswithfuelcellsaspower.ADBIWorkingPaper1404W.-L.Shangetal.13Thereisalsoalotofresearchinthisarea.MabitandFosgerau(2011)studiedthedemandforalternativefuelvehicleswhenregistrationtaxesarehigh,usingtheexampleofDenmark,anddevelopedamixedlogisticregressionmodel.Usingthismodel,itwasconcludedthatpeoplewouldbemorelikelytochooseamoreenvironmentallyfriendlyalternativefuelvehicleoveraconventionalfuelvehicle,allelsebeingequal.Alavietal.(2017)proposedacommunitymicrogridforprovidingcar-to-gridpowerinthecaseofascarcityofrenewableenergygeneration,andtheremainingrenewableenergygenerationfromthemicrogridisstoredintheformofgreenhydrogen.Byusinggreenhydrogenfortransportationandre-electrification,theuseoffuelcellvehiclescanreducecarbonemissionsinthetransportationsystem.Followingthis,Zhouetal.(2022)investigatedtheperformanceofphotovoltaiccellsandproposedanadaptivedifferentialevolutionalgorithmbasedonadynamicbackwardlearningstrategytoeffectivelyimprovetheidentificationofphotovoltaiccellparameters.Hardmanetal.(2017)summarizedthebarrierstotheuseofhydrogenfuelcellvehiclesthroughasurveyofconsumersandsuggestedcorrespondingcountermeasures,suchaspre-deploymentofoptimizedinfrastructure.Atthesametime,theyalsofoundthatconsumersvaluetherangeofhydrogenfuelcellvehiclesandtheabilitytoprovideemergencybackuppower.OuchiandHenzie(2017)investigatedthefeasibilityofmarinesailboatsasenergy-harvestingdevicestosupporttheproductionofhydrogen.Theresultsshowedthatlow-costhydrogenenergycanbegeneratedandtransportedsimultaneously,providinganewpathwayfortheeventualreplacementoffossilfuels.Afterthis,Wuetal.(2021)performedananalysisoftheapplicationofhydrogenfuelcellvehiclesunderthecarbonneutralitygoalaccordingtothecharacteristicsofthePRC.Basedontheresults,inadequatesupportingfacilities,hydrogenfuelsafetyissues,andaninsufficientnumberofmanufacturersarethemostimportantissues.Yu,WangandChen(2021)proposedtheapplicationofanewelectric-hydrogenintegratedhybridDCtractionpowersystemtoafuturemetrosystem.Simulationresultsshowthatitcaneffectivelyutilizerenewableenergyandregenerativebrakingenergytoachieveenergysavings.Moreover,Yi,Jang,andLee(2021)designedasystemformonitoringhydrogenfuelcharacteristicsinformationonhydrogenfuelbusestorespondtothehydrogenconsumptionandtemperatureofeachcomponent,etc.,todeterminethesafeoperationofhydrogenfuelcellbuses.Longetal.(2019)studiedthedemandforzero-emissionvehiclesusingCanadaasanexample.Theresultsshowedthatmostpeoplepreferredplug-inhybridandhydrogenfuelcellvehiclesastheirfirstchoiceandconventionalorhybridvehiclesastheirsecondchoice.Afterthis,Morrison,Stevens,andJoseck(2018)predictedthecostandpotentialmarketsizeissuesforbatteryelectricvehiclesandhydrogenfuelcellelectricvehiclesby2040.Theresultsindicatethathydrogenfuelcellvehicleswillcostapproximately71%to88%lessthanpureelectricvehiclesinlightvehiclefleetsby2040,andthatfuelcellvehicleswillhaveasignificantcostadvantageforlargermodelsanddriverswithlongerdailydrivingranges.Irdmousaetal.(2010)analyzedenergyalternativesintheUnitedStatesand,underoptimisticassumptions,hydrogenenergyrankedhighest.Melo,Ribau,andSilva(2014)developedanoptimizedpowersystemfortheconversionofcitybusestohybridfuelcellsandanalyzedthepossibilityofreplacingconventionalbusfleetswithefficientbusfleetsequippedwithbatteriesandhydrogenfuelcells.Subsequently,Durango-CohenandMcKenzie(2018)developedanoptimizationmodelappliedtothedesignofbusfleetswithdifferentfuelpropulsiontechnologies,takingintoaccountenergyconsumption,greenhousegasemissions,particulatematter,etc.ADBIWorkingPaper1404W.-L.Shangetal.14Fanetal.(2022)investigatedtheoperationalstrategyofhydrogenenergyinlow-carbonmarinetransportation.Ahybridpropulsionsystemwasproposed,whichenablesthelowestcostofoperationthroughoutunderthegreenhousegasemissionlimitandfurtherreducesthegreenhousegasemissions.Meanwhile,AjanovicandHaas(2018)studiedtheeconomicprospectsandpolicyframeworkforhydrogenfuelsinthetransportsector.Itisarguedthattheprospectsofhydrogenenergyapplicationinfuturebustransportationdependonthepolicyframework,amongotherthings.RamesohlandMerten(2006)investigatedtheroleofhydrogenenergyasanalternativetransportfuelintermsofenergysystems.Theyarguedthatwhilegivingprioritytotheproductionofcleanhydrogenfromrenewableenergysources,itisalsoimportanttoconsiderhowtoimprovetheefficiencyofhydrogenfuelcellvehicles.Fuetal.(2019)evaluatedtwostrategiesaimedatdecarbonizingthetransportationsector,electrification,andtheuseofhydrogenfuel.Itwasconcludedthatintegratinghydrogenwithelectricpowersystemscouldprovidealow-costalternativeenergysource,andthattheuseofadvancedhydrogenproductiontechnologiescouldfurtherreducecosts.Singhetal.(2015)analyzedfutureapplicationsofhydrogenenergyintransportation.Oneofthepotentialusesofhydrogenisforintegratedcircuitgeneratorsandfuelcelltechnologyinthetransportationsector.Theyconcludedthatinthefuture,theenergydemandshouldbeadjustedtoincreasetheuseofhydrogenasatransportationfueltoprovideacleanandgreenenvironmentforpeople.Verhelstetal.(2012)studiedtheuseofhydrogenenginesandconcludedthatconversiontohydrogen-poweredinternalcombustionenginescouldreduceemissionsandincreasetheoutputpower.RinaldiandVeca(2007)conductedastudyoninnovativetechnologiesforhydrogenstorageusingchemicalhydrides.Thestudyaimedtoevaluatethesuitabilityofpolypropyleneandlow-densitypolyetheneasoptimalmaterialsforthispurpose.Theresultsindicatedthatthesematerialspossessexceptionalcharacteristics,includingeasyrecoverabilityduringthehydrogenstorageprocess.Moreover,duetotheirinherentsafetyfeatures,thesetechnologiesarehighlysuitableforH2refuellingstations.Abdelrahmanetal.(2016)conductedafeasibilitystudyofhybridfuelcellandbatteryrailcars.AfuturehybridmetrosystemdevelopedinCanadawaspresented,providingasolutionforahybridfuelcelltraincompletelyindependentofgridpower,whichcouldsavemostofthecostsandbenefitthepassengers.Borbujoetal.(2021)reviewedtheEuropeanlegislationandstandardizationonhydrogenandpurelyelectricbusesandheavy-dutytrucks.Theyconcludedthatthecurrentinternationalsafetystandardsapplicabletofuelcellsaremainlyfocusedonlight-dutyvehiclesandrecommendationsweremade.RenandLiang(2017)developedafuzzygroupmulticriteriadecision-makingmethodtostudythesustainabilityofmarinebunkerfuels.Itwasfoundthatgreenhydrogenisthemostsustainablealternativefuelandthatitismoresociallyacceptableasacleanenergycarrierwithoutanyemissionsduringtheoxidationprocess.Inthetransportationsector,hydrogenfuelcellsareincreasinglybeingstudiedaspowerfacilities.However,thereisstillagapbetweentherangeofhydrogenfuelcellsandotherbatteries,andfurtherresearchisneeded.3.2.4ApplicationofHydrogenEnergyinPolicyThedevelopmentofanindustryisinseparablefromtheneedfornecessarysupportpolicies,andwillinturnprovideascientificbasisforpolicyadjustments.Ithasbeenarguedthatmorecomprehensivepoliciesshouldbedevelopedtostimulatesalesofzero-emissionvehicles,ratherthanfocusingonchargingandrefuelinginfrastructure(Mieleetal.2020).However,Bachetal.(2020)arguedthattheapplicationofhydrogentechnologyinthemarinesectoriscurrentlyimmature,andthereforepriorityneedstobegiventosupportingtheresearchanddevelopmentADBIWorkingPaper1404W.-L.Shangetal.15ofhydrogenproductiontechnologiesandinfrastructuredevelopment,etc.ChenandMelaina(2019)andJones,Genovese,andTob-Ogu(2020)arguedthatmoreattentionshouldbepaidtocostpolicies.Similarly,GallasandStobnicki(2022)arguedthatthemainlimitationofhydrogenenergyapplicationsistherelativecostofhydrogenfuelandthathydrogenproductiontechnologiesneedtobedevelopedtoreducethecostofhydrogenproductionorthathydrogenproductionneedstobesubsidized.Afterthis,Rottolietal.(2021)studiedalternativepathwaysfortheelectrificationoflightvehiclesintheEuropeantransportsector.Theyfoundthatastrongerpolicypushforfuelcellvehiclesisneeded,alongwiththedevelopmentofgoodinfrastructure.PinchasikandHovi(2017)studiedCO2fundsinthetransportsector,usingNorwayasanexample,andarguedthatfundsshouldconsidersubsidizingrenewabletechnologiessuchasbiogas,electricity,orgreenhydrogentopromotemarketdemand.Hydrogenenergyshouldbeconsideredasthedirectiontowardswhichtheenergytransitionisaiminganditsapplicationcanbecomearealityinshippingwhenhydrogenenergyproductionanddemandincreaseandcostsdecrease,anditcanalsoachievecarbonemissionreductionclimategoals.PomaskaandAcciaro(2022)investigatedtheuseoffuelcellsandliquefiedhydrogenasalternativefuelsforships,withtheresultsofthestudysuggestingthatgovernmentpolicymakerscanimplementfinancialincentivestoacceleratethedevelopmentofhydrogenfuels.Inaddition,Ibrahimetal.(2022)studiedthreecoupledtypesofdedicatedlargeoffshorefloatingwindfarmsforhydrogenproduction.Offshorehydrogenpipelineswereconsideredtobeeconomicalforlargeandremotefarms.Theiranalysisconcludedthatthedecentralizedoffshoreelectrolysisapproachisaverymodularsystemandprovidesflexibilitywhilealsoimprovingdynamicoperation.MubengaandStuart(2011)analyzedthefeasibilityofhydrogenfuelcellelectricvehiclestransportedbyhydrogengeneratedfromsolarenergy.Asystemwasdesignedtoproducehydrogenusingsolarenergy,demonstratingthefeasibilityofproducinghydrogenfortransportationusingalternativeenergytechnologies.Ehrensteinetal.(2020)studiedtheoptimizationoffuelsupplychainsonaglobalscaleusingthecaseofhydrogeninroadtransportintheUK.Itwasfoundthatthegenerationofhydrogenfromelectrolyticwaterpoweredbywindandnuclearenergyandstoredincompressedformfordistributionbyrailistheleastimpactfulforasustainablefuelsupplychainandisasustainablesolutioninlinewiththecarryingcapacityoftheearth.Theapplicationofhydrogenenergyrequirespolicysupportintermsofinfrastructuredevelopment,taxincentives,technologicaladvancement,andsoon.Hydrogenenergycanonlyworkinvariousfieldswhenthereismoresupportfromallsides.3.2.5OtherStudiesRelatedtoHydrogenEnergyLakhera,Rajan,andBernaurdshaw(2021)analyzedthesubsurfacehydrogenstoragecapacityofsaltmoundsandproposedamethodforevaluatingthehydrogenstoragepotentialofsuchmounds,takingintoaccountseveralcharacteristicssuchasreservoirsizeanddepth.Accordingtotheirresearchmethod,thehydrogenstoragecapacityofrocksaltcanbepredictedmoreaccurately.Leeetal.(2022)compareddifferentoverseashydrogentransportationmethodsfromtechno-economicandenvironmentalperspectives.Theresultsshowedthatoperationconditionsandtheuseofrenewableenergyarethemainfactorsinreducingthecostandcarbonemissionsofthehydrogensupplychain.Liquidhydrogenstorageisconsideredfavorable,andimprovingtheenergyefficiencyoftheliquefactioncycleisessentialtoachieveefficienthydrogentransportation.Robledoetal.(2018)evaluatedtheapplicationpotentialoffuelcellvehiclesbycombiningintegratedphotovoltaicsolarpanels,residentialbuildings,andhydrogenfuelcellelectricvehiclesforpowergenerationtoachievenet-zeroenergyADBIWorkingPaper1404W.-L.Shangetal.16residentialbuildinggoals.Menanteauetal.(2011)conductedaneconomicanalysisofhydrogenproducedbywindpowerinthetransportationindustry.Thestudyshowedthatthevariationinhydrogenproductioncostsdependstosomeextentonthedemandinvolvedandthatthestoragetechnologyofhydrogenisakeyvariable.Inthefuture,withthedevelopmentoflargegeologicalhydrogenstoragefacilitiesinwindfarmsorsmallhydrogenstoragesystemsneargasstations,thecostofhydrogenstoragemaysignificantlydecrease,whichwilleventuallylowerthecostofhydrogenforusers.4.FUTURECHALLENGESAtpresent,theglobalhydrogenenergyindustryisgenerallyintheprimarystageofdevelopment.Sincetheenergytransitionisimminent,manycountriesintheworldareincreasingtheirinvestmentinhydrogenenergy.Currently,EuropeandtheUnitedStatesareleadinginwindpowertechnology,thephotovoltaicindustryinthePRCisleadingtheworld,andJapanisfocusedonhydrogenenergy(Fastmarketsteam2021).Comparedwithotherenergysources,greenhydrogenenergyhasseveralsignificantadvantages.First,hydrogenisthemostabundantelementintheuniverse,itiseasytoobtain,andthusithasgreatadvantagesintermsofsustainability.Inaddition,hydrogencanbeproducedfromwaterandreleaseschemicalenergythroughitsreactionwithoxygenreaction.Thewholeprocessonlygenerateswater,andnootherpollutantsareproduced,soitisarecyclableclosed-loopsystem(Stock2021).Second,thehighcalorificvalueofhydrogenmakesitanidealsubstituteforexistingfossilfuels.Thecalorificvalueofhydrogenisthehighestamongcommonfuels,i.e.,aboutthreetimesthatofoiland3.5timeshigherthancoal.Aswellasthis,withtherapiddevelopmentoftheelectricvehicleindustrygloballyandthestrongdemandforenergystoragebasedonlithiumbatteriesinwindandPVpowergenerationinthefuture,lithiumresourceswillbecomeaconstrainttothedevelopmentofanewenergyindustryinthefuture.Comparedwiththescarcityoflithiuminlithiumbatteries,along-termadvantageofhydrogenenergycanbeexpected.Hydrogenenergybatteriesandrelatedtechnologiescanpurifytheair(Hexun2022),whichisgoodnewsforcitieswithpoorairquality.Hydrogenenergywillbeeverywhereinthefutureowingtoitswiderangeofuses,anditcanbeusedinindustrialrawmaterials,aswellasvarioushydrogenenergyvehiclesforenergystorage.Thelargestapplicationofhydrogenenergyisinthetransportationsector,andthemostmatureapplicationtechnologyofhydrogenenergyandthemostpromisingdevelopmentinthefuturearehydrogenfuelcellvehiclesinthefieldoftransportation(Agency2019).Theindustrychainofhydrogenenergyinthetransportationsectorisextremelycomplicated,anditspotentialeconomicvalueishuge.Thehydrogenenergyindustrychaininthetransportationsectorincludeshydrogenproduction,storageandtransportation,hydrogenrefuelingstations,hydrogenfuelcellapplicationsandvehicleintegration,andotherprocedures.Accordingly,thechallengesexistintheproduction,compression,storage,transportation,distribution,andenduseofhydrogen(Furfari2021).Thefirstchallengeishowtoreducethecostofgreenhydrogenproductionsignificantly.Thedevelopmenttrendofhydrogenenergyisfromgraytobluehydrogen,andfinallytogreenhydrogen.Althoughgrayhydrogenhaspollutants,itscostislow,anditisthemainmeansofhydrogenproductioninthemediumandlongterm.Hydrogenproductionbyelectrolysisofwaterisaneffectivewaytoachievelarge-scaleproductionofgreenhydrogen,butthecostishigh,andcompletesubstitutionoffossilenergycannotbefullyachievedintheshortterm.Inrecentyears,alotofworkconcerninghydrogenproductionfromelectrolyticwaterhasbeenconducted,andverygoodprogresshasbeenmadeinmanyaspects.Inthefuture,itwillbenecessarytoADBIWorkingPaper1404W.-L.Shangetal.17continuouslyimprovethehydrogenproductionprocessandreducethecostofgreenhydrogenproductionfromelectrolyticwater.Followingthis,thesecondchallengeistodecreasethecostofstorageandtransportationinthemosteffectiveway.Hydrogenischemicallyactiveandunstable:Iftherewasaleak,itwouldbeveryeasyforittoburnandexplode,sosafetyshouldalsobeconsidered.However,comparedwithsecuritychallenges,itscostisthekeytohinderingthedevelopmentofhydrogenenergyintransportation.Therearethreemainwaystostorehydrogen,includinggas,liquid,andsolid.High-pressuregas-liquidtechnologyhasbeenwidelyused,andthestorageandtransportationofliquidhydrogenistechnicallymature,butthecostoftransportationishigh,andtheriskofleakageandexplosionexists,whilecryogenicliquidhydrogenstorageiscostly.Solid-statehydrogenstorageisstillintheresearchanddevelopmentstage.Atpresent,gastransportationforhydrogenismainlyused,supplementedbytransportationinaliquidstate.Pipelinetransportationissuitableforlarge-scaleandlong-distancehydrogentransportationwithhighefficiency,butitrequirestheconstructionofpipelinesandlotsofcapitalinvestmentattheearlystage;liquidtransportationalsoconsumesmoreenergy.Intheprocessofstorageandtransportation,therequirementsformaterialsareveryhigh.Third,itisachallengetoreducethecostofkeyequipmentinhydrogenrefuelingstationsandcriticalcomponentsinfuelcells.Thecoreequipmentofahydrogenrefuelingstationincludesahydrogenstoragedevice,compressionequipment,andfillingequipment,withthecompressorbeingthemostcostly.Currently,thetechnicalpathwaysofahydrogenrefuelingstationcanbedividedintohydrogenproductionwithinthestationandexternalhydrogensupply.Hydrogenproductionfromelectrolyticwaterwithinstationsisthefuturedevelopmentdirection.Inaddition,thehydrogenfuelcellisthecorecomponentofnewenergyvehiclesbasedonhydrogen.Attheinitialstageofindustrialization,supportpoliciesfromgovernmentareverymuchrequired.Themostcorepartofthehydrogenfuelcellsystemisthefuelcell,includingthefuelcellstackandtheaircompressor,whicharecostlyandrestrictthedevelopmentofhydrogenfuelcells.Thecostofthefuelcellstackaccountsfor50%ofthehydrogenfuelcell,andthemembraneelectrodeisthecoreofthestack,accountingfor60%ofthecost.Hereplatinumcatalystshavetobementioned,whichareveryexpensive,andweneedtodeveloplow-platinumorplatinum-freecatalytictechnology.Costreductionisthefocusoffuturedevelopmentforhydrogenenergyinthetransportationfield.Ontopofthis,amajorchallengefortheapplicationofhydrogenenergyinthetransportationsectorliesinwhethercountriesandorganizationsacrosstheworldcancooperateandsupporteachothersoastojointlyestablishaneconomicecosystemofhydrogenenergy.Humanbeingsarefacingthecommonproblemofglobalwarming,anditisurgenttoachievethegoalsofcarbonneutralizationandcarbonpeak.Somecountrieshavebeguntoattachgreatimportancetohydrogenenergy,andputforwardastrategyforthedevelopmentofhydrogenenergy.Forexample,Japanproposedthe2050carbonneutralitygreengrowthstrategyinDecember2020,andtheEuropeanUnionissuedtheEuropeanGreenDealinDecember2019,bothofthemstatingclearrequirementsandexpectationsforhydrogenenergy.Asthelargestdevelopingcountry,thePRCisdevelopinghydrogenenergylate,butitisexpectedtoaccountfor10%ofthetotalenergyconsumptionin2050.ThegovernmentworkreportinthePRCin2019clearlyproposedpromotingtheconstructionofinfrastructuresuchashydrogenrefuelingstations.Inthe“14thFive-YearPlan,”thedevelopmentofhydrogenenergyhasalsobeenarrangedaccordingly.Inthecontextofcarbonneutrality,allcountriesandorganizationshavetoworktogethertonegotiateintellectualpropertyrightsandpatent-sharingmechanisms,establishamarketentrymechanism,andjointlypromoteADBIWorkingPaper1404W.-L.Shangetal.18theestablishmentofaneconomicecosystembasedonhydrogenenergythatcombineshydrogenproduction,storage,transportation,hydrogenation,hydrogenfuelcellapplications,andotherproceduresintoanefficientandlow-costsustainableindustrychainsystem.Thefutureapplicationofhydrogenhastobestudiedanddeveloped,thetechnologyforhydrogenproductionneedstobeimproved,keyequipmentandmaterialsarerequiredtoreducethecost,andthesafetyofhydrogenisalsoaconcern.Howtoproducehydrogenextremelyefficiently,safely,andatlowcostisstilltoberesolved,andtherelatedtechnicalstandardsalsoneedtobedevelopedwithothercountries.Onlywhenthetechnologyismature,thecostislow,andthemarkettendstoaccepthydrogenonalargescalecanhydrogenenergybewidelyusedinvariousfields,andthenitcanpromoteenergyconservationanddecarbonizationoftransportationsystems,soastocontributetothevisionofcarbonneutrality.5.CONCLUSIONANDPOLICYRECOMMENDATIONSClimatechangeisoneofthebiggestchallengesofourtime(Nations2022),andpromotinggreenandlow-carbontransportationisanimportantwaytocopewiththissituation.Thetransportationsectorisamajorsourceofgreenhousegasemissions,andthereisagrowingconsensusinmanycountriestopromotegreentransportation.Basedonthis,hydrogenenergyhasreceivedgreatattentionduetoitsuniqueadvantages,suchaszeroemissionsandhighcalorificvalue.Tounderstandthehistory,status,andfuturechallengesofhydrogenenergyinthetransportationsector,weareconductingthisreview.First,wequicklyrecaponthebackgroundofhydrogenenergyinthetransportationsectorandtheresearchstatusofhydrogenenergy.Followingthis,theapplicationsofhydrogenenergyarereviewed,theproductionprocess,processesandtechnologiesforhydrogenenergyareintroduced,andthehistory,status,andcontroversiesofhydrogenenergyintransportationarealsodiscussedhere.Afterward,weconductaliteraturesearchandanalysis,and148corepapersareobtained.Themaintopicsonhydrogenenergyintransportationaresummarized,thatis,theproblemoflocatinghydrogenrefuelingstations,theimpactsofhydrogenfuelcellsongreenhousegasemissions,theuseoffuelcellvehicles,andtheenvironmentalimpactofhydrogenfuelcellvehicles.Basedonthis,themainchallengesareextracted,includingreducingthecostofgreenhydrogenproduction,decreasingthecostofstorageandtransportation,reducingthecostofkeyequipmentinhydrogenrefuelingstationsandcriticalcomponentsinfuelcells,andwhethercountriesandorganizationsacrosstheworldcancooperateandsupporteachother.Comparedwithnewenergyvehiclesbasedonlithiumbatteries,hydrogenfuelcellvehicleshaveseveraladvantages,suchasbeingfreefromtemperaturerestrictions,longermileage,andrapidfuelreplenishment.Comparedwithsecuritychallenges,theircostisthekeyissuehinderingthedevelopmentofhydrogenenergy.Today,manyscholarsaredevotedtothestudyofhydrogenenergyapplicationsanddevelopmentinthetransportationsector.Allaspectsofhydrogenproduction,storage,transportation,andusehavereceivedattention.Currently,theapplicationofhydrogenenergyintransportationismainlyinfuelcells,replacingfossilenergywithhydrogenenergytoplayitsroleinenergyconservationandemissionreduction.However,theapplicationofhydrogenenergyintransportationisalsolimitedbythecostofhydrogenproduction,transportationefficiency,safetyofuse,andsoon.ADBIWorkingPaper1404W.-L.Shangetal.19Basedoncurrenthydrogentechnologiesandmarketconditions,urbanandsurroundingareasarerecommendedastheprioritylocationsforthedeploymentofhydrogenrefuelingstations.Theseregionsaremorelikelytohavearelativelyhightrafficvolumeandwell-developedpublictransportationsystems,andresidentsintheseregionstendtobemoreenvironmentallyaware,allofwhichareconducivetothepracticaluseofhydrogenenergyintransportation.Inaddition,appropriatesubsidiesshouldbeprovidedtoencourageenterprisesororganizationstoparticipateintheconstructionofhydrogenrefuelingstations.Thegovernmentmayoffertaxreductionsorfinancialgrantstoencourageinvestmentinstationconstructionaswell.Furthermore,hydrogenfuelcellvehiclesshouldbepromotedtofacilitatetheuseofhydrogenenergyinheavyvehiclessuchastrucksandbuses.Throughsubsidies,exemptionfromvehiclepurchasetaxes,andfreetolls,thegovernmentcanplayanimportantroleinpromotingtheconsumptionofhydrogen-poweredvehicles.Additionally,enterprises/academicorganizationsshouldbeencouragedtoengageintheresearchanddevelopment(R&D)ofhydrogenenergytechnologyandpromotetheindustrializationofhydrogenfuelcellvehiclesandrelatedequipment,soastoestablishahydrogenenergyvehicleindustrychain.Inordertoensurethesafeuseofhydrogenenergyinthetransportationsector,itisimperativetoestablishrelevantlaws,regulations,andsafetystandardsforhydrogenenergy.Forexample,thecertificationandtestingofhydrogenfuelcellvehiclesshouldbestrengthened,whilethetransportationandrefuelingprocessesofhydrogengasneedtoberegulated.Finally,tobetterpromotetheapplicationsofhydrogenenergy,publicityandeducationeffortsarealsoessential,andenhancingintellectualpropertyprotectionandtheenvironmentalawarenessofthepublicwillalsoeffectivelyfacilitatethedevelopmentofhydrogenenergytechnologyinthetransportationfield.Althoughthecostofeachaspectisrelativelyhighandthedevelopmentofhydrogenenergyisrelativelyslowatpresent,giventheabundanceofhydrogenandthegreencharacteristicsofhydrogenenergy,thedevelopmentofhydrogenenergywillbebeyondpeople’simagination.Asaresultofthisreview,wenowunderstandmoreclearlythattheobstaclesencounteredinthedevelopmentofhydrogenenergyinthetransportationsectorarenotinsurmountable.Inthecontextofcarbonneutrality,governmentsandinstitutionsfromallcountriesreallyneedtoworktogethertoestablishaneconomicecosystemthatismostsuitableforthedevelopmentofhydrogenenergy.Inbrief,hydrogenenergyisonthebrinkofflourishing.ADBIWorkingPaper1404W.-L.Shangetal.20REFERENCESAbdelrahman,A.S.,Y.Attia,K.Woronowicz,andM.Z.Youssef(2016).“HybridFuelCell/BatteryRailCar:AFeasibilityStudy.”IEEETransactionsonTransportationElectrification2(4):493–503.Agency,I.E.(2019).“TheFutureofHydrogen.”fromhttps://www.iea.org/reports/the-future-of-hydrogen.Ajanovic,A.andR.Haas(2018).“Economicprospectsandpolicyframeworkforhydrogenasfuelinthetransportsector.”EnergyPolicy123:280–288.Alavi,F.,E.ParkLee,N.vandeWouw,B.DeSchutter,andZ.Lukszo(2017).“Fuelcellcarsinamicrogridforsynergiesbetweenhydrogenandelectricitynetworks.”AppliedEnergy192:296–304.Alazemi,J.andJ.Andrews(2015).“Automotivehydrogenfuellingstations:Aninternationalreview.”RenewableandSustainableEnergyReviews48:483–499.Bach,H.,A.Bergek,Ø.Bjørgum,T.Hansen,A.Kenzhegaliyeva,andM.Steen(2020).“Implementingmaritimebattery-electricandhydrogensolutions:Atechnologicalinnovationsystemsanalysis.”TransportationResearchPartD:TransportandEnvironment87:102492.Bai,S.,etal.(2022).“EvaluatingR&DefficiencyofChina’slistedlithiumbatteryenterprises.”FrontiersofEngineeringManagement9(3):473–485.Benitez,A.,etal.(2021).“EcologicalassessmentoffuelcellelectricvehicleswithspecialfocusontypeIVcarbonfiberhydrogentank.”Journalofcleanerproduction278:123277.Bezrodniy,A.andA.Rezchikov(2021).“HydrogenSupplyNetControlforTransportBranchofEconomy.”202114thInternationalConferenceManagementoflarge-scalesystemdevelopment(MLSD):1–5.Bezrodniy,A.,A.Rezchikov,andO.Dranko(2021).“AlgorithmstoDevelopH2FillingStationNets.”202114thInternationalConferenceManagementoflarge-scalesystemdevelopment(MLSD):1–5.Bi,H.,W.-L.Shang,Y.Chen,K.Wang,Q.Yu,andY.Sui(2021).“GISaidedsustainableurbanroadmanagementwithaunifyingqueueingandneuralnetworkmodel.”AppliedEnergy291:116818.Bi,H.,W.L.Shang,Y.Chen,andK.Wang(2022).“JointOptimizationforPedestrian,InformationandEnergyFlowsinEmergencyResponseSystemswithEnergyHarvestingandEnergySharing.”IEEETransactionsonIntelligentTransportationSystems23(11):22421–22435.Booto,G.K.,K.AamodtEspegren,andR.Hancke(2021).“Comparativelifecycleassessmentofheavy-dutydrivetrains:ANorwegianstudycase.”TransportationResearchPartD:TransportandEnvironment95:102836.Borbujo,I.C.,P.G.Pereirinha,M.G.Vega,J.A.d.Valle,andJ.C.Á.Antón(2021).“Heavydutytransportdescarbonization:LegislationandStandardsforHydrogenandBatteryElectricBusesandHeavy-DutyTrucks.”2021IEEEVehiclePowerandPropulsionConference(VPPC):1–6.ADBIWorkingPaper1404W.-L.Shangetal.21Brey,J.J.,R.Brey,A.F.Carazo,M.J.Ruiz-Montero,andM.Tejada(2016).“Incorporatingrefuellingbehaviouranddrivers’preferencesinthedesignofalternativefuelsinfrastructureinacity.”TransportationResearchPartC:EmergingTechnologies65:144–155.Cao,X.,X.Sun,Z.Xu,B.Zeng,andX.Guan(2021).“Hydrogen-BasedNetworkedMicrogridsPlanningThroughTwo-StageStochasticProgrammingWithMixed-IntegerConicRecourse.”IEEETransactionsonAutomationScienceandEngineering:1–14.Chen,J.,G.Pan,Y.Zhu,L.Sang,Y.Ge,andQ.Hu(2021).BenefitsofUsingElectrolyticHydrogenforOffshoreWindonChina’sLow-carbonEnergy.2021IEEESustainablePowerandEnergyConference(iSPEC):2184–2189.Chen,Y.andM.Melaina(2019).“Model-basedtechno-economicevaluationoffuelcellvehiclesconsideringtechnologyuncertainties.”TransportationResearchPartD:TransportandEnvironment74:234–244.Chen,Z.S.andJ.S.L.Lam(2022).“Lifecycleassessmentofdieselandhydrogenpowersystemsintugboats.”TransportationResearchPartD:TransportandEnvironment103:103192.Cope,T.(2022).“Hydrogenindustrymaybecomethenextmulti-billiondollarmarket.”fromhttps://baijiahao.baidu.com/s?id=1736880158038750826&wfr=spider&for=pc.Coppitters,D.,K.Verleysen,W.DePaepe,andF.Contino(2022).“Howcanrenewablehydrogencompetewithdieselinpublictransport?Robustdesignoptimizationofahydrogenrefuelingstationundertechno-economicandenvironmentaluncertainty.”AppliedEnergy312:118694.d’Amore-Domenech,R.,T.J.Leo,andB.G.Pollet(2021).“Bulkpowertransmissionatsea:Lifecyclecostcomparisonofelectricityandhydrogenasenergyvectors.”AppliedEnergy288:116625.Doll,C.andM.Wietschel(2008).“Externalitiesofthetransportsectorandtheroleofhydrogeninasustainabletransportvision.”EnergyPolicy36(11):4069–4078.Dossow,M.,V.Dieterich,A.Hanel,H.Spliethoff,andS.Fendt(2021).“ImprovingcarbonefficiencyforanadvancedBiomass-to-Liquidprocessusinghydrogenandoxygenfromelectrolysis.”RenewableandSustainableEnergyReviews152:111670.Durango-Cohen,P.L.andE.C.McKenzie(2018).“Tradingoffcosts,environmentalimpact,andlevelsofserviceintheoptimaldesignoftransitbusfleets.”TransportationResearchPartA:PolicyandPractice114:354–363.Edwards,P.P.,V.L.Kuznetsov,W.I.F.David,andN.P.Brandon(2008).“Hydrogenandfuelcells:Towardsasustainableenergyfuture.”EnergyPolicy36(12):4356–4362.Ehrenstein,M.,Á.Galán-Martín,V.Tulus,andG.Guillén-Gosálbez(2020).“Optimisingfuelsupplychainswithinplanetaryboundaries:AcasestudyofhydrogenforroadtransportintheUK.”AppliedEnergy276:115486.Fan,F.,V.Aditya,Y.Xu,B.Cheong,andA.K.Gupta(2022).“Robustlycoordinatedoperationofashipmicrogirdwithhybridpropulsionsystemsandhydrogenfuelcells.”AppliedEnergy312:118738.ADBIWorkingPaper1404W.-L.Shangetal.22Fang,F.C.andN.Torres(2011).“Analysisofhydrogenstationnetworkusinggeographicinformationsystems.”201114thinternationalIEEEconferenceonintelligenttransportationsystems(ITSC):834–839.Farahani,S.S.,etal.(2019).“AHydrogen-BasedIntegratedEnergyandTransportSystem:TheDesignandAnalysisoftheCarasPowerPlantConcept.”IEEESystems,Man,andCyberneticsMagazine5(1):37–50.Fernández-Dacosta,C.,L.Shen,W.Schakel,A.Ramirez,andG.J.Kramer(2019).“Potentialandchallengesoflow-carbonenergyoptions:Comparativeassessmentofalternativefuelsforthetransportsector.”AppliedEnergy236:590–606.Frey,H.C.,N.M.Rouphail,H.Zhai,T.L.Farias,andG.A.Gonçalves(2007).“Comparingreal-worldfuelconsumptionfordiesel-andhydrogen-fueledtransitbusesandimplicationforemissions.”TransportationResearchPartD:TransportandEnvironment12(4):281–291.Fu,P.,D.Pudjianto,X.Zhang,andG.Strbac(2019).“EvaluatingStrategiesforDecarbonisingtheTransportSectorinGreatBritain.”2019IEEEMilanPowerTech:1–6.Furfari,A.C.S.(2021).“Challengesforgreenhydrogendevelopment.”2021AEITInternationalAnnualConference(AEIT):1–6.Gallas,D.andP.Stobnicki(2022).“AdoptionofModernHydrogenTechnologiesinRailTransport.”JournalofEcologicalEngineering23(3):84–91.Greene,D.L.,J.M.Ogden,andZ.Lin(2020).“Challengesinthedesigning,planninganddeploymentofhydrogenrefuelinginfrastructureforfuelcellelectricvehicles.”eTransportation6:100086.Hardman,S.,E.Shiu,R.Steinberger-Wilckens,andT.Turrentine(2017).“Barrierstotheadoptionoffuelcellvehicles:Aqualitativeinvestigationintoearlyadoptersattitudes.”TransportationResearchPartA:PolicyandPractice95:166–182.He,X.,etal.(2021).“Well-to-wheelsemissions,costs,andfeedstockpotentialsforlight-dutyhydrogenfuelcellvehiclesinChinain2017and2030.”RenewableandSustainableEnergyReviews137:110477.Hensher,D.A.(2021).“Thecasefornegotiatedcontractsunderthetransitiontoagreenbusfleet.”TransportationResearchPartA:PolicyandPractice154:255–269.Hexun.(2022).“Lithiumbatteryvs.hydrogenenergy,whoisthekingoffutureenergybattery?”,fromhttps://baijiahao.baidu.com/s?id=1728420178102571200&wfr=spider&for=pc.Ibrahim,O.S.,A.Singlitico,R.Proskovics,S.McDonagh,C.Desmond,andJ.D.Murphy(2022).“Dedicatedlarge-scalefloatingoffshorewindtohydrogen:Assessingdesignvariablesinproposedtypologies.”RenewableandSustainableEnergyReviews160:112310.Irdmousa,M.Z.,P.Singh,M.Seraj,andZ.-U.Abideen(2010).“AnalysisofalternativeenergysourcesfortheunitedstatesRoadwayTransportationSystem.”IEEESystemsandInformationEngineeringDesignSymposium:46–50.Janic,M.(2008).“Thepotentialofliquidhydrogenforthefuture‘carbon-neutral’airtransportsystem.”TransportationResearchPartD:TransportandEnvironment13(7):428–435.ADBIWorkingPaper1404W.-L.Shangetal.23Janić,M.(2014).“Greeningcommercialairtransportationbyusingliquidhydrogen(LH2)asafuel.”InternationalJournalofHydrogenEnergy39(29):16426–16441.Jinping,X.(2020).“StatementbyXiJinpingatGeneralDebateof75thUNGA.”ChinaDaily,fromhttp://www.chinadaily.com.cn/a/202009/23/WS5f6a640ba31024ad0ba7b1e7.html.Jones,J.,A.Genovese,andA.Tob-Ogu(2020).“Hydrogenvehiclesinurbanlogistics:Atotalcostofownershipanalysisandsomepolicyimplications.”RenewableandSustainableEnergyReviews119:109595.Kelley,S.,A.Krafft,M.Kuby,O.Lopez,R.Stotts,andJ.Liu(2020).“HowearlyhydrogenfuelcellvehicleadoptersgeographicallyevaluateanetworkofrefuelingstationsinCalifornia.”JournalofTransportGeography89:102897.Kim,I.,J.Kim,andJ.Lee(2020).“Dynamicanalysisofwell-to-wheelelectricandhydrogenvehiclesgreenhousegasemissions:FocusingonconsumerpreferencesandpowermixchangesinSouthKorea.”AppliedEnergy260:114281.Lakhera,S.K.,A.Rajan,T.P.Rugma,andN.Bernaurdshaw(2021).“Areviewonparticulatephotocatalytichydrogenproductionsystem:Progressmadeinachievinghighenergyconversionefficiencyandkeychallengesahead.”RenewableandSustainableEnergyReviews152:111694.Lee,J.-S.,etal.(2022).“Large-scaleoverseastransportationofhydrogen:Comparativetechno-economicandenvironmentalinvestigation.”RenewableandSustainableEnergyReviews165:112556.Lei,Q.,B.Wang,P.Wang,andS.Liu(2019).“Hydrogengenerationwithacid/alkalineamphotericwaterelectrolysis–ScienceDirect.”JournalofEnergyChemistry38:162–169.Li,B.,etal.(2022).“ModelingIntegratedPowerandTransportationSystems:ImpactsofPower-to-GasontheDeepDecarbonization.”IEEETransactionsonIndustryApplications58(2):2677–2693.Li,Y.andF.Taghizadeh-Hesary(2022).“TheeconomicfeasibilityofgreenhydrogenandfuelcellelectricvehiclesforroadtransportinChina.”EnergyPolicy160:112703.Liu,Z.,etal.(2022a).“Governmentregulationtopromotecoordinatedemissionreductionamongenterprisesinthegreensupplychainbasedonevolutionarygameanalysis.”Resources,ConservationandRecycling182.———.(2022b).“Governmentregulationtopromotecoordinatedemissionreductionamongenterprisesinthegreensupplychainbasedonevolutionarygameanalysis.”Resources,ConservationandRecycling182:106290.Logan,K.G.,J.D.Nelson,B.C.McLellan,andA.Hastings(2020).“Electricandhydrogenrail:PotentialcontributiontonetzerointheUK.”TransportationResearchPartD:TransportandEnvironment87:102523.Long,Z.,J.Axsen,C.Kormos,andS.Goldberg(2019).“Latentdemandforzero-emissionsvehiclesinCanada(Part1):Insightsfromadesignspaceexercise.”TransportationResearchPartD:TransportandEnvironment67:51–66.ADBIWorkingPaper1404W.-L.Shangetal.24Longden,T.,F.J.Beck,F.Jotzo,R.Andrews,andM.Prasad(2022).“‘Clean’hydrogen?–Comparingtheemissionsandcostsoffossilfuelversusrenewableelectricitybasedhydrogen.”AppliedEnergy306:118145.Mabit,S.L.andM.Fosgerau(2011).“Demandforalternative-fuelvehicleswhenregistrationtaxesarehigh.”TransportationResearchPartD:TransportandEnvironment16(3):225–231.Masson-Delmotte,etal.(2018).“SummaryforPolicymakers.In:GlobalWarmingof1.5°C.”fromhttps://www.ipcc.ch/sr15/.McDonagh,S.,P.Deane,K.Rajendran,andJ.D.Murphy(2019).“Areelectrofuelsasustainabletransportfuel?Analysisoftheeffectofcontrolsoncarbon,curtailment,andcostofhydrogen.”AppliedEnergy247:716–730.McKenzie,E.C.andP.L.Durango-Cohen(2012).“Environmentallife-cycleassessmentoftransitbuseswithalternativefueltechnology.”TransportationResearchPartD:TransportandEnvironment17(1):39–47.Melo,P.,J.RibauandC.Silva(2014).“UrbanBusFleetConversiontoHybridFuelCellOptimalPowertrains.”Procedia–SocialandBehavioralSciences111:692–701.Menanteau,P.,M.M.Quéméré,A.LeDuigou,andS.LeBastard(2011).“Aneconomicanalysisoftheproductionofhydrogenfromwind-generatedelectricityforuseintransportapplications.”EnergyPolicy39(5):2957–2965.Miele,A.,J.Axsen,M.Wolinetz,E.Maine,andZ.Long(2020).“Theroleofchargingandrefuellinginfrastructureinsupportingzero-emissionvehiclesales.”TransportationResearchPartD:TransportandEnvironment81:102275.Mingolla,S.andZ.Lu(2021).“Carbonemissionandcostanalysisofvehicletechnologiesforurbantaxis.”TransportationResearchPartD:TransportandEnvironment99:102994.Morrison,G.,J.Stevens,andF.Joseck(2018).“Relativeeconomiccompetitivenessoflight-dutybatteryelectricandfuelcellelectricvehicles.”TransportationResearchPartC:EmergingTechnologies87:183–196.Mubenga,N.S.andT.Stuart(2011).“Acasestudyonthehybridizationofanelectricvehicleintoafuelcellhybridvehicleandthedevelopmentofasolarpoweredhydrogengeneratingstation.”2011IEEEPowerandEnergySocietyGeneralMeeting:1–8.Nations,U.(2022).“Peace,dignityandequalityonahealthyplanet.”fromhttps://www.un.org/en/global-issues/climate-change.Navas-Anguita,Z.,D.García-Gusano,J.Dufour,andD.Iribarren(2020).“Prospectivetechno-economicandenvironmentalassessmentofanationalhydrogenproductionmixforroadtransport.”AppliedEnergy259:114121.News,C.E.(2022).“ProspectsandChallengesofGreenHydrogenDevelopmentintheCarbonNeutralAge.”fromhttps://baijiahao.baidu.com/s?id=1729336323098014597&wfr=spider&for=pc.Ouchi,K.andJ.Henzie(2017).“Hydrogengenerationsailingship:Conceptualdesignandfeasibilitystudy.”OCEANS2017–Aberdeen:1–5.ADBIWorkingPaper1404W.-L.Shangetal.25Penev,M.,J.Zuboy,andC.Hunter(2019).“Economicanalysisofahigh-pressureurbanpipelineconcept(HyLine)fordeliveringhydrogentoretailfuelingstations.”TransportationResearchPartD:TransportandEnvironment77:92–105.Pinchasik,D.R.andI.B.Hovi(2017).“ACO2-fundforthetransportindustry:ThecaseofNorway.”TransportPolicy53:186–195.Pomaska,L.andM.Acciaro(2022).“BridgingtheMaritime-HydrogenCost-Gap:Realoptionsanalysisofpolicyalternatives.”TransportationResearchPartD:TransportandEnvironment107:103283.Pugazhendhi,A.,G.Kumar,andP.Sivagurunathan(2019).“Microbiomeinvolvedinanaerobichydrogenproducinggranules:Aminireview.”BiotechnolRep(Amst)21:e00301.Pyza,D.,P.Gołda,andE.Sendek-Matysiak(2022).“Useofhydrogeninpublictransportsystems.”JournalofCleanerProduction335:130247.Ramesohl,S.andF.Merten(2006).“Energysystemaspectsofhydrogenasanalternativefuelintransport.”EnergyPolicy34(11):1251–1259.Ren,J.andH.Liang(2017).“Measuringthesustainabilityofmarinefuels:Afuzzygroupmulti-criteriadecisionmakingapproach.”TransportationResearchPartD:TransportandEnvironment54:12–29.Reuß,M.,T.Grube,M.Robinius,P.Preuster,P.Wasserscheid,andD.Stolten(2017).“Seasonalstorageandalternativecarriers:Aflexiblehydrogensupplychainmodel.”AppliedEnergy200:290–302.Rinaldi,P.andG.M.Veca(2007).“Hydrogenforaglobalapplicationtoroadtransport.”2007InternationalConferenceonCleanElectricalPower:625–631.Robledo,C.B.,V.Oldenbroek,F.Abbruzzese,andA.J.M.vanWijk(2018).“Integratingahydrogenfuelcellelectricvehiclewithvehicle-to-gridtechnology,photovoltaicpowerandaresidentialbuilding.”AppliedEnergy215:615–629.Rose,P.K.andF.Neumann(2020).“Hydrogenrefuelingstationnetworksforheavy-dutyvehiclesinfuturepowersystems.”TransportationResearchPartD:TransportandEnvironment83:102358.Rose,P.K.,R.Nugroho,T.Gnann,P.Plötz,M.Wietschel,andM.Reuter-Oppermann(2020).“Optimaldevelopmentofalternativefuelstationnetworksconsideringnodecapacityrestrictions.”TransportationResearchPartD:TransportandEnvironment78:102189.Rottoli,M.,A.Dirnaichner,R.Pietzcker,F.Schreyer,andG.Luderer(2021).“Alternativeelectrificationpathwaysforlight-dutyvehiclesintheEuropeantransportsector.”TransportationResearchPartD:TransportandEnvironment99:103005.Sadvakasova,A.K.,etal.(2020).“Bioprocessesofhydrogenproductionbycyanobacteriacellsandpossiblewaystoincreasetheirproductivity.”RenewableandSustainableEnergyReviews133:110054.Salvi,B.L.andK.A.Subramanian(2015).“Sustainabledevelopmentofroadtransportationsectorusinghydrogenenergysystem.”RenewableandSustainableEnergyReviews51:1132–1155.ADBIWorkingPaper1404W.-L.Shangetal.26Selvakkumaran,S.andB.Limmeechokchai(2015).“Lowcarbonsocietyscenarioanalysisoftransportsectorofanemergingeconomy—TheAIM/Endusemodellingapproach.”EnergyPolicy81:199–214.Shang,W.-L.,J.Chen,H.Bi,Y.Sui,Y.Chen,andH.Yu(2021).“ImpactsofCOVID-19pandemiconuserbehaviorsandenvironmentalbenefitsofbikesharing:Abig-dataanalysis.”AppliedEnergy285:116429.Shang,W.L.,etal.(2022).“BenchmarkAnalysisforRobustnessofMulti-ScaleUrbanRoadNetworksUnderGlobalDisruptions.”IEEETransactionsonIntelligentTransportationSystems:1–11.Singh,S.,etal.(2015).“Hydrogen:Asustainablefuelforfutureofthetransportsector.”RenewableandSustainableEnergyReviews51:623–633.Stock,G.(2021).“TheAgeofHydrogenEnergy.”fromhttps://baijiahao.baidu.com/s?id=1717920900094180879&wfr=spider&for=pc.Sun,G.,G.Li,P.Li,S.Xia,Z.Zhu,andM.Shahidehpour(2022).“CoordinatedOperationofHydrogen-IntegratedUrbanTransportationandPowerDistributionNetworksConsideringFuelCellElectricVehicles.”IEEETransactionsonIndustryApplications58(2):2652–2665.Sun,W.andG.P.Harrison(2021).“ActiveLoadManagementofHydrogenRefuellingStationsforIncreasingtheGridIntegrationofRenewableGeneration.”IEEEAccess9:101681–101694.Sundvor,I.,R.J.Thorne,J.Danebergs,F.Aarskog,andC.Weber(2021).“EstimatingthereplacementpotentialofNorwegianhigh-speedpassengervesselswithzero-emissionsolutions.”TransportationResearchPartD:TransportandEnvironment99:103019.Tabandeh,A.,M.J.Hossain,andL.Li(2022).“Integratedmulti-stageandmulti-zonedistributionnetworkexpansionplanningwithrenewableenergysourcesandhydrogenrefuellingstationsforfuelcellvehicles.”AppliedEnergy319:119242.Tao,Y.,J.Qiu,S.Lai,X.Zhang,andG.Wang(2020).“CollaborativePlanningforElectricityDistributionNetworkandTransportationSystemConsideringHydrogenFuelCellVehicles.”IEEETransactionsonTransportationElectrification6(3):1211–1225.Fastmarketsteam.(2021).“ENERGYTRANSITION:Solarpowercapacitygrowthrequiresguaranteedsupplyofmineralsandmetals.”fromhttps://www.fastmarkets.com/insights/energy-transition-solar-power-capacity-growth-requires-guaranteed-supply-of-minerals-and-metals.Tittle,D.andJ.Qu(2013).“Theimplicationsofusinghydrocarbonfuelstogenerateelectricityforhydrogenfuelpoweredautomobilesonelectricalcapital,hydrocarbonconsumption,andanthropogenicemissions.”TransportationResearchPartD:TransportandEnvironment18:25–30.Vasconcelos,E.A.F.,R.C.Leitão,andS.T.Santaella(2016).“Factorsthataffectbacterialecologyinhydrogen-producinganaerobicreactors.”BioEnergyResearch9(4):1260–1271.Verhelst,S.,etal.(2012).“ElectricityPoweringCombustion:HydrogenEngines.”ProceedingsoftheIEEE100(2):427–439.ADBIWorkingPaper1404W.-L.Shangetal.27Wickham,D.,A.Hawkes,andF.Jalil-Vega(2022).“Hydrogensupplychainoptimisationforthetransportsector–Focusonhydrogenpurityandpurificationrequirements.”AppliedEnergy305:117740.Wu,Y.,F.Liu,J.He,M.Wu,andY.Ke(2021).“Obstacleidentification,analysisandsolutionsofhydrogenfuelcellvehiclesforapplicationinChinaunderthecarbonneutralitytarget.”EnergyPolicy159:112643.Xu,C.,Y.Wu,andS.Dai(2020).“WhatarethecriticalbarrierstothedevelopmentofhydrogenrefuelingstationsinChina?AmodifiedfuzzyDEMATELapproach.”EnergyPolicy142:111495.Yang,D.(2022).“Industrialhydrogenby-productshavegreatpotential,and“greenenergy”hydrogenproductionisreadyfordevelopmentinLu.”fromhttps://baijiahao.baidu.com/s?id=1728787944553703441&wfr=spider&for=pc.Yang,Z.,W.-L.Shang,H.Zhang,H.Garg,andC.Han(2022).“Assessingthegreendistributiontransformermanufacturingprocessusingacloud-basedq-rungorthopairfuzzymulti-criteriaframework.”AppliedEnergy311:118687.Yazdanie,M.,F.Noembrini,S.Heinen,A.Espinel,andK.Boulouchos(2016).“Well-to-wheelcosts,primaryenergydemand,andgreenhousegasemissionsfortheproductionandoperationofconventionalandalternativevehicles.”TransportationResearchPartD:TransportandEnvironment48:63–84.Yeh,S.,D.H.Loughlin,C.Shay,andC.Gage(2006).“AnIntegratedAssessmentoftheImpactsofHydrogenEconomyonTransportation,EnergyUse,andAirEmissions.”ProceedingsoftheIEEE94(10):1838–1851.Yi,Y.,J.A.Jang,andI.Lee(2021).“DataDesignforDrivingMonitoringofHydrogenElectricBus.”2021InternationalConferenceonInformationandCommunicationTechnologyConvergence(ICTC):697–700.Yu,H.,Y.Jiang,Z.Zhang,W.-L.Shang,C.Han,andY.Zhao(2022).“Theimpactofcarbonemissiontradingpolicyonfirms’greeninnovationinChina.”FinancialInnovation8(1):55.Yu,H.,Y.Wang,andZ.Chen(2021).“ARenwableElectricity-Hydrogen-IntegratedHybridDCTractionPowerSystem.”2021IEEESouthernPowerElectronicsConference(SPEC):1–6.Zhang,C.(2022a).“DevelopmentProspectandChallengeofGreenHydrogeninCarbonNeutralEra.”GreenPetroleum&Petrochemicals7(1):6–10.Zhang,C.,etal.(2020).“Flexiblegrid-basedelectrolysishydrogenproductionforfuelcellvehiclesreducescostsandgreenhousegasemissions.”AppliedEnergy278:115651.Zhang,J.(2022b).“The“five”tohelpthetransportationindustrytoachievethe“doublecarbon”goal.”http://www.rmzxb.com.cn/c/2022-03-15/3074615.shtml.———.(2022c).“NationalDevelopmentandReformCommission:Coordinatedplanningofhydrogenenergydevelopmenttohelpachievethe“doublecarbon”goal.”fromhttps://baijiahao.baidu.com/s?id=1728092187047625343&wfr=spider&for=pc.Zhao,D.,M.Zhou,J.Wang,T.Zhang,G.Li,andH.Zhang(2021).“Dispatchingfuel-cellhybridelectricvehiclestowardtransportationandenergysystemsintegration.”CSEEJournalofPowerandEnergySystems:1–9.ADBIWorkingPaper1404W.-L.Shangetal.28Zhao,Q.,S.B.Kelley,F.Xiao,andM.J.Kuby(2019).“Amulti-scaleframeworkforfuelstationlocation:Fromhighwaystostreetintersections.”TransportationResearchPartD:TransportandEnvironment74:48–64.Zhou,J.,Y.Zhang,Y.Zhang,W.-L.Shang,Z.Yang,andW.Feng(2022).“Parametersidentificationofphotovoltaicmodelsusingadifferentialevolutionalgorithmbasedoneliteandobsoletedynamiclearning.”AppliedEnergy314:118877.Zou,C.,etal.(2022).“Industrialstatus,technologicalprogress,challengesandprospectsofhydrogenenergy.”NaturalGasIndustry,Issue4,2022.