巴德学院利维经济研究所-气候变化与财政策略(英版)VIP专享VIP免费

Working Paper No. 1023
Climate Change and Fiscal Marksmanship: Evidence From an Emerging Country, India
by
Lekha Chakraborty
Levy Economics and International Institute of Public Finance, Munich
Ajay Narayan Jha
(Former) Government of India and Finance Commission
Jitesh Yadav and Balamuraly B
(Former) National Institute of Public Finance and Policy (NIPFP)
and
Amandeep Kaur
National Institute of Public Finance and Policy (NIPFP)
July 2023
This paper is an abridged version of the paper invited for International Institute of Public Finance (IIPF) Meetings in
Utah State University, August 1416, 2023. Thanks are due to Professor Pinaki Chakraborty (Asian Development
Bank) for his valuable comments.
The Levy Economics Institute Working Paper Collection presents research in progress by Levy Institute scholars and
conference participants. The purpose of the series is to disseminate ideas to and elicit comments from academics and
professionals.
Levy Economics Institute of Bard College, founded in 1986, is a nonprofit, nonpartisan, independently funded
research organization devoted to public service. Through scholarship and economic research, it generates
viable, effective public policy responses to important economic problems that profoundly affect the quality of
life in the United States and abroad.
Levy Economics Institute
P.O. Box 5000
Annandale-on-Hudson, NY 12504-5000
http://www.levyinstitute.org
Copyright © Levy Economics Institute 2023 All rights reserved
ISSN 1547-366X
1
ABSTRACT
According to the theory of efficient markets, economic agents use all available information to
form rational expectations. The rational expectations hypothesis asserts that information is
scarce, the economic system generally does not waste information, and that expectations depend
specifically on the structure of the entire system. Fiscal marksmanship—the accuracy of
budgetary forecasting—can be one important piece of such information that rational agents must
consider in forming expectations. Against the backdrop of fiscal rules, our paper explores the
budgetary forecast errors of climate change–related public spending in India. The fiscal rules
stipulate that fiscal deficit–to–GDP ratio should be maintained at 3 percent. However, in the
post-COVID fiscal strategy, a medium-term fiscal consolidation path of 4.5 percent fiscal
deficit–to–GDP is envisioned by 2025–26. Within this fiscal consolidation framework, we
analyzed the budget credibility of fiscal commitments for climate change in India. We analyzed
the fiscal behavioral variables in terms of bias, variation, and randomness, and captured the
systemic variations in budgetary forecast related to climate change for a period 2017–18 to
2020–21 across sectors. We identified the sectors where systematic components of forecasting
errors are relatively higher than random components, where minimizing errors through altering
the fiscal behavioral models is done by revising the assumptions and by applying better
forecasting methods. A state-level decomposition of the public spending revealed that
disaggregated fiscal space available for developmental spending constitutes around 60 percent of
the total. However, identifying the specifically targeted public spending related to climate change
across all states and analyzing its fiscal markmanship can further the subnational inferences.
KEYWORDS: Fiscal Marksmanship, Budget Forecast Errors, Climate Change, State Finances
JEL CODES: H30, H50, H70, Q58
2
1. INTRODUCTION
According to the theory of efficient markets, economic agents use all available information to
form rational expectations. The rational expectations hypothesis asserts that information is
scarce, the economic system generally does not waste information, and that expectations depend
specifically on the structure of the entire system. Fiscal marksmanship—the accuracy of
budgetary forecasting—can be one important piece that rational agents must consider in forming
expectations. The significant variations between actual revenue and expenditure from the
forecasted budgetary magnitudes could be an indication of fiscal policy objectives not being
optimized or attained.
In this context, the role of budget estimates needs to be emphasized as a fiscal signal. This point
has gained much momentum especially when expectations are based, not on what has happened
in the past, but on the data relating to the future. That is, if expectations are rational rather than
adaptive, it is the estimate of taxes and spending in any given budget—the ex-ante data, not the
observed data, available only with a lag—that will be used by forward-looking private agents
who base their decisions, in whole or in part, on fiscal variables. Against the backdrop of fiscal
rules—legally mandated under the Fiscal Responsibility and Budget Management Act
(FRBMA)—in India, our paper explores the budget forecast errors of climate change–related
public spending in India.
The FRBMA stipulates that the fiscal deficit to GDP ratio should be maintained at 3 percent.
However, in the post-covid fiscal strategy, a medium-term fiscal consolidation path of 4.5
percent fiscal deficit-GDP is envisioned for 2025–26. Within this fiscal consolidation
framework, we analyze the budget credibility of fiscal commitments for climate change in India.
This is particularly important against the backdrop of COP27 recently held in Egypt. The paper
analyzes the fiscal behavioral variables in terms of bias, randomness, and systematic variations
in budgetary forecast (forecast errors) related to climate change–related spending for a period
2017–18 to 2020–21.
WorkingPaperNo.1023ClimateChangeandFiscalMarksmanship:EvidenceFromanEmergingCountry,IndiabyLekhaChakrabortyLevyEconomicsandInternationalInstituteofPublicFinance,MunichAjayNarayanJha(Former)GovernmentofIndiaandFinanceCommissionJiteshYadavandBalamuralyB(Former)NationalInstituteofPublicFinanceandPolicy(NIPFP)andAmandeepKaurNationalInstituteofPublicFinanceandPolicy(NIPFP)July2023ThispaperisanabridgedversionofthepaperinvitedforInternationalInstituteofPublicFinance(IIPF)MeetingsinUtahStateUniversity,August14–16,2023.ThanksareduetoProfessorPinakiChakraborty(AsianDevelopmentBank)forhisvaluablecomments.TheLevyEconomicsInstituteWorkingPaperCollectionpresentsresearchinprogressbyLevyInstitutescholarsandconferenceparticipants.Thepurposeoftheseriesistodisseminateideastoandelicitcommentsfromacademicsandprofessionals.LevyEconomicsInstituteofBardCollege,foundedin1986,isanonprofit,nonpartisan,independentlyfundedresearchorganizationdevotedtopublicservice.Throughscholarshipandeconomicresearch,itgeneratesviable,effectivepublicpolicyresponsestoimportanteconomicproblemsthatprofoundlyaffectthequalityoflifeintheUnitedStatesandabroad.LevyEconomicsInstituteP.O.Box5000Annandale-on-Hudson,NY12504-5000http://www.levyinstitute.orgCopyright©LevyEconomicsInstitute2023AllrightsreservedISSN1547-366X1ABSTRACTAccordingtothetheoryofefficientmarkets,economicagentsuseallavailableinformationtoformrationalexpectations.Therationalexpectationshypothesisassertsthatinformationisscarce,theeconomicsystemgenerallydoesnotwasteinformation,andthatexpectationsdependspecificallyonthestructureoftheentiresystem.Fiscalmarksmanship—theaccuracyofbudgetaryforecasting—canbeoneimportantpieceofsuchinformationthatrationalagentsmustconsiderinformingexpectations.Againstthebackdropoffiscalrules,ourpaperexploresthebudgetaryforecasterrorsofclimatechange–relatedpublicspendinginIndia.Thefiscalrulesstipulatethatfiscaldeficit–to–GDPratioshouldbemaintainedat3percent.However,inthepost-COVIDfiscalstrategy,amedium-termfiscalconsolidationpathof4.5percentfiscaldeficit–to–GDPisenvisionedby2025–26.Withinthisfiscalconsolidationframework,weanalyzedthebudgetcredibilityoffiscalcommitmentsforclimatechangeinIndia.Weanalyzedthefiscalbehavioralvariablesintermsofbias,variation,andrandomness,andcapturedthesystemicvariationsinbudgetaryforecastrelatedtoclimatechangeforaperiod2017–18to2020–21acrosssectors.Weidentifiedthesectorswheresystematiccomponentsofforecastingerrorsarerelativelyhigherthanrandomcomponents,whereminimizingerrorsthroughalteringthefiscalbehavioralmodelsisdonebyrevisingtheassumptionsandbyapplyingbetterforecastingmethods.Astate-leveldecompositionofthepublicspendingrevealedthatdisaggregatedfiscalspaceavailablefordevelopmentalspendingconstitutesaround60percentofthetotal.However,identifyingthespecificallytargetedpublicspendingrelatedtoclimatechangeacrossallstatesandanalyzingitsfiscalmarkmanshipcanfurtherthesubnationalinferences.KEYWORDS:FiscalMarksmanship,BudgetForecastErrors,ClimateChange,StateFinancesJELCODES:H30,H50,H70,Q5821.INTRODUCTIONAccordingtothetheoryofefficientmarkets,economicagentsuseallavailableinformationtoformrationalexpectations.Therationalexpectationshypothesisassertsthatinformationisscarce,theeconomicsystemgenerallydoesnotwasteinformation,andthatexpectationsdependspecificallyonthestructureoftheentiresystem.Fiscalmarksmanship—theaccuracyofbudgetaryforecasting—canbeoneimportantpiecethatrationalagentsmustconsiderinformingexpectations.Thesignificantvariationsbetweenactualrevenueandexpenditurefromtheforecastedbudgetarymagnitudescouldbeanindicationoffiscalpolicyobjectivesnotbeingoptimizedorattained.Inthiscontext,theroleofbudgetestimatesneedstobeemphasizedasafiscalsignal.Thispointhasgainedmuchmomentumespeciallywhenexpectationsarebased,notonwhathashappenedinthepast,butonthedatarelatingtothefuture.Thatis,ifexpectationsarerationalratherthanadaptive,itistheestimateoftaxesandspendinginanygivenbudget—theex-antedata,nottheobserveddata,availableonlywithalag—thatwillbeusedbyforward-lookingprivateagentswhobasetheirdecisions,inwholeorinpart,onfiscalvariables.Againstthebackdropoffiscalrules—legallymandatedundertheFiscalResponsibilityandBudgetManagementAct(FRBMA)—inIndia,ourpaperexploresthebudgetforecasterrorsofclimatechange–relatedpublicspendinginIndia.TheFRBMAstipulatesthatthefiscaldeficittoGDPratioshouldbemaintainedat3percent.However,inthepost-covidfiscalstrategy,amedium-termfiscalconsolidationpathof4.5percentfiscaldeficit-GDPisenvisionedfor2025–26.Withinthisfiscalconsolidationframework,weanalyzethebudgetcredibilityoffiscalcommitmentsforclimatechangeinIndia.ThisisparticularlyimportantagainstthebackdropofCOP27recentlyheldinEgypt.Thepaperanalyzesthefiscalbehavioralvariablesintermsofbias,randomness,andsystematicvariationsinbudgetaryforecast(forecasterrors)relatedtoclimatechange–relatedspendingforaperiod2017–18to2020–21.3InIndia,fiscalarithmetichasthreestages:theannouncementofBudgetEstimate(BE);thegovernment’sannouncementoftheRevisedEstimate(RE)thenextyear,afterreviewandrevision;andfinallythepublicationoftheActuals(actualspending)withalagofoneyearortwo.WeanalyzewhetherthereisacorrelationbetweenBEandRE,andbetweenBEandActualsorasignificantdeviationbetweenthesethree,relativetoclimatechange–relatedspending.2.REVIEWOFTHELITERATUREThepoliticaleconomyofbudgetdeficitsandothermacro-fiscalvariablesstartedgainingattentioninthe1990s(AlesinaandPerotti1995;Blanchard1990).However,oneoftheearlierdiscussionsoffiscalforecasterrorswasmadebyAllan(1965)inthecaseofBritain.AccordingtoAllan,fiscalmarksmanshipwasimportantduringthattimebecausethemarginforerrorwaslimitedgiventhetrade-offbetweeninflationandfullemployment.Insuchascenario,accuratepredictionsofbudgetaryestimateswereimportantformeetingfiscalpolicytargetsoffullemploymentwithoutundesirablyhighinflation.Davis(1980),followinguponAllan’sstudy,usedalongertimeseries(1951–78).Auld(1970)hasdoneafiscalmarksmanshipexerciseforCanadaforthepost-warperiod(through1968).Auldsaysthatifthegovernmentistofinanceitslong-rangeprograms,accuratepredictionsareimportant.Morrison(1986)hasdoneafiscalmarksmanshipexerciseintheUnitedStatesfortheyears1950–83.Cassidy,Kamlet,andNagin(1989)analyzedtherevenueforecastbiasesinthecontextofEurope.Goodfiscalmarksmanshipcanbeoneimportantpieceofavailableinformationrationalagentsmustconsiderinformingexpectations.Inthiscontext,theroleofbudgetestimatesneedstobeemphasizedaswhatDavis(1980)referstoasafiscalsignal,notingthatbudgetestimateshaveanimportant“signaleffect”foroutsideforecastersandanalysts,withparticularattention,inrecentyears,giventotheestimatedborrowingrequirement.Ifexpectationsarerationalratherthanadaptive,itistheestimateoftaxesandpublicexpenditureinanygivenbudget—theex-antedata,nottheobserveddata—thatwillbeusedbyforward-lookingprivateagentswhobasetheirdecisions,inwholeorinpart,onfiscalvariables(Morrison1986).4Inthecontextoftheeurozone,BrückandStephan(2005)haveestimatedthepoliticaleconomydeterminantsofbudgetdeficitforecasterrors.Theirfindingsshowthatpolitics,electoralcycles,andtheinstitutionaldesignsofgovernmentsaffectthequalityoffiscalforecasts.TheirfindingsagainstthebackdropoftheStabilityandGrowthPact(SGP)suggestmalignedincentivesfor“unobservablefiscaleffort”(BeetsmaandJensen2004)byeurozonegovernments(comparedtootherOECDgovernments)inreportingtheirbudgetdeficitspriortoelections.Theyexplainedthefiscalbehaviorunderthreecycles(i.e.,anelectoralforecastcycle,apartisanforecastcycle,andaninstitutionalcycle),applyingpaneleconometrictechniquestotheanalysisoftheforecasterrorsofbotheurozoneandnon-eurozoneOECDeconomies.Theirfindingssuggestthattheforecasterrorsalignwithelectioncyclesineurozonecountries.RullánandVillalonga(2018),inthecontextoftheSGP,haveexaminedtherelationshipbetweenfiscalrulesandbudgetaryforecastsbyanalyzingthesignificanceofpoliticalandinstitutionalvariablesintheeurozone.Theirfindingsshowthatthelevelofpublicsectordebtiscrucialinexplainingbudgetaryforecasterrors.Theelectoralmandate,politicalorientationofrulingparties,taxautonomy,andpercapitarevenuearetheothersignificantdeterminantsofforecasterrors.Thisstudytooktheliteratureforwardtosubnationaltiersofgovernmentin15Europeancountries,unliketheearlierstudiesinthecontextoftheeurozonethatconfinedtheiranalysistoamacroeconomicperspectiveatthenationalgovernmentlevel.TheSGPthereforecreatesincentivesforcreativebudgetarydeficitforecastspriortoelectioncycles(Strauch,Hallerberg,andHagen2004).Giuriato,Cepparulo,andBarberi(2016)analyzedthequalityofthefiscalforecastsof13eurozonecountriesbyusingannualforecastsfortheperiod1999–2013againstthebackdropofstabilityandconvergenceprograms.Theyfoundthatiffiscalrulescountertheexecutive’smonopolyonfiscalforecasting,strengtheningthelegislature’sformalpowersnegativelyinfluencesthefiscalforecastaccuracy.PinaandVenes(2011)analyzedthebudgetbalanceforecastspreparedby15EuropeancountriesintheirExcessiveDeficitProcedure(EDP)reporting.Theyfoundthatgrowthsurprises,fiscalinstitutions,electionscycles,formsoffiscal5governance,andnumericalexpenditurerules(unlikedeficitanddebtrules)affecttheforecasterrors.TherehavebeenanumberoffiscalmarksmanshipexercisesinthecaseofIndia(KumariandBhattacharya1988).InoneoftheearlierattemptsatanalyzingbudgetaryestimatesinIndia(fortheperiod1956–64),SamuelandRangarajan(1974)undertookananalysisoftwocomponentsofthestateandunionbudgets’capitalexpenditureonconstructionandindustrialdevelopment(theanalysiswaslimitedtothesetwobecauseofthescopeofthesubjectmattertheyweredealingwith).Inthisstudy,theanalysisofforecastingerrorswasbasedlargelyongraphsplottingtheactualexpenditureandthebudgetestimates.Intheiranalysis,itisstatedthat,whileinbothcomponentsthecentralgovernment’sbudgetestimatewasmoreaccuratecomparedtothestates,thisdifferencewasattributedtothedifferenceinbudgetaryprocess’sefficiency.Asher(1978)performedamorecomprehensivefiscalmarksmanshipexerciseforIndiafortheperiod1967–76,forboththerevisedandbudgetestimates.Thestudyshowedthat,duringthatperiod,boththerevenuesandexpenditureswereconsistentlyunderestimated.However,itwasobservedthattheextentoftheerrorontheexpendituresidewaslarger.ChakrabartyandVarghese(1982)haveuseddatafrom1970–80.Oneofthemajorfindingsofthatstudywasthatbothrevenuesandexpenditureareunderestimated.Pattnaik(1990)hasdoneafiscalmarksmanshipexerciseusingTheil’sindexfortheperiod1951–89.Thestudyobservesthattheerrorsintherevisedestimatesarelowerthantheerrorsinthebudgetestimates(althoughtherearelargeerrorsinboth).Itstatedthattheerrorsintheestimatesarelargelysystematicinnatureforboththeentiretimeperiodaswellasforsmallertimeperiodswithinthewhole(thesystematicerrorsweregreatestfortheperiod1981–89).MorerecentstudiesonfiscalmarksmanshipinIndiahaveadifferentconclusion.AstudydonebyNitinandRoy(2015)usingdatafrom1990–2012observesthatthesourceoferrorincomponentssuchastaxrevenue,nontaxrevenue,interestpayments,defenserevenueexpenditure,andfiscaldeficitwereprimarilyduetorandomerror(definedintheirpaperasbeingwhentheproportionoftherandomerrorisgreaterthanthebiascomponentsortheerrorin6variance).Therestofthecomponents—suchassubsidyexpenditure,capitalexpenditure,andnon-debtcapitalreceipts—hadahighersystematicerror(meanerrorandslopeerror).Averyinterestingpointmadeinthepaperisthat,whilethereisanattempttohavefiscalconsolidationbycontrollingexpenditure,thepredictabilityofexpenditureisquitelowcomparedtorevenue.Inasimilarstudy,ChakrabortyandSinha(2018)undertookafiscalmarksmanshipexercisefortheperiod1990–2017anddrewasimilarconclusion.Atrendthatcanbeobservedbasedontheempiricalliteraturefrom1951to1990isthatthesystematiccomponentoftheerrorwashigher,while,from1990to2017,therandomcomponentishigher.Itisworthnotingthattheabovestudiesarebasedonthefederalgovernment’sdata.ShresthaandChakraborty(2019)haveexaminedthefiscalmarksmanshipinthecontextofIndia’sstates.TheirstudyfocusedonKeralaandidentifiedforecasterrorswithrespecttotaxrevenueprojections.Intherecentempiricalliterature,thefiscalforecasterrorsareanalyzedagainstthebackdropoffiscalrules.Thepoliticaleconomyoffiscalforecastsatthesubnationalleveldependsonthetaxautonomyandthenatureoftheintergovernmentalfiscaltransfermechanism.Thetaxautonomyisheterogeneousacrossstates.Theintergovernmentalfiscaltransfersmaybeprogressiveifthetransferisdesignedtooffsettheinterstatefiscaldisabilities.InIndia,theFinanceBill2018hasincorporatedafewclauses(clauses207–10)toamendtheFRBMActof2003,withspecialemphasisontheeliminationofreferencesto“revenuebalance”andusingfiscaldeficitasanoperationalparameter(ChakrabortyandChakraborty2018).Againstthesepolicychanges,itispertinenttoanalyzetheimpactoffiscalrulesonfiscalmarksmanshipofmacro-fiscalvariablesinIndia.BuiterandPatel(2010)haveanalyzedfiscalrulesinIndia,howevertheeffectoffiscalrulesonfiscalmarksmanshipinthecontextofIndiahasnotbeenanalyzed.Asmentionedabove,NitinandRoy(2015)haveanalyzedthenormativefiscalassessmentsofIndia’sFinanceCommission,andtherealizationoffiscalpolicywithregardtothecentralgovernment’sfinancesovertheperiod1990–2012.7TherecentempiricalliteratureonfiscalmarksmanshipishighlyconfinedtotheIndiannationalgovernment’sforecasterrors(ChakrabortyandSinha2018;NitinandRoy2015).Therehasbeenvirtuallynoefforttoundertakeafiscalmarksmanshipexerciseatthestatelevel,exceptbyChakraborty,Chakraborty,andShrestha(2020).Inthispaper,weattempttodoafiscalmarksmanshipexerciseforclimatechange–relatedspending,analyzingthemagnitudeoftheerrorsandsubsequentlyexaminingthenatureoftheerrors.Thisisdoneintwoways:firstwecheckwhethertheerrorsareoverestimatesorunderestimates,andthenwechecktheextentofsystematicandrandomcomponentsinthesefiscalforecasterrors.3.METHODOLOGYOFFISCALMARKSMANSHIPThedataisorganizedfromthefinanceaccountsofvariousstatesandtheCentralStatisticsOffice(CSO).Theforecasterrorisdefinedasthedeviationbetweenthepredictedbudgetestimates(BE)orrevisedestimates(RE)andtheactual.TheMeanErrorThemeanerror(ME)referstotheaveragedifferencebetweentheforecastandtheactual.TheMEhasbeencalculatedbytakingtheaverageofthedifferencebetweenthepredictedvalues(ofbothBEandRE)andtheactuals.WehavedividedtheMEbythesumoftheactualsforthereferenceperiod.TheMEisacrudemeasureoftheforecast’squality,aspositiveandnegativeerrorscanoffseteachother,therebynotgivingustheexactmagnitudeoferror.However,theMEisanindicatorofpossiblebiasintheforecast.TheRootMeanSquareErrorTherootmeansquarederror(RMSE)isameasureoftherelativesizeoftheforecasterror.Inthispaper,tocalculatetheRMSE,themeansquarederror(MSE)istakenoverthereferenceperiodafterwhichthesquarerootoftheMSEiscalculated.Whilethiswillgiveusthemagnitudeoferror,itwillnotgiveanyinformationonthedirectionoftheerror,i.e.,whethertheerrorispositiveornegative.WehavetakentheRMSEasaproportionofthesumofactualsof8thereferenceperiod.Itreflectsthefactthatlargeforecasterrorsaremoresignificantthansmalldifferences.Theil’sInequalityCoefficients(U)Theil’sinequalitycoefficient(U)isusedtoanalyzethemeasureofaccuracyofthebudgetforecasts.Theil’sinequalitycoefficientisbasedontheMSE(U1).TheforecasterrorofTheil(1958)isdefinedas:U1=(1)WhereU1istheinequalitycoefficient,Ptisthepredictedvalue,Atistheactualvalue,andnisthenumberofyears.Thisinequalitycoefficientrangesfromzerotoone.WhenPtisequaltoAtforallobservations(aperfectforecast),U1equalszero.1U1hasbeendecomposedinordertoindicatesystematicandrandomsourcesoferror.Thesystematiccomponentisfurtherdividedintotheproportionofthetotalforecasterrorduetobias1Theil’ssecondequationfortheinequalitycoefficientusesarevisedmeasureofforecasterror.Theil’s(1966,1971)revisedmeasureofinequalityisasfollows:U2=ThismeasurehastheadvantagethatthedenominatordoesnotcontainPandtheinequalitycoefficientdoesnotdependontheforecast.Inaperfectforecast,U2equalstozero.U2doesnothaveanupperbound.AmorerigorousmeasureofTheil’sinequalitystatisticsisalsousedbyincorporatingthelagsintheactualsandthedifferenceofthepredictedvaluefromthelagoftheactualstocapturethemagnitudeoferror:U3=wherea=At-At-1,Pt=Pt-At-1,andn=numberofyearsååå+-222/1/1)(/1ttttAnPnAPnåå-22/1)(/1tttAnAPnååå+-222][/1][/1][/1atnPtnatPtn9andtheproportionoftotalforecasterrorattributabletounequalvariation.Thederivationofequation(2)isgivenindetailinDavis(1980).1=(2)Inequation(2),PandAaremean-predictedandmean-actualchanges,respectively;SpandSaarethestandarddeviationsofpredictedandactualvalues,respectively;andristhecoefficientofcorrelationbetweenpredictedandactualvalues.Thefirstexpressionontherighthandside(RHS)inequation(2)istheproportionofthetotalforecasterrorduetobias.Itrepresentsameasureoftheproportionoferrorduetooverpredictionorunderpredictionoftheaveragevalue.ThesecondexpressionoftheRHSinequation(2)istheproportionoftotalforecasterrorattributabletounequalvariation.Inotherwords,itmeasurestheproportionoferrorduetooverpredictionorunderpredictionofthevarianceofthevalues.ThethirdexpressionoftheRHSinequation(2)measurestheproportionofforecastingerrorduetorandomvariation.Thefirsttwosourcesoferroraresystematic;presumablytheycanbereducedbyimprovedforecastingtechniques,whiletherandomcomponentisbeyondthecontroloftheforecaster.4.MAGNITUDEOFFORECASTERRORSACROSSIDENTIFIEDSECTORSThedataonbudgetestimates,revisedestimates,andactuals,startingfrom2017–18until2020–21,forallclimateadaptation–relatedschemes,isextractedfromtheDetailDemandforGrants,UnionBudgetsdocumentsoftheGovernmentofIndia.Thereexistsahugevariationintheexpenditureincurredbyvariousministriestowardsadaptation-relatedprograms(Chakrabortyetal.,forthcoming).ååå--+--+--22222)(/1.)1(2)(/1)()(/1)(ttttttAPnSaSprAPnSaSpAPnAP10ThevaluesofU1,U2,andU3forvariousministriesareprovidedinTable1.U1takesonavaluebetween0and1.Therefore,itcanbedeterminedfromTable1thatthemagnitudeoferrors—inministriessuchastheMinistryofConsumerAffairs,FoodandPublicDistribution,andtheMinistryofScienceandTechnology—isquitesignificantataround0.5.However,theMinistryofScienceandTechnologydevotesarelativelyscantbudgetonadaptation-relatedprograms.Incontrast,theMinistryofConsumerAffairs,Food,andPublicDistributionspendssignificantlyonadaptation-relatedprograms.U1forBEwasreportedtobelowestfortheMinistryofRoadTransportandHighways(0.04)asshowninTable1.ThevalueofU1forREwashighestfortheMinistryofScienceandTechnology(0.66)andnegligiblefortheMinistryofLawandJustice,MinistryofHeavyIndustries,andMinistryofSteel.Table1:FiscalMarksmanship:Theils’InequalityStatistic(U)NameofMinistry/DepartmentTheils'U(BE,Actual)Theils'U(RE,Actual)U1U2U3U1U2U3MinistryofAgricultureandFarmersWelfare0.1150.2590.3930.0760.1610.301DepartmentofAtomicEnergy0.0980.1970.7320.0220.0440.123MinistryofAyush0.1680.3841.1320.0260.0530.312MinistryofChemicalsAndFertilizers0.1740.3151.1290.0170.0350.085MinistryofCoal0.1550.3540.8750.0510.1070.334MinistryofCommerceandindustry0.0800.1540.8250.0420.0850.441MinistryofConsumerAffairs,FoodandPublicDistribution0.4960.7670.9770.1280.2390.240MinistryofDevelopmentofNorthEasternRegion0.1870.4410.7050.0680.1410.227MinistryofEarthSciences0.1310.2901.2450.0190.0390.149MinistryofEducation0.0640.1360.8410.0280.0580.509MinistryofEnvironment,ForestsandClimateChange0.1200.2621.3460.0130.0260.130MinistryofExternalAffairs0.0950.2020.5340.0130.0250.110MinistryofFinance0.1800.3880.9780.0360.0740.159MinistryofFisheries,AnimalHusbandryandDairying0.0610.1260.3700.0070.0130.025MinistryofFoodProcessingIndustries0.2220.5290.4890.0950.2050.25311MinistryofHealthandFamilyWelfare0.0960.1781.1020.0130.0260.110MinistryofHeavyIndustries0.1970.4470.6770.0000.0000.000MinistryofHomeAffairs0.0760.1520.6130.0190.0370.112MinistryofHousingandUrbanAffairs0.1100.2120.5950.0380.0760.047MinistryofInformationandBroadcasting0.3431.0420.5590.0040.0090.007MinistryofJalShakti0.0870.1821.2910.0290.0580.428MinistryofLawandJustice0.1110.2150.5590.0000.0010.002MinistryofMicro,SmallandMediumEnterprises0.0780.1590.5780.0050.0100.023MinistryofMines0.2220.4710.5330.2140.4430.507MinistryofMinorityAffairs0.0830.1780.7960.0660.1370.606MinistryofNewandRenewableEnergy0.2230.5440.9480.0540.1140.287MinistryofPanchayatiRaj0.1740.4110.9750.0130.0260.088MinistryofPetroleumandNaturalGas0.1270.2750.5710.0210.0430.090MinistryofPower0.1230.2561.0220.0810.1580.493MinistryofRailways0.4500.6480.9660.2360.6090.422MinistryofRoadTransportandHighways0.0380.0740.3520.0160.0330.131MinistryofRuralDevelopment0.1480.2701.0100.0020.0040.011MinistryofScienceandTechnology0.4961.6940.8710.6633.2350.871MinistryofSkillDevelopmentandEntrepreneurship0.1200.2700.6730.0320.0660.255MinistryofSocialJusticeandEmpowerment0.0650.1280.5270.0080.0160.051DepartmentofSpace0.1000.2070.8840.0040.0080.026MinistryofSteel0.3030.6230.5750.0000.0000.000MinistryofTextiles0.0750.1520.6720.0250.0500.096MinistryofTourism0.1960.4080.4470.0000.0000.000MinistryofTribalAffairs0.0730.1480.9420.0040.0080.009MinistryofWomenandChildDevelopment0.1310.2931.1110.0920.0920.519Source:(Basicdata),FinanceAccounts(variousyears),GovernmentofIndia5.PARTITIONINGTHEBUDGETFORECASTERRORSTable2givestheresultsobtainedafterpartitioningtheforecasterrorsinbudgetestimatesintosystematicandrandomcomponents.Systematicerrorcanbeimprovedupon,butrandomisbeyondtheforecaster'scontrol.Inthecaseofbudgetestimates,theMinistryofScienceand12TechnologyandtheMinistryofInformationandBroadcastingreportedthehighestsystematicerrors,whereastheMinistryofSocialJusticeandEmpowermentreportedthelowestsystematicerrorataround0.07(Table2).Table2:PartitioningtheSourcesofForecastErrors:BiasandRandomComponentsNameofMinistryBIASUnequalRandomMinistryofAgricultureandFarmersWelfare0.630.330.04DepartmentofAtomicEnergy0.010.400.59MinistryofAyush0.460.160.38MinistryofChemicalsandFertilizers0.230.510.25MinistryofCoal0.610.090.30MinistryofCommerceandindustry0.300.390.31MinistryofConsumerAffairs,FoodandPublicDistribution0.080.570.36MinistryofDevelopmentofNorthEasternRegion0.730.030.23MinistryofEarthSciences0.540.030.43MinistryofEducation0.700.250.05MinistryofEnvironment,ForestsandClimateChange0.540.020.45MinistryofExternalAffairs0.500.010.49MinistryofFinance0.050.300.65MinistryofFisheries,AnimalHusbandryandDairying0.360.010.63MinistryofFoodProcessingIndustries0.440.090.47MinistryofHealthandFamilyWelfare0.600.190.22MinistryofHeavyIndustries0.440.020.54MinistryofHomeAffairs0.000.220.78MinistryofHousingAndUrbanAffairs0.070.270.66MinistryofInformationandBroadcasting0.490.500.00MinistryofJalShakti0.350.010.64MinistryofLawandJustice0.040.400.55MinistryofMicro,SmallandMediumEnterprises0.070.050.88MinistryofMines0.230.570.20MinistryofMinorityAffairs0.610.010.38MinistryofNewandRenewableEnergy0.650.000.35MinistryofPanchayatiRaj0.790.030.18MinistryofPetroleumandNaturalGas0.240.220.5313MinistryofPower0.160.190.65MinistryofRailways0.290.680.03MinistryofRoadTransportandHighways0.070.300.63MinistryofRuralDevelopment0.290.640.07MinistryofScienceandTechnology0.890.110.00MinistryofSkillDevelopmentandEntrepreneurship0.930.010.06MinistryofSocialJusticeAndEmpowerment0.030.040.93DepartmentofSpace0.090.020.90MinistryofSteel0.070.150.78MinistryofTextiles0.020.120.86MinistryofTourism0.250.300.45MinistryofTribalAffairs0.070.050.88MinistryofWomenAndChildDevelopment0.640.060.30Source:(Basicdata),FinanceAccounts(variousyears),GovernmentofIndiaTable2givestheresultsobtainedafterbifurcatingtheerrorsinrevisedestimatesintosystematicandrandomcomponents.Inthecaseofrevisedestimates,theMinistryofRuralDevelopmentandtheMinistryofRailwaysreportedthehighestsystematicerrorswhereastheMinistryofTourismandtheMinistryofSteelreportedthelowestsystematicerrorataround0.07(Table2).Forbothbudgetandrevisedestimates,thereisspaceforimprovementinforecastingerrorsincethesystematiccomponentisgreaterthantherandomcomponentinamajorityofministries.Thisimpliesthatthefiscalmarksmanshipmaybeenhancedbyusingmoreeffectivepolicyinnovationstomanagethetightfiscalspacewithinthefiscalregulations.6.SUBNATIONALFISCALSPACEFORCLIMATECHANGECOMMITMENTSTheStateActionPlans(SAPs)forclimatechangecommitmentsarenothomogeneous,andeachstateinIndiahaspreparedtheSAPasperthespecificitiesofclimatechange–relatedrisksanduncertainities.Theestimatesintheprevioussection,however,areconfinedtotheDemandforGrantsanalysisofnationalbudgets.Giventheprincipleofsubsidiarity,thedecisionsrelatedtoclimatechangeconsiderations—especiallyadaptation—needtobetakenatthelevelclosesttothepeople.Themeticulousanalysisofallthedetaileddemandsforgrantsacrossallstatesof14Indiascannedfortheintensityofidentifiedcomponentsofadaptationisataskbeyondthescopeofthepresentpaper.However,attheaggregatelevel,weidentifiedtheplausiblediscretionaryfiscalspaceavailableattheaggregateleveltothestategovernmentstoundertaketheclimatechangecommitments.Theclassificationofbudgetarytransactionsintodevelopmental(economicservicesandsocialservices)andnon-developmental(generalservicesincludinginterestpayments,salaries,andpensions)forthepurposeofidentifyingtheplausiblefiscalspaceforclimatechangecommitments.Attheaggregatestatelevel,theReserveBankofIndiaanalysisofpublicexpenditureacrossthestatesofIndiarevealedthatdevelopmentalspendingisaround60percentoftotalpublicexpenditure(Table3).Table3:StateLevelDevelopmentandNon-DevelopmentExpenditureas%ofAggregatePublicExpenditureYearDevelopmentNon-DevelopmentOthersTotal(incrores)123452004–052,86,473.01,85,152.081,803.05,53,428.0(51.8)(33.5)(14.8)(100.0)2005–063,30,044.11,90,020.641,616.85,61,681.6(58.8)(33.8)(7.4)(100.0)2006–073,92,165.02,11,872.453,242.96,57,280.3(59.7)(32.2)(8.1)(100.0)2007–084,64,462.02,33,232.854,629.67,52,324.4(61.7)(31.0)(7.3)(100.0)2008–095,67,086.22,54,981.460,265.28,82,332.8(64.3)(28.9)(6.8)(100.0)2009–106,37,731.13,07,547.070,051.710,15,329.8(62.8)(30.3)(6.9)(100.0)2010–117,20,354.73,57,287.481,087.611,58,729.7(62.2)(30.8)(7.0)(100.0)2011–128,52,405.64,01,059.498,147.313,51,612.3(63.1)(29.7)(7.3)(100.0)2012–139,72,256.54,46,878.91,15,119.415,34,254.8(63.4)(29.1)(7.5)(100.0)2013–1410,76,452.25,04,548.41,25,144.017,06,144.515(63.1)(29.6)(7.3)(100.0)2014–1513,25,989.25,66,467.41,33,326.020,25,782.5(65.5)(28.0)(6.6)(100.0)2015–1615,84,006.26,29,349.31,46,873.223,60,228.7(67.1)(26.7)(6.2)(100.0)2016–1718,31,163.87,10,365.11,66,686.427,08,215.3(67.6)(26.2)(6.2)(100.0)2017–1818,77,392.38,25,774.02,21,432.929,24,599.2(64.2)(28.2)(7.6)(100.0)2018–1921,00,801.69,44,483.72,92,428.133,37,713.3(62.9)(28.3)(8.8)(100.0)2019–2021,63,340.610,05,162.73,26,499.334,95,002.6(61.9)(28.8)(9.3)(100.0)2020–2122,64,470.710,63,162.23,69,859.436,97,492.3(61.2)(28.8)(10.0)(100.0)2021–22(BE)29,11,369.412,87,938.24,23,804.246,23,111.7(63.0)(27.9)(9.2)(100.0)2021–22(RE)29,22,422.812,40,854.34,33,289.045,96,566.0(63.6)(27.0)(9.4)(100.0)2022–23(BE)32,34,504.414,18,957.34,79,783.651,33,245.2(63.0)(27.6)(9.3)(100.0)Note:RE:RevisedEstimates.BE:BudgetEstimates.:IncludesexpenditureonrevenueandcapitalaccountandloansandadvancesextendedbystategovernmentandUTs.:IncludesGrants-in-AidandContributions(CompensationandAssignmentstoLocalBodies),DischargeofInternalDebtandRepaymentofLoanstotheCentre.Figuresinparenthesesarepercentagetototal.Datafrom2017–18onwardsincludeDelhiandPuducherryalso.Source:RBIandBudgetdocumentsoftheStategovernments(variousyears)Followinganopen-endedapproach,thepublicexpenditureforclimatechange,specificallyadaptation-relatedspendingcanbeidentifiedbasedon(i)cropimprovementandresearch;(ii)droughtproofingandfloodcontrol;(iii)forestconservation;(iv)povertyalleviationandlivelihoodpreservation;(v)ruraleducationandinfrastructure;(vi)health;(vii)riskfinancing;and(viii)disastermanagementacrossallstatesofIndia.Thisidentificationisthecrucialpreludetoasubnational,fiscalmarksmanshipanalysisofclimatecommitmentsbyallthestategovernments.State-specificmappingofadaptation-relatedfiscalspaceanditsmarksmanshipisanareaoffutureresearch.167.CONCLUSIONThepaperconductstheministry-wisefiscalmarksmanshipanalysisforclimatechangespending.Thesourcesoferrors,disaggregatedintobiasedness,unequalvariation,andrandomcomponentsareanalysedacrosssectors.Inthesectorswherethesystematiccomponentsofforecastingerrorsarerelativelyhigher,theerrorscanbereducedbyusingbetterforecastingmethods.Astate-leveldecompositionofthefiscalmarksmanshipestimatestounderstandthesourcesoferrors—systemicorrandombias—isanareaoffutureresearch,whichwouldbeconductedonlyaftersortingouttheintertemporalcomparabilityissuesinthedetaileddemandforgrantsacrosssectors.Inthispaper,theanalysisisconfinedtoidentifyingonlythefiscalspacefordevelopmentalspendinganditisrevealedthatthediscretionaryfiscalspaceavailableforplausibleclimatechangecommitmentsinthedevelopmentalspendingcategoryconstitutesaround60percentoftotalspending.Identifyingthespecificallytargetedpublicspendingrelatedtoclimatechangeacrossallstatesandanalyzingitsfiscalmarksmanshipcanfurtherthesubnationalinferences,whichisanareaoffutureresearch.17REFERENCESAlesina,A.,andR.Perotti.1995.“ThePoliticalEconomyofBudgetDeficits.”IMFStaffPaper42(1):1–31.Allan,C.M.1965.“FiscalMarksmanship,1951–63.”OxfordEconomicPapers(NewSeries)17(2):317–27.Auld,D.A.L.1970.“FiscalMarksmanshipinCanada.”TheCanadianJournalofEconomics3(3):507–11.Asher,M.G.1978.“AccuracyofBudgetaryForecastsofCentralGovernment,1967–68to1975–76.”EconomicandPoliticalWeekly13(8).Blanchard,O.1990.“SuggestionsforaNewSetofFiscalIndicators.”OECDEconomicsDepartmentWorkingPapersNo.39.Beetsma,R.M.W.J.,andH.Jensen.2004.“Mark-UpFluctuationsandFiscalPolicyStabilizationinaMonetaryUnion.”JournalofMacroeconomics26:357–76.Brück,T.,andA.Stephan,2005.“DoEurozoneCountriesCheatwiththeirBudgetDeficitForecasts?”Europa-UniversitätViadrinaFrankfurt(Oder)PostgraduateResearchProgrammeWorkingPaperNo.2005.5.Frankfurt:EuropeanUniversityViadrinaFrankfurt(Oder).Cassidy,G.,M.S.Kamlet,andD.S.Nagin.1989.“AnEmpiricalExaminationofBiasinRevenueForecastsbyStateGovernments.”InternationalJournalofForecasting5(3):321–31.Chakraborty,L.,A.N.Jha,A.Kaur,J.Yadav,andBalamuralyB.,(forthcoming).“COP27andPublicExpenditureforIndia’sFirstNationalAdaptationCommunication.”NIPFPWorkingPaper.NewDelhi:NationalInstituteofPublicFinanceandPolicy(NIPFP).Chakraborty,L.,andP.Chakraborty.2018."Federalism,FiscalAsymmetriesandEconomicConvergence:EvidencefromIndianStates."NIPFPNo.232.NewDelhi:NationalInstituteofPublicFinanceandPolicy(NIPFP).Chakraborty,L.,andD.Sinha.2018.“HasFiscalRuleChangedtheFiscalMarksmanshipofUnionGovernment?”NIPFPWorkingPaperNo.234.NewDelhi:NationalInstituteofPublicFinanceandPolicy(NIPFP).Chakraborty,L.,P.Chakraborty,andR.Shrestha.2020.“BudgetCredibilityofSubnationalGovernments:AnalyzingtheFiscalForecastingErrorsof28StatesinIndia.”LevyEconomicsInstituteWorkingPaperNo.964.NewYork.18Chakrabarty,T.K.,andW.Varghese.1982.“TheGovernmentofIndia'sBudgetEstimation:AnAnalysisoftheErrorComponents.”ReserveBankofIndia,OccasionalPapers3(2):175–90.Davis,J.M.1980.“FiscalMarksmanshipintheUnitedKingdom,1951–1978.”TheManchesterSchool48(2):111–28.Kumari,A.,andB.B.Bhattacharya.1988.“BudgetForecastsofCentralGovernmentRevenueandExpenditure:ATestofRationalExpectation.”EconomicandPoliticalWeekly23(26).Giuriato,L.,A.Cepparulo,andM.Barberi.2016."FiscalForecastsandPoliticalSystems:ALegislativeBudgetingPerspective.”PublicChoice,Springer.168(1):1–22(July).Morrison,R.J.1986.“FiscalMarksmanshipintheUnitedStates:1950–1983.”TheManchesterSchool54(3):322–33.Nitin,K.,andR.Roy.2015.”FinanceCommissionofIndia’sAssessment:APoliticalEconomyContentionbetweenExpectationsandOutcomes.”AppliedEconomics48(2):73–88.Pattnaik,R.K.1990.“FiscalMarksmanshipinIndia.”ReserveBankofIndiaOccasionalPapers11(3).Pina,A.,andN.Venes.2011.“ThePoliticalEconomyofEDPFiscalForecast:AnEmpiricalAssessment.”EuropeanJournalofPoliticalEconomy27(3):534–46.Rullán,X.O.,andJ.R.Villalonga.2018.“DeterminantsofRegionalBudgetForecastErrorsinFederalEconomies:Spain1995–2013.”ReviewofPublicEconomics226(4):85–121.Samuel,P.,andC.Rangarajan.1974.Short-TermInvestmentForecasting.Noida:MacmillanIndia.Shrestha,R.,andL.Chakraborty.2019.“PractisingSubnationalPublicFinanceinanEmergingEconomy:FiscalMarksmanshipinKerala.”NIPFPWorkingPaperNo.261.NewDelhi:NationalInstituteofPublicFinanceandPolicy.Strauch,R.,M.Hallerberg,andJ.V.Hagen.2004.“BudgetaryForecastsinEurope–TheTrackRecordofStabilityandConvergenceProgrammes”ECBWorkingPaperNo.307.Germany:EuropeanCentralBank(ECB)Theil,H.1958.EconomicForecastsandPolicy.Amsterdam:NorthHolland.———.1966.AppliedEconomicForecasting.Amsterdam:NorthHolland.Willem,H.Buiter,andUrjit,R.Patel.2010."FiscalRulesinIndia:AreTheyEffective?."NBERWorkingPapers15934.NationalBureauofEconomicResearch,Inc.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱