2022年全球碳预算(英文)VIP专享VIP免费

Earth Syst. Sci. Data, 14, 4811–4900, 2022
https://doi.org/10.5194/essd-14-4811-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
Global Carbon Budget 2022
Pierre Friedlingstein1,2, Michael O’Sullivan1, Matthew W. Jones3, Robbie M. Andrew4, Luke Gregor5,
Judith Hauck6, Corinne Le Quéré3, Ingrid T. Luijkx7, Are Olsen8,9, Glen P. Peters4, Wouter Peters7,10,
Julia Pongratz11,12, Clemens Schwingshackl11, Stephen Sitch1, Josep G. Canadell13, Philippe Ciais14,
Robert B. Jackson15, Simone R. Alin16, Ramdane Alkama17, Almut Arneth18, Vivek K. Arora19,
Nicholas R. Bates20,21, Meike Becker8,9, Nicolas Bellouin22, Henry C. Bittig23, Laurent Bopp2,
Frédéric Chevallier14, Louise P. Chini24, Margot Cronin25, Wiley Evans26, Stefanie Falk11,
Richard A. Feely16, Thomas Gasser27, Marion Gehlen14, Thanos Gkritzalis28, Lucas Gloege29,30,
Giacomo Grassi17, Nicolas Gruber5, Özgür Gürses6, Ian Harris31, Matthew Hefner32,33,
Richard A. Houghton34, George C. Hurtt24, Yosuke Iida35, Tatiana Ilyina12, Atul K. Jain36,
Annika Jersild12, Koji Kadono35, Etsushi Kato37, Daniel Kennedy38, Kees Klein Goldewijk39,
Jürgen Knauer40,41, Jan Ivar Korsbakken4, Peter Landschützer12,28, Nathalie Lefèvre42,
Keith Lindsay43, Junjie Liu44, Zhu Liu45, Gregg Marland32,33, Nicolas Mayot3, Matthew J. McGrath14,
Nicolas Metzl42, Natalie M. Monacci46, David R. Munro47,48, Shin-Ichiro Nakaoka49, Yosuke Niwa49,40,
Kevin O’Brien51,16, Tsuneo Ono52, Paul I. Palmer53,54, Naiqing Pan55,56, Denis Pierrot57, Katie Pocock26,
Benjamin Poulter58, Laure Resplandy59, Eddy Robertson60, Christian Rödenbeck61,
Carmen Rodriguez62, Thais M. Rosan1, Jörg Schwinger63,9, Roland Séférian64, Jamie D. Shutler1,
Ingunn Skjelvan63,9, Tobias Steinhoff65, Qing Sun66, Adrienne J. Sutton16, Colm Sweeney48,
Shintaro Takao49, Toste Tanhua65, Pieter P. Tans67,68, Xiangjun Tian69, Hanqin Tian56,
Bronte Tilbrook70,71, Hiroyuki Tsujino50, Francesco Tubiello72, Guido R. van der Werf73,
Anthony P. Walker74, Rik Wanninkhof57, Chris Whitehead75, Anna Willstrand Wranne76,
Rebecca Wright3, Wenping Yuan77, Chao Yue78, Xu Yue79, Sönke Zaehle61, Jiye Zeng49, and Bo Zheng80
1Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK
2Laboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, CNRS, Ecole Normale
Supérieure/Université PSL, Sorbonne Université, Ecole Polytechnique, Paris, 75231, France
3Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia,
Norwich Research Park, Norwich NR4 7TJ, UK
4CICERO Center for International Climate Research, Oslo 0349, Norway
5Environmental Physics Group, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate
Systems Modeling (C2SM), ETH Zürich, Zurich, Switzerland
6Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung,
Postfach 120161, 27515 Bremerhaven, Germany
7Environmental Sciences Group, Wageningen University, P.O. Box 47, 6700AA, Wageningen, the Netherlands
8Geophysical Institute, University of Bergen, Bergen, Norway
9Bjerknes Centre for Climate Research, Bergen, Norway
10Centre for Isotope Research, University of Groningen, Groningen, the Netherlands
11Department für Geographie, Ludwig-Maximilians-Universität Munich,
Luisenstr. 37, 80333 München, Germany
12Max Planck Institute for Meteorology, 20146 Hamburg, Germany
13CSIRO Oceans and Atmosphere, Canberra, ACT 2101, Australia
14Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ,
Université Paris-Saclay, 91191 Gif-sur-Yvette, France
15Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy,
Stanford University, Stanford, CA 94305–2210, USA
Published by Copernicus Publications.
4812 P. Friedlingstein et al.: Global Carbon Budget 2022
16National Oceanic & Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL),
7600 Sand Point Way NE, Seattle, WA 98115, USA
17Joint Research Centre, European Commission, 21027 Ispra (VA), Italy
18Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric
Environmental Research, 82467 Garmisch-Partenkirchen, Germany
19Canadian Centre for Climate Modelling and Analysis, Climate Research Division,
Environment and Climate Change Canada, Victoria, BC, Canada
20Bermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, St. Georges, GE01, Bermuda
21Department of Ocean and Earth Science, University of Southampton,
European Way, Southampton SO14 3ZH, UK
22Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
23Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Seestrasse 15, 18119 Rostock, Germany
24Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
25Marine Institute, Galway, Ireland
26Hakai Institute, Heriot Bay, BC, Canada
27International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
28Flanders Marine Institute (VLIZ), InnovOceanSite, Jacobsenstraat 1, 8400, Ostend, Belgium
29Lamont-Doherty Earth Observatory and Department of Earth and Environmental Sciences,
Columbia University, New York, NY 10027, USA
30Open Earth Foundation, Marina del Rey, CA 90292, USA
31NCAS-Climate, Climatic Research Unit, School of Environmental Sciences, University of East Anglia,
Norwich Research Park, Norwich NR4 7TJ, UK
32Research Institute for Environment, Energy, and Economics,
Appalachian State University, Boone, NC 28608, USA
33Department of Geological and Environmental Sciences,
Appalachian State University, Boone, NC 28608, USA
34Woodwell Climate Research Center, Falmouth, MA 02540, USA
35Atmosphere and Ocean Department, Japan Meteorological Agency, Minato-Ku, Tokyo 105-8431, Japan
36Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USA
37Institute of Applied Energy (IAE), Minato-ku, Tokyo 105-0003, Japan
38National Center for Atmospheric Research, Climate and Global Dynamics,
Terrestrial Sciences Section, Boulder, CO 80305, USA
39Department IMEW, Faculty of Geosciences, Copernicus Institute of Sustainable Development, Utrecht
University, Heidelberglaan 2, P.O. Box 80115, 3508 TC, Utrecht, the Netherlands
40Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
41Climate Science Centre, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia
42LOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, 75252, France
43National Center for Atmospheric Research, Climate and Global Dynamics,
Oceanography Section, Boulder, CO 80305, USA
44Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA
45Department of Earth System Science, Tsinghua University, Beijing, China
46University of Alaska Fairbanks, College of Fisheries and Ocean Sciences,
P.O. Box 757220, Fairbanks, AK 99775-7220, USA
47Cooperative Institute for Research in Environmental Sciences,
University of Colorado, Boulder, CO 80305, USA
48National Oceanic & Atmospheric Administration/Global Monitoring Laboratory (NOAA/GML),
Boulder, CO 80305, USA
49Earth System Division, National Institute for Environmental Studies (NIES),
16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
50Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
51Cooperative Institute for Climate, Ocean and Ecosystem Studies (CICOES),
University of Washington, Seattle, WA 98195, USA
52Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-Ku, Yokohama 236-8648, Japan
53National Centre for Earth Observation, University of Edinburgh, Edinburgh, EH9 3FE, UK
54School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
Earth Syst. Sci. Data, 14, 4811–4900, 2022 https://doi.org/10.5194/essd-14-4811-2022
P. Friedlingstein et al.: Global Carbon Budget 2022 4813
55College of Forestry, Wildlife and Environment, Auburn University, Auburn, AL 36849, USA
56Schiller Institute for Integrated Science and Society, Department of Earth and Environmental Sciences,
Boston College, Chestnut Hill, MA 02467, USA
57National Oceanic & Atmospheric Administration/Atlantic Oceanographic & Meteorological Laboratory
(NOAA/AOML), Miami, FL 33149, USA
58NASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USA
59Princeton University, Department of Geosciences and Princeton Environmental Institute,
Princeton, NJ 08544, USA
60Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
61Max Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, Germany
62University of Miami, RSMAS, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
63NORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, Norway
64CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, 31057, France
65GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
66Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research,
University of Bern, Bern, Switzerland
67National Oceanic & Atmospheric Administration, Global Monitoring Laboratory (NOAA GML),
Boulder, CO 80305, USA
68Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
69State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER),
Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
70CSIRO Oceans and Atmosphere, P.O. Box 1538, Hobart, TAS 7001, Australia
71Australian Antarctic Partnership Program, University of Tasmania, Hobart, TAS 7001, Australia
72Statistics Division, Food and Agriculture Organization of the United Nations,
Via Terme di Caracalla, Rome 00153, Italy
73Department of Earth Sciences, Faculty of Science, Vrije Universiteit, 1081 Amsterdam, the Netherlands
74Environmental Sciences Division and Climate Change Science Institute,
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
75Sitka Tribe of Alaska, 456 Katlian Street, Sitka, AK 99835, USA
76Swedish Meteorological and Hydrological Institute, Sven Källfeltsgata 15, 426 68 Västra Frölunda, Sweden
77School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 510245, China
78Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
79School of Environmental Science and Engineering, Nanjing University of Information Science and
Technology (NUIST), Nanjing 211544, China
80Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School,
Tsinghua University, Shenzhen 518055, China
Correspondence: Pierre Friedlingstein (p.friedlingstein@exeter.ac.uk)
Received: 26 September 2022 – Discussion started: 29 September 2022
Revised: 14 October 2022 – Accepted: 14 October 2022 – Published: 11 November 2022
Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution
among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand
the global carbon cycle, support the development of climate policies, and project future climate change. Here
we describe and synthesize data sets and methodologies to quantify the five major components of the global
carbon budget and their uncertainties. Fossil CO2emissions (EFOS) are based on energy statistics and cement
production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and
land-use change data and bookkeeping models. Atmospheric CO2concentration is measured directly, and its
growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2sink (SOCEAN) is
estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2
sink (SLAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (BIM),
the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and
terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All
uncertainties are reported as ±1σ.
For the year 2021, EFOS increased by 5.1 % relative to 2020, with fossil emissions at 10.1 ±0.5 GtC yr1
(9.9 ±0.5 GtC yr1when the cement carbonation sink is included), and ELUC was 1.1 ±0.7 GtC yr1,
https://doi.org/10.5194/essd-14-4811-2022 Earth Syst. Sci. Data, 14, 4811–4900, 2022
EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022©Author(s)2022.ThisworkisdistributedundertheCreativeCommonsAttribution4.0License.GlobalCarbonBudget2022PierreFriedlingstein1,2,MichaelO’Sullivan1,MatthewW.Jones3,RobbieM.Andrew4,LukeGregor5,JudithHauck6,CorinneLeQuéré3,IngridT.Luijkx7,AreOlsen8,9,GlenP.Peters4,WouterPeters7,10,JuliaPongratz11,12,ClemensSchwingshackl11,StephenSitch1,JosepG.Canadell13,PhilippeCiais14,RobertB.Jackson15,SimoneR.Alin16,RamdaneAlkama17,AlmutArneth18,VivekK.Arora19,NicholasR.Bates20,21,MeikeBecker8,9,NicolasBellouin22,HenryC.Bittig23,LaurentBopp2,FrédéricChevallier14,LouiseP.Chini24,MargotCronin25,WileyEvans26,StefanieFalk11,RichardA.Feely16,ThomasGasser27,MarionGehlen14,ThanosGkritzalis28,LucasGloege29,30,GiacomoGrassi17,NicolasGruber5,ÖzgürGürses6,IanHarris31,MatthewHefner32,33,RichardA.Houghton34,GeorgeC.Hurtt24,YosukeIida35,TatianaIlyina12,AtulK.Jain36,AnnikaJersild12,KojiKadono35,EtsushiKato37,DanielKennedy38,KeesKleinGoldewijk39,JürgenKnauer40,41,JanIvarKorsbakken4,PeterLandschützer12,28,NathalieLefèvre42,KeithLindsay43,JunjieLiu44,ZhuLiu45,GreggMarland32,33,NicolasMayot3,MatthewJ.McGrath14,NicolasMetzl42,NatalieM.Monacci46,DavidR.Munro47,48,Shin-IchiroNakaoka49,YosukeNiwa49,40,KevinO’Brien51,16,TsuneoOno52,PaulI.Palmer53,54,NaiqingPan55,56,DenisPierrot57,KatiePocock26,BenjaminPoulter58,LaureResplandy59,EddyRobertson60,ChristianRödenbeck61,CarmenRodriguez62,ThaisM.Rosan1,JörgSchwinger63,9,RolandSéférian64,JamieD.Shutler1,IngunnSkjelvan63,9,TobiasSteinhoff65,QingSun66,AdrienneJ.Sutton16,ColmSweeney48,ShintaroTakao49,TosteTanhua65,PieterP.Tans67,68,XiangjunTian69,HanqinTian56,BronteTilbrook70,71,HiroyukiTsujino50,FrancescoTubiello72,GuidoR.vanderWerf73,AnthonyP.Walker74,RikWanninkhof57,ChrisWhitehead75,AnnaWillstrandWranne76,RebeccaWright3,WenpingYuan77,ChaoYue78,XuYue79,SönkeZaehle61,JiyeZeng49,andBoZheng801FacultyofEnvironment,ScienceandEconomy,UniversityofExeter,ExeterEX44QF,UK2LaboratoiredeMétéorologieDynamique/InstitutPierre-SimonLaplace,CNRS,EcoleNormaleSupérieure/UniversitéPSL,SorbonneUniversité,EcolePolytechnique,Paris,75231,France3TyndallCentreforClimateChangeResearch,SchoolofEnvironmentalSciences,UniversityofEastAnglia,NorwichResearchPark,NorwichNR47TJ,UK4CICEROCenterforInternationalClimateResearch,Oslo0349,Norway5EnvironmentalPhysicsGroup,InstituteofBiogeochemistryandPollutantDynamicsandCenterforClimateSystemsModeling(C2SM),ETHZürich,Zurich,Switzerland6Alfred-Wegener-InstitutHelmholtz-ZentrumfürPolar-undMeeresforschung,Postfach120161,27515Bremerhaven,Germany7EnvironmentalSciencesGroup,WageningenUniversity,P.O.Box47,6700AA,Wageningen,theNetherlands8GeophysicalInstitute,UniversityofBergen,Bergen,Norway9BjerknesCentreforClimateResearch,Bergen,Norway10CentreforIsotopeResearch,UniversityofGroningen,Groningen,theNetherlands11DepartmentfürGeographie,Ludwig-Maximilians-UniversitätMunich,Luisenstr.37,80333München,Germany12MaxPlanckInstituteforMeteorology,20146Hamburg,Germany13CSIROOceansandAtmosphere,Canberra,ACT2101,Australia14LaboratoiredesSciencesduClimatetdel’Environnement,LSCE/IPSL,CEA-CNRS-UVSQ,UniversitéParis-Saclay,91191Gif-sur-Yvette,France15DepartmentofEarthSystemScience,WoodsInstitutefortheEnvironment,andPrecourtInstituteforEnergy,StanfordUniversity,Stanford,CA94305–2210,USAPublishedbyCopernicusPublications.4812P.Friedlingsteinetal.:GlobalCarbonBudget202216NationalOceanic&AtmosphericAdministration,PacificMarineEnvironmentalLaboratory(NOAA/PMEL),7600SandPointWayNE,Seattle,WA98115,USA17JointResearchCentre,EuropeanCommission,21027Ispra(VA),Italy18KarlsruheInstituteofTechnology,InstituteofMeteorologyandClimateResearch/AtmosphericEnvironmentalResearch,82467Garmisch-Partenkirchen,Germany19CanadianCentreforClimateModellingandAnalysis,ClimateResearchDivision,EnvironmentandClimateChangeCanada,Victoria,BC,Canada20BermudaInstituteofOceanSciences(BIOS),17BiologicalLane,St.Georges,GE01,Bermuda21DepartmentofOceanandEarthScience,UniversityofSouthampton,EuropeanWay,SouthamptonSO143ZH,UK22DepartmentofMeteorology,UniversityofReading,Reading,RG66BB,UK23LeibnizInstituteforBalticSeaResearchWarnemuende(IOW),Seestrasse15,18119Rostock,Germany24DepartmentofGeographicalSciences,UniversityofMaryland,CollegePark,MD20742,USA25MarineInstitute,Galway,Ireland26HakaiInstitute,HeriotBay,BC,Canada27InternationalInstituteforAppliedSystemsAnalysis(IIASA),Schlossplatz1,2361Laxenburg,Austria28FlandersMarineInstitute(VLIZ),InnovOceanSite,Jacobsenstraat1,8400,Ostend,Belgium29Lamont-DohertyEarthObservatoryandDepartmentofEarthandEnvironmentalSciences,ColumbiaUniversity,NewYork,NY10027,USA30OpenEarthFoundation,MarinadelRey,CA90292,USA31NCAS-Climate,ClimaticResearchUnit,SchoolofEnvironmentalSciences,UniversityofEastAnglia,NorwichResearchPark,NorwichNR47TJ,UK32ResearchInstituteforEnvironment,Energy,andEconomics,AppalachianStateUniversity,Boone,NC28608,USA33DepartmentofGeologicalandEnvironmentalSciences,AppalachianStateUniversity,Boone,NC28608,USA34WoodwellClimateResearchCenter,Falmouth,MA02540,USA35AtmosphereandOceanDepartment,JapanMeteorologicalAgency,Minato-Ku,Tokyo105-8431,Japan36DepartmentofAtmosphericSciences,UniversityofIllinois,Urbana,IL61821,USA37InstituteofAppliedEnergy(IAE),Minato-ku,Tokyo105-0003,Japan38NationalCenterforAtmosphericResearch,ClimateandGlobalDynamics,TerrestrialSciencesSection,Boulder,CO80305,USA39DepartmentIMEW,FacultyofGeosciences,CopernicusInstituteofSustainableDevelopment,UtrechtUniversity,Heidelberglaan2,P.O.Box80115,3508TC,Utrecht,theNetherlands40HawkesburyInstitutefortheEnvironment,WesternSydneyUniversity,Penrith,NSW2751,Australia41ClimateScienceCentre,CSIROOceansandAtmosphere,Canberra,ACT2601,Australia42LOCEAN/IPSLlaboratory,SorbonneUniversité,CNRS/IRD/MNHN,Paris,75252,France43NationalCenterforAtmosphericResearch,ClimateandGlobalDynamics,OceanographySection,Boulder,CO80305,USA44JetPropulsionLaboratory,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA45DepartmentofEarthSystemScience,TsinghuaUniversity,Beijing,China46UniversityofAlaskaFairbanks,CollegeofFisheriesandOceanSciences,P.O.Box757220,Fairbanks,AK99775-7220,USA47CooperativeInstituteforResearchinEnvironmentalSciences,UniversityofColorado,Boulder,CO80305,USA48NationalOceanic&AtmosphericAdministration/GlobalMonitoringLaboratory(NOAA/GML),Boulder,CO80305,USA49EarthSystemDivision,NationalInstituteforEnvironmentalStudies(NIES),16-2Onogawa,Tsukuba,Ibaraki305-8506,Japan50MeteorologicalResearchInstitute,1-1Nagamine,Tsukuba,Ibaraki305-0052,Japan51CooperativeInstituteforClimate,OceanandEcosystemStudies(CICOES),UniversityofWashington,Seattle,WA98195,USA52JapanFisheriesResearchandEducationAgency,2-12-4Fukuura,Kanazawa-Ku,Yokohama236-8648,Japan53NationalCentreforEarthObservation,UniversityofEdinburgh,Edinburgh,EH93FE,UK54SchoolofGeosciences,UniversityofEdinburgh,Edinburgh,EH93FE,UKEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget2022481355CollegeofForestry,WildlifeandEnvironment,AuburnUniversity,Auburn,AL36849,USA56SchillerInstituteforIntegratedScienceandSociety,DepartmentofEarthandEnvironmentalSciences,BostonCollege,ChestnutHill,MA02467,USA57NationalOceanic&AtmosphericAdministration/AtlanticOceanographic&MeteorologicalLaboratory(NOAA/AOML),Miami,FL33149,USA58NASAGoddardSpaceFlightCenter,BiosphericSciencesLaboratory,Greenbelt,MD20771,USA59PrincetonUniversity,DepartmentofGeosciencesandPrincetonEnvironmentalInstitute,Princeton,NJ08544,USA60MetOfficeHadleyCentre,FitzRoyRoad,ExeterEX13PB,UK61MaxPlanckInstituteforBiogeochemistry,P.O.Box600164,Hans-Knöll-Str.10,07745Jena,Germany62UniversityofMiami,RSMAS,4600RickenbackerCauseway,Miami,FL33149,USA63NORCENorwegianResearchCentre,Jahnebakken5,5007Bergen,Norway64CNRM,UniversitédeToulouse,Météo-France,CNRS,Toulouse,31057,France65GEOMARHelmholtzCentreforOceanResearchKiel,DüsternbrookerWeg20,24105Kiel,Germany66ClimateandEnvironmentalPhysics,PhysicsInstituteandOeschgerCentreforClimateChangeResearch,UniversityofBern,Bern,Switzerland67NationalOceanic&AtmosphericAdministration,GlobalMonitoringLaboratory(NOAAGML),Boulder,CO80305,USA68InstituteofArcticandAlpineResearch,UniversityofColorado,Boulder,CO80309,USA69StateKeyLaboratoryofTibetanPlateauEarthSystem,EnvironmentandResources(TPESER),InstituteofTibetanPlateauResearch,ChineseAcademyofSciences,Beijing,100101,China70CSIROOceansandAtmosphere,P.O.Box1538,Hobart,TAS7001,Australia71AustralianAntarcticPartnershipProgram,UniversityofTasmania,Hobart,TAS7001,Australia72StatisticsDivision,FoodandAgricultureOrganizationoftheUnitedNations,ViaTermediCaracalla,Rome00153,Italy73DepartmentofEarthSciences,FacultyofScience,VrijeUniversiteit,1081Amsterdam,theNetherlands74EnvironmentalSciencesDivisionandClimateChangeScienceInstitute,OakRidgeNationalLaboratory,OakRidge,TN37831,USA75SitkaTribeofAlaska,456KatlianStreet,Sitka,AK99835,USA76SwedishMeteorologicalandHydrologicalInstitute,SvenKällfeltsgata15,42668VästraFrölunda,Sweden77SchoolofAtmosphericSciences,SunYat-senUniversity,Zhuhai,Guangdong510245,China78InstituteofSoilandWaterConservation,NorthwestA&FUniversity,Yangling,Shaanxi712100,China79SchoolofEnvironmentalScienceandEngineering,NanjingUniversityofInformationScienceandTechnology(NUIST),Nanjing211544,China80InstituteofEnvironmentandEcology,TsinghuaShenzhenInternationalGraduateSchool,TsinghuaUniversity,Shenzhen518055,ChinaCorrespondence:PierreFriedlingstein(p.friedlingstein@exeter.ac.uk)Received:26September2022–Discussionstarted:29September2022Revised:14October2022–Accepted:14October2022–Published:11November2022Abstract.Accurateassessmentofanthropogeniccarbondioxide(CO2)emissionsandtheirredistributionamongtheatmosphere,ocean,andterrestrialbiosphereinachangingclimateiscriticaltobetterunderstandtheglobalcarboncycle,supportthedevelopmentofclimatepolicies,andprojectfutureclimatechange.Herewedescribeandsynthesizedatasetsandmethodologiestoquantifythefivemajorcomponentsoftheglobalcarbonbudgetandtheiruncertainties.FossilCO2emissions(EFOS)arebasedonenergystatisticsandcementproductiondata,whileemissionsfromland-usechange(ELUC),mainlydeforestation,arebasedonlanduseandland-usechangedataandbookkeepingmodels.AtmosphericCO2concentrationismeasureddirectly,anditsgrowthrate(GATM)iscomputedfromtheannualchangesinconcentration.TheoceanCO2sink(SOCEAN)isestimatedwithglobaloceanbiogeochemistrymodelsandobservation-baseddataproducts.TheterrestrialCO2sink(SLAND)isestimatedwithdynamicglobalvegetationmodels.Theresultingcarbonbudgetimbalance(BIM),thedifferencebetweentheestimatedtotalemissionsandtheestimatedchangesintheatmosphere,ocean,andterrestrialbiosphere,isameasureofimperfectdataandunderstandingofthecontemporarycarboncycle.Alluncertaintiesarereportedas±1σ.Fortheyear2021,EFOSincreasedby5.1%relativeto2020,withfossilemissionsat10.1±0.5GtCyr−1(9.9±0.5GtCyr−1whenthecementcarbonationsinkisincluded),andELUCwas1.1±0.7GtCyr−1,https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224814P.Friedlingsteinetal.:GlobalCarbonBudget2022foratotalanthropogenicCO2emission(includingthecementcarbonationsink)of10.9±0.8GtCyr−1(40.0±2.9GtCO2).Also,for2021,GATMwas5.2±0.2GtCyr−1(2.5±0.1ppmyr−1),SOCEANwas2.9±0.4GtCyr−1,andSLANDwas3.5±0.9GtCyr−1,withaBIMof−0.6GtCyr−1(i.e.thetotalestimatedsourcesweretooloworsinksweretoohigh).TheglobalatmosphericCO2concentrationaveragedover2021reached414.71±0.1ppm.Preliminarydatafor2022suggestanincreaseinEFOSrelativeto2021of+1.0%(0.1%to1.9%)globallyandatmosphericCO2concentrationreaching417.2ppm,morethan50%abovepre-industriallevels(around278ppm).Overall,themeanandtrendinthecomponentsoftheglobalcarbonbudgetareconsis-tentlyestimatedovertheperiod1959–2021,butdiscrepanciesofupto1GtCyr−1persistfortherepresentationofannualtosemi-decadalvariabilityinCO2fluxes.Comparisonofestimatesfrommultipleapproachesandobservationsshows(1)apersistentlargeuncertaintyintheestimateofland-usechangeemissions,(2)alowagreementbetweenthedifferentmethodsonthemagnitudeofthelandCO2fluxinthenorthernextratropics,and(3)adiscrepancybetweenthedifferentmethodsonthestrengthoftheoceansinkoverthelastdecade.Thislivingdataupdatedocumentschangesinthemethodsanddatasetsusedinthisnewglobalcarbonbudgetandtheprogressinunderstandingoftheglobalcarboncyclecomparedwithpreviouspublicationsofthisdataset.Thedatapresentedinthisworkareavailableathttps://doi.org/10.18160/GCP-2022(Friedlingsteinetal.,2022b).Executivesummary.GlobalfossilCO2emissions(includingce-mentcarbonation)furtherincreasedin2022,beingnowslightlyabovetheirpre-COVID-19pandemic2019level.The2021emis-sionincreasewas0.46GtCyr−1(1.7GtCO2yr−1),bringing2021emissionsto9.9±0.5GtCyr−1(36.3±1.8GtCO2yr−1),sameasthe2019emissionslevel.Preliminaryestimatesbasedondataavail-ablesuggestfossilCO2emissionscontinuedtoincreaseby1.0%in2022relativeto2021(0.1%to1.9%),bringingemissionsof10.0GtCyr−1(36.6GtCO2yr−1),slightlyabovethe2019level.Emissionsfromcoal,oil,andgasin2022areexpectedtobeabovetheir2021levels(by1.0%,2.2%and−0.2%respectively).Regionally,emissionsin2022areexpectedtohavedecreasedby0.9%inChina(3.1GtC,11.4GtCO2)and0.8%intheEuropeanUnion(0.8GtC,2.8GtCO2)butincreasedby1.5%intheUnitedStates(1.4GtC,5.1GtCO2),6%inIndia(0.8GtC,2.9GtCO2),and1.7%intherestoftheworld(4.2GtC,15.4GtCO2).FossilCO2emissionsdecreasedin24countriesduringthedecade2012–2021.Altogether,these24countriescontributedabout2.4GtCyr−1(8.8GtCO2)fossilfuelCO2emissionsoverthelastdecade,aboutaquarterofglobalCO2fossilemissions.GlobalCO2emissionsfromlanduse,land-usechange,andforestry(LUC)averagedat1.2±0.7GtCyr−1(4.5±2.6GtCO2yr−1)forthe2012–2021periodwithapreliminaryprojectionfor2022of1.1±0.7GtCyr−1(3.9±2.6GtCO2yr−1).Asmalldecreaseoverthepast2decadesisnotrobustgiventhelargemodeluncertainty.Emissionsfromdeforestation,themaindriverofglobalgrosssources,remainhighat1.8±0.4GtCyr−1overthe2012–2021period,highlightingthestrongpotentialforemissionsreductionswhenhaltingdefor-estation.Sequestrationof0.9±0.3GtCyr−1throughafforestationorreafforestationandforestryoffsetshalfofthedeforestationemissions.Emissionsfromotherland-usetransitionsandfrompeatdrainageandpeatfireaddfurthersmallcontributions.Thehighestemittersduring2012–2021indescendingorderwereBrazil,Indonesia,andtheDemocraticRepublicoftheCongo,withthesethreecountriescontributingmorethanhalfoftheglobaltotalland-useemissions.Theremainingcarbonbudgetfora50%likelihoodtolimitglobalwarmingto1.5,1.7,and2◦Chas,respectively,reducedto105GtC(380GtCO2),200GtC(730GtCO2),and335GtC(1230GtCO2)fromthebeginningof2023,equivalentto9,18,and30years,as-suming2022emissionslevels.Totalanthropogenicemissionswere11.0GtCyr−1(40.2GtCO2yr−1)in2021,withapreliminaryesti-mateof11.1GtCyr−1(40.5GtCO2yr−1)for2022.Theremainingcarbonbudgettokeepglobaltemperaturesbelowtheseclimatetar-getshasshrunkby32GtC(121GtCO2)sincetheIPCCAR6Work-ingGroup1assessmentbasedondataupto2019.ReachingzeroCO2emissionsby2050entailsatotalanthropogenicCO2emis-sionslineardecreasebyabout0.4GtC(1.4GtCO2)eachyear,com-parabletothedecreaseduring2020,highlightingthescaleoftheactionneeded.TheconcentrationofCO2intheatmosphereissettoreach417.2ppmin2022,51%abovepre-industriallevels.Theatmo-sphericCO2growthwas5.2±0.02GtCyr−1duringthedecade2012–2021(48%oftotalCO2emissions)withapreliminary2022growthrateestimateofaround5.3GtCyr−1(2.5ppm).TheoceanCO2sinkresumedamorerapidgrowthinthepast2decadesafterlowornogrowthduringthe1991–2002period.How-ever,thegrowthoftheoceanCO2sinkinthepastdecadehasanuncertaintyofafactorof3,withestimatesbasedondataprod-uctsandestimatesbasedonmodelsshowinganoceansinktrendof+0.7GtCyr−1perdecadeand+0.2GtCyr−1perdecadesince2010,respectively.ThediscrepancyinthetrendoriginatesfromalllatitudesbutislargestintheSouthernOcean.TheoceanCO2sinkwas2.9±0.4GtCyr−1duringthedecade2012–2021(26%oftotalCO2emissions),withasimilarpreliminaryestimateof2.9GtCyr−1for2022.ThelandCO2sinkcontinuedtoincreaseduringthe2012–2021periodprimarilyinresponsetoincreasedatmosphericCO2,al-beitwithlargeinterannualvariability.ThelandCO2sinkwas3.1±0.6GtCyr−1duringthedecade2012–2021(29%ofto-talCO2emissions),0.4GtCyr−1largerthanduringthepreviousdecade(2000–2009),withapreliminary2022estimateofaround3.4GtCyr−1.Year-to-yearvariabilityinthelandsinkisabout1GtCyr−1anddominatestheyear-to-yearchangesintheglobalat-mosphericCO2concentration,implyingthatsmallannualchangesinanthropogenicemissions(suchasthefossilfuelemissionde-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224815Figure1.SurfaceaverageatmosphericCO2concentration(ppm).Since1980,monthlydataarefromNOAA/GML(DlugokenckyandTans,2022)andarebasedonanaverageofdirectatmosphericCO2measurementsfrommultiplestationsinthemarineboundarylayer(MasarieandTans,1995).The1958–1979monthlydataarefromtheScrippsInstitutionofOceanography,basedonanaverageofdirectatmosphericCO2measurementsfromtheMaunaLoaandSouthPolestations(Keelingetal.,1976).Toaccountforthediffer-enceinmeanCO2andseasonalitybetweentheNOAA/GMLandtheScrippsstationnetworksusedhere,theScrippssurfaceaver-age(fromtwostations)wasde-seasonalizedandadjustedtomatchtheNOAA/GMLsurfaceaverage(frommultiplestations)byaddingthemeandifferenceof0.667ppm,calculatedherefromoverlappingdataduring1980–2012.creasein2020)arehardtodetectintheatmosphericCO2obser-vations.1IntroductionTheconcentrationofcarbondioxide(CO2)intheatmo-spherehasincreasedfromapproximately278partspermil-lion(ppm)in1750(Gulevetal.,2021),thebeginningoftheIndustrialEra,to414.7±0.1ppmin2021(DlugokenckyandTans,2022;Fig.1).TheatmosphericCO2increaseabovepre-industriallevelswas,initially,primarilycausedbythereleaseofcarbontotheatmospherefromdeforestationandotherland-usechangeactivities(Canadelletal.,2021).WhileemissionsfromfossilfuelsstartedbeforetheIndus-trialEra,theybecamethedominantsourceofanthropogenicemissionstotheatmospherefromaround1950,andtheirrel-ativesharehascontinuedtoincreaseuntilpresent.Anthro-pogenicemissionsoccurontopofanactivenaturalcarboncyclethatcirculatescarbonbetweenthereservoirsoftheatmosphere,ocean,andterrestrialbiosphereontimescalesfromsub-dailytomillennia,whileexchangeswithgeologicreservoirsoccuratlongertimescales(Archeretal.,2009).Theglobalcarbonbudget(GCB)presentedherereferstothemean,variations,andtrendsintheperturbationofCO2intheenvironment,referencedtothebeginningoftheIn-dustrialEra(definedhereas1750).Thispaperdescribesthecomponentsoftheglobalcarboncycleoverthehistor-icalperiodwithastrongerfocusontherecentperiod(since1958,theonsetofatmosphericCO2measurements),thelastdecade(2012–2021),thelastyear(2021),andthecurrentyear(2022).Finally,itprovidescumulativeemissionsfromfossilfuelsandland-usechangesincetheyear1750(thepre-industrialperiod)andsincetheyear1850(thereferenceyearforhistoricalsimulationsinIPCCAR6)(Eyringetal.,2016).WequantifytheinputofCO2totheatmospherebyemis-sionsfromhumanactivities;thegrowthrateofatmosphericCO2concentration;andtheresultingchangesinthestorageofcarboninthelandandoceanreservoirsinresponsetoin-creasingatmosphericCO2levels,climatechangeandvari-ability,andotheranthropogenicandnaturalchanges(Fig.2).Anunderstandingofthisperturbationbudgetovertimeandtheunderlyingvariabilityandtrendsofthenaturalcarboncy-cleisnecessarytounderstandtheresponseofnaturalsinkstochangesinclimate,CO2,andland-usechangedriversandtoquantifyemissionscompatiblewithagivenclimatestabi-lizationtarget.ThecomponentsoftheCO2budgetthatarereportedannu-allyinthispaperincludeseparateandindependentestimatesfortheCO2emissionsfrom(1)fossilfuelcombustionandoxidationfromallenergyandindustrialprocesses,includingcementproductionandcarbonation(EFOS;GtCyr−1),and(2)theemissionsresultingfromdeliberatehumanactivitiesonland,includingthoseleadingtoland-usechange(ELUC;GtCyr−1)andtheirpartitioningamong(3)thegrowthrateofatmosphericCO2concentration(GATM;GtCyr−1)andtheuptakeofCO2(the“CO2sinks”)in(4)theocean(SOCEAN;GtCyr−1)and(5)onland(SLAND;GtCyr−1).TheCO2sinksasdefinedhereconceptuallyincludetheresponseoftheland(includinginlandwatersandestuaries)andocean(includingcoastalandmarginalseas)toelevatedCO2andchangesinclimateandotherenvironmentalconditions,al-thoughinpracticenotallprocessesarefullyaccountedfor(seeSect.2.7).Globalemissionsandtheirpartitioningamongtheatmosphere,ocean,andlandareinbalanceintherealworld.Duetothecombinationofimperfectspatialand/ortemporaldatacoverage,errorsineachestimate,andsmallertermsnotincludedinourbudgetestimate(discussedinSect.2.7),theindependentestimates(1)to(5)abovedonotnecessarilyadduptozero.Wetherefore(i)additionallyassessasetofglobalatmosphericinversionsystemresultsthatbydesignclosetheglobalcarbonbalance(seeSect.2.6)and(i)estimateabudgetimbalance(BIM),whichisamea-sureofthemismatchbetweentheestimatedemissionsandtheestimatedchangesintheatmosphere,land,andocean,asfollows:BIM=EFOS+ELUC−(GATM+SOCEAN+SLAND).(1)GATMisusuallyreportedinppmyr−1,whichweconverttounitsofcarbonmassperyear,GtCyr−1,using1ppm=2.124GtC(Ballantyneetal.,2012;Table1).Allquantitiesarepresentedinunitsofgigatonnesofcarbon(GtC,1015gC),https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224816P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure2.Schematicrepresentationoftheoverallperturbationoftheglobalcarboncyclecausedbyanthropogenicactivitiesaveragedgloballyforthedecade2012–2021.Seelegendsforthecorrespondingarrowsandunits.TheuncertaintyintheatmosphericCO2growthrateisverysmall(±0.02GtCyr−1)andisneglectedforthefigure.Theanthropogenicperturbationoccursontopofanactivecarboncycle,withfluxesandstocksrepresentedinthebackgroundandtakenfromCanadelletal.(2021)forallnumbers,exceptforthecarbonstocksincoasts,whicharefromaliteraturereviewofcoastalmarinesediments(PriceandWarren,2016).whichisthesameaspetagramsofcarbon(PgC;Table1).UnitsofgigatonnesofCO2(orbilliontonnesofCO2)usedinpolicyareequalto3.664multipliedbythevalueinunitsofGtC.WealsoquantifyEFOSandELUCbycountry,includingbothterritorialandconsumption-basedaccountingforEFOS(seeSect.2),anddiscussmissingtermsfromsourcesotherthanthecombustionoffossilfuels(seeSect.2.7andAp-pendixD1andD2).TheglobalCO2budgethasbeenassessedbytheInter-governmentalPanelonClimateChange(IPCC)inallassess-mentreports(Prenticeetal.,2001;Schimeletal.,1995;Wat-sonetal.,1990;Denmanetal.,2007;Ciaisetal.,2013;Canadelletal.,2021)andbyothers(e.g.Ballantyneetal.,2012).TheGlobalCarbonProject(GCP,https://www.globalcarbonproject.org,lastaccess:25September2022)hascoordinatedthiscooperativecommunityeffortforthean-nualpublicationofglobalcarbonbudgetsfortheyear2005(Raupachetal.,2007;includingfossilemissionsonly),year2006(Canadelletal.,2007),year2007(GCP,2007),year2008(LeQuéréetal.,2009),year2009(Friedlingsteinetal.,2010),year2010(Petersetal.,2012b),year2012(LeQuéréetal.,2013;Petersetal.,2013),year2013(LeQuéréetal.,2014),year2014(LeQuéréetal.,2015a;Friedlingsteinetal.,2014),year2015(Jacksonetal.,2016;LeQuéréetal.,2015b),year2016(LeQuéréetal.,2016),year2017(LeQuéréetal.,2018a;Petersetal.,2017),year2018(LeQuéréetal.,2018b;Jacksonetal.,2018),year2019(Friedling-steinetal.,2019;Jacksonetal.,2019;Petersetal.,2020),year2020(Friedlingsteinetal.,2020;LeQuéréetal.,2021),andmorerecentlytheyear2021(Friedlingsteinetal.,2022a;Jacksonetal.,2022).Eachofthesepapersupdatedpreviousestimateswiththelatestavailableinformationfortheentiretimeseries.Weadoptarangeof±1standarddeviation(σ)toreporttheuncertaintiesinourestimates,representingalikelihoodof68%thatthetruevaluewillbewithintheprovidedrangeiftheerrorshaveaGaussiandistributionandnobiasisas-sumed.ThischoicereflectsthedifficultyofcharacterizingtheuncertaintyintheCO2fluxesbetweentheatmosphereandtheoceanandlandreservoirsindividually,particularlyonanannualbasis,aswellasthedifficultyofupdatingtheCO2emissionsfromland-usechange.Alikelihoodof68%providesanindicationofourcurrentcapabilitytoquantifyeachtermanditsuncertaintygiventheavailableinforma-tion.Theuncertaintiesreportedherecombinestatisticalanal-ysisoftheunderlyingdata,assessmentsofuncertaintiesinthegenerationofthedatasets,andexpertjudgementofthelikelihoodofresultslyingoutsidethisrange.Thelimitationsofcurrentinformationarediscussedinthepaperandhavebeenexaminedindetailelsewhere(Ballantyneetal.,2015;Zscheischleretal.,2017).Wealsouseaqualitativeassess-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224817Table1.Factorsusedtoconvertcarboninvariousunits(byconvention,Unit1=Unit2×conversion).Unit1Unit2ConversionSourceGtC(gigatonnesofcarbon)ppm(partspermillion)a2.124bBallantyneetal.(2012)GtC(gigatonnesofcarbon)PgC(petagramsofcarbon)1SIunitconversionGtCO2(gigatonnesofcarbondioxide)GtC(gigatonnesofcarbon)3.66444.01/12.011inmassequivalentGtC(gigatonnesofcarbon)MtC(megatonnesofcarbon)1000SIunitconversionaMeasurementsofatmosphericCO2concentrationhaveunitsofdry-airmolefraction.“ppm”isanabbreviationforµmolmol−1dryair.bTheuseofafactorof2.124assumesthatalloftheatmosphereiswellmixedwithin1year.Inreality,onlythetroposphereiswellmixed,andthegrowthrateofCO2concentrationinthelesswell-mixedstratosphereisnotmeasuredbysitesfromtheNOAAnetwork.Usingafactorof2.124makestheapproximationthatthegrowthrateofCO2concentrationinthestratosphereequalsthatofthetroposphereonayearlybasis.mentofconfidenceleveltocharacterizetheannualestimatesfromeachtermbasedonthetype,amount,quality,andcon-sistencyoftheevidenceasdefinedbytheIPCC(Stockeretal.,2013).Thispaperprovidesadetaileddescriptionofthedatasetsandmethodologyusedtocomputetheglobalcarbonbud-getestimatesfortheindustrialperiod(from1750to2022)andinmoredetailfortheperiodsince1959.Thispaperisupdatedeveryyearusingtheformatof“livingdata”tokeeparecordofbudgetversionsandthechangesinnewdata,revisionsofdata,andchangesinmethodologythatleadtochangesinestimatesofthecarbonbudget.Addi-tionalmaterialsassociatedwiththereleaseofeachnewver-sionwillbepostedattheGlobalCarbonProject(GCP)website(http://www.globalcarbonproject.org/carbonbudget,lastaccess:25September2022),withfossilfuelemissionsalsoavailablethroughtheGlobalCarbonAtlas(http://www.globalcarbonatlas.org,lastaccess:25September2022).Allunderlyingdatausedtoproducethebudgetcanalsobefoundathttps://globalcarbonbudget.org/(lastaccess:25September2022).Withthisapproach,weaimtoprovidethehighesttransparencyandtraceabilityinthereportingofCO2,thekeydriverofclimatechange.2MethodsMultipleorganizationsandresearchgroupsaroundtheworldgeneratedtheoriginalmeasurementsanddatausedtocom-pletetheglobalcarbonbudget.Theeffortpresentedhereisthusmainlyoneofsynthesis,whereresultsfromindivid-ualgroupsarecollated,analysed,andevaluatedforconsis-tency.Wefacilitateaccesstooriginaldatawiththeunder-standingthatprimarydatasetswillbereferencedinfuturework(seeTable2forhowtocitethedatasets).Descrip-tionsofthemeasurements,models,andmethodologiesfol-lowbelow,anddetaileddescriptionsofeachcomponentareprovidedelsewhere.Thisisthe17thversionoftheglobalcarbonbudgetandthe11threvisedversionintheformatofalivingdataupdateinEarthSystemScienceData.ItbuildsonthelatestpublishedglobalcarbonbudgetofFriedlingsteinetal.(2022a).Themainchangesaretheinclusionof(1)datatoyear2021andaprojectionfortheglobalcarbonbudgetfortheyear2022,(2)theinclusionofcountry-levelestimatesofELUC,and(3)aprocess-baseddecompositionofELUCintoitsmaincompo-nents(deforestation;afforestation,reafforestation,andwoodharvest;emissionsfromorganicsoils;andnetfluxfromothertransitions).Themainmethodologicaldifferencesbetweenrecentan-nualcarbonbudgets(2018–2022)aresummarizedinTable3,andpreviouschangessince2006areprovidedinTableA7.2.1FossilCO2emissions(EFOS)2.1.1Historicalperiod1850–2021TheestimatesofglobalandnationalfossilCO2emissions(EFOS)includetheoxidationoffossilfuelsthroughbothcombustion(e.g.transport,heating)andchemicaloxidation(e.g.carbonanodedecompositioninaluminiumrefining)ac-tivities,andthedecompositionofcarbonatesinindustrialprocesses(e.g.theproductionofcement).WealsoincludeCO2uptakefromthecementcarbonationprocess.Severalemissionsourcesarenotestimatedornotfullycovered:cov-erageofemissionsfromlimeproductionisnotglobal,anddecompositionofcarbonatesinglassandceramicproductionareincludedonlyforthe“Annex1”countriesoftheUnitedNationsFrameworkConventiononClimateChange(UN-FCCC)forlackofactivitydata.Theseomissionsarecon-sideredtobeminor.Short-cyclecarbonemissions–forex-amplefromcombustionofbiomass–arenotincludedherebutareaccountedforintheCO2emissionsfromlanduse(seeSect.2.2).OurestimatesoffossilCO2emissionsarederivedusingthestandardapproachofactivitydataandemissionfactors,relyingondatacollectionbymanyotherparties.Ourgoalistoproducethebestestimateofthisflux,andwethere-foreuseaprioritizationframeworktocombinedatafromdifferentsourcesthathaveuseddifferentmethods,whilebe-ingcarefultoavoiddoublecountingandundercountingofemissionssources.TheCDIAC-FFemissionsdataset,de-rivedlargelyfromUNenergydata,formsthefoundation,andweextendemissionstoyearY-1usingenergygrowthratesreportedbytheBPenergycompany.Wethenproceedtore-placeestimatesusingdatafromwhatweconsidertobesupe-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224818P.Friedlingsteinetal.:GlobalCarbonBudget2022Table2.Howtocitetheindividualcomponentsoftheglobalcarbonbudgetpresentedhere.ComponentPrimaryreferenceGlobalfossilCO2emissions(EFOS),totalandbyfueltypeUpdatedfromAndrewandPeters(2021)NationalterritorialfossilCO2emissions(EFOS)GilfillanandMarland(2021),UNFCCC(2022)Nationalconsumption-basedfossilCO2emissions(EFOS)bycountry(consumption)Petersetal.(2011b),updatedasdescribedinthispaperNetland-usechangeflux(ELUC)Thispaper(seeTable4forindividualmodelreferences)GrowthrateinatmosphericCO2concentration(GATM)DlugokenckyandTans(2022)OceanandlandCO2sinks(SOCEANandSLAND)Thispaper(seeTable4forindividualmodelanddataproductreferences)riorsources,forexampleAnnex1countries’officialsubmis-sionstotheUNFCCC.Alldatapointsarepotentiallysubjecttorevision,notjustthelatestyear.Forthefulldetails,seeAndrewandPeters(2021).OtherestimatesofglobalfossilCO2emissionsexist,andthesearecomparedbyAndrew(2020a).ThemostcommonreasonfordifferencesinestimatesofglobalfossilCO2emis-sionsisadifferenceinwhichemissionssourcesareincludedinthedatasets.DatasetssuchasthosepublishedbytheenergycompanyBP,theUSEnergyInformationAdminis-tration,andtheInternationalEnergyAgency’s“CO2emis-sionsfromfuelcombustion”areallgenerallylimitedtoemis-sionsfromcombustionoffossilfuels.Incontrast,datasetssuchasPRIMAP-hist,CEDS,EDGAR,andGCP’sdatasetaimtoincludeallsourcesoffossilCO2emissions.SeeAn-drew(2020a)fordetailedcomparisonsanddiscussion.CementabsorbsCO2fromtheatmosphereoveritslife-time,aprocessknownas“cementcarbonation”.Weesti-matethisCO2sinkfrom1931onwardsastheaverageoftwostudiesintheliterature(Caoetal.,2020;Guoetal.,2021).Bothstudiesusethesamemodel,developedbyXietal.(2016),withdifferentparameterizationsandinputdata,withtheestimateofGuoandcolleaguesbeingarevisionofXietal.(2016).Thetrendsofthetwostudiesareverysim-ilar.Sincecarbonationisafunctionofbothcurrentandpre-viouscementproduction,weextendtheseestimatesto2022byusingthegrowthratederivedfromthesmoothedcementemissions(10-yearsmoothing)fittedtothecarbonationdata.Inthepresentbudget,wealwaysincludethecementcar-bonationcarbonsinkinthefossilCO2emissioncomponent(EFOS).WeusetheKayaIdentityforasimpledecompositionofCO2emissionsintothekeydrivers(Raupachetal.,2007).Whiletherearevariations(Petersetal.,2017),wefocushereonadecompositionofCO2emissionsintopopulation,GDPperperson,energyuseperGDP,andCO2emissionsperen-ergy.Multiplyingtheseindividualcomponentstogetherre-turnstheCO2emissions.Usingthedecomposition,itispos-sibletoattributethechangeinCO2emissionstothechangeineachofthedrivers.Thismethodgivesafirst-orderunder-standingofwhatcausesCO2emissionstochangeeachyear.2.1.2The2022projectionWeprovideaprojectionofglobalCO2emissionsin2022bycombiningseparateprojectionsforChina,USA,EU,India,andforallothercountriescombined.Themethodsaredif-ferentforeachofthese.ForChinawecombinemonthlyfos-silfuelproductiondatafromtheNationalBureauofStatis-tics,importandexportdatafromtheCustomsAdministra-tion,andmonthlycoalconsumptionestimatesfromSXCoal(2022),givinguspartialdataforthegrowthratestodateofnaturalgas,petroleum,andcement,andoftheconsump-tionitselfforrawcoal.Wethenusearegressionmodeltoprojectfull-yearemissionsbasedonhistoricalobserva-tions.FortheUSAourprojectionistakendirectlyfromtheEnergyInformationAdministration’s(EIA)Short-TermEn-ergyOutlook(EIA,2022),combinedwiththeyear-to-dategrowthrateofcementclinkerproduction.FortheEUweusemonthlyenergydatafromEurostattoderiveestimatesofmonthlyCO2emissionsthroughJuly,withcoalemissionsextendedthroughAugustusingastatisticalrelationshipwithreportedelectricitygenerationfromcoalandotherfactors.GiventheveryhighuncertaintyinEuropeanenergymar-ketsin2022,weforegoourusualhistory-basedprojectiontechniquesandinsteadusetheyear-to-dategrowthrateasthefull-yeargrowthrateforbothcoalandnaturalgas.EUemissionsfromoilarederivedusingtheEIA’sprojectionofoilconsumptionforEurope.EUcementemissionsarebasedonavailableyear-to-datedatafromthreeofthelargestpro-ducers,Germany,Poland,andSpain.India’sprojectedemis-sionsarederivedfromestimatesthroughJuly(Augustforoil)usingthemethodsofAndrew(2020b)andextrapolatedassumingnormalseasonalpatterns.EmissionsfortherestoftheworldarederivedusingprojectedgrowthineconomicproductionfromtheIMF(2022)combinedwithextrapo-latedchangesinemissionsintensityofeconomicproduction.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224819Table3.Themainmethodologicalchangesintheglobalcarbonbudgetsince2018.Methodologicalchangesintroducedinanygivenyeararekeptforthefollowingyearsunlessotherwisenoted.Emptycellsmeantherewerenomethodologicalchangesintroducedthatyear.TableA7listsmethodologicalchangesfromthefirstglobalcarbonbudgetpublicationupto2017.PublicationyearFossilfuelemissionsLUCemissionsReservoirsUncertaintyandotherchangesGlobalCountry(territorial)AtmosphereOceanLand2018Revisionincementemis-sionsandprojectionin-cludesEU-specificdataAggregationofoverseasterritoriesintogoverningnationsforatotalof213countries.Averageoftwobook-keepingmodelsanduseof16DGVMsUseoffouratmosphericinversionsBasedonsevenmodelsBasedon16models,withrevisedatmo-sphericforcingfromCRUNCEPtoCRUJRAIntroductionofmetricsforevaluationofindividualmodelsusingobservationsLeQuéréetal.(2018b)GCB20182019Globalemissionscalculatedassumofallcountriesplusbunkers,ratherthantakendirectlyfromCDIACAverageoftwobook-keepingmodelsanduseof15DGVMsUseofthreeatmosphericinversionsBasedonninemodelsBasedon16modelsFriedlingsteinetal.(2019)GCB20192020Cementcarbonationnowin-cludedintheEFOSesti-mate,reducingEFOSbyabout0.2GtCyr−1forthelastdecadeIndia’semissionsfromAndrew(2020a),cor-rectionstoNetherlandAntillesandArubaandSovietemissionsbefore1950asperAndrew(2020b),China’scoalemissionsin2019derivedfromofficialstatistics,emissionsnowshownforEU27insteadofEU28,projectionfor2020isbasedonassessmentoffourapproachesAverageofthreebook-keepingmodels,useof17DGVMs,andestimateofgrossland-usesourcesandsinksprovidedUseofsixatmosphericinversionsBasedonninemodels;riverfluxrevisedandpartitionedNH,tropics,andSHBasedon17modelsFriedlingsteinetal.(2020)GCB20202021Projectionsarenolongeranassessmentoffourap-proachesOfficialdataincludedforanumberofadditionalcoun-tries,newestimatesforSouthKorea,addedemis-sionsfromlimeproductioninChinaELUCestimatecom-paredtotheestimatesadoptedinnationalGHGinventories(NGHGI)Averageofmeansofeightmodelsandmeansofsevendataproducts;currentyearpredictionofSOCEANusingafeed-forwardneuralnetworkmethodCurrentyearpredictionofSLANDusingafeed-forwardneuralnetworkmethodFriedlingsteinetal.(2022a)GCB20212022ELUCprovidedatcoun-trylevel;decompositionintofluxesfromdefor-estation,organicsoils,re/afforestationandwoodharvest,andothertransitions;changeinthemethodologytoderiveLUCmapsforBraziltocapturerecentupturnindeforestation;inclusionoftwonewdatasetsforpeatdrainage.UseofnineatmosphericinversionsAverageofmeansof10modelsandmeansofsevendataproductsBasedon16models,withachangeinthemethodologytoderiveLUCmapsforBraziltocapturerecentupturnindeforestationThisstudyhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224820P.Friedlingsteinetal.:GlobalCarbonBudget2022MoredetailsontheEFOSmethodologyandits2022projec-tioncanbefoundinAppendixC1.2.2CO2emissionsfromlanduse,land-usechange,andforestry(ELUC)2.2.1Historicalperiod1850–2021ThenetCO2fluxfromlanduse,land-usechange,andforestry(ELUC,calledland-usechangeemissionsintherestofthetext)includesCO2fluxesfromdeforestation,afforesta-tion,loggingandforestdegradation(includingharvestactiv-ity),shiftingcultivation(cycleofcuttingforestforagricul-ture,thenabandoning),andregrowthofforests(followingwoodharvestoragricultureabandonment).Emissionsfrompeatburninganddrainageareaddedfromexternaldatasets,withpeatdrainagebeingaveragedfromthreespatiallyex-plicitindependentdatasets(seeAppendixC2.1).Threebookkeepingapproaches,updatedestimateseachofBLUE(Hansisetal.,2015),OSCAR(Gasseretal.,2020),andH&N2017(HoughtonandNassikas,2017),wereusedtoquantifygrosssourcesandsinksandtheresultingnetELUC.Uncertaintyestimateswerederivedfromthedynamicglobalvegetationmodels(DGVMs)ensembleforthetimeperiodpriorto1960,usingfortherecentdecadesanuncertaintyrangeof±0.7GtCyr−1,whichisasemi-quantitativemea-sureforannualanddecadalemissionsandreflectsourbestvaluejudgementthatthereisatleast68%chance(±1σ)thatthetrueland-usechangeemissionlieswithinthegivenrangefortherangeofprocessesconsideredhere.Thisuncertaintyrangehadbeenincreasedfrom0.5GtCyr−1afternewbook-keepingmodelswereincludedthatindicatedalargerspreadthanassumedbefore(LeQuéréetal.,2018a).Projectionsfor2021arebasedonfireactivityfromtropicaldeforestationanddegradationandemissionsfrompeatfiresanddrainage.OurELUCestimatesfollowthedefinitionofglobalcarboncyclemodelsofCO2fluxesrelatedtoland-useandlandman-agementanddifferfromIPCCdefinitionsadoptedinnationalgreenhousegas(GHG)inventories(NGHGI)forreportingundertheUNFCCC,whichadditionallygenerallyinclude,throughadoptionoftheIPCCso-calledmanagedlandproxyapproach,theterrestrialfluxesoccurringonlanddefinedbycountriesasmanaged.Thispartlyincludesfluxesduetoen-vironmentalchange(e.g.atmosphericCO2increase),whicharepartofSLANDinourdefinition.ThiscausestheglobalemissionestimatestobesmallerforNGHGIthanfortheglobalcarbonbudgetdefinition(Grassietal.,2018).ThesameisthecasefortheFoodAgricultureOrganization(FAO)estimatesofcarbonfluxesonforestland,whichincludebothanthropogenicandnaturalsourcesonmanagedland(Tubielloetal.,2021).Wemapthetwodefinitionstoeachother,toprovideacomparisonoftheanthropogeniccarbonbudgettotheofficialcountryreportingtotheclimatecon-vention.2.2.2The2022projectionWeprojectthe2022land-useemissionsforBLUE,theup-datedH&N2017,andOSCAR,startingfromtheirestimatesfor2021assumingunalteredpeatdrainage,whichhaslowinterannualvariabilitybutadjustingthehighlyvariableemis-sionsfrompeatfires,tropicaldeforestation,anddegradationasestimatedusingactivefiredata(MCD14ML;Giglioetal.,2016).MoredetailsontheELUCmethodologycanbefoundinAppendixC2.2.3GrowthrateinatmosphericCO2concentration(GATM)2.3.1Historicalperiod1850–2021TherateofgrowthoftheatmosphericCO2concentrationisprovidedforyears1959–2021bytheUSNationalOceanicandAtmosphericAdministrationGlobalMonitoringLabo-ratory(NOAA/GML;DlugokenckyandTans,2022),whichisupdatedfromBallantyneetal.(2012)andincludesrecentrevisionstothecalibrationscaleofatmosphericCO2mea-surements(Halletal.,2021).Forthe1959–1979period,theglobalgrowthrateisbasedonmeasurementsofatmosphericCO2concentrationaveragedfromtheMaunaLoaandSouthPolestations,asobservedbytheCO2ProgramatScrippsInstitutionofOceanography(Keelingetal.,1976).Forthe1980–2020timeperiod,theglobalgrowthrateisbasedontheaverageofmultiplestationsselectedfromthemarineboundarylayersiteswithwell-mixedbackgroundair(Bal-lantyneetal.,2012),afterfittingasmoothcurvethroughthedataforeachstationasafunctionoftimeandaverag-ingbylatitudeband(MasarieandTans,1995).TheannualgrowthrateisestimatedbyDlugokenckyandTans(2022)fromatmosphericCO2concentrationbytakingtheaverageofthemostrecentDecember–Januarymonthscorrectedfortheaverageseasonalcycleandsubtractingthissameaver-ageoneyearearlier.Thegrowthrate(inunitsofppmyr−1)isconvertedtounitsofGtCyr−1bymultiplyingbyafactorof2.124GtCppm−1,assuminginstantaneousmixingofCO2throughouttheatmosphere(Ballantyneetal.,2012;Table1).Since2020,NOAA/GMLprovidesestimatesofatmo-sphericCO2concentrationswithrespecttoanewcalibra-tionscale,referredtoasWMO-CO2-X2019,inlinewiththerecommendationoftheWorldMeteorologicalOrganization(WMO)GlobalAtmosphereWatch(GAW)community(Halletal.,2021).The“X”inthescalenameindicatesthatitisamolefractionscale,howmanymicro-molesofCO2inasin-glemoleof(dry)air.Theword“concentration”onlylooselyreflectsthis.TheWMO-CO2-X2019scaleimprovesupontheearlierWMO-CO2-X2007scalebyincludingabroadersetofstandards,whichcontainCO2inawiderrangeofconcen-trationsthatspantherange250–800ppm(vs.250–520ppmforWMO-CO2-X2007).Inaddition,NOAA/GMLmadetwominorcorrectionstotheanalyticalprocedureusedtoquantifyCO2concentrations,fixinganerrorinthesecondvirialcoef-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224821ficientofCO2andaccountingforlossofasmallamountofCO2tomaterialsinthemanometerduringthemeasurementprocess.ThedifferenceinconcentrationsmeasuredusingWMO-CO2-X2019vs.WMO-CO2-X2007is∼+0.18ppmat400ppmandtheobservationalrecordofatmosphericCO2concentrationshavebeenrevisedaccordingly.Therevisionshavebeenappliedretrospectivelyinallcaseswherethecal-ibrationswereperformedbyNOAA/GML,thusaffectingmeasurementsmadebymembersoftheWMO-GAWpro-grammeandotherregionallycoordinatedprogrammes(e.g.IntegratedCarbonObservingSystem,ICOS).ChangestotheCO2concentrationsmeasuredacrossthesenetworkspropa-gatetotheglobalmeanCO2concentrations.TherecalibrateddatawerefirstusedtoestimateGATMinthe2021editionoftheglobalcarbonbudget(Friedlingsteinetal.,2022a).Friedlingsteinetal.(2022a)verifiedthatthechangeofscalesfromWMO-CO2-X2007toWMO-CO2-X2019madeaneg-ligibledifferencetothevalueofGATM(−0.06GtCyr−1dur-ing2010–2019and−0.01GtCyr−1during1959–2019,wellwithintheuncertaintyrangereportedbelow).Theuncertaintyaroundtheatmosphericgrowthrateisduetofourmainfactors.First,thelong-termreproducibilityofreferencegasstandards(around0.03ppmfor1σfromthe1980s;DlugokenckyandTans,2022).Second,smallunex-plainedsystematicanalyticalerrorsthatmayhaveadurationofseveralmonthsto2yearscomeandgo.Theyhavebeensimulatedbyrandomizingboththedurationandthemag-nitude(determinedfromtheexistingevidence)inaMonteCarloprocedure.Third,thenetworkcompositionofthema-rineboundarylayerwithsomesitescomingorgoing,gapsinthetimeseriesateachsite,andsoon(DlugokenckyandTans,2022).ThelatteruncertaintywasestimatedbyNOAA/GMLwithaMonteCarlomethodbyconstructing100“alternative”networks(MasarieandTans,1995;NOAA/GML,2019).Thesecondandthirduncertainties,summedinquadrature,addupto0.085ppmonaverage(DlugokenckyandTans,2022).Fourth,theuncertaintyassociatedwithusingtheav-erageCO2concentrationfromasurfacenetworktoapproxi-matethetrueatmosphericaverageCO2concentration(mass-weighted,inthreedimensions)asneededtoassesstheto-talatmosphericCO2burden.Inreality,CO2variationsmea-suredatthestationswillnotexactlytrackchangesintotalatmosphericburden,withoffsetsinmagnitudeandphasingduetoverticalandhorizontalmixing.Thiseffectmustbeverysmallondecadalandlongertimescales,whentheatmo-spherecanbeconsideredwellmixed.TheCO2increaseinthestratospherelagstheincrease(meaninglowerconcentra-tions)thatweobserveinthemarineboundarylayer,whilethecontinentalboundarylayer(wheremostoftheemissionstakeplace)leadsthemarineboundarylayerwithhighercon-centrations.Theseeffectsnearlycanceleachother.Inad-dition,thegrowthrateisnearlythesameeverywhere(Bal-lantyneetal.,2012).Wethereforemaintainanuncertaintyaroundtheannualgrowthratebasedonthemultiplesta-tionsdatasetrangesbetween0.11and0.72GtCyr−1,withameanof0.61GtCyr−1for1959–1979and0.17GtCyr−1for1980–2020,whenalargersetofstationswereavail-ableasprovidedbyDlugokenckyandTans(2022).Wees-timatetheuncertaintyofthedecadalaveragedgrowthrateafter1980at0.02GtCyr−1basedonthecalibrationandtheannualgrowthrateuncertaintybutstretchedovera10-yearinterval.Foryearspriorto1980,weestimatethedecadalaverageduncertaintytobe0.07GtCyr−1basedonafactorproportionaltotheannualuncertaintypriorandafter1980(0.02×[0.61/0.17]GtCyr−1).WeassignahighconfidencetotheannualestimatesofGATMbecausetheyarebasedondirectmeasurementsfrommultipleandconsistentinstrumentsandstationsdistributedaroundtheworld(Ballantyneetal.,2012;Halletal.,2021).Toestimatethetotalcarbonaccumulatedintheatmo-spheresince1750or1850,weuseanatmosphericCO2con-centrationof278.3±3ppmor285.1±3ppm,respectively(Gulevetal.,2021).FortheconstructionofthecumulativebudgetshowninFig.3,weusethefittedestimatesofCO2concentrationfromJoosandSpahni(2008)toestimatetheannualatmosphericgrowthrateusingtheconversionfac-torsshowninTable1.Theuncertaintyof±3ppm(convertedto±1σ)istakendirectlyfromtheIPCC’sAR5assessment(Ciaisetal.,2013).TypicaluncertaintiesinthegrowthrateinatmosphericCO2concentrationfromicecoredataareequivalentto±0.1–0.15GtCyr−1asevaluatedfromtheLawDomedata(Etheridgeetal.,1996)forindividual20-yearin-tervalsovertheperiodfrom1850to1960(BrunoandJoos,1997).2.3.2The2022projectionWeprovideanassessmentofGATMfor2022basedonthemonthlycalculatedglobalatmosphericCO2concentra-tion(GLO)throughAugust(DlugokenckyandTans,2022),andbias-adjustedHolt–Wintersexponentialsmoothingwithadditiveseasonality(Chatfield,1978)toprojecttoJan-uary2023.Additionalanalysissuggeststhatthefirsthalfoftheyear(theborealwinter–spring–summertransition)showsmoreinterannualvariabilitythanthesecondhalfoftheyear(theborealsummer–autumn–wintertransition),sothattheexactprojectionmethodappliedtothesecondhalfoftheyearhasarelativelysmallerimpactontheprojectionofthefullyear.Uncertaintyisestimatedfrompastvariabilityusingthestandarddeviationofthelast5yearsofmonthlygrowthrates.2.4OceanCO2sink2.4.1Historicalperiod1850–2021ThereportedestimateoftheglobaloceananthropogenicCO2sinkSOCEANisderivedastheaverageoftwoestimates.Thefirstestimateisderivedasthemeanoveranensembleof10globaloceanbiogeochemistrymodels(GOBMs,Tables4andA2).Thesecondestimateisobtainedasthemeanoverhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224822P.Friedlingsteinetal.:GlobalCarbonBudget2022Table4.Referencesfortheprocessmodels,bookkeepingmodels,oceandataproducts,andatmosphericinversions.Allmodelsandprod-uctsareupdatedwithnewdatatotheendofyear2021,andtheatmosphericforcingfortheDGVMshasbeenupdatedasdescribedinAppendixC2.2.ModelordatanameReferenceChangefromGlobalCarbonBudget2021(Friedlingsteinetal.,2022a)Bookkeepingmodelsforland-usechangeemissionsBLUEHansisetal.(2015)Nochangetomodel,butsimulationsareperformedwithupdatedLUH2forcing.Updateinaddedpeatdrainageemissions(basedonthreespa-tiallyexplicitdatasets).UpdatedH&N2017HoughtonandNassikas(2017)Minorbugfixinthefuelharvestestimatesthatwascausinganoveresti-mationoffuelsink.Updateinaddedpeatdrainageemissions(basedonthreespatiallyexplicitdatasets).OSCARGasseretal.(2020)Nochangetomodel,butland-useforcingischangedtoLUH2-GCB2022andFRA2020(asusedbyH&Nandextrapolatedto2021),withbothprescribedathigherspatialresolution(210insteadof96regions/countries).Constrainingbasedonlastyear’sbudgetdataforSLANDover1960–2021.Updateinaddedpeatdrainageemissions(basedonthreespatiallyexplicitdatasets).DynamicglobalvegetationmodelsCABLE-POPHaverdetal.(2018)Changesinparameterization.Diffusefractionofincomingradiationreadinasforcing.CLASSICMeltonetal.(2020)aMinorbugfixes.CLM5.0Lawrenceetal.(2019)Nochange.DLEMTianetal.(2015)bNochange.IBISYuanetal.(2014)cNochange.ISAMMeiyappanetal.(2015)dNochange.JSBACHReicketal.(2021)eNochange.JULES-ESWiltshireetal.(2021)fMinorbugfixes(usingJULESv6.3,suiteu-co002).LPJ-GUESSSmithetal.(2014)gNochange.LPJPoulteretal.(2011)hNochange.LPX-BernLienertandJoos(2018)FollowingtheresultsofJoosetal.(2020),weusemodifiedparametervaluesthatyieldamorereasonable(lower)biologicalnitrogenfixation(BNF),termedLPXv1.5.ThisparameterversionhasincreasedNim-mobilizationandastrongerNlimitationthanthepreviousversion.TheN2Oemissionswereadjustedaccordingly.Theparameterswereobtainedbyrunninganensemblesimulationandimposingvariousob-servationalconstraintsandsubsequentlyadjustingNimmobilization.Forthemethodology,seeJoosetal.(2020).OCNZaehleandFriend(2010)iNochange(usesr294).ORCHIDEEv3Vuichardetal.(2019)jNochange(ORCHIDEE–V3;revision7267).SDGVMWalkeretal.(2017)kNochange.VISITKatoetal.(2013)lNochange.YIBsYueandUnger(2015)Nochange.GlobaloceanbiogeochemistrymodelsNEMO-PlankTOM12Wrightetal.(2021)Minorbugfixes.MICOM-HAMOCC(NorESM-OCv1.2)Schwingeretal.(2016)Nochange.MPIOM-HAMOCC6Lacroixetal.(2021)Nochange.NEMO3.6-PISCESv2-gas(CNRM)Berthetetal.(2019)mNochange.FESOM-2.1-REcoM2Haucketal.(2020)nExtendedspin-up,minorbugfixes.MOM6-COBALT(Princeton)Liaoetal.(2020)Nochange.CESM-ETHZDoneyetal.(2009)Changedsalinityrestoringinthesurfaceoceanfrom700to300d,exceptfortheSouthernOceansouthof45◦S,wheretherestoringtimescalewassetto60d.NEMO-PISCES(IPSL)Aumontetal.(2015)Nochange.MRI-ESM2-1Nakanoetal.(2011),Urakawaetal.(2020)Newthisyear.CESM2Longetal.(2021)oNewthisyear.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224823Table4.Continued.ModelordatanameReferenceChangefromGlobalCarbonBudget2021(Friedlingsteinetal.,2022a)OceandataproductsMPI-SOMFFNLandschützeretal.(2016)UpdatetoSOCATv2022measurementsandtimeperiod1982–2021.TheestimatenowcoversthefulloceandomainandtheArcticOceanextensiondescribedinLandschützeretal.(2020).Jena-MLSRödenbecketal.(2022)UpdatetoSOCATv2022measurements,timeperiodextendedto1957–2021.CMEMS-LSCE-FFNNv2Chauetal.(2022)UpdatetoSOCATv2022measurementsandtimeperiod1985–2021.TheCMEMS-LSCE-FFNNv2productnowcoversboththeopen-oceanandcoastalregions.LDEO-HPDGloegeetal.(2022)pNewthisyear.UOEx-WatsonWatsonetal.(2020)UpdatedtoSOCATv2022andOISSTv2.1.NIES-NNZengetal.(2014)UpdatedtoSOCATv2022.Smallchangesinmethod(gasexchangecoefficienta=0.271;trendcalculation1990–2020,predictorsincludelongandlat).JMA-MLRIidaetal.(2021)UpdatedtoSOCATv2022,seasurfacetemperature(SST)fields(MGDSST)updated.OS-ETHZ-GRaCERGregorandGruber(2021)NochangeAtmosphericinversionsCAMSChevallieretal.(2005)qUpdatedtoWMOX2019scale.Extensiontoyear2021,revisionofthestationlist,updateofthepriorfluxesCarbonTrackerEurope(CTE)vanderLaan-Luijkxetal.(2017)UpdatedtoWMOX2019scale.BiospherepriorfluxesfromtheSiB4modelinsteadofSiBCASAmodel.Extensionto2021.JenaCarboScopeRödenbecketal.(2018)rUpdatedtoWMOX2019scale.Extensionto2021.UoEinsituFengetal.(2016)sUpdatedtoWMOX2019scale.Updatedstationlistandrefinedland–oceanmap.Extensionto2021.NISMON-CO2Niwaetal.(2022)tUpdatedtoWMOX2019scale.Positivedefinitefluxparametersandup-datedstationlist.Extensionto2021.CMS-FluxLiuetal.(2021)UpdatedtoWMOX2019scale.Extensionto2021.GONGGAJinetal.(2022)uNewthisyear.THUKongetal.(2022)Newthisyear.CAMS-SatelliteChevallieretal.(2005)qNewthisyear.aSeealsoAsaadietal.(2018).bSeealsoTianetal.(2011).cThedynamiccarbonallocationschemewaspresentedbyXiaetal.(2015).dSeealsoJainetal.(2013).SoilbiogeochemistryisupdatedbasedonShuetal.(2020).eSeealsoMauritsenetal.(2019).fSeealsoSellaretal.(2019)andBurtonetal.(2019).JULES-ESistheEarthSystemconfigurationoftheJointUKLandEnvironmentSimulatorasusedintheUKEarthSystemModel(UKESM).gToaccountforthedifferencesbetweenthederivationofshort-waveradiationfromCRUcloudinessandDSWRFfromCRUJRA,thephotosynthesisscalingparameterαwasmodified(−15%)toyieldsimilarresults.hComparedtopublishedversion,decreasedLPJwoodharvestefficiencysothat50%ofbiomasswasremovedoff-sitecomparedto85%usedinthe2012budget.Residuemanagementofmanagedgrasslandsincreasedsothat100%ofharvestedgrassentersthelitterpool.iSeealsoZaehleetal.(2011).jSeealsoZaehleandFriend(2010)andKrinneretal.(2005)kSeealsoWoodwardandLomas(2004).lSeealsoItoandInatomi(2012).mSeealsoSéférianetal.(2019).nSeealsoSchourup-Kristensenetal.(2014).oSeealsoYeageretal.(2022).pSeealsoBenningtonetal.(2022).qSeealsoRemaud(2018).rSeealsoRödenbecketal.(2003).sSeealsoFengetal.(2009)andPalmeretal.(2019)tSeealsoNiwaetal.(2020)uSeealsoTianetal.(2014).anensembleofsevenobservation-baseddataproducts(Ta-bles4andA3).Aneighthproduct(Watsonetal.,2020)isshownbutisnotincludedintheensembleaverageasitdiffersfromtheotherproductsbyadjustingthefluxtoacool,saltyoceansurfaceskin(seeAppendixC3.1foradiscussionoftheWatsonproduct).TheGOBMssimulateboththenaturalandanthropogenicCO2cyclesintheocean.Theyconstraintheanthropogenicair–seaCO2flux(thedominantcomponentofSOCEAN)bythetransportofcarbonintotheoceaninterior,whichisalsothecontrollingfactorofpresent-dayoceancar-bonuptakeintherealworld.Theycoverthefullglobeandallseasonsandwererecentlyevaluatedagainstsurfaceoceancarbonobservations,suggestingtheyaresuitabletoestimatetheannualoceancarbonsink(Haucketal.,2020).ThedataproductsaretightlylinkedtoobservationsoffCO2(fugacityofCO2,whichequalspCO2correctedforthenon-idealbe-haviourofthegas;Pfeiletal.,2013),whichcarryimprintsoftemporalandspatialvariability,butarealsosensitivetoun-certaintiesingasexchangeparameterizationsanddataspar-sity.Theirassetistheassessmentofinterannualandspatialvariability(Haucketal.,2020).Weusetwofurtherdiagnos-ticoceanmodelstoestimateSOCEANovertheindustrialera(1781–1958).TheglobalfCO2-basedfluxestimateswereadjustedtoremovethepre-industrialoceansourceofCO2totheatmo-sphereof0.65GtCyr−1fromriverinputtotheocean(Reg-nieretal.,2022)tosatisfyourdefinitionofSOCEAN(Haucketal.,2020).TheriverfluxadjustmentwasdistributedoverthelatitudinalbandsusingtheregionaldistributionofAumontetal.(2001;north:0.17GtCyr−1;tropics:0.16GtCyr−1;south:0.32GtCyr−1),acknowledgingthattheboundariesofAumontetal.(2001;namely20◦Sand20◦N)arenotcon-sistentwiththeboundariesotherwiseusedintheGCB(30◦Sand30◦N).Arecentstudybasedononeoceanbiogeochem-icalmodel(Lacroixetal.,2020)suggeststhatmoreoftheriverineoutgassingislocatedinthetropicsthanintheSouth-ernOcean,andhencethisregionaldistributionisassoci-atedwithamajoruncertainty.Anthropogenicperturbationshttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224824P.Friedlingsteinetal.:GlobalCarbonBudget2022ofrivercarbonandnutrienttransporttotheoceanarenotconsidered(seeSect.2.7andAppendixD3).WederiveSOCEANfromGOBMsbyusingasimulation(simA)withhistoricalforcingofclimateandatmosphericCO2,accountingformodelbiasesanddriftfromacon-trolsimulation(simB)withconstantatmosphericCO2andnormal-yearclimateforcing.Athirdsimulation(simC)withhistoricalatmosphericCO2increaseandnormal-yearclimateforcingisusedtoattributetheoceansinktoCO2(simCmi-nussimB)andclimate(simAminussimC)effects.Afourthsimulation(simD;historicalclimateforcingandconstantat-mosphericCO2)isusedtocomparethechangeinanthro-pogeniccarboninventoryintheinteriorocean(simAminussimD)totheobservationalestimateofGruberetal.(2019)withthesamefluxcomponents(steadystateandnon-steadystateanthropogeniccarbonflux).Dataproductsareadjustedtorepresentthefullice-freeoceanareabyasimplescalingapproachwhencoverageisbelow99%.GOBMsanddataproductsfallwithintheobservationalconstraintsoverthe1990s(2.2±0.7GtCyr−1,Ciaisetal.,2013)afterapplyingadjustments.SOCEANiscalculatedastheaverageoftheGOBMensem-blemeananddataproductensemblemeanfrom1990on-wards.Priorto1990,itiscalculatedastheGOBMensemblemeanplushalfoftheoffsetbetweenGOBMsanddataprod-uctensemblemeansover1990–2001.Weassignanuncertaintyof±0.4GtCyr−1totheoceansinkbasedonacombinationofrandom(ensemblestandarddeviation)andsystematicuncertainties(GOBMbiasinan-thropogeniccarbonaccumulation,previouslyreporteduncer-taintiesinfCO2-baseddataproducts;seeAppendixC3.3).WeassessamediumconfidenceleveltotheannualoceanCO2sinkanditsuncertaintybecauseitisbasedonmulti-plelinesofevidence,itisconsistentwithoceaninteriorcar-bonestimates(Gruberetal.,2019,seeSect.3.5.5)andtheinterannualvariabilityintheGOBMs,anddata-basedesti-matesarelargelyconsistentandcanbeexplainedbyclimatevariability.Werefrainfromassigningahighconfidencebe-causeofthesystematicdeviationbetweentheGOBManddataproducttrendssincearound2002.MoredetailsontheSOCEANmethodologycanbefoundinAppendixC3.2.4.2The2022projectionTheoceanCO2sinkforecastfortheyear2022isbasedontheannualhistoricalandestimated2022atmosphericCO2concentration(DlugokenckyandTans,2022),thehistoricalandestimated2022annualglobalfossilfuelemissionsfromthisyear’scarbonbudget,andthespring(March,April,May)OceanicNiñoIndex(ONI)(NCEP,2022).Usinganon-linearregressionapproach,i.e.afeed-forwardneuralnetwork,at-mosphericCO2,ONI,andfossilfuelemissionsareusedastrainingdatatobestmatchtheannualoceanCO2sink(i.e.combinedSOCEANestimatefromGOBMsanddataproducts)from1959through2021fromthisyear’scarbonbudget.Us-ingthisrelationship,the2022SOCEANcanthenbeestimatedfromtheprojected2021inputdatausingthenon-linearre-lationshipestablishedduringthenetworktraining.Toavoidoverfitting,theneuralnetworkwastrainedwithavariablenumberofhiddenneurons(varyingbetween2–5),and20%oftherandomlyselectedtrainingdatawerewithheldforin-dependentinternaltesting.Basedonthebestoutputperfor-mance(testedusingthe20%withheldinputdata),thebestperformingnumberofneuronswasselected.Inasecondstep,wetrainedthenetwork10timesusingthebestnumberofneuronsidentifiedinstep1anddifferentsetsofrandomlyselectedtrainingdata.Themeanofthe10trainingsequencesisconsideredourbestforecast,whereasthestandarddevia-tionofthe10ensemblesprovidesafirst-orderestimateoftheforecastuncertainty.ThisuncertaintyisthencombinedwiththeSOCEANuncertainty(0.4GtCyr−1)toestimatetheoveralluncertaintyofthe2022projection.2.5LandCO2sink2.5.1HistoricalperiodTheterrestriallandsink(SLAND)isthoughttobeduetothecombinedeffectsoffertilizationbyrisingatmosphericCO2andNinputsonplantgrowth,aswellastheeffectsofcli-matechangesuchasthelengtheningofthegrowingseasoninnortherntemperateandborealareas.SLANDdoesnotin-cludelandsinksdirectlyresultingfromlanduseandland-usechange(e.g.regrowthofvegetation)asthesearepartoftheland-useflux(ELUC),althoughsystemboundariesmakeitdifficulttoexactlyattributeCO2fluxesonlandbetweenSLANDandELUC(Erbetal.,2013).SLANDisestimatedfromthemulti-modelmeanof16DGVMs(TableA1).AsdescribedinAppendixC.4,DGVMsimulationsincludeallclimatevariabilityandCO2effectsoverland.InadditiontothecarboncyclerepresentedinallDGVMs,11modelsalsoaccountforthenitrogencycleandhencecanincludetheeffectofNinputsonSLAND.TheDGVMestimateofSLANDdoesnotincludetheexportofcar-bontoaquaticsystemsoritshistoricalperturbation,whichisdiscussedinAppendixD3.SeeAppendixC4forDGVMevaluationanduncertaintyassessmentforSLANDusingtheInternationalLandModelBenchmarkingsystem(ILAMB;Collieretal.,2018).MoredetailsontheSLANDmethodol-ogycanbefoundinAppendixC4.2.5.2The2022projectionLikefortheoceanforecast,thelandCO2sink(SLAND)fore-castisbasedontheannualhistoricalandestimated2022atmosphericCO2concentration(DlugokenckyandTans,2021),historicalandestimated2022annualglobalfossilfuelemissionsfromthisyear’scarbonbudget,andthesummer(June,July,August)ONI(NCEP,2022).AlltrainingdataareagainusedtobestmatchSLANDfrom1959through2021fromthisyear’scarbonbudgetusingafeed-forwardneuralEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224825network.Toavoidoverfitting,theneuralnetworkwastrainedwithavariablenumberofhiddenneurons(varyingbetween2–15),largerthanforSOCEANpredictionduetothestrongerlandcarboninterannualvariability.AsdoneforSOCEAN,apre-trainingselectstheoptimalnumberofhiddenneuronsbasedon20%withheldinputdata,andinasecondstep,anensembleof10forecastsisproducedtoprovidethemeanforecastplusuncertainty.ThisuncertaintyisthencombinedwiththeSLANDuncertaintyfor2021(0.9GtCyr−1)toesti-matetheoveralluncertaintyofthe2022projection.2.6TheatmosphericperspectiveTheworld-widenetworkofinsituatmosphericmeasure-mentsandsatellite-derivedatmosphericCO2column(xCO2)observationsputastrongconstraintonchangesintheatmo-sphericabundanceofCO2.Thisistrueglobally(henceourlargeconfidenceinGATM)butalsoregionallyinregionswithsufficientobservationaldensityfoundmostlyintheextrat-ropics.Thisallowsatmosphericinversionmethodstocon-strainthemagnitudeandlocationofthecombinedtotalsur-faceCO2fluxesfromallsources,includingfossilandland-usechangeemissionsandlandandoceanCO2fluxes.TheinversionsassumeEFOStobewellknown,andtheysolveforthespatialandtemporaldistributionoflandandoceanfluxesfromtheresidualgradientsofCO2betweenstationsthatarenotexplainedbyfossilfuelemissions.Bydesign,suchsys-temsthusclosethecarbonbalance(BIM=0)andthuspro-videanadditionalperspectiveontheindependentestimatesoftheoceanandlandfluxes.Thisyear’sreleaseincludesnineinversionsystemsthataredescribedinTableA4.EachsystemisrootedinBayesianin-versionprinciplesbutusesdifferentmethodologies.ThesedifferencesconcerntheselectionofatmosphericCO2dataorxCO2,andthechoiceofapriorifluxestorefine.Theyalsodifferinspatialandtemporalresolution,assumedcorre-lationstructures,andmathematicalapproachofthemodels(seereferencesinTableA4fordetails).Importantly,thesys-temsuseavarietyoftransportmodels,whichwasdemon-stratedtobeadrivingfactorbehinddifferencesinatmo-sphericinversion-basedfluxestimatesandspecificallytheirdistributionacrosslatitudinalbands(Gaubertetal.,2019;Schuhetal.,2019).Fourinversionsystems(CAMS-FT21r2,CMS-flux,GONGGA,THU)usedsatellitexCO2retrievalsfromGOSATand/orOCO-2,scaledtotheWMO2019cali-brationscale.Oneinversionthisyear(CMS-Flux)usedthesexCO2datasetsinadditiontotheinsituobservationalCO2molefractionrecords.Theoriginalproductsdeliveredbytheinversemodellersweremodifiedtofacilitatethecomparisontotheotherele-mentsofthebudget,specificallyontwoaccounts:(1)globaltotalfossilfuelemissions,includingcementcarbonationCO2uptake,and(2)riverineCO2transport.Detailsaregivenbelow.Wenotethatwiththeseadjustmentstheinverseresultsnolongerrepresentthenetatmosphere–surfaceexchangeoverlandandoceanareasassensedbyatmosphericobserva-tions.Instead,forland,theybecomethenetuptakeofCO2byvegetationandsoilsthatisnotexportedbyfluvialsystems,similartotheDGVMestimates.Foroceans,theybecomethenetuptakeofanthropogenicCO2,similartotheGOBMesti-mates.Theinversionsystemsprescribeglobalfossilfuelemis-sionsbasedontheGCP’sGriddedFossilEmissionsDatasetversions2022.1or2022.2(GCP-GridFED;Jonesetal.,2022),whichareupdatestoGCP-GridFEDv2021presentedbyJonesetal.(2021).GCP-GridFEDv2022scalesgriddedestimatesofCO2emissionsfromEDGARv4.3.2(Janssens-Maenhoutetal.,2019)withinnationalterritoriestomatchnationalemissionsestimatesprovidedbytheGCBfortheyears1959–2021,whichwerecompiledfollowingthemethodologydescribedinSect.2.1.Smalldifferencesbe-tweenthesystemsdueto,forinstance,regriddingtothetransportmodelresolutionoruseofdifferentGridFEDver-sionswithdifferentcementcarbonationsinks(whichwereonlypresentstartingwithGridFEDv2022.1)areadjustedinthelatitudinalpartitioningwepresenttoensureagreementwiththeestimateofEFOSinthisbudget.WealsonotethattheoceanfluxesusedaspriorbysixoutofthenineinversionsarepartofthesuiteoftheoceanprocessmodelsorfCO2dataproductslistedinSect.2.4.Althoughthesefluxesarefurtheradjustedbytheatmosphericinversions,itmakestheinversionestimatesoftheoceanfluxesnotcompletelyinde-pendentofSOCEANassessedhere.TofacilitatecomparisonstotheindependentSOCEANandSLAND,weusedthesamecorrectionsfortransportandout-gassingofcarbontransportedfromlandtoocean,ashasbeendonefortheobservation-basedestimatesofSOCEAN(seeAp-pendixC3).TheatmosphericinversionsareevaluatedusingverticalprofilesofatmosphericCO2concentrations(Fig.B4).Morethan30aircraftprogrammesovertheglobe,eitherregularprogrammesorrepeatedsurveysoveratleast9months(ex-ceptforSouthernHemisphere,SH,programmes),havebeenusedtoassesssystemperformance(withspace–timeobser-vationalcoveragesparseintheSHandtropics,anddenserinNorthernHemisphere,NH,mid-latitudes;TableA6).TheninesystemsarecomparedtotheindependentaircraftCO2measurementsbetween2and7kmabovesealevelbetween2001and2021.ResultsareshowninFig.B4anddiscussedinAppendixC5.2Witharelativelysmallensemble(N=9)ofsystemsthatmoreoversharesomeapriorifluxesusedwithoneanother,orwiththeprocess-basedmodels,itisdifficulttojustifyus-ingtheirmeanandstandarddeviationasametricforun-certaintyacrosstheensemble.Wethereforereporttheirfullrange(min–max)withouttheirmean.MoredetailsontheatmosphericinversionsmethodologycanbefoundinAp-pendixC5.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224826P.Friedlingsteinetal.:GlobalCarbonBudget20222.7ProcessesnotincludedintheglobalcarbonbudgetThecontributionofanthropogenicCOandCH4totheglobalcarbonbudgetisnotfullyaccountedforinEq.(1)andisdescribedinAppendixD1.ThecontributionstoCO2emis-sionsofdecompositionofcarbonatesnotaccountedforisde-scribedinAppendixD2.ThecontributionofanthropogenicchangesinriverfluxesisconceptuallyincludedinEq.(1)inSOCEANandinSLAND,butitisnotrepresentedintheprocessmodelsusedtoquantifythesefluxes.ThiseffectisdiscussedinAppendixD3.Similarly,thelossofadditionalsinkcapac-ityfromreducedforestcoverismissinginthecombinationofapproachesusedheretoestimatebothlandfluxes(ELUCandSLAND)anditspotentialeffectisdiscussedandquanti-fiedinAppendixD4.3ResultsForeachcomponentoftheglobalcarbonbudget,wepresentresultsforthreedifferenttimeperiods:thefullhistoricalpe-riod,from1850to2021,the6decadesinwhichwehaveatmosphericconcentrationrecordsfromMaunaLoa(1960–2021);aspecificfocusonthelastyear(2021);andthepro-jectionforthecurrentyear(2022).Subsequently,weassessthecombinedconstraintsfromthebudgetcomponents(oftenreferredtoasabottom-upbudget)againstthetop-downcon-straintsfrominversemodellingofatmosphericobservations.Wedothisfortheglobalbalanceofthelastdecade,aswellasforaregionalbreakdownoflandandoceansinksbybroadlatitudebands.3.1FossilCO2emissions3.1.1Historicalperiod1850–2021CumulativefossilCO2emissionsfor1850–2021were465±25GtC,includingthecementcarbonationsink(Fig.3,Table8,allcumulativenumbersareroundedtothenearest5GtC).Inthisperiod,46%offossilCO2emissionscamefromcoal,35%fromoil,15%fromnaturalgas,3%fromdecom-positionofcarbonates,and1%fromflaring.In1850,theUKcontributed62%ofglobalfossilCO2emissions.In1891thecombinedcumulativeemissionsofthecurrentmembersoftheEuropeanUnionreachedandsubse-quentlysurpassedtheleveloftheUK.Since1917,UScumu-lativeemissionshavebeenthelargest.Overtheentireperiod1850–2021,UScumulativeemissionsamountedto115GtC(24%ofworldtotal),theEU’sto80GtC(17%),andChina’sto70GtC(14%).InadditiontotheestimatesoffossilCO2emissionsthatweprovidehere(seeSect.2),therearethreeadditionalglobaldatasetswithlongtimeseriesthatincludeallsourcesoffossilCO2emissions:CDIAC-FF(GilfillanandMar-land,2021),CEDSversionv_2021_04_21(Hoeslyetal.,2018;O’Rourkeetal.,2021),andPRIMAP-histversion2.3.1(Gütschowetal.,2016,2021),althoughthesedatasetsarenotentirelyindependentofeachother(Andrew,2020a).CDIAC-FFhasthelowestcumulativeemissionsover1750–2018at437GtC,GCPhas443GtC,CEDS445GtC,PRIMAP-histTP453GtC,andPRIMAP-histCR455GtC.CDIAC-FFexcludesemissionsfromlimeproduction,whileneitherCDIAC-FFnorGCPexplicitlyincludeemissionsfrominternationalbunkerfuelspriorto1950.CEDShashigheremissionsfrominternationalshippinginrecentyears,whilePRIMAP-histhashigherfugitiveemissionsthantheotherdatasets.However,ingeneralthesefourdatasetsareinrelativeagreementastototalhistoricalglobalemissionsoffossilCO2.3.1.2Recentperiod1960–2021GlobalfossilCO2emissions,EFOS(includingthecementcarbonationsink),haveincreasedeverydecadefromanav-erageof3.0±0.2GtCyr−1forthedecadeofthe1960stoanaverageof9.6±0.5GtCyr−1during2012–2021(Ta-ble6,Figs.2and5).Thegrowthrateintheseemissionsdecreasedbetweenthe1960sandthe1990s,from4.3%peryearinthe1960s(1960–1969),3.2%peryearinthe1970s(1970–1979),1.6%peryearinthe1980s(1980–1989),and0.9%peryearinthe1990s(1990–1999).Af-terthisperiod,thegrowthratebeganincreasingagaininthe2000satanaveragegrowthrateof3.0%peryear,de-creasingto0.5%peryearforthelastdecade(2012–2021).China’semissionsincreasedby+1.5%peryearonaverageoverthelast10years,dominatingtheglobaltrend,andIn-dia’semissionsincreasedby+3.8%peryear,whileemis-sionsdecreasedinEU27by−1.8%peryearandintheUSAby−1.1%peryear.Figure6illustratesthespatialdistribu-tionoffossilfuelemissionsforthe2012–2021period.EFOSincludestheuptakeofCO2bycementviacarbon-ation,whichhasincreasedwithincreasingstocksofcementproductsfromanaverageof20MtCyr−1(0.02GtCyr−1)inthe1960stoanaverageof200MtCyr−1(0.2GtCyr−1)dur-ing2012–2021(Fig.5).3.1.3Finalyear2021GlobalfossilCO2emissionswere5.1%higherin2021thanin2020becauseoftheglobalreboundfromtheworstoftheCOVID-19pandemic,withanincreaseof0.5GtCtoreach9.9±0.5GtC(includingthecementcarbonationsink)in2021(Fig.5),distributedamongcoal(41%),oil(32%),naturalgas(22%),cement(5%),andothers(1%).Com-paredtothepreviousyear,2021emissionsfromcoal,oil,andgasincreasedby5.7%,5.8%,and4.8%,respectively,whileemissionsfromcementincreasedby2.1%.Allgrowthratespresentedareadjustedfortheleapyearunlessstatedotherwise.In2021,thelargestabsolutecontributionstoglobalfos-silCO2emissionswerefromChina(31%),theUSA(14%),EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224827Figure3.CombinedcomponentsoftheglobalcarbonbudgetillustratedinFig.2asafunctionoftimeforfossilCO2emissions(EFOS,includingasmallsinkfromcementcarbonation;grey)andemissionsfromland-usechange(ELUC;brown),aswellastheirpartitioningamongtheatmosphere(GATM;cyan),ocean(SOCEAN;blue),andland(SLAND;green).Panel(a)showsannualestimatesofeachflux,andpanel(b)showsthecumulativeflux(thesumofallpriorannualfluxes)sincetheyear1850.Thepartitioningisbasedonnearlyindependentestimatesfromobservations(forGATM)andfromprocessmodelensemblesconstrainedbydata(forSOCEANandSLAND)anddoesnotexactlyadduptothesumoftheemissions,resultinginabudgetimbalance(BIM),whichisrepresentedbythedifferencebetweenthebottomredline(mirroringtotalemissions)andthesumofcarbonfluxesintheocean,land,andatmospherereservoirs.AlldataareinGtCyr−1(a)andGtC(b).TheEFOSestimateisbasedonamosaicofdifferentdatasets,andhasanuncertaintyof±5%(±1σ).TheELUCestimateisfromthreebookkeepingmodels(Table4)withuncertaintyof±0.7GtCyr−1.TheGATMestimatespriorto1959arefromJoosandSpahni(2008)withuncertaintiesequivalenttoabout±0.1–0.15GtCyr−1andfromDlugokenckyandTans(2022)since1959withuncertaintiesofabout+-0.07GtCyr−1during1959–1979and±0.02GtCyr−1since1980.TheSOCEANestimateistheaveragefromKhatiwalaetal.(2013)andDeVries(2014)withuncertaintyofabout±30%priorto1959,andtheaverageofanensembleofmodelsandanensembleoffCO2dataproducts(Table4)withuncertaintiesofabout±0.4GtCyr−1since1959.TheSLANDestimateistheaverageofanensembleofmodels(Table4)withuncertaintiesofabout±1GtCyr−1.Seethetextformoredetailsofeachcomponentandtheiruncertainties.theEU27(8%),andIndia(7%).Thesefourregionsaccountfor59%ofglobalCO2emissions,whiletherestoftheworldcontributed41%,includinginternationalaviationandmarinebunkerfuels(2.8%ofthetotal).Growthratesforthesecoun-triesfrom2020to2021were3.5%(China),6.2%(USA),6.8%(EU27),and11.1%(India),with+4.5%fortherestoftheworld.ThepercapitafossilCO2emissionsin2021were1.3tCperpersonperyearfortheglobeandwere4.0(USA),2.2(China),1.7(EU27),and0.5(India)tCperper-sonperyearforthefourhighest-emittingcountries(Fig.5).Thepost-COVID-19reboundinemissionsof5.1%in2021isclosetotheprojectedincreaseof4.8%publishedinFriedlingsteinetal.(2022a)(Table7).Oftheregions,theprojectionforthe“restofworld”regionwasleastaccurate(offby−1.3%),largelybecauseofpoorlyprojectedemis-sionsfrominternationaltransport(bunkerfuels),whichweresubjecttoverylargechangesduringthisperiod.3.1.4Year2022projectionGlobally,weestimatethatglobalfossilCO2emissions(in-cludingcementcarbonation)willgrowby1.0%in2022(0.1%to1.9%)to10.0GtC(36.6GtCO2),exceedingtheir2019emissionlevelsof9.9GtC(36.3GtCO2).Globalin-creasein2022emissionsperfueltypesareprojectedtobe+1%(range0.2%to1.8%)forcoal,+2.2%(range1.1%to3.3%)foroil,−0.2%(range−1.1%to0.7%)fornaturalgas,and−1.6%(range−3.7%to−0.5%)forcement.ForChina,projectedfossilemissionsin2022areexpectedtodeclineby0.9%(range−2.3%to+0.4%)comparedwith2021emissions,bringing2022emissionsforChinatoaround3.1GtCyr−1(11.4GtCO2yr−1).Changesinfuel-specificprojectionsforChinaare+0.1%forcoal,−2.8%foroil,−1.1%fornaturalgas,and−7.0%forcement.FortheUSA,theEnergyInformationAdministration(EIA)emissionsprojectionfor2022combinedwithcementclinkerdatafromUSGSgivesanincreaseof1.5%(range−1%to+4%)comparedto2021,bringing2022USAemis-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224828P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure4.Componentsoftheglobalcarbonbudgetandtheiruncertaintiesasafunctionoftime,presentedindividuallyfor(a)fossilCO2andcementcarbonationemissions(EFOS),(b)growthrateinatmosphericCO2concentration(GATM),(c)emissionsfromland-usechange(ELUC),(d)thelandCO2sink(SLAND),(e)theoceanCO2sink(SOCEAN),and(f)thebudgetimbalancethatisnotaccountedforbytheotherterms.PositivevaluesofSLANDandSOCEANrepresentafluxfromtheatmospheretolandortheocean.AlldataareinGtCyr−1withtheuncertaintyboundsrepresenting±1standarddeviationinshadedcolour.DatasourcesareasinFig.3.Thereddotsindicateourprojectionsfortheyear2022,andtherederrorbarstheuncertaintyintheprojections(seeSect.2).sionstoaround1.4GtCyr−1(5.1GtCO2yr−1).Thisisbasedonseparateprojectionsforcoalof−4.6%,oilof+2%,nat-uralgasof+4.7%,andcementof+1.2%.FortheEuropeanUnion,ourprojectionfor2022isforadeclineof0.8%(range−2.8%to+1.2%)over2021,with2022emissionsaround0.8GtCyr−1(2.8GtCO2yr−1).Thisisbasedonseparateprojectionsforcoalof+6.7%,oilof+0.9%,andnaturalgasof−10.0%,whilecementremainsunchanged.ForIndia,ourprojectionfor2022isanincreaseof6%(rangeof3.9%to8%)over2021,with2022emissionsaround0.8GtCyr−1(2.9GtCO2yr−1).Thisisbasedonsep-arateprojectionsforcoalof+5.0%,oilof+10.0%,naturalgasof−4.0%,andcementof+10.0%.Fortherestoftheworld,theexpectedgrowthratefor2022is1.7%(range0.1%to3.3%).Thefuel-specificprojected2022growthratesfortherestoftheworldare:+1.6%forEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224829Figure5.FossilCO2emissionsfor(a)theglobe,includinganuncertaintyof±5%(greyshading)andaprojectionthroughtheyear2022(reddotanduncertaintyrange);(b)territorial(solidlines)andconsumption(dashedlines)emissionsforthetopthreecountryemitters(USA,China,India)andfortheEuropeanUnion(EU27);(c)globalemissionsbyfueltype,includingcoal,oil,gas,cement,andcementminuscementcarbonation(dashed);and(d)percapitaemissionsfortheworldandforthelargeemitters,asinpanel(b).TerritorialemissionsareprimarilyfromadraftupdateofGilfillanandMarland(2021),withtheexceptionofthenationaldataforAnnexIcountriesfor1990–2020,whicharereportedtotheUNFCCCasdetailedinthetext,aswellassomeimprovementsinindividualcountries,andareextrapolatedforwardto2021usingBPEnergyStatistics.Consumption-basedemissionsareupdatedfromPetersetal.(2011b).SeeSect.2.1andAppendixC1fordetailsaboutthecalculationsanddatasources.coal,+3.1%foroil,−0.1%fornaturalgas,+3%force-ment.3.2Emissionsfromland-usechanges3.2.1Historicalperiod1850–2021CumulativeCO2emissionsfromland-usechanges(ELUC)for1850–2021were205±60GtC(Table8;Fig.3;Fig.14).ThecumulativeemissionsfromELUCshowalargespreadamongindividualestimatesof140GtC(updatedH&N2017),280GtC(BLUE),and190GtC(OSCAR)forthethreebook-keepingmodelsandasimilarwideestimateof185±60GtCfortheDGVMs(allcumulativenumbersareroundedtothenearest5GtC).Theseestimatesarebroadlyconsistentwithindirectconstraintsfromvegetationbiomassobserva-tions,givingacumulativesourceof155±50GtCoverthe1901–2012period(Lietal.,2017).However,giventhelargespread,abestestimateisdifficulttoascertain.3.2.2Recentperiod1960–2021Incontrasttogrowingfossilemissions,CO2emissionsfromlanduse,land-usechange,andforestryhaveremainedrela-tivelyconstantoverthe1960–1999periodbutshowaslightdecreaseofabout0.1GtCperdecadesincethe1990s,reach-ing1.2±0.7GtCyr−1forthe2012–2021period(Table6)butwithlargespreadacrossestimates(Table5,Fig.7).Dif-ferentfromthebookkeepingaverage,theDGVMmodelav-eragegrowsslightlylargeroverthe1970–2021periodandshowsnosignofdecreasingemissionsintherecentdecades(Table5,Fig.7).Thisis,however,expectedasDGVM-basedestimatesincludethelossofadditionalsinkcapacity,whichgrowswithtime,whilethebookkeepingestimatesdonot(AppendixD4).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224830P.Friedlingsteinetal.:GlobalCarbonBudget2022Table5.ComparisonofresultsfromthebookkeepingmethodandbudgetresidualswithresultsfromtheDGVMsandinverseestimatesfordifferentperiods,thelastdecade,andthelastyearavailable.AllvaluesareinGtCyr−1.SeeFig.7foranexplanationofthebookkeepingcomponentfluxes.TheDGVMuncertaintiesrepresent±1σofthedecadalorannual(for2021)estimatesfromtheindividualDGVMs;fortheinversesystemstherangeofavailableresultsisgiven.Allvaluesareroundedtothenearest0.1GtCandthereforecolumnsdonotnecessarilyaddtozero.Mean(GtCyr−1)1960s1970s1980s1990s2000s2012–20212021Land-usechangeemis-sions(ELUC)Bookkeeping(BK)Netflux(1a)1.5±0.71.2±0.71.3±0.71.5±0.71.4±0.71.2±0.71.1±0.7BK–deforestation1.6±0.41.5±0.41.6±0.41.8±0.31.9±0.41.8±0.41.8±0.4BK–organicsoils0.1±0.10.1±0.10.2±0.10.2±0.10.2±0.10.2±0.10.2±0.1BK–re/afforestationandwoodharvest−0.6±0.1−0.6±0.1−0.6±0.2−0.7±0.1−0.8±0.2−0.9±0.3−1.0±0.3BK–othertransitions0.4±0.10.2±0.10.2±0.10.1±0.10.1±0.10.2±0.10.1±0.2DGVMnetflux(1b)1.4±0.51.3±0.51.5±0.51.5±0.61.6±0.61.6±0.51.6±0.5Terrestrialsink(SLAND)Residualsinkfromglobalbudget(EFOS+ELUC(1a)−GATM−SOCEAN)(2a)1.7±0.81.8±0.81.6±0.92.6±0.92.8±0.92.8±0.92.8±1DGVMs(2b)1.2±0.42.2±0.51.9±0.72.5±0.42.7±0.53.1±0.63.5±0.9Totallandfluxes(SLAND−ELUC)GCB2022budget(2b–1a)−0.2±0.81±0.90.5±11±0.81.4±0.91.9±0.92.4±1.1Budgetconstraint(2a–1a)0.2±0.40.6±0.50.3±0.51.1±0.51.5±0.61.5±0.61.7±0.7DGVMsnet(2b–1b)−0.1±0.40.9±0.50.4±0.50.9±0.41.2±0.31.5±0.51.9±0.7Inversions∗––0.3–0.6(2)0.7–1.1(3)1.2–1.6(3)1.1–1.7(7)1.5–2.1(9)∗Estimatesareadjustedforthepre-industrialinfluenceofriverfluxesandthecementcarbonationsinkandarealsoadjustedtocommonEFOS(Sect.2.6).Therangesgivenincludevaryingnumbers(inparentheses)ofinversionsineachdecade(TableA4).ELUCisanettermofvariousgrossfluxes,whichcom-priseemissionsandremovals.Grossemissionsonaverageoverthe1850–2021periodare2(BLUE,OSCAR)to3(up-datedH&N2017)timeslargerthanthenetELUCemissions.Grossemissionsshowamoderateincreasefromanaverageof3.2±0.9GtCyr−1forthedecadeofthe1960stoanav-erageof3.8±0.7GtCyr−1during2012–2021(Fig.7).In-creasesingrossremovals,from1.8±0.4GtCyr−1forthe1960sto2.6±0.4GtCyr−1for2012–2021,wereslightlylargerthantheincreaseingrossemissions.Sincethepro-cessesbehindgrossremovals,foremostforestregrowthandsoilrecovery,areallslow,whilegrossemissionsincludealargeinstantaneouscomponent,short-termchangesinland-usedynamics,suchasatemporarydecreaseindeforesta-tion,influencesgrossemissionsdynamicsmorethangrossremovaldynamics.ItistheserelativechangestoeachotherthatexplainthesmalldecreaseinnetELUCemissionsoverthelast2decadesandthelastfewyears.Grossfluxesoftendiffermoreacrossthethreebookkeepingestimatesthannetfluxes,whichisexpectedduetodifferentprocessrepresen-tation;inparticular,treatmentofshiftingcultivation,whichincreasesbothgrossemissionsandremovals,differsacrossmodels.ThereisasmallerdecreaseinnetCO2emissionsfromland-usechangeinthelastfewyears(Fig.7)thaninlastyear’sestimate(Friedlingsteinetal.,2021),whichplacesourupdatedestimatesbetweenlastyear’sestimateandtheesti-matefromtheGCB2020(Friedlingsteinetal.,2020).ThischangeisprincipallyattributabletochangesinELUCesti-matesfromBLUEandOSCAR,whichrelatetoimprove-mentsintheunderlyingland-useforcing(seeAppendixC2.2fordetails).Thesechangesaddressissuesidentifiedwithlastyear’sland-useforcing(seeFriedlingsteinetal.,2022a)andremoveorattenuateseveralemissionpeaksinBrazilandtheDemocraticRepublicoftheCongoandleadtohighernetemissionsinBrazilinthelastdecadescomparedtolastyear’sglobalcarbonbudget(theemissionsaveragedoverthethreebookkeepingmodelsforBrazilforthe2011–2020periodwere168MtCyr−1inGCB2021ascomparedto289MtCyr−1inGCB2022).Aremainingcaveatisthatgloballand-usechangedataformodelinputdoesnotcap-tureforestdegradation,whichoftenoccursonsmallscaleorwithoutforestcoverchangeseasilydetectablefromremotesensingandposesagrowingthreattoforestareaandcarbonstocksthatmaysurpassdeforestationeffects(e.g.Matricardietal.,2020;Qinetal.,2021).Whileindependentpan-tropicalorglobalestimatesofvegetationcoverdynamicsorcarbonstockchangesbasedonsatelliteremotesensinghavebecomeavailableinrecentyears,adirectcomparisontoourestimatesisnotpossible,mostimportantlybecausesatellite-basedes-timatesusuallydonotdistinguishbetweenanthropogenicEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224831Figure6.The2012–2021decadalmeancomponentsoftheglobalcarbonbudget,presentedfor(a)fossilCO2emissions(EFOS),(b)land-usechangeemissions(ELUC),(c)theoceanCO2sink(SOCEAN),and(d)thelandCO2sink(SLAND).PositivevaluesforEFOSandELUCrepresentafluxtotheatmosphere,whereaspositivevaluesofSOCEANandSLANDrepresentafluxfromtheatmospheretotheoceanortheland.Inallpanels,yellowandred(greenandblue)coloursrepresentafluxfrom(into)thelandandoceanto(from)theatmosphere.AllunitsareinkgCm−2yr−1.Notethedifferentscalesineachpanel.EFOSdatashownisfromGCP-GridFEDv2022.2.ELUCdatashownareonlyfromBLUEastheupdatedH&N2017andOSCARdonotresolvegriddedfluxes.SOCEANdatashownaretheaverageofGOBMsanddataproductmeansusingGOBMsimulationAwithnoadjustmentforbiasordriftappliedtothegriddedfields(seeSect.2.4).SLANDdatashownaretheaverageofDGVMsforsimulationS2(seeSect.2.5).driversandnaturalforestcoverlosses(e.g.fromdroughtornaturalwildfires)(Pongratzetal.,2021).WeadditionallyseparatethenetELUCintofourcompo-nentfluxestogainfurtherinsightintothedriversofemis-sions:deforestation,afforestation,reafforestation,andwoodharvest(i.e.allfluxesonforestlands);emissionsfromor-ganicsoils(i.e.peatdrainageandpeatfires);andfluxesassociatedwithallothertransitions(Fig.7;Sect.C2.1).Onaverageoverthe2012–2021periodandoverthethreebookkeepingestimates,fluxesfromdeforestationamountto1.8±0.4GtCyr−1,andfromafforestation,reafforestation,andwoodharvestfluxesamountto−0.9±0.3GtCyr−1(Ta-ble5).Emissionsfromorganicsoils(0.2±0.1GtCyr−1)andthenetfluxfromothertransitions(0.2±0.1GtCyr−1)aresubstantiallylessimportantglobally.Deforestationisthusthemaindriverofglobalgrosssources.Therelativelysmalldeforestationflux(1.8±0.4GtCyr−1)incomparisontothegrossemissionestimateabove(3.8±0.7GtCyr−1)isex-plainedbythefactthatemissionsassociatedwithwoodhar-vestingdonotcountasdeforestationastheydonotchangethelandcover.Thissplitintocomponentfluxesclarifiesthepotentialforemissionreductionandcarbondioxidere-moval:theemissionsfromdeforestationcouldbehalted(largely)withoutcompromisingcarbonuptakebyforestsandwouldcontributetoemissionsreduction.Bycontrast,reduc-ingwoodharvestingwouldhavelimitedpotentialtoreduceemissionsasitwouldbeassociatedwithlessforestregrowth;sinksandsourcescannotbedecoupledhere.Carbondioxideremovalinforestscouldinsteadbeincreasedbyafforestationandreafforestation.Overall,thehighestland-useemissionsoccurinthetrop-icalregionsofallthreecontinents.Thetopthreeemitters(bothcumulatively1959–2021andonaverageover2012–2021)areBrazil(inparticulartheAmazonArcofDeforesta-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224832P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure7.NetCO2exchangesbetweentheatmosphereandtheterrestrialbiosphererelatedtoland-usechange.(a)NetCO2emissionsfromland-usechange(ELUC)withestimatesfromthethreebookkeepingmodels(yellowlines)andthebudgetestimate(blackwith±1σuncertainty),whichistheaverageofthethreebookkeepingmodels.EstimatesfromindividualDGVMs(narrowgreenlines)andtheDGVMensemblemean(thickgreenline)arealsoshown.(b)NetCO2emissionsfromland-usechangefromthefourcountrieswithlargestcumula-tiveemissionssince1959.Valuesshownaretheaverageofthethreebookkeepingmodels,withshadedregionsas±1σuncertainty.(c)CO2grosssinks(negative,fromregrowthafteragriculturalabandonmentandwoodharvesting)andgrosssources(positive,fromdecayingma-terialleftdeadonsite,productsafterclearingofnaturalvegetationforagriculturalpurposes,woodharvesting,and,forBLUE,degradationfromprimarytosecondarylandthroughusageofnaturalvegetationasrangelandandfromemissionsfrompeatdrainageandpeatburning).Valuesareshownforthethreebookkeepingmodels(yellowlines)andfortheiraverage(blackwith±1σuncertainty).ThesumofthegrosssinksandsourcesisELUCshowninpanel(a).(d)SourcesandsinksaggregatedintofourcomponentsthatcontributetothenetfluxesofCO2,including(i)grosssourcesfromdeforestation;(ii)afforestation,reafforestation,andwoodharvest(i.e.thenetfluxonforestlandscomprisingslashandproductdecayfollowingwoodharvestandsinksduetoregrowthafterwoodharvestorafterabandonment,includingreforestationandabandonmentaspartsofshiftingcultivationcycles);(iii)emissionsfromorganicsoils(peatdrainageandpeatfire);and(iv)sourcesandsinksrelatedtootherland-usetransitions.Thescaleofthefluxesshownissmallerthaninpanel(c)becausethesubstantialgrosssourcesandsinksfromwoodharvestingareaccountedforasnetfluxunder(ii).ThesumofthecomponentfluxesisELUCshowninpanel(a).tion),Indonesia,andtheDemocraticRepublicoftheCongo,withthesethreecountriescontributing0.7GtCyr−1or58%oftheglobaltotalland-useemissions(averageover2012–2021)(Fig.6b).Thisisrelatedtomassiveexpansionofcrop-land,particularlyinthelastfewdecadesinLatinAmerica,SoutheastAsia,andsub-SaharanAfrica(Hongetal.,2021),asubstantialpartofwhichhasbeenforexportofagriculturalproducts(Pendrilletal.,2019).Emissionintensityishighinmanytropicalcountries,particularlyinSoutheastAsia,duetohighratesoflandconversioninregionsofcarbon-denseandoftenstillpristineundegradednaturalforests(Hongetal.,2021).EmissionsarefurtherincreasedbypeatfiresinequatorialAsia(GFED4s,vanderWerfetal.,2017).Uptakeduetoland-usechangeoccurspartlyduetoexpandingforestareaasaconsequenceoftheforesttransitioninthe19thand20thcenturiesandthesubsequentregrowthofforest,par-ticularlyinEurope(Fig.6b)(Mather,2001;McGrathetal.,2015).EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224833Whilethementionedpatternsaresupportedbyindepen-dentliteratureandrobust,weacknowledgethatmodelspreadissubstantiallylargeratregionalratherthangloballevels,ashasbeenshownforbookkeepingmodels(Bastosetal.,2021)andDGVMs(Obermeieretal.,2021).Assessmentsforindi-vidualregionswillbeperformedaspartofREgionalCarbonCycleAssessmentandProcesses(RECCAP2;Ciaisetal.,2022)oralreadyexistforselectedregions(e.g.forEuropebyPetrescuetal.,2020;forBrazilbyRosanetal.,2021;andforeightselectedcountriesandregionsincomparisontoinventorydatabySchwingshackletal.,2022).NationalGHGinventorydata(NGHGI)undertheLU-LUCFsectorordatasubmittedbycountriestoFAOSTATdif-ferfromtheglobalmodels’definitionofELUCthatweadopthereinthatthenaturalfluxes(SLAND)arecountedtowardsELUCwhentheyoccuronmanagedlandintheNGHGIre-porting(Grassietal.,2018).InordertocompareourresultstotheNGHGIapproach,weperformare-mappingofourELUCestimatesbyaddingSLANDinmanagedforestfromtheDGVMsimulations(followingGrassietal.,2021)tothebookkeepingELUCestimate(seeAppendixC2.3).Forthe2012–2021period,weestimatethat1.8GtCyr−1ofSLANDoccurredinmanagedforestsandisthenreallocatedtoELUChere,ashasbeendoneintheNGHGImethod.Bydoingso,ourmeanestimateofELUCisreducedfromasourceof1.2GtCtoasinkof0.6GtC,whichisverysimilartotheNGHGIestimateofa0.5GtCsink(Table9).There-mappingapproachhasbeenshowntoalsobegenerallyappli-cableforcountry-leveldata(Grassietal.,2022b;Schwing-shackletal.,2022).Country-levelanalysissuggests,e.g.thatthebookkeepingmeanestimateshigherdeforestationemissionsthanthenationalreportinIndonesiabutestimateslessCO2removalbyafforestationthanthenationalreportinChina.ThefractionofthenaturalCO2sinksthattheNGHGIestimatesincludedifferssubstantiallyacrosscoun-tries,relatedtovaryingproportionsofmanagedvs.allfor-estareas(Schwingshackletal.,2022).ComparingELUCandNGHGIonthebasisofthefourcomponentfluxes(Grassietal.,2022b),wefindthatNGHGIdeforestationemissionsarereportedtobesmallerthanthebookkeepingestimate(1.1GtCyr−1averagedover2012–2021).Areasonforthisliesinthefactthatcountryreportsdonot(fully)capturethecarbonfluxconsequencesofshiftingcultivation.Con-versely,carbonuptakeinforests(afforestation,reafforesta-tion,andforestry)issubstantiallylargerthanthebookkeep-ingestimate(1.75GtCyr−1averagedover2012–2021),ow-ingtotheinclusionofnaturalCO2fluxesonmanagedlandintheNGHGI.Emissionsfromorganicsoilsandthenetfluxfromothertransitionsaresimilartotheestimatesbasedonthebookkeepingapproachandtheexternalpeatdrainageandburningdatasets.ThoughestimatesbetweenNGHGI,FAOSTAT,individualprocess-basedmodels,andthemappedbudgetstilldifferinvalueandneedfurtheranalysis,theap-proachtakenhereprovidesapossibilitytorelatetheglobalmodels’andNGHGIapproachtoeachotherroutinelyandthuslinktheanthropogeniccarbonbudgetestimatesoflandCO2fluxesdirectlytotheGlobalStocktakeaspartofUN-FCCCParisAgreement.3.2.3Finalyear2021TheglobalCO2emissionsfromland-usechangeareesti-matedas1.1±0.7GtCin2021,similartothe2020estimate.However,confidenceintheannualchangeremainslow.Land-usechangeandrelatedemissionsmayhavebeenaf-fectedbytheCOVID-19pandemic(e.g.Poulteretal.,2021).Duringtheperiodofthepandemic,environmentalprotectionpoliciesandtheirimplementationmayhavebeenweakenedinBrazil(Valeetal.,2021).Inothercountriesmonitoringcapacitiesandlegalenforcementofmeasurestoreducetrop-icaldeforestationhavealsobeenreducedduetobudgetre-strictionsofenvironmentalagenciesortheimpairmentsofground-basedmonitoringintendedtopreventlandgrabsandtenureconflicts(Brancalionetal.,2020;Amador-Jiménezetal.,2020).Effectsofthepandemicontrendsinfireactivityorforestcoverchangesarehardtoseparatefromthoseofgeneralpoliticaldevelopmentsandenvironmentalchanges,andthelong-termconsequencesofdisruptionsinagriculturalandforestryeconomicactivities(e.g.GruèreandBrooks,2021;Golaretal.,2020;BeckmanandCountryman,2021)remaintobeseen.Overall,thereislimitedevidencesofarthatCOVID-19wasakeydriverofchangesinLULUCFemissionsataglobalscale.Impactsvaryacrosscountriesanddeforestation-curbingandenhancingfactorsmaypartlycompensateeachother(Wunderetal.,2021).3.2.4Year2022projectionInIndonesia,peatfireemissionsareverylow,potentiallyre-latedtoarelativelywetdryseason(GFED4.1s,vanderWerfetal.,2017).InSouthAmerica,thetrajectoryoftropicaldeforestationanddegradationfiresresemblesthelong-termaverage;globalemissionsfromtropicaldeforestationanddegradationfireswereestimatedtobe206TgCby14Octo-ber2020.(GFED4.1s,vanderWerfetal.,2017).Ourprelim-inaryestimateofELUCfor2022issubstantiallylowerthanthe2012–2021average,whichsawyearsofanomalouslydryconditionsinIndonesiaandhighdeforestationfiresinSouthAmerica(Friedlingsteinetal.,2022a).Basedonthefireemissionsuntil14October,weexpectELUCemissionsofaround1.1GtCin2022.Notethatalthoughourextrapola-tionisbasedontropicaldeforestationanddegradationfires,degradationattributabletoselectivelogging,edgeeffects,orfragmentationwillnotbecaptured.Further,deforestationandfiresindeforestationzonesmaybecomemorediscon-nected,partlyduechangesinlegislationinsomeregions.Forexample,VanWeesetal.(2021)foundthatthecontributionfromfirestoforestlossdecreasedintheAmazonandinIn-donesiaovertheperiodof2003–2018.Morerecentyears,however,sawanuptickintheAmazonagain(Tyukavinaethttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224834P.Friedlingsteinetal.:GlobalCarbonBudget2022al.,2022withupdate),andmoreworkisneededtounder-standfire–deforestationrelations.ThefiresinMediterraneanEuropeinsummer2022andintheUSinspring2022,thoughaboveaverageforthosere-gions,onlycontributeasmallamounttoglobalemissions.However,theywereunrelatedtoland-usechangeandarethusnotattributedtoELUCbutwouldbepartofthenaturallandsink.Land-usedynamicsmaybeinfluencedbythedisruptiontotheglobalfoodmarketassociatedwiththewarinUkraine,butscientificevidencesofarisverylimited.Highfoodprices,whichpreceded(butwereexacerbatedby)thewar(ToreroandFAO,2022),aregenerallylinkedtohigherdefor-estation(AngelsenandKaimowitz,1999),whilehighpricesonagriculturalinputssuchasfertilizersandfuel,whicharealsounderpressurefromembargoes,mayimpairyields.3.3TotalanthropogenicemissionsCumulativeanthropogenicCO2emissionsfor1850–2021totalled670±65GtC(2455±240GtCO2),ofwhich70%(470GtC)occurredsince1960and33%(220GtC)since2000(Tables6and8).Totalanthropogenicemis-sionsmorethandoubledoverthelast60years,from4.5±0.7GtCyr−1forthedecadeofthe1960stoanaver-ageof10.8±0.8GtCyr−1during2012–2021,andreach-ing10.9±0.9GtC(40.0±3.3GtCO2)in2021.For2022,weprojectglobaltotalanthropogenicCO2emissionsfromfossilandland-usechangestobealsoaround11.1GtC(40.5GtCO2).Allvalueshereincludethecementcarbona-tionsink(currentlyabout0.2GtCyr−1).Duringthehistoricalperiod1850–2021,30%ofhistor-icalemissionswerefromland-usechangeand70%fromfossilemissions.However,fossilemissionshavegrownsig-nificantlysince1960whileland-usechangeshavenot,andconsequentlythecontributionsofland-usechangetototalanthropogenicemissionsweresmallerduringrecentperiods(18%duringtheperiod1960–2021and11%during2012–2021).3.4AtmosphericCO23.4.1Historicalperiod1850–2021AtmosphericCO2concentrationwasapproximately278ppmin1750,300ppminthe1910s,350ppminthelate1980s,and414.71±0.1ppmin2021(DlugokenckyandTans,2022);Fig.1).Themassofcarbonintheatmosphereincreasedby48%from590GtCin1750to879GtCin2021.CurrentCO2concentrationsintheatmosphereareunprecedentedinthelast2millionyears,andthecurrentrateofatmosphericCO2increaseisatleast10timesfasterthanatanyothertimedur-ingthelast800000years(Canadelletal.,2021).3.4.2Recentperiod1960–2021ThegrowthrateinatmosphericCO2levelincreasedfrom1.7±0.07GtCyr−1inthe1960sto5.2±0.02GtCyr−1dur-ing2012–2022withimportantdecadalvariations(Table6,Figs.3and4).Duringthelastdecade(2012–2021),thegrowthrateinatmosphericCO2concentrationcontinuedtoincrease,albeitwithlargeinterannualvariability(Fig.4).Theairbornefraction(AF),definedastheratioofatmo-sphericCO2growthratetototalanthropogenicemissions,i.e.AF=GATM/(EFOS+ELUC),(2)providesadiagnosticoftherelativestrengthofthelandandoceancarbonsinksinremovingpartoftheanthropogenicCO2perturbation.TheevolutionofAFoverthelast60yearsshowsnosignificanttrend,remainingataround44%,albeitshowingalargeinterannualanddecadalvariabilitydrivenbytheyear-to-yearvariabilityinGATM(Fig.9).Theobservedstabilityoftheairbornefractionoverthe1960–2020periodindicatesthattheoceanandlandCO2sinkshaveonaveragebeenremovingabout55%oftheanthropogenicemissions(seeSect.3.5and3.6).3.4.3Finalyear2021ThegrowthrateinatmosphericCO2concentrationwas5.2±0.2GtC(2.46±0.08ppm)in2021(Fig.4;Dlugo-kenckyandTans,2022),slightlyabovethe2020growthrate(5.0GtC)butsimilartothe2011–2020average(5.2GtC).3.4.4Year2022projectionThe2022growthinatmosphericCO2concentration(GATM)isprojectedtobeabout5.3GtC(2.5ppm)basedonglobalobservationsuntilOctober2022,bringingtheatmosphericCO2concentrationtoanexpectedlevelof417.2ppmaver-agedovertheyear,51%overthepreindustriallevel.3.5Oceansink3.5.1Historicalperiod1850–2021Cumulatedsince1850,theoceansinkaddsupto175±35GtC,withmorethantwo-thirdsofthisamount(120GtC)beingtakenupbytheglobaloceansince1960.Overthehistoricalperiod,theoceansinkincreasedinpacewiththeexponentialanthropogenicemissionsincrease(Fig.3b).Since1850,theoceanhasremoved26%oftotalanthropogenicemissions.3.5.2Recentperiod1960–2021TheoceanCO2sinkincreasedfrom1.1±0.4GtCyr−1inthe1960sto2.9±0.4GtCyr−1during2012–2021(Table6),withinterannualvariationsoftheorderofafewtenthsofaEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224835Table6.DecadalmeaninthefivecomponentsoftheanthropogenicCO2budgetfordifferentperiodsandthelastyearavailable.AllvaluesareinGtCyr−1,anduncertaintiesarereportedas±1σ.FossilCO2emissionsincludecementcarbonation.Thebudgetimbalance(BIM)isalsoshown,whichprovidesameasureofthediscrepanciesamongthenearlyindependentestimates.Apositiveimbalancemeanstheemissionsareoverestimatedand/orthesinksaretoosmall.Allvaluesareroundedtothenearest0.1GtC,andthereforecolumnsdonotnecessarilyaddtozero.Mean(GtCyr−1)1960s1970s1980s1990s2000s2012–202120212022(Projection)Totalemissions(EFOS+ELUC)FossilCO2emissions(EFOS)∗3±0.24.7±0.25.5±0.36.3±0.37.7±0.49.6±0.59.9±0.510±0.5Land-usechangeemis-sions(ELUC)1.5±0.71.2±0.71.3±0.71.5±0.71.4±0.71.2±0.71.1±0.71.1±0.7Totalemissions4.5±0.75.9±0.76.8±0.87.8±0.89.1±0.810.8±0.810.9±0.911.1±0.9PartitioningGrowthrateinatmosCO2(GATM)1.7±0.072.8±0.073.4±0.023.1±0.024±0.025.2±0.025.2±0.25.3±0.4Oceansink(SOCEAN)1.1±0.41.4±0.41.8±0.42.1±0.42.3±0.42.9±0.42.9±0.42.9±0.4Terrestrialsink(SLAND)1.2±0.42.2±0.51.9±0.72.5±0.42.7±0.53.1±0.63.5±0.93.4±0.9BudgetimbalanceBIM=EFOS+ELUC−(GATM+SOCEAN+SLAND)0.4−0.4−0.30.10.1−0.3−0.6−0.5∗Fossilemissionsexcludingthecementcarbonationsinkamountto3.1±0.2,4.7±0.2,5.5±0.3,6.4±0.3,7.9±0.4,and9.8±0.5GtCyr−1forthedecadesofthe1960sto2010s,respectively,10.1±0.5GtCyr−1for2021,and10.2±0.5GtCyr−1for2022.Figure8.(a)ThelandCO2sink(SLAND)estimatedbyindividualDGVMestimates(green),aswellasthebudgetestimate(blackwith±1σuncertainty),whichistheaverageofallDGVMs.(b)Totalatmosphere–landCO2fluxes(SLAND−ELUC).Thebudgetestimateofthetotallandflux(blackwith±1σuncertainty)combinestheDGVMestimateofSLANDfrompanel(a)withthebookkeepingestimateofELUCfromFig.7a.UncertaintiesaresimilarlypropagatedinquadraturefromthebudgetestimatesofSLANDfrompanel(a)andELUCfromFig.7a.DGVMsalsoprovideestimatesofELUC(seeFig.7a),whichcanbecombinedwiththeirownestimatesofthelandsink.Hence,panel(b)alsoincludesanestimateforthetotallandfluxforindividualDGVMs(thingreenlines)andtheirmulti-modelmean(thickgreenline).gigatonneofcarbonperyear(Fig.10).Theocean-bornefrac-tion(SOCEAN/(EFOS+ELUC)hasbeenremarkablyconstantataround25%onaverage(Fig.9).Variationsaroundthismeanillustratedecadalvariabilityoftheoceancarbonsink.Sofarthereisnoindicationofadecreaseintheocean-bornefractionfrom1960to2021.TheincreaseintheoceansinkisprimarilydrivenbytheincreasedatmosphericCO2concen-tration,withthestrongestCO2-inducedsignalintheNorthAtlanticOceanandtheSouthernOcean(Fig.11a).Theeffectofclimatechangeismuchweaker,reducingtheoceansinkgloballyby0.11±0.09GtCyr−1(−4.2%)during2012–2021(ninemodelssimulateaweakeningoftheoceansinkbyclimatechangewitharangeof−3.2to−8.9%,andonlyonemodelsimulatesastrengtheningby4.8%),anditdoeshttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224836P.Friedlingsteinetal.:GlobalCarbonBudget2022Table7.ComparisonoftheprojectionwithrealizedfossilCO2emissions(EFOS).The“actual”valuesarethefirstestimateavailableusingactualdata,andthe“projected”valuesrefertoestimatesmadebeforetheendoftheyearforeachpublication.Projectionsbasedonadifferentmethodfromthatdescribedhereduring2008–2014areavailableinLeQuéréetal.(2016).Allvaluesareadjustedforleapyears.WorldChinaUSAEU28/EU27iIndiaRestofworldProjectedActualProjectedActualProjectedActualProjectedActualProjectedActualProjectedActual2015a−0.6%0.06%−3.9%−0.7%−1.5%−2.5%––––1.2%1.2%(−1.6to0.5)(−4.6to−1.1)(−5.5to0.3)(−0.2to2.6)2016b−0.2%0.20%−0.5%−0.3%−1.7%−2.1%––––1.0%1.3%(−1.0to+1.8)(−3.8to+1.3)(−4.0to+0.6)(−0.4to+2.5)2017c2.0%1.6%3.5%1.5%−0.4%−0.5%––2.00%3.9%1.6%1.9%(+0.8to+3.0)(+0.7to+5.4)(−2.7to+1.0)(+0.2to+3.8)(0.0to+3.2)2018d2.7%2.1%4.7%2.3%2.5%2.8%−0.7%−2.1%6.3%8.0%1.8%1.7%(+1.8to+3.7)(+2.0to+7.4)(+0.5to+4.5)(−2.6to+1.3)(+4.3to+8.3)(+0.5to+3.0)2019e0.5%0.1%2.6%2.2%−2.4%−2.6%−1.7%−4.3%1.8%1.0%0.5%0.5%(−0.3to+1.4)(+0.7to+4.4)(−4.7to−0.1)(−5.1%to+1.8%)(−0.7to+3.7)(−0.8to+1.8)2020f−6.7%−5.4%−1.7%1.4%−12.2%−10.6%−11.3%(EU27)−10.9%−9.1%−7.3%−7.4%−7.0%2021g4.8%5.1%4.3%3.5%6.8%6.2%6.3%6.8%11.2%11.1%3.2%4.5%(4.2%to5.4%)(3.0%to5.4%)(6.6%to7.0%)(4.3%to8.3%)(10.7%to11.7%)(2.0%to4.3%)2022h1.0%−0.9%1.5%−0.8%6%1.7%(0.1%to1.9%)(−2.3%to0.4%)(−1%to4%)(−2.8%to1.2%)(3.9%to8%)(0.1%to3.3%)aJacksonetal.(2016)andLeQuéréetal.(2015a).bLeQuéréetal.(2016).cLeQuéréetal.(2018a).dLeQuéréetal.(2018b).eFriedlingsteinetal.(2019),fFriedlingsteinetal.(2020),gFriedlingsteinetal.(2022a),hThisstudy.iEU28upto2019andEU27from2020.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224837Table8.CumulativeCO2fordifferenttimeperiodsingigatonnesofcarbon(GtC).FossilCO2emissionsincludecementcarbonation.Thebudgetimbalance(BIM)providesameasureofthediscrepanciesamongthenearlyindependentestimates.Allvaluesareroundedtothenearest5GtC,andthereforecolumnsdonotnecessarilyaddtozero.Uncertaintiesarereportedasfollows:EFOSis5%ofcumulativeemissions,ELUCpriorto1959is1σspreadfromtheDGVMs,ELUCpost-1959is0.7timesthenumberofyears(where0.7GtCyr−1istheuncertaintyontheannualELUCfluxestimate),GATMuncertaintyisheldconstantat5GtCforalltimeperiods,SOCEANuncertaintyis20%ofthecumulativesink(20%relatestotheannualuncertaintyof0.4GtCyr−1,whichis∼20%ofthecurrentoceansink),andSLANDisthe1σspreadfromtheDGVMestimates.1750–20211850–20141850–20211960–20211850–2022EmissionsFossilCO2emissions(EFOS)470±25400±20465±25390±20475±25Land-usechangeemissions(ELUC)235±70195±60205±6085±45205±60Totalemissions700±75595±60670±65470±50680±65PartitioningGrowthrateinatmosCO2(GATM)295±5235±5275±5210±5280±5Oceansink(SOCEAN)185±35155±30175±35120±25180±35Terrestrialsink(SLAND)230±50185±40210±45145±30210±45BudgetimbalanceBIM=EFOS+ELUC−(GATM+SOCEAN+SLAND)−51515−515notshowclearspatialpatternsacrosstheGOBMensemble(Fig.11b).Thisisthecombinedeffectofchangeandvari-abilityinallatmosphericforcingfields,previouslyattributedtowindandtemperaturechangesinonemodel(LeQuéréetal.,2010).Theglobalnetair–seaCO2fluxisaresidualoflargenat-uralandanthropogenicCO2fluxesintoandoutoftheoceanwithdistinctregionalandseasonalvariations(Figs.6andB1).Naturalfluxesdominateonregionalscalesbutlargelycanceloutwhenintegratedglobally(Gruberetal.,2009).Mid-latitudesinallbasinsandthehigh-latitudeNorthAt-lanticdominatetheoceanCO2uptakewherelowtempera-turesandhighwindspeedsfacilitateCO2uptakeatthesur-face(Takahashietal.,2009).Intheseregions,formationofmode,intermediate,anddeep-watermassestransportanthro-pogeniccarbonintotheoceaninterior,thusallowingforcon-tinuedCO2uptakeatthesurface.OutgassingofnaturalCO2occursmostlyinthetropics,especiallyintheequatorialup-wellingregion,andtoalesserextentintheNorthPacificandpolarSouthernOcean,mirroringawell-establishedunder-standingofregionalpatternsofair–seaCO2exchange(e.g.Takahashietal.,2009;Gruberetal.,2009).ThesepatternsarealsonoticeableintheSurfaceOceanCO2Atlas(SOCAT)dataset,whereanoceanfCO2valueabovetheatmosphericlevelindicatesoutgassing(Fig.B1).Thismapfurtherillus-tratesthedatasparsityintheIndianOceanandtheSouthernHemisphereingeneral.Interannualvariabilityoftheoceancarbonsinkisdrivenbyclimatevariabilitywithafirst-ordereffectfromastrongeroceansinkduringlargeElNiñoevents(e.g.1997–1998)(Fig.10;Rödenbecketal.,2014;Haucketal.,2020).TheGOBMsshowthesamepatternsofdecadalvariabilityasthemeanofthefCO2-baseddataproducts,withastag-nationoftheoceansinkinthe1990sandastrengtheningsincetheearly2000s(Fig.10,LeQuéréetal.,2007;Land-schützeretal.,2015,2016;DeVriesetal.,2017;Haucketal.,2020;McKinleyetal.,2020).Differentexplanationshavebeenproposedforthisdecadalvariability,rangingfromtheocean’sresponsetochangesinatmosphericwindandpres-suresystems(e.g.LeQuéréetal.,2007;KepplerandLand-schützer,2019),includingvariationsinupper-oceanover-turningcirculation(DeVriesetal.,2017),totheeruptionofMountPinatuboanditseffectsonseasurfacetempera-tureandslowedatmosphericCO2growthrateinthe1990s(McKinleyetal.,2020).Themainoriginofthedecadalvari-abilityisamatterofdebate,withanumberofstudiesini-tiallypointingtotheSouthernOcean(seereviewinCanadelletal.,2021),butcontributionsfromtheNorthAtlanticandNorthPacificoceans(Landschützeretal.,2016;DeVriesetal.,2019)oraglobalsignal(McKinleyetal.,2020)werealsoproposed.AlthoughallindividualGOBMsanddataproductsfallwithintheobservationalconstraint,theensemblemeansofGOBMsanddataproductsadjustedfortheriverinefluxdivergeovertimewithameanoffsetincreasingfrom0.28GtCyr−1inthe1990sto0.61GtCyr−1inthedecade2012–2021andreaching0.79GtCyr−1in2021.TheSOCEANpositivetrendovertimehasdivergedbyafac-torof2since2002(GOBMs:0.28±0.07GtCyr−1perdecade;dataproducts:0.61±0.17GtCyr−1perdecade;SOCEAN:0.45GtCyr−1perdecade)andbyafactorof3since2010(GOBMs:0.21±0.14GtCyr−1perdecade;dataproducts:0.66±0.38GtCyr−1perdecade;SOCEAN:0.44GtCyr−1perdecade).TheGOBMestimateisslightlyhigher(<0.1GtCyr−1)thaninthepreviousglobalcarbonbudget(Friedlingsteinetal.,2022a)becausetwonewmod-elsareincluded(CESM2,MRI)andfourmodelsrevisedtheirestimatesupwards(CESM-ETHZ,CNRM,FESOM2-REcoM,PlankTOM).Thedataproductestimateishigherbyabout0.1GtCyr−1comparedtoFriedlingsteinetal.(2022a)https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224838P.Friedlingsteinetal.:GlobalCarbonBudget2022Table9.MappingofglobalcarboncyclemodellandfluxdefinitionstothedefinitionoftheLULUCFnetfluxusedinnationalGreenhouseGasInventoriesreportedtoUNFCCC.SeeSect.C2.3andTableA8fordetailsonthemethodologyandacomparisontootherdatasets.2002–20112012–2021ELUCfrombookkeepingestimates(fromTable5)1.41.2SLANDonnon-intactforestfromDGVMs−1.7−1.8ELUCplusSLANDonnon-intactforests−0.3−0.6NationalGreenhouseGasInventories−0.4−0.5asaresultofanupwardcorrectioninthreeproducts(Jena-MLS,MPI-SOMFFN,OS-ETHZ-Gracer),thesubmissionofLDEO-HPD(whichisaboveaverage),thenon-availabilityoftheCSIRproduct,andthesmallupwardcorrectionoftheriverfluxadjustment.ThediscrepancybetweenthetwotypesofestimatesstemsmostlyfromalargerSouthernOceansinkinthedataprod-uctspriorto2001andfromalargerSOCEANtrendinthenorthernandsouthernextratropicssincethen(Fig.13).Notethatthelocationofthemeanoffset(butnotitstrend)dependsstronglyonthechoiceofregionalriverfluxadjustmentandwouldoccurinthetropicsratherthanintheSouthernOceanwhenusingthedatasetofLacroixetal.(2020)insteadofAumontetal.(2001).OtherpossibleexplanationsforthediscrepancyintheSouthernOceancouldbemissingwinterobservationsanddatasparsityingeneral(Bushinskyetal.,2019,Gloegeetal.,2021)ormodelbiases(asindicatedbythelargemodelspreadintheSouthernHemisphere,asshowninFig.13,andthelargermodel–datamismatch,asshowninFig.B2).InGCBreleasesuntil2021,theoceansink1959–1989wasonlyestimatedbyGOBMsduetotheabsenceoffCO2observations.Now,thefirstdata-basedestimatesextendingbackto1957/58arebecomingavailable(Jena-MLS,Rö-denbecketal.,2022,LDEO-HPD,Benningtonetal.,2022;Gloegeetal.,2022).Thesearebasedonamulti-linearre-gressionofpCO2withenvironmentalpredictors(Rödenbecketal.,2022,includedhere)oronmodel–datapCO2misfitsandtheirrelationtoenvironmentalpredictors(Benningtonetal.,2022).TheJena-MLSestimatefallswellwithintherangeofGOBMestimatesandhasacorrelationof0.98withSOCEAN(1959–2021and1959–1989).ItagreeswellonthemeanSOCEANestimatesince1977withaslightlyhigheram-plitudeofvariability(Fig.10).Until1976,Jena-MLSis0.2–0.3GtCyr−1belowthecentralSOCEANestimate.Theagree-ment,especiallyonphasingofvariability,isimpressive,andthediscrepanciesinthemeanflux1959–1976couldbeex-plainedbyanoverestimatedtrendofJena-MLS(Rödenbecketal.,2022).Benningtonetal.(2022)reportalargerfluxintothepre-1990oceanthaninJena-MLS.ThereportedSOCEANestimatefromGOBMsanddataproductsis2.1±0.4GtCyr−1overtheperiod1994to2007,whichisinagreementwiththeoceaninteriorestimateof2.2±0.4GtCyr−1,whichaccountsfortheclimateeffectonthenaturalCO2fluxof−0.4±0.24GtCyr−1(Gruberetal.,2019)tomatchthedefinitionofSOCEANusedhere(Haucketal.,2020).Thiscomparisondependscriticallyonthees-timateoftheclimateeffectonthenaturalCO2flux,whichissmallerfromtheGOBMs(−0.1GtCyr−1)thaninGruberetal.(2019).UncertaintiesinthesetwoestimateswouldalsooverlapwhenusingtheGOBMestimateoftheclimateeffectonthenaturalCO2flux.During2010–2016,theoceanCO2sinkappearstohavein-tensifiedinlinewiththeexpectedincreasefromatmosphericCO2(McKinleyetal.,2020).ThiseffectisstrongerinthefCO2-baseddataproducts(Fig.10,oceansink2016mi-nus2010,GOBMs:+0.42±0.09GtCyr−1;dataproducts:+0.52±0.22GtCyr−1).Thereductionof−0.09GtCyr−1(range:−0.39to+0.01GtCyr−1)intheoceanCO2sinkin2017isconsistentwiththereturntonormalcondi-tionsaftertheElNiñoin2015/16,whichcausedanen-hancedsinkinpreviousyears.After2017,theGOBMen-semblemeansuggeststheoceansinklevellingoffatabout2.6GtCyr−1,whereasthedataproductestimateincreasesby0.24±0.17GtCyr−1overthesameperiod.3.5.3Finalyear2021TheestimatedoceanCO2sinkwas2.9±0.4GtCin2021.Thisisadecreaseof0.12GtCcomparedto2020,inlinewiththeexpectedsinkweakeningfrompersistentLaNiñacon-ditions.GOBManddataproductestimatesconsistentlyre-sultinastagnationofSOCEAN(GOBMs:−0.09±0.15GtC;dataproducts:−0.15±0.24GtC).SevenmodelsandsixdataproductsshowadecreaseinSOCEAN(GOBMsdownto−0.31GtC,dataproductsdownto−0.58GtC),whilethreemodelsandtwodataproductsshowanincreaseinSOCEAN(GOBMsupto0.15GtC,dataproductsupto0.12GtC;Fig.10).Thedataproductshavealargeruncertaintyatthetailsofthereconstructedtimeseries(e.g.Watsonetal.,2020).Specifically,thedataproducts’estimateofthelastyearisregularlyadjustedinthefollowingreleaseowingtothetaileffectandanincrementallyincreasingdataavailabil-itywitha1–5-yearlag(Fig.10inset).EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget202248393.5.4Year2022projectionUsingafeed-forwardneuralnetworkmethod(seeSect.2.4)weprojectanoceansinkof2.9GtCfor2022.Thisissimilartotheyear2021astheLaNiñaconditionspersistin2022.3.5.5ModelevaluationTheadditionalsimulationDallowsustoseparatethean-thropogeniccarboncomponent(steadystateandnon-steadystate,simD−simA)andcomparethemodelfluxanddis-solvedinorganiccarbon(DIC)inventorychangedirectlytotheinterioroceanestimateofGruberetal.(2019)withoutfurtherassumptions.TheGOBMensembleaverageofan-thropogeniccarboninventorychanges1994–2007amountsto2.2GtCyr−1andisthuslowerthanthe2.6±0.3GtCyr−1estimatedbyGruberetal.(2019).OnlyfourmodelswiththehighestsinkestimatefallwithintherangereportedbyGruberetal.(2019).ThissuggeststhatthemajorityoftheGOBMsunderestimateanthropogeniccarbonuptakeby10%–20%.AnalysisofEarthsystemmodelsindicatethatanunderes-timationbyabout10%maybeduetobiasesinoceancar-bontransportandmixingfromthesurfacemixedlayertotheoceaninterior(Gorisetal.,2018;Terhaaretal.,2021;Bour-geoisetal.,2022;Terhaaretal.,2022),biasesinthechemicalbuffercapacity(Revellefactor)oftheocean(VaittinadaAyaretal.,2022;Terhaaretal.,2022),andpartlyduetothelatestartingdateofthesimulations(mirroredinatmosphericCO2chosenforthepre-industrialcontrolsimulation,TableA2,Bronselaeretal.,2017;Terhaaretal.,2022).Interestingly,andincontrasttotheuncertaintiesinthesurfaceCO2flux,wefindthelargestmismatchininterioroceancarbonaccu-mulationinthetropics(93%ofthemismatch),withminorcontributionfromthenorth(1%)andthesouth(6%).Thishighlightstheroleofinterioroceancarbonredistributionforthoseinventories(Khatiwalaetal.,2009).Theevaluationoftheoceanestimates(Fig.B2)showsaroot-mean-squarederror(RMSE)fromannuallydetrendeddataof0.4to2.6µatmforthesevenfCO2-baseddataprod-uctsovertheglobe,relativetothefCO2observationsfromtheSOCATv2022datasetfortheperiod1990–2021.TheGOBMRMSEsarelargerandrangefrom3.0to4.8µatm.TheRMSEsaregenerallylargerathighlatitudescomparedtothetropics,forboththedataproductsandtheGOBMs.ThedataproductshaveRMSEsof0.4to3.2µatminthetrop-ics,0.8to2.8µatminthenorthernextratropics(>30◦N),and0.8to3.6µatminthesouthernextratropics(<30◦S).NotethatthedataproductsarebasedontheSOCATv2022database;hence,theSOCATisnotanindependentdatasetfortheevaluationofthedataproducts.TheGOBMRM-SEsaremorespreadacrossregions,rangingfrom2.5to3.9µatminthetropics,3.1to6.5µatminthenorth,and5.4to7.9µatminthesouth.ThehigherRMSEsoccurinregionswithstrongerclimatevariability,suchasthenorthernandsouthernhighlatitudes(polewardofthesubtropicalgyres).Figure9.ThepartitioningoftotalanthropogenicCO2emis-sions(EFOS+ELUC)across(a)theatmosphere(airbornefraction),(b)land(land-bornefraction),and(c)ocean(ocean-bornefraction).Blacklinesrepresentthecentralestimate,andthecolouredshad-ingrepresentstheuncertainty.Thedashedgreylinesrepresentthelong-termaverageoftheairborne(44%),land-borne(30%),andocean-borne(25%)fractionsduring1960–2021.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224840P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure10.Comparisonoftheanthropogenicatmosphere–oceanCO2fluxshowingthebudgetvaluesofSOCEAN(black;withtheuncertaintyingreyshading),individualoceanmodels(royalblue),andtheoceanfCO2-baseddataproducts(cyan;withWatsonetal.,2020,shownasadashedlineasitisnotusedfortheensemblemean).Onlyonedataproduct(Jena-MLS)extendsbackto1959(Rödenbecketal.,2022).ThefCO2-baseddataproductsweread-justedforthepre-industrialoceansourceofCO2fromriverinputtotheoceanbysubtractingasourceof0.65GtCyr−1tomakethemcomparabletoSOCEAN(seeSect.2.4).ThebarplotinthelowerrightillustratesthenumberoffCO2observationsintheSOCATv2022database(Bakkeretal.,2022).Greybarsindicatethenum-berofdatapointsinSOCATv2021,andcolouredbarsshowthenewlyaddedobservationsinv2022.TheupperrangesofthemodelRMSEshavedecreasedsome-whatrelativetoFriedlingsteinetal.(2022a).3.6Landsink3.6.1Historicalperiod1850–2021Cumulatedsince1850,theterrestrialCO2sinkamountsto210±45GtC,31%oftotalanthropogenicemissions.Overthehistoricalperiod,thesinkincreasedinpacewiththeex-ponentialanthropogenicemissionsincrease(Fig.3b).3.6.2Recentperiod1960–2021TheterrestrialCO2sinkincreasedfrom1.2±0.4GtCyr−1inthe1960sto3.1±0.6GtCyr−1during2012–2021,withimportantinterannualvariationsofupto2GtCyr−1gener-allyshowingadecreasedlandsinkduringElNiñoevents(Fig.8),responsibleforthecorrespondingenhancedgrowthrateinatmosphericCO2concentration.ThelargerlandCO2sinkduring2012–2021comparedtothe1960sisreproducedbyalltheDGVMsinresponsetotheincreaseinbothatmo-sphericCO2andnitrogendepositionandthechangesincli-mateandisconsistentwithconstraintsfromtheotherbudgetterms(Table5).Overtheperiod1960topresenttheincreaseintheglobalterrestrialCO2sinkislargelyattributedtotheCO2fertil-izationeffect(Prenticeetal.,2001;Piaoetal.,2009),di-rectlystimulatingplantphotosynthesisandincreasedplantwateruseinwater-limitedsystems,withasmallnegativecontributionofclimatechange(Fig.11).ThereisarangeofevidencetosupportapositiveterrestrialcarbonsinkinresponsetoincreasingatmosphericCO2,albeitwithuncer-tainmagnitude(Walkeretal.,2021).Asexpectedfromthe-ory,thegreatestCO2effectissimulatedinthetropicalforestregions,associatedwithwarmtemperaturesandlonggrow-ingseasons(Hickleretal.,2008)(Fig.11a).However,ev-idencefromtropicalintactforestplotsindicateanoveralldeclineinthelandsinkacrossAmazonia(1985–2011),at-tributedtoenhancedmortalityoffsettingproductivitygains(Brienenetal.,2005,Hubauetal.,2020).During2012–2021thelandsinkispositiveinallregions(Fig.6)withtheexceptionofeasternBrazil,thesouthwesternUS,south-easternEurope,centralAsia,northernandsouthernAfrica,andeasternAustralia,wherethenegativeeffectsofclimatevariabilityandchange(i.e.reducedrainfall)counterbalanceCO2effects.ThisisclearlyvisibleinFig.11wheretheef-fectsofCO2(Fig.11a)andclimate(Fig.11b)assimulatedbytheDGVMsareisolated.ThenegativeeffectofclimateisthestrongestinmostofSouthAmerica,CentralAmerica,thesouthwesternUS,centralEurope,westernSahel,south-ernAfrica,SoutheastAsiaandsouthernChina,andeasternAustralia(Fig.11b).Globally,climatechangereducesthelandsinkby0.63±0.52GtCyr−1or17%(2012–2021).Since2020theglobehasexperiencedLaNiñaconditions,whichwouldbeexpectedtoleadtoanincreasedlandcar-bonsink.Aclearpeakinthegloballandsinkisnotevi-dentinSLAND,andwefindthataLaNiña-drivenincreaseintropicallandsinkisoffsetbyareducedhighlatitudeextrat-ropicallandsink,whichmaybelinkedtothelandresponsetorecentclimateextremes.Inthepastyearsseveralregionsexperiencedrecord-settingfireevents.Whileglobalburnedareahasdeclinedoverthepastdecades,mostlyduetode-cliningfireactivityinsavannas(Andelaetal.,2017),forestfireemissionsarerisingandhavethepotentialtocounterthenegativefiretrendinsavannas(Zhengetal.,2021).Notewor-thyeventsincludetheBlackSummereventinAustraliain2019–2020(emissionsofroughly0.2GtC;vanderVeldeetal.,2021)andeventsinSiberiain2021whereemissionsap-proached0.4GtCor3timesthe1997–2020averageaccord-ingtoGFED4s.Whileotherregions,includingthewesternUSandMediterraneanEurope,alsoexperiencedintensefireseasonsin2021,theiremissionsaresubstantiallylower.DespitetheseregionalnegativeeffectsofclimatechangeonSLAND,theefficiencyoflandtoremoveanthropogenicCO2emissionshasremainedbroadlyconstantoverthelast6decades,withaland-bornefraction(SLAND/(EFOS+ELUC))of∼30%(Fig.9).EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224841Figure11.Attributionoftheatmosphere–ocean(SOCEAN)andatmosphere–land(SLAND)CO2fluxesto(a)increasingatmosphericCO2concentrationsand(b)changesinclimate,averagedoverthepreviousdecade2012–2021.Alldatashownarefromtheprocessed-basedGOBMsandDGVMs.ThesumofoceanCO2andclimateeffectswillnotequaltheoceansinkshowninFig.6,whichincludesthefCO2-baseddataproducts.SeeAppendicesC3.2andC4.1forattributionmethodology.UnitsareinkgCm−2yr−1(notethenon-linearcolourscale).3.6.3Finalyear2021TheterrestrialCO2sinkfromtheDGVMsensemblewas3.5±0.9GtCin2021,slightlyabovethedecadalaverageof3.1±0.6GtCyr−1(Fig.4,Table6).WenotethattheDGVMestimatefor2021islargerthan,butwithintheuncertaintyof,the2.8±0.9GtCyr−1estimatefromtheresidualsinkfromtheglobalbudget(EFOS+ELUC−GATM−SOCEAN)(Table5).3.6.4Year2022projectionUsingafeed-forwardneuralnetworkmethodweprojectalandsinkof3.4GtCfor2022,verysimilartothe2021esti-mate.Asfortheoceansink,weattributethistothepersis-tenceofLaNiñaconditionsin2022.3.6.5ModelevaluationTheevaluationoftheDGVMs(Fig.B3)showsgenerallyhighskillscoresacrossmodelsforrunoffandtoalesserextentforvegetationbiomass,grossprimaryproduction(orproductivity;GPP),andecosystemrespiration(Fig.B3,leftpanel).Skillscorewaslowestforleafareaindexandnetecosystemexchange,withthewidestdisparityamongmod-elsforsoilcarbon.TheseconclusionsaresupportedbyamorecomprehensiveanalysisofDGVMperformanceincomparisonwithbenchmarkdata(Seileretal.,2022).Fur-thermore,resultsshowhowDGVMdifferencesareoftenofsimilarmagnitudecomparedwiththerangeacrossobserva-tionaldatasets.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224842P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure12.The2012–2021decadalmeannetatmosphere–oceanandatmosphere–landfluxesderivedfromtheoceanmodelsandfCO2products(yaxis,right-andleft-pointingbluetriangles,re-spectively)andfromtheDGVMs(xaxis,greensymbols)andthesamefluxesestimatedfromtheinversions(purplesymbolsonsec-ondaryxandyaxes).Thegreycentralpointisthemean(±1σ)ofSOCEANand(SLAND−ELUC)asassessedinthisbudget.Theshadeddistributionsshowthedensityoftheensembleofindivid-ualestimates.Thegreydiagonalbandrepresentsthefossilfuelemissionsminustheatmosphericgrowthratefromthisbudget(EFOS−GATM).NotethatpositivevaluesareCO2sinks.3.7Partitioningthecarbonsinks3.7.1GlobalsinksandspreadofestimatesIntheperiod2012–2021,thebottom-upviewoftotalglobalcarbonsinksprovidedbytheGCB,SOCEANfortheoceanandSLAND–ELUCfortheland(tobecomparabletoinver-sions),agreescloselywiththetop-downglobalcarbonsinksdeliveredbytheatmosphericinversions.Figure12showsbothtotalsinkestimatesofthelastdecadesplitbyoceanandland(includingELUC),whichmatchthedifferencebe-tweenGATMandEFOStowithin0.01–0.12GtCyr−1forin-versesystems,andto0.34GtCyr−1fortheGCBmean.ThelatterrepresentstheBIMdiscussedinSect.3.8,whichbyde-signisminimalfortheinversesystems.ThedistributionsbasedontheindividualmodelsanddataproductsrevealsubstantialspreadbutconvergenearthedecadalmeansquotedinTables5and6.SinkestimatesforSOCEANandfrominversesystemsaremostlynon-Gaussian,whiletheensembleofDGVMsappearsmorenormallydis-tributed,justifyingtheuseofamulti-modelmeanandstan-darddeviationfortheirerrorsinthebudget.Noteworthyisthatthetailsofthedistributionsprovidedbythelandandoceanbottom-upestimateswouldnotagreewiththeglobalconstraintprovidedbythefossilfuelemissionsandtheob-servedatmosphericCO2growthrate(EFOS−GATM).ThisillustratesthepoweroftheatmosphericjointconstraintfromGATMandtheglobalCO2observationnetworkitderivesfrom.3.7.2Totalatmosphere-to-landfluxesThetotalatmosphere-to-landfluxes(SLAND−ELUC),cal-culatedhereasthedifferencebetweenSLANDfromtheDGVMsandELUCfromthebookkeepingmodels,amountstoa1.9±0.9GtCyr−1sinkduring2012–2021(Table5).Es-timatesoftotalatmosphere-to-landfluxes(SLAND−ELUC)fromtheDGVMsalone(1.5±0.5GtCyr−1)areconsistentwiththisestimateandalsowiththeglobalcarbonbudgetconstraint(EFOS−GATM−SOCEAN,1.5±0.6GtCyr−1Ta-ble5).Forthelastdecade(2012–2021),theinversionsesti-matethenetatmosphere-to-landuptaketoliewithinarangeof1.1to1.7GtCyr−1,consistentwiththeGCBandDGVMestimatesofSLAND−ELUC(Fig.13toprow).3.7.3Totalatmosphere-to-oceanfluxesForthe2012–2021period,theGOBMs(2.6±0.5GtCyr−1)producealowerestimatefortheoceansinkthanthefCO2-baseddataproducts(3.2±0.6GtCyr−1),whichshowsupinFig.12asaseparatepeakinthedistributionfromtheGOBMs(trianglesymbolspointingright)andfromthefCO2-basedproducts(trianglesymbolspointingleft).Atmosphericinversions(2.7to3.3GtCyr−1)alsosuggesthigheroceanuptakeinthelastdecade(Fig.13toprow).Ininterpretingthesedifferences,wecautionthattheriverinetransportofcarbontakenuponlandandoutgassingfromtheoceanisasubstantial(0.65GtCyr−1)anduncertaintermthatseparatesthevariousmethods.ArecentestimateofdecadaloceanuptakefromobservedO2/N2ratios(Tohjimaetal.,2019)alsopointstowardsalargeroceansink,albeitwithlargeuncertainty(2012–2016:3.1±1.5GtCyr−1).3.7.4RegionalbreakdownandinterannualvariabilityFigure13alsoshowsthelatitudinalpartitioningofthetotalatmosphere-to-surfacefluxesexcludingfossilCO2emissions(SOCEAN+SLAND−ELUC)accordingtothemulti-modelav-erageestimatesfromGOBMsandoceanfCO2-basedprod-ucts(SOCEAN)andDGVMs(SLAND−ELUC)andfromatmo-sphericinversions(SOCEANandSLAND−ELUC).NorthDespitebeingoneofthemostdenselyobservedandstud-iedregionsofourglobe,annualmeancarbonsinkesti-matesinthenorthernextratropics(northof30◦N)con-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224843Figure13.CO2fluxesbetweentheatmosphereandtheEarth’ssurfaceseparatedbetweenlandandoceansgloballyandinthreelatitudebands.TheoceanfluxisSOCEAN,andthelandfluxisthenetofatmosphere–landfluxesfromtheDGVMs.Thelatitudebandsare(toprow)global,(secondrow)north(>30◦N),(thirdrow)tropics(30◦S–30◦N),and(bottomrow)south(<30◦S),showingvaluesoverocean(leftcolumn)andland(middlecolumn)andintotal(rightcolumn).Estimatesareshownforprocess-basedmodels(DGVMsforland,GOBMsforoceans),inversionsystems(landandocean),andfCO2-baseddataproducts(oceanonly).Positivevaluesindicateafluxfromtheatmospheretothelandortheocean.Meanestimatesfromthecombinationoftheprocessmodelsforthelandandoceansareshown(blackline)with±1standarddeviation(1σ)ofthemodelensemble(greyshading).Forthetotaluncertaintyintheprocess-basedestimateofthetotalsink,uncertaintiesaresummedinquadrature.Meanestimatesfromtheatmosphericinversionsareshown(purplelines)withtheirfullspread(purpleshading).MeanestimatesfromthefCO2-baseddataproductsareshownfortheoceandomain(lightbluelines)withtheir±1σspread(lightblueshading).TheglobalSOCEAN(upperleft)andthesumofSOCEANinallthreeregionsrepresentstheanthropogenicatmosphere-to-oceanfluxbasedontheassumptionthatthepre-industrialoceansinkwas0GtCyr−1whenriverinefluxesarenotconsidered.Thisassumptiondoesnotholdattheregionallevel,wherepre-industrialfluxescanbesignificantlydifferentfromzero.Hence,theregionalpanelsforSOCEANrepresentacombinationofnaturalandanthropogenicfluxes.BiascorrectionandareaweightingwereonlyappliedtoglobalSOCEAN;hence,thesumoftheregionsisslightlydifferentfromtheglobalestimate(<0.05GtCyr−1).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224844P.Friedlingsteinetal.:GlobalCarbonBudget2022tinuetodiffer.Theatmosphericinversionssuggestanatmosphere-to-surfacesink(SOCEAN+SLAND−ELUC)for2012–2021of2.0to3.2GtCyr−1,whichishigherthantheprocessmodels’estimateof2.2±0.4GtCyr−1(Fig.13).TheGOBMs(1.2±0.2GtCyr−1),fCO2-baseddataprod-ucts(1.4±0.1GtCyr−1),andinversionsystems(0.9to1.4GtCyr−1)produceconsistentestimatesoftheoceansink.Thus,thedifferencemainlyarisesfromthetotallandflux(SLAND−ELUC)estimate,whichis1.0±0.4GtCyr−1intheDGVMscomparedto0.6to2.0GtCyr−1intheatmosphericinversions(Fig.13,secondrow).DiscrepanciesinthenorthernlandfluxesconformwithpersistentissuessurroundingthequantificationofthedriversoftheglobalnetlandCO2flux(Arnethetal.,2017;Huntzingeretal.,2017;O’Sullivanetal.,2022)andthedis-tributionofatmosphere-to-landfluxesbetweenthetropicsandhighnorthernlatitudes(Baccinietal.,2017;Schimeletal.,2015;Stephensetal.,2007;Ciaisetal.,2019;Gaubertetal.,2019).Inthenorthernextratropics,theprocessmodels,inver-sions,andfCO2-baseddataproductsconsistentlysug-gestthatmostofthevariabilitystemsfromtheland(Fig.13).Inversionsgenerallyestimatesimilarinterannualvariations(IAVs)overlandtoDGVMs(0.30–0.37vs.0.17–0.69GtCyr−1,averagedover1990–2021),andtheyhavehigherIAVinoceanfluxes(0.05–0.09GtCyr−1)relativetoGOBMs(0.02–0.06GtCyr−1,Fig.B2)andfCO2-baseddataproducts(0.03–0.09GtCyr−1).TropicsInthetropics(30◦S–30◦N),boththeatmosphericinver-sionsandprocessmodelsestimateatotalcarbonbalance(SOCEAN+SLAND−ELUC)thatisclosetoneutraloverthepastdecade.TheGOBMs(0.06±0.34GtCyr−1),fCO2-baseddataproducts(0.00±0.06GtCyr−1),andinversionsystems(−0.2to0.5GtCyr−1)allindicateanapproximatelyneutraltropicaloceanflux(seeFig.B1forspatialpat-terns).DGVMsindicateanetlandsink(SLAND−ELUC)of0.5±0.3GtCyr−1,whereastheinversionsystemsindicateanetlandfluxbetween−0.9and0.7GtCyr−1,albeitwithhighuncertainty(Fig.13,thirdrow).Thetropicallandsaretheoriginofmostoftheatmo-sphericCO2interannualvariability(Ahlströmetal.,2015),andthisisconsistentamongtheprocessmodelsandinver-sions(Fig.13).Theinterannualvariabilityinthetropicsissimilaramongtheoceandataproducts(0.07–0.16GtCyr−1)andtheGOBMs(0.07–0.16GtCyr−1,Fig.B2),whichisthehighestoceansinkvariabilityofallregions.TheDGVMsandinversionsindicatethatatmosphere-to-landCO2fluxesaremorevariablethanatmosphere-to-oceanCO2fluxesinthetropics,withinterannualvariabilityof0.5to1.1and0.8to1.0GtCyr−1forDGVMsandinversions,respectively.SouthInthesouthernextratropics(southof30◦S),theatmo-sphericinversionssuggestatotalatmosphere-to-surfacesink(SOCEAN+SLAND−ELUC)for2012–2021of1.6to1.9GtCyr−1,slightlyhigherthantheprocessmodels’esti-mateof1.4±0.3GtCyr−1(Fig.13).Anapproximatelyneu-traltotallandflux(SLAND−ELUC)forthesouthernextratrop-icsisestimatedbyboththeDGVMs(0.02±0.06GtCyr−1)andtheinversionsystems(sinkof−0.2to0.2GtCyr−1).Thismeansnearlyallcarbonuptakeisduetooceanicsinkssouthof30◦S.TheSouthernOceanfluxinthefCO2-baseddataproducts(1.8±0.1GtCyr−1)andinversiones-timates(1.6to1.9GtCyr−1)ishigherthanintheGOBMs(1.4±0.3GtCyr−1)(Fig.13,bottomrow).Thisdiscrepancyinthemeanfluxislikelyexplainedbytheuncertaintyintheregionaldistributionoftheriverfluxadjustment(Aumontetal.,2001;Lacroixetal.,2020)appliedtofCO2-baseddataproductsandinversesystemstoisolatetheanthropogenicSOCEANflux.OtherpossiblycontributingfactorsarethatthedataproductspotentiallyunderestimatethewinterCO2out-gassingsouthofthePolarFront(Bushinskyetal.,2019)andpotentialmodelbiases.CO2fluxesfromthisregionaremoresparselysampledbyallmethods,especiallyinwintertime(Fig.B1).DominantbiasesinEarthsystemmodelsarere-latedtomodewaterformation,stratification,andthechem-icalbuffercapacity(Terhaaretal.,2021;Bourgeoisetal.,2022;Terhaaretal.,2022).Theinterannualvariabilityinthesouthernextratropicsislowbecauseofthedominanceofoceanareaswithlowvariabilitycomparedtolandareas.Thesplitbetweenland(SLAND−ELUC)andocean(SOCEAN)showsasubstantialcontributiontovariabilityinthesouthcomingfromtheland,withnoconsistencybetweentheDGVMsandtheinversionsoramonginversions.Thisisexpectedduetothedifficultyofexactlyseparatingthelandandoceanicfluxeswhenviewedfromatmosphericobservationsalone.TheSOCEANinteran-nualvariabilitywasfoundtobehigherinthefCO2-baseddataproducts(0.09to0.19GtCyr−1)comparedtoGOBMs(0.03to0.06GtCyr−1)in1990–2021(Fig.B2).Modelsub-samplingexperimentsrecentlyillustratedthatobservation-basedproductsmayoverestimatedecadalvariabilityintheSouthernOceancarbonsinkby30%duetodatasparsity,basedononedataproductwiththehighestdecadalvariabil-ity(Gloegeetal.,2021).Tropicalvs.northernlanduptakeAcontinuingconundrumisthepartitioningoftheglobalatmosphere–landfluxbetweentheNorthernHemispherelandandthetropicalland(Stephensetal.,2017;Panetal.,2011;Gaubertetal.,2019).Itisofimportancebecauseeachregionhasitsownhistoryofland-usechange,climatedrivers,andtheimpactofincreasingatmosphericCO2andnitrogendeposition.QuantifyingthemagnitudeofeachsinkEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224845isaprerequisitetounderstandinghoweachindividualdriverimpactsthetropicalandmid-andhigh-latitudecarbonbal-ance.Wedefinethenorth–south(N–S)differenceasnetatmosphere–landfluxnorthof30◦Nminusthenetatmosphere–landfluxsouthof30◦N.Fortheinversions,theN–Sdifferencerangesfrom0.1to2.9GtCyr−1acrossthisyear’sinversionensemblewithapreferenceacrossmodelsforeitherasmallernorthernlandsinkwithanear-neutraltropicallandflux(mediumN–Sdifference)oralargenorth-ernlandsinkandatropicallandsource(largeN–Sdiffer-ence).IntheensembleofDGVMstheN–Sdifferenceis0.6±0.5GtCyr−1,amuchnarrowerrangethantheonefrominversions.OnlytwoDGVMshaveaN–Sdifferencelargerthan1.0GtCyr−1.ThelargeragreementacrossDGVMsthanacrossinversionsistobeexpectedasthereisnocorrelationbetweennorthernandtropicallandsinksintheDGVMs,asopposedtotheinversionswherethesumofthetworegionsbeingwell-constrainedleadstoananti-correlationbetweenthesetworegions.ThemuchsmallerspreadintheN–Sdif-ferencebetweentheDGVMscouldhelptoscrutinizetheinversesystemsfurther.Forexample,alargenorthernlandsinkandatropicallandsourceinaninversionwouldsuggestalargesensitivitytoCO2fertilization(thedominantfactordrivingthelandsinks)fornorthernecosystems,whichwouldbenotmirroredbytropicalecosystems.SuchacombinationcouldbehardtoreconcilewiththeprocessunderstandinggainedfromtheDGVMensemblesandindependentmea-surements(e.g.free-airCO2enrichmentexperiments).Suchinvestigationswillbefurtherpursuedintheupcomingas-sessmentfromREgionalCarbonCycleAssessmentandPro-cesses(RECCAP2;Ciaisetal.,2022).3.8Closingtheglobalcarboncycle3.8.1PartitioningofcumulativeemissionsandsinkfluxesTheglobalcarbonbudgetoverthehistoricalperiod(1850–2021)isshowninFig.3.Emissionsduringtheperiod1850–2021amountedto670±65GtCandwerepartitionedamongtheatmosphere(275±5GtC;41%),ocean(175±35GtC;26%),andland(210±45GtC;31%).Thecumulativelandsinkisalmostequaltothecumulativeland-useemissions(200±60GtC),makingthegloballandnearlyneutraloverthewhole1850–2021period.Theuseofnearlyindependentestimatesfortheindividualtermsoftheglobalcarbonbudgetshowsacumulativebudgetimbalanceof15GtC(2%oftotalemissions)during1850–2021(Fig.3,Table8),which,ifcorrect,suggeststhatemis-sionscouldbeslightlytoohighbythesameproportion(2%)orthatthecombinedlandandoceansinksareslightlyunder-estimated(byabout3%),althoughthesearewellwithintheuncertaintyrangeofeachcomponentofthebudget.Never-theless,partoftheimbalancecouldoriginatefromtheesti-mationofsignificantincreaseinEFOSandELUCbetweenthemid-1920sandthemid-1960sthatisunmatchedbyasim-ilargrowthinatmosphericCO2concentrationasrecordedinicecores(Fig.3).However,theknownlossofadditionalsinkcapacityof30–40GtC(overthe1850–2020period)duetoreducedforestcoverhasnotbeenaccountedforinourmethodandwouldexacerbatethebudgetimbalance(seeAp-pendixD4).Forthemorerecent1960–2021periodwheredirectat-mosphericCO2measurementsareavailable,totalemis-sions(EFOS+ELUC)amountedto470±50GtC,ofwhich390±20GtC(82%)werecausedbyfossilCO2emis-sionsand85±45GtC(18%)byland-usechange(Ta-ble8).Thetotalemissionswerepartitionedamongtheat-mosphere(210±5GtC;45%),ocean(120±25GtC;26%),andland(145±30GtC;30%),withanear-zero(−5GtC)unattributedbudgetimbalance.Allcomponentsexceptland-usechangeemissionshavesignificantlygrownsince1960,withimportantinterannualvariabilityinthegrowthrateinatmosphericCO2concentrationandinthelandCO2sink(Fig.4)andsomedecadalvariabilityinallterms(Table6).DifferenceswithpreviousbudgetreleasesaredocumentedinFig.B5.Theglobalcarbonbudgetaveragedoverthelastdecade(2012–2021)isshowninFigs.2and14(rightpanel)andTa-ble6.Forthisperiod,89%ofthetotalemissions(EFOS+ELUC)werefromfossilCO2emissions(EFOS),and11%werefromland-usechange(ELUC).Thetotalemissionswerepartitionedamongtheatmosphere(48%),ocean(26%),andland(29%),withanear-zerounattributedbudgetimbalance(∼3%).Forsingleyears,thebudgetimbalancecanbelarger(Fig.4).For2021,thecombinationofourestimatedsources(10.9±0.9GtCyr−1)andsinks(11.6±1.0GtCyr−1)leadstoaBIMof−0.6GtC,suggestingaslightunderestimationoftheanthropogenicsourcesand/oranoverestimationofthecombinedlandandoceansinks.3.8.2CarbonbudgetimbalancetrendandvariabilityThecarbonbudgetimbalance(BIM;Eq.1,Fig.4)quantifiesthemismatchbetweentheestimatedtotalemissionsandtheestimatedchangesintheatmosphere,land,andoceanreser-voirs.Themeanbudgetimbalancefrom1960to2021isverysmall(4.6GtCovertheperiod,i.e.averageof0.07GtCyr−1)andshowsnotrendoverthefulltimeseries(Fig.4).Theprocessmodels(GOBMsandDGVMs)anddataproductshavebeenselectedtomatchobservationalconstraintsinthe1990s,butnofurtherconstraintshavebeenappliedtotheirrepresentationoftrendandvariability.Therefore,thenear-zeromeanandtrendinthebudgetimbalanceisseenasevi-denceofacoherentcommunityunderstandingoftheemis-sionsandtheirpartitioningonthosetimescales(Fig.4).However,thebudgetimbalanceshowssubstantialvariabilityhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224846P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure14.Cumulativechangesoverthe1850–2021period(left)andaveragefluxesoverthe2012–2021period(right)fortheanthro-pogenicperturbationoftheglobalcarboncycle.SeethecaptionofFig.3forkeyinformationandSect.2forfulldetails.ontheorderof±1GtCyr−1,particularlyoversemi-decadaltimescales,althoughmostofthevariabilityiswithintheun-certaintyoftheestimates.Thepositivecarbonimbalanceduringthe1960sandearly1990sindicatesthateithertheemissionswereoverestimatedorthesinkswereunderesti-matedduringtheseperiods.Thereverseistrueforthe1970sandtoalesserextentforthe1980sandthe2012–2021period(Fig.4,Table6).Wecannotattributethecauseofthevariabilityinthebud-getimbalancewithouranalysis,weonlynotethatthebudgetimbalanceisunlikelytobeexplainedbyerrorsorbiasesintheemissionsalonebecauseofitslargesemi-decadalvari-abilitycomponent,avariabilitythatisuntypicalofemissionsandwhichhasnotchangedinthepast60yearsdespiteaneartriplingofemissions(Fig.4).ErrorsinSLANDandSOCEANaremorelikelytobethemaincauseforthebudgetimbal-ance,especiallyoninterannualtosemi-decadaltimescales.Forexample,underestimationoftheSLANDbyDGVMshasbeenreportedfollowingtheeruptionofMountPinatuboin1991,possiblyduetomissingresponsestochangesindiffuseradiation(Mercadoetal.,2009).AlthoughsinceGCB2021weaccountedforaerosoleffectsonsolarradiationquan-tityandquality(diffusevs.direct),mostDGVMsonlyusedtheformerasinput(i.e.totalsolarradiation)(TableA1).Thus,theensemblemeanmaynotcapturethefulleffectsofvolcaniceruptions,i.e.associatedwithhighlight-scatteringsulfateaerosols,onthelandcarbonsink(O’Sullivanetal.,2021).DGVMsaresuspectedtooverestimatethelandsinkinresponsetothewetdecadeofthe1970s(Sitchetal.,2008).Quasi-decadalvariabilityintheoceansinkhasalsobeenre-ported,withallmethodsagreeingonasmallerthanexpectedoceanCO2sinkinthe1990sandalargerthanexpectedsinkinthe2000s(Fig.10;Landschützeretal.,2016;DeVriesetal.,2019;Haucketal.,2020;McKinleyetal.,2020).Errorsinsinkestimatescouldalsobedrivenbyerrorsinthecli-maticforcingdata,particularlyprecipitationforSLANDandwindforSOCEAN.Also,theBIMshowssubstantialdeparturefromzeroonyearlytimescales(Fig.4e),highlightingunre-solvedvariabilityofthecarboncycle,likelyinthelandsink(SLAND),givenitslargeyear-to-yearvariability(Figs.4dand8).Boththebudgetimbalance(BIM,Table6)andtheresiduallandsinkfromtheglobalbudget(EFOS+ELUC−GATM−SOCEAN,Table5)includeanerrortermduetotheinconsis-tenciesthatarisefromusingELUCfrombookkeepingmodelsandSLANDfromDGVMs,mostnotablythelossofadditionalsinkcapacity(seeSect.2.7andAppendixD4).Otherdiffer-encesincludeabetteraccountingofland-usechangeprac-ticesandprocessesinbookkeepingmodelsthaninDGVMsortheerrorinbookkeepingmodelsofhavingpresent-dayobservedcarbondensitiesfixedinthepast.ThatthebudgetimbalanceshowsnocleartrendtowardslargervaluesovertimeisanindicationthattheseinconsistenciesprobablyplayaminorrolecomparedtoothererrorsinSLANDorSOCEAN.Althoughthebudgetimbalanceisnearzeroforthere-centdecades,itcouldbeduetocompensationoferrors.WecannotexcludeanoverestimationofCO2emissions,partic-ularlyfromland-usechange,giventheirlargeuncertainty,ashasbeensuggestedelsewhere(Piaoetal.,2018),com-binedwithanunderestimateofthesinks.AlargerDGVM(SLAND−ELUC)overtheextratropicswouldreconcilemodelresultswithinversionestimatesforfluxesinthetotallandduringthepastdecade(Fig.13;Table5).Likewise,alargerSOCEANisalsopossiblegiventhehigherestimatesfromthedataproducts(seeSect.3.1.2,Figs.10and13),theunderesti-mationofinterioroceananthropogeniccarbonaccumulationintheGOBMs(Sect.3.5.5),andtherecentlysuggestedup-wardadjustmentsoftheoceancarbonsinkinEarthsystemmodels(Terhaaretal.,2022)andindataproducts,herere-latedtoapotentialtemperaturebiasandskineffects(Watsonetal.,2020;Dongetal.,2022,Fig.10).IfSOCEANweretobebasedondataproductsalone,withalldataproductsinclud-ingthisadjustment,thiswouldresultina2012–2021SOCEANof3.8GtCyr−1(Dongetal.,2022)or>4GtCyr−1(Watsonetal.,2020),i.e.outsideoftherangesupportedbytheatmo-sphericinversionsandwithanimpliednegativeBIMofmorethan−1GtCyr−1,indicatingthataclosureofthebudgetcouldonlybeachievedwitheitheranthropogenicemissionsbeingsignificantlylargerand/orthenetlandsinkbeingsub-stantiallysmallerthanestimatedhere.Moreintegrateduseofobservationsintheglobalcarbonbudget,eitherontheirownEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224847orforfurtherconstrainingmodelresults,shouldhelpresolvesomeofthebudgetimbalance(Petersetal.,2017).4TrackingprogresstowardsmitigationtargetsTheaveragegrowthinglobalfossilCO2emissionspeakedat+3%peryearduringthe2000s,drivenbytherapidgrowthinemissionsinChina.Inthelastdecade,however,theglobalgrowthratehasslowlydeclined,reachingalow+0.5%peryearover2012–2021(includingthe2020globaldeclineandthe2021emissionsrebound).Whilethisslow-downinglobalfossilCO2emissionsgrowthiswelcome,itisfarfromtheemissiondecreaseneededtobeconsistentwiththetemperaturegoalsoftheParisAgreement.Sincethe1990s,theaveragegrowthrateoffossilCO2emissionshascontinuouslydeclinedacrossthegroupofde-velopedcountriesoftheOrganizationforEconomicCo-operationandDevelopment(OECD),withemissionspeak-inginaround2005andnowdecliningataround1%peryear(LeQuéréetal.,2021).Inthedecade2012–2021,territo-rialfossilCO2emissionsdecreasedsignificantly(atthe95%confidencelevel)in24countrieswhoseeconomiesgrewsig-nificantly(alsoatthe95%confidencelevel):Belgium,Croa-tia,CzechRepublic,Denmark,Estonia,Finland,France,Germany,HongKong,Israel,Italy,Japan,Luxembourg,Malta,Mexico,Netherlands,Norway,Singapore,Slovenia,Sweden,Switzerland,theUnitedKingdom,theUSA,andUruguay(updatedfromLeQuéréetal.,2019).Altogether,these24countriesemitted2.4GtCyr−1(8.8GtCO2yr−1)onaverageoverthelastdecade,aboutaquarterofworldfos-silCO2emissions.Consumption-basedemissionsalsofellsignificantlyduringthefinaldecadeforwhichestimatesareavailable(2011–2020)in15ofthesecountries:Belgium,Denmark,Estonia,Finland,France,Germany,HongKong,Israel,Japan,Luxembourg,Mexico,Netherlands,Singapore,Sweden,theUnitedKingdom,andUruguay.Figure15showsthattheemissiondeclinesintheUSAandtheEU27arepri-marilydrivenbyincreaseddecarbonization(CO2emissionsperunitenergy)inthelastdecadecomparedtotheprevious,withsmallercontributionsintheEU27fromslightlyweakereconomicgrowthandslightlylargerdeclinesinenergyperGDP.Thesecountrieshavestableordecliningenergyuseandthusdecarbonizationpoliciesreplaceexistingfossilfuelinfrastructure(LeQuéréetal.,2019).Incontrast,fossilCO2emissionscontinuetogrowinnon-OECDcountries,althoughthegrowthratehasslowedfromalmost6%peryearduringthe2000stolessthan2%peryearinthelastdecade.Representing47%ofnon-OECDemissionsin2021,alargepartofthisslowdownisduetoChina,whichhasseenemissionsgrowthdeclinefromnearly10%peryearinthe2000sto1.5%peryearinthelastdecade.ExcludingChina,non-OECDemissionsgrewat3.3%peryearinthe2000scomparedto1.6%peryearinthelastdecade.Figure15showsthat,comparedtothepreviousdecade,Chinahashadweakereconomicgrowthinthelastdecadeandahigherdecarbonizationrate,withmorerapiddeclinesinenergyperGDPthatarenowbacktolevelsseenduringthe1990s.Indiaandtherestoftheworldhavestrongeconomicgrowththatisnotoffsetbydecarbonizationorde-clinesinenergyperGDP,drivingupfossilCO2emissions.Despitethehighdeploymentofrenewablesinsomecountries(e.g.India),fossilenergysourcescontinuetogrowtomeetgrowingenergydemand(LeQuéréetal.,2019).Globally,fossilCO2emissionsgrowthisslowing,andthisisduetotheemergenceofclimatepolicy(EskanderandFankhauser,2020;LeQuereetal.,2019)andtechnologicalchange,whichisleadingtoashiftfromcoaltogas,growthinrenewableenergies,andreducedexpansionofcoalcapac-ity.Attheaggregatedgloballevel,decarbonizationshowsastrongandgrowingsignalinthelastdecade,withsmallercontributionsfromlowereconomicgrowthanddeclinesinenergyperGDP.Despitetheslowinggrowthinglobalfos-silCO2emissions,emissionsarestillgrowing,butthesearefarfromthereductionsneededtomeettheambitiousclimategoalsoftheUNFCCCParisAgreement.WeupdatetheremainingcarbonbudgetassessedbytheIPCCAR6(Canadelletal.,2021),accountingfortheesti-mated2020to2022emissionsfromfossilfuelcombustion(EFOS)andland-usechanges(ELUC).FromJanuary2023,theremainingcarbon(50%likelihood)forlimitingglobalwarmingto1.5,1.7,and2◦Cisestimatedtoamountto105,200,and335GtC(380,730,1230GtCO2).Thesenumbersincludeanuncertaintybasedonmodelspread(asinIPCCAR6),whichisreflectedthroughthepercentlikelihoodofexceedingthegiventemperaturethreshold.Theseremainingamountscorrespondrespectivelytoabout9,18,and30yearsfromthebeginningof2023atthe2022leveloftotalCO2emissions.ReachingnetzeroCO2emissionsby2050entailscuttingtotalanthropogenicCO2emissionsbyabout0.4GtC(1.4GtCO2)eachyearonaverage,comparabletothede-creaseobservedin2020duringtheCOVID-19pandemic.5DiscussionEachyearwhentheglobalcarbonbudgetispublished,eachfluxcomponentisupdatedforallpreviousyearstoconsidercorrectionsthataretheresultoffurtherscrutinyandverifi-cationoftheunderlyingdataintheprimaryinputdatasets.Annualestimatesmaybeupdatedwithimprovementsindataqualityandtimeliness(e.g.toeliminatetheneedforextrap-olationofforcingdatasuchaslanduse).Ofalltermsintheglobalbudget,onlythefossilCO2emissionsandthegrowthrateinatmosphericCO2concentrationsarebasedprimarilyonempiricalinputssupportingannualestimatesinthiscar-bonbudget.Thecarbonbudgetimbalance,whileanimper-fectmeasure,providesastrongindicationofthelimitationsinobservationsinunderstandingandrepresentingprocesseshttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224848P.Friedlingsteinetal.:GlobalCarbonBudget2022Figure15.KayadecompositionofthemaindriversoffossilCO2emissions,consideringpopulation,GDPperperson,energyperGDP,andCO2emissionsperenergy,forChina(a),theUSA(b),theEU27(c),India(d),therestoftheworld(e),andtheworld(f).BlackdotsaretheannualfossilCO2emissionsgrowthrate,colouredbarsarethecontributionsfromthedifferentdrivers.AgeneraltrendisthatpopulationandGDPgrowthputupwardpressureonemissions,whileenergyperGDPandmorerecentlyCO2emissionsperenergyputdownwardpressureonemissions.BoththeCOVID-19-inducedchangesduring2020andtherecoveryin2021ledtoastarkcontrasttopreviousyears,withdifferentdriversineachregion.inmodelsand/orintheintegrationofthecarbonbudgetcom-ponents.Thepersistentunexplainedvariabilityinthecarbonbudgetimbalancelimitsourabilitytoverifyreportedemissions(Pe-tersetal.,2017)andsuggestswedonotyethaveacompleteunderstandingoftheunderlyingcarboncycledynamicsonannualtodecadaltimescales.Resolvingmostofthisunex-plainedvariabilityshouldbepossiblethroughdifferentandcomplementaryapproaches.First,asintendedwithouran-nualupdates,theimbalanceasanerrortermisreducedbyimprovementsofindividualcomponentsoftheglobalcar-bonbudgetthatfollowfromimprovingtheunderlyingdataandstatisticsandbyimprovingthemodelsthroughthereso-lutionofsomeofthekeyuncertaintiesdetailedinTable10.Second,additionalcluestotheoriginandprocessesrespon-sibleforthevariabilityinthebudgetimbalancecouldbeob-tainedthroughacloserscrutinyofcarbonvariabilityinlightofotherEarthsystemdata(e.g.heatbalance,waterbalance)andtheuseofawiderrangeofbiogeochemicalobservationstobetterunderstandtheland–oceanpartitioningofthecarbonEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224849Table10.Majorknownsourcesofuncertaintiesineachcomponentoftheglobalcarbonbudget,definedasinputdataorprocessesthathaveademonstratedeffectofatleast±0.3GtCyr−1.SourceofuncertaintyTimescale(years)LocationStatusEvidenceFossilCO2emissions(EFOS;Sect.2.1)Energystatisticsannualtodecadalglobal,butmainlyChinaandmajordevelopingcountriesseeSect.2.1Korsbakkenetal.(2016),Guanetal.(2012)Carboncontentofcoalannualtodecadalglobal,butmainlyChinaandmajordevelopingcountriesseeSect.2.1Liuetal.(2015)SystemboundaryannualtodecadalallcountriesseeSect.2.1Andrew(2020b)Netland-usechangeflux(ELUC;Sect.2.2)Landcoverandland-usechangestatisticscontinuousglobal,inparticularthetrop-icsseeSect.2.4Houghtonetal.(2012),Gasseretal.(2020),Ganzenmülleretal.(2022),Yuetal.(2022)Sub-grid-scaletransitionsannualtodecadalglobalseeSect.2.4,TableA1Wilkenskjeldetal.(2014)Vegetationbiomassannualtodecadalglobal,inparticularthetrop-icsseeSect.2.4Houghtonetal.(2012),Bastosetal.(2021)Forestdegradation(fire,selectivelogging)annualtodecadaltropicsseeSect.3.2.2,TableA1Aragãoetal.(2018),Qinetal.(2021)Woodandcropharvestannualtodecadalglobal,particularlySEAsiaseeTableA1Arnethetal.(2017),Erbetal.(2018)Peatburningamulti-decadaltrendglobalseeTableA1vanderWerfetal.(2010,2017)Lossofadditionalsinkcapacitymulti-decadaltrendglobalnotincluded;seeAppendixD4Pongratzetal.(2014),Gasseretal.(2020);Obermeieretal.(2021)Atmosphericgrowthrate(GATM;Sect.2.3):nodemonstrateduncertaintieslargerthan±0.3GtCyr−1bOceansink(SOCEAN;Sect.2.4)SparsityinsurfacefCO2ob-servationsmean,decadalvariabilityandtrendglobal,inparticularSouth-ernHemisphereseeSect.3.5.2Gloegeetal.(2021),Denvil-Sommeretal.(2021),Bushinskyetal.(2019)Riverinecarbonoutgassinganditsanthropogenicperturbationannualtodecadalglobal,inparticularparti-tioningbetweenthetropicsandsouthernextratropicsseeSect.2.4(anthro-pogenicperturbationsnotincluded)Aumontetal.(2001),Resplandyetal.(2018),Lacroixetal.(2020)UnderestimationofinterioroceananthropogeniccarbonstorageannualtodecadalglobalseeSect.3.5.5Friedlingsteinetal.(2021),thisstudy,seealsoTerhaaretal.(2022)Near-surfacetemperatureandsalinitygradientsmeanonalltimescalesglobalseeSect.3.8.2Watsonetal.(2020),Dongetal.(2022)Landsink(SLAND;Sect.2.5)StrengthofCO2fertilizationmulti-decadaltrendglobalseeSect.2.5Wenzeletal.(2016),Walkeretal.(2021)Responsetovariabilityintem-peratureandrainfallannualtodecadalglobal,inparticularthetrop-icsseeSect.2.5Coxetal.(2013);Jungetal.(2017);Humphreyetal.(2018,2021)NutrientlimitationandsupplyannualtodecadalglobalZaehleetal.(2014)CarbonallocationandtissueturnoverratesannualtodecadalglobalDeKauweetal.(2014),O’Sullivanetal.(2022)Treemortalityannualglobal,inparticularthetrop-icsseeSect.2.5Hubauetal.(2020);Brienenetal.(2020)ResponsetodiffuseradiationannualglobalseeSect.2.5Mercadoetal.(2009);O’Sullivanetal.(2021)aAsaresultofinteractionsbetweenlanduseandclimate.bTheuncertaintiesinGATMhavebeenestimatedas±0.2GtCyr−1,althoughtheconversionofthegrowthrateintoaglobalannualfluxassuminginstantaneousmixingthroughouttheatmosphereintroducesadditionalerrorsthathavenotyetbeenquantified.imbalance(e.g.oxygen,carbonisotopes).Finally,additionalinformationcouldalsobeobtainedthroughhigherresolutionandprocessknowledgeattheregionallevelandthroughtheintroductionofinferredfluxessuchasthosebasedonsatelliteCO2retrievals.Thelimitoftheresolutionofthecarbonbud-getimbalanceisyetunclear,buthasmostcertainlynotyetbeenreachedgiventhepossibilitiesforimprovementsthatlieahead.EstimatesofglobalfossilCO2emissionsfromdifferentdatasetsareinrelativelygoodagreementwhenthediffer-entsystemboundariesofthesedatasetsareconsidered(An-drew,2020a).ButwhileestimatesofEFOSarederivedfromreportedactivitydatarequiringmuchfewercomplextrans-formationsthansomeothercomponentsofthebudget,uncer-taintiesremain,andonereasonfortheapparentlylowvari-ationbetweendatasetsispreciselytherelianceonthesamehttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224850P.Friedlingsteinetal.:GlobalCarbonBudget2022underlyingreportedenergydata.ThebudgetexcludessomesourcesoffossilCO2emissions,whichavailableevidencesuggestsarerelativelysmall(<1%).Wehaveaddedemis-sionsfromlimeproductioninChinaandtheUS,butthesearestillabsentinmostothernon-AnnexIcountriesandbefore1990inotherAnnexIcountries.EstimatesofELUCsufferfromarangeofintertwinedissues,includingthepoorqualityofhistoricallandcoverandland-usechangemaps,therudimentaryrepresentationofmanagementprocessesinmostmodels,andtheconfusioninmethodologiesandboundaryconditionsusedacrossmeth-ods(e.g.Arnethetal.,2017;Pongratzetal.,2014;Bastosetal.,2021;seealsoAppendixD4onthelossofsinkcapacity).UncertaintiesincurrentandhistoricalcarbonstocksinsoilsandvegetationalsoadduncertaintyintheELUCestimates.Unlessamajorefforttoresolvetheseissuesismade,littleprogressisexpectedintheresolutionofELUC.Thisispar-ticularlyconcerninggiventhegrowingimportanceofELUCforclimatemitigationstrategiesandthelargeissuesinthequantificationofthecumulativeemissionsoverthehistoricalperiodthatarisefromlargeuncertaintiesinELUC.ByaddingtheDGVMestimatesofCO2fluxesduetoenvi-ronmentalchangefromcountries’managedforestareas(partofSLANDinthisbudget)tothebudgetELUCestimate,wesuccessfullyreconciledthelargegapbetweenourELUCesti-mateandtheland-usefluxfromNGHGIsusingtheapproachdescribedinGrassietal.(2021)forafuturescenarioandinGrassietal.(2022b)usingdatafromtheGlobalCarbonBudget2021.Theupdateddatapresentedherecanbeusedaspotentialadjustmentinthepolicycontext,e.g.tohelpas-sessingthecollectivecountries’progresstowardsthegoaloftheParisAgreementandavoidingdoubleaccountingofthesinkinmanagedforests.Intheabsenceofthisadjust-ment,collectiveprogresswouldhenceappearbetterthanitis(Grassietal.,2021).TheneedofsuchadjustmentwheneveracomparisonbetweenLULUCFfluxesreportedbycountriesandtheglobalemissionestimatesoftheIPCCisattemptedisrecommendedalsointherecentUNFCCCSynthesisreportforthefirstGlobalStocktake(UNFCCC,2022).However,thisadjustmentshouldbeseenasashort-termandpragmaticfixbasedonexistingdata,ratherthanadefinitivesolutiontobridgethedifferencesbetweenglobalmodelsandnationalinventories.Additionalstepsareneededtounderstandandreconciletheremainingdifferences,someofwhicharerele-vantatthecountrylevel(Grassietal.,2022b;Schwingshackletal.,2022).ThecomparisonofGOBMs,dataproducts,andinversionshighlightsasubstantialdiscrepancyintheSouthernOcean(Fig.13,Haucketal.,2020).Alargepartoftheuncertaintyinthemeanfluxesstemsfromtheregionaldistributionoftheriverfluxadjustmentterm.Thecurrentdistribution(Au-montetal.,2001)isbasedononemodelstudyyieldingthelargestriverineoutgassingfluxsouthof20◦S,whereasare-centstudy,alsobasedononemodel,simulatesthelargestshareoftheoutgassingtooccurinthetropics(Lacroixetal.,2020).Thelong-standingsparsedatacoverageoffCO2observationsintheSouthernHemispherecomparedtotheNorthernHemisphere(e.g.Takahashietal.,2009)contin-uestoexist(Bakkeretal.,2016,2022,Fig.B1)andtoleadtosubstantiallyhigheruncertaintyintheSOCEANestimatefortheSouthernHemisphere(Watsonetal.,2020;Gloegeetal.,2021).Thisdiscrepancy,whichalsohampersmodelimprovement,pointstotheneedforincreasedhigh-qualityfCO2observations,especiallyintheSouthernOcean.Atthesametime,modeluncertaintyisillustratedbythelargespreadofindividualGOBMestimates(indicatedbyshadinginFig.13)andhighlightstheneedformodelimprovement.ThedivergingtrendsinSOCEANfromdifferentmethodsisamatterofconcern,whichisunresolved.Theassessmentofthenetland–atmosphereexchangefromDGVMsandatmo-sphericinversionsalsoshowssubstantialdiscrepancy,partic-ularlyfortheestimateofthetotallandfluxoverthenorth-ernextratropics.Thisdiscrepancyhighlightsthedifficultytoquantifycomplexprocesses(CO2fertilization,nitrogende-positionandfertilizers,climatechangeandvariability,landmanagement,etc.)thatcollectivelydeterminethenetlandCO2flux.ResolvingthedifferencesintheNorthernHemi-spherelandsinkwillrequiretheconsiderationandinclusionoflargervolumesofobservations.Weprovidemetricsfortheevaluationoftheoceanandlandmodelsandtheatmosphericinversions(Figs.B2toB4).Thesemetricsexpandtheuseofobservationsintheglobalcarbonbudget,helping(1)tosupportimprovementsintheoceanandlandcarbonmodelsthatproducethesinkestimatesand(2)toconstraintherepresentationofkeyunderlyingpro-cessesinthemodelsandallocatetheregionalpartitioningoftheCO2fluxes.However,GOBMsskillshavechangedlit-tlesincetheintroductionoftheoceanmodelevaluation.Theadditionalsimulationallowsfordirectcomparisonwithinte-rioroceananthropogeniccarbonestimatesandsuggeststhatthemodelsunderestimateanthropogeniccarbonuptakeandstorage.Thisisaninitialsteptowardstheintroductionofabroaderrangeofobservationsthatwehopewillsupportcon-tinuedimprovementsintheannualestimatesoftheglobalcarbonbudget.Weassessedbeforethatasustaineddecreaseof−1%inglobalemissionscouldbedetectedatthe66%likelihoodlevelafteradecadeonly(Petersetal.,2017).Similarly,achangeinbehaviourofthelandand/oroceancarbonsinkwouldtakeaslongtodetectandmuchlongerifitemergesmoreslowly.Continuingwithreducingthecarbonimbal-anceonannualtodecadaltimescales,regionalizingthecar-bonbudget,andintegratingmultiplevariablesarepowerfulwaystoshortenthedetectionlimitandensuretheresearchcommunitycanrapidlyidentifyissuesofconcernintheevo-lutionoftheglobalcarboncycleunderthecurrentrapidandunprecedentedchangingenvironmentalconditions.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget202248516ConclusionsTheestimationofglobalCO2emissionsandsinksisamajoreffortbythecarboncycleresearchcommunitythatrequiresacarefulcompilationandsynthesisofmeasurements,statis-ticalestimates,andmodelresults.Thedeliveryofanannualcarbonbudgetservestwopurposes.First,thereisalargede-mandforup-to-dateinformationonthestateoftheanthro-pogenicperturbationoftheclimatesystemanditsunderpin-ningcauses.Abroadstakeholdercommunityreliesonthedatasetsassociatedwiththeannualcarbonbudgetincludingscientists,policymakers,businesses,journalists,andnon-governmentalorganizationsengagedinadaptingtoandmit-igatinghuman-drivenclimatechange.Second,overthelastdecadeswehaveseenunprecedentedchangesinthehumanandbiophysicalenvironments(e.g.changesinthegrowthoffossilfuelemissions,impactsoftheCOVID-19pandemic,Earth’swarming,andstrengthofthecarbonsinks),whichcallforfrequentassessmentsofthestateoftheplanet,abet-terquantificationofthecausesofchangesinthecontempo-raryglobalcarboncycle,andanimprovedcapacitytoan-ticipateitsevolutioninthefuture.Buildingthisscientificunderstandingtomeettheextraordinaryclimatemitigationchallengerequiresfrequent,robust,transparent,andtrace-abledatasetsandmethodsthatcanbescrutinizedandrepli-cated.Thispaper,via“livingdata”,helpstokeeptrackofnewbudgetupdates.7DataavailabilityThedatapresentedherearemadeavailableinthebeliefthattheirwidedisseminationwillleadtogreaterunderstandingandnewscientificinsightsofhowthecarboncycleworks,howhumansarealteringit,andhowwecanmitigatetheresultinghuman-drivenclimatechange.FullcontactdetailsandinformationonhowtocitethedatashownherearegivenatthetopofeachpageintheaccompanyingdatabaseandsummarizedinTable2.TheaccompanyingdatabaseincludesthreeExcelfilesor-ganizedintothefollowingspreadsheets.ThefileGlobal_Carbon_Budget_2022v0.1.xlsxincludesthefollowingitems:1.summary;2.theglobalcarbonbudget(1959–2021);3.thehistoricalglobalcarbonbudget(1750–2021);4.globalCO2emissionsfromfossilfuelsandcementpro-ductionbyfueltypeandthepercapitaemissions(1850–2021);5.CO2emissionsfromland-usechangefromtheindivid-ualbookkeepingmodels(1959–2021);6.oceanCO2sinkfromtheindividualoceanmodelsandfCO2-basedproducts(1959–2021);7.terrestrialCO2sinkfromtheindividualDGVMs(1959–2021);8.cementcarbonationCO2sink(1959–2021).ThefileNational_Fossil_Carbon_Emissions_2022v0.1.xlsxincludesthefollowingitems:1.summary;2.territorialcountryCO2emissionsfromfossilfuelsandcementproduction(1850–2021);3.consumptioncountryCO2emissionsfromfossilfuelsandcementproductionandemissionstransferfromtheinternationaltradeofgoodsandservices(1990–2020)usingCDIAC/UNFCCCdataasreference;4.emissionstransfers(consumptionminusterritorialemissions;1990–2020);5.countrydefinitions.ThefileNational_LandUseChange_Carbon_Emissions_2022v0.1xlsxincludesthefollowingitems:1.summary2.territorialcountryCO2emissionsfromland-usechange(1850–2021)fromthreebookkeepingmodels;AllthreespreadsheetsarepublishedbytheIntegratedCar-bonObservationSystem(ICOS)CarbonPortalandareavail-ableathttps://doi.org/10.18160/GCP-2022(Friedlingsteinetal.,2022b).NationalemissionsdataarealsoavailablefromtheGlobalCarbonAtlas(http://www.globalcarbonatlas.org/,lastaccess:25September2022)andfromOurWorldinData(https://ourworldindata.org/co2-emissions,lastaccess:25September2022).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224852P.Friedlingsteinetal.:GlobalCarbonBudget2022AppendixA:SupplementarytablesTableA1.ComparisonoftheprocessesincludedinthebookkeepingmethodandDGVMsintheirestimatesofELUCandSLAND.SeeTable4formodelreferences.Allmodelsincludedeforestationandforestregrowthafterabandonmentofagriculture(orfromafforestationactivitiesonagriculturalland).ProcessesrelevantforELUCareonlydescribedfortheDGVMsusedwithland-coverchangeinthisstudy.Hereweusetheterm“DGVM”inthebroadestsenseintermsofglobalvegetationmodelswhichareabletodynamicallyadjusttoimposedlanduseandland-usechange(LULCC).BookkeepingmodelsDGVMsH&NBLUEOSCARCABLE-POPCLASSICCLM5.0DLEMIBISISAMJSBACHJULES-ESLPJ-GUESSLPJLPX-BernOCNv2ORCHIDEEv3SDGVMVISITYIBsProcessesrelevantforELUCWoodharvestandforestdegradationayesyesyesyesnoyesyesyesyesyesnoyesyesnodyesyesnoyesnoShiftingcultivation/subgridscaletransitionsyesbyesyesyesnoyesnoyesnoyesnoyesyesnodnononoyesnoCroplandharvest(re-moved,R,oraddedtolitter,L)yes(R)jyes(R)jyes(R)yes(R)yes(L)yes(R)yesyes(R)yesyes(R+L)yes(R)yes(R)yes(L)yes(R)yes(R+L)yes(R)yes(R)yes(R)yes(L)PeatfiresyesyesyesnonoyesnononononononononononononoFireasamanagementtoolyesjyesjyeshnonononononononononononononononoNfertilizationyesjyesjyeshnonoyesyesnoyesnoyesiyesnoyesyesyesnononoTillageyesjyesjyeshnoyesgnonononononoyesnononoyesgnononoIrrigationyesjyesjyeshnonoyesyesnoyesnonoyesnononononononoWetlanddrainageyesjyesjyeshnononononoyesnonononononononononoErosionyesjyesjyeshnononoyesnonononononononononoyesnoPeatdrainageyesyesyesnonononononononononononononononoGrazingandmowingHarvest(removed,r,oraddedtolitter,l)yes(r)jyes(r)jyes(r)yes(r)nonononoyes(r,l)yes(l)noyes(r)yes(l)noyes(r+l)nonononoProcessesalsorelevantforSLAND(inadditiontoCO2fertilizationandclimate)Firesimulationand/orsuppressionn/an/an/anoyesyesnoyesnoyesyesyesyesyesnonoyesyesnoCarbon–nitrogenin-teractions,includingNdepositionn/an/an/ayesnofyesyesnoyesyesyesyesnoyesyesyesyescnonofSeparatetreatmentofdirectanddiffuseso-larradiationn/an/an/ayesnoyesnonononoyesnononononononoyesEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224853TableA2.Comparisonoftheprocessesandmodelset-upfortheGlobalOceanBiogeochemistryModelsfortheirestimatesofSOCEAN.SeeTable4formodelreferences.NEMO-PlankTOM12NEMO-PISCES(IPSL)MICOM-HAMOCC(NorESM1-OCv1.2)MPIOM-HAMOCC6FESOM-2.1-REcoM2NEMO3.6-PISCESv2-gas(CNRM)MOM6-COBALT(Princeton)CESM-ETHZMRI-ESM2-1CESM2ModelspecificsPhysicaloceanmodelNEMOv3.6-ORCA2NEMOv3.6-eORCA1L75MICOM(NorESM1-OCv1.2)MPIOMFESOM-2.1NEMOv3.6-GELATOv6-eORCA1L75MOM6-SIS2CESMv1.3(oceanmodelbasedonPOP2)MRI.COMv4CESM2-POP2BiogeochemistrymodelPlankTOM12PISCESv2HAMOCC(NorESM1-OCv1.2)HAMOCC6REcoM-2-MPISCESv2-gasCOBALTv2BEC(modified&extended)NPZDMARBLHorizontalresolution2◦long,0.3to1.5◦lat1◦long,0.3to1◦lat1◦long,0.17to0.25lat1.5◦unstructuredmesh,20–120kmresolution(COREmesh)1◦long,0.3to1◦lat0.5◦long,0.25to0.5◦lat1.125◦long,0.53◦to0.27◦lat1◦long,0.3to0.5◦lat1.125◦long,0.53◦to0.27◦latVerticalresolution31levels75levels,1matthesur-face51isopycniclayers+2layersrepresentingabulkmixedlayer40levels46levels,10mspacinginthetop100m75levels,1matsurface75levelshybridcoordi-nates,2matsurface60levels60levelswith1levelofbottomboundarylayer60levelsTotaloceanareaonna-tivegrid(km2)3.6080E+083.6270E+083.6006E+083.6598E+083.6435E+083.6270E+143.6111E+083.5926E+083.6141E+083.61E+08Gasexchangeparame-terizationWanninkhof(1992)Orretal.(2017)Orretal.(2017),butwitha=0.337Orretal.(2017)Orretal.(2017)Orretal.(2017)Orretal.(2017)Wanninkhof(1992,co-efficientascaleddownto0.31)Orretal.(2017)Orretal.(2017)CO2chemistryroutinesfollowingBroecker(1982)mocsyfollowingDicksonetal.(2007)Ilyinaetal.(2013)adaptedtocomplywithOMIPprotocol(Orretal.,2017)mocsymocsymocsyOCMIP2(Orretal.,2017)mocsyOCMIP2(Orretal.,2017)Riverinput(PgCyr−1)(organic/inorganicDIC)0.723/–0.61/–00.77/–0/0∼0.611/–∼0.07/∼0.150.33/–0/00.173/0.263Netfluxtosediment(PgCyr−1)(organic/other)0.723/–0.59/–around0.54/––/0.440/0∼0.656/–∼0.11/∼0.07(CaCO3)0.21/–0/00.345/0.110(CaCO3)Spin-upprocedureInitializationofcarbonchemistryGLODAPv1(pre-industrialDIC)GLODAPv2(pre-industrialDIC)GLODAPv1(pre-industrialDIC)initializationfrompre-vioussimulationGLODAPv2(pre-industrialDIC)GLODAPv2GLODAPv2(alka-linity,DIC).DICcorrectedto1959level(simulationAandC)andtopre-industriallevel(simulationBandD)usingKhatiwalaetal.(2009)GLODAPv2(pre-industrialDIC)GLODAPv2(pre-industrialDIC)GLODAPv2(pre-industrialDIC)Pre-industrialspin-uppriorto1850spin-up1750–1947spin-upstartingin1836with3loopsofJRA551000yearspin-up∼2000years189yearslongspin-up(>1000years)OtherbiogeochemicaltracersinitializedfromaGFDL-ESM2Mspin-up(>1000years)spin-up1655–18491661yearswithxCO2=284.32spin-up1653–1850,xCO2=278AtmosphericforcingfieldsandCO2Atmosphericforcingfor(i)pre-industrialspin-up,(ii)spin-up1850–1958forsimula-tionB,(iii)simulationBloopingNCEPyear1990(i,ii,iii)loopingfullJRA55re-analysisCORE-I(normal-year)forcing(i,ii,iii)OMIPclimatology(i),NCEPyear1957(ii,iii)JRA55-dov.1.5.0repeated-year1961(i,ii,iii)JRA55-do-v1.5.0fullreanalysis(i)cycling-year1958(ii,iii)GFDL-ESM2Min-ternalforcing(i),JRA55-do-v1.5.0repeat-year1959(ii,iii)COREv2until1835,from1835-1850:JRA(i),normal-yearforcingcreatedfromJRA55-doversion1.3(ii,iii)JRA55-dov1.5.0repeat-year1990/91(i,ii,iii)(i)repeatingJRA1958–2018forspin-upforA&D,repeat-ingJRA1990/1991repeat-yearforcingforspin-upforB&C,(ii)&(iii)JRA1990/1991repeat-yearforcingAtmosphericCO2forcontrolspin-up1850–1958forsimulationB,andforsimulationBconstant278ppm,convertedtopCO2temperatureformula-tion(Sarmientoetal.,1992)xCO2of286.46ppm,convertedtopCO2withconstantsea-levelpressureandwater-vapourpressurexCO2of278ppm,con-vertedtopCO2withsea-levelpressureandwater-vapourpressurexCO2of278ppm,noconversiontopCO2xCO2of278ppm,con-vertedtopCO2withsea-levelpressureandwater-vapourpressurexCO2of286.46ppm,convertedtopCO2withconstantsea-levelpressureandwater-vapourpressurexCO2of278ppm,con-vertedtopCO2withsea-levelpressureandwater-vapourpressurexCO2of287.4ppm,convertedtopCO2withatmosphericpres-sure,andwater-vapourpressurexCO2of284.32ppm(CMIP6piControl),convertedtopCO2withwater-vapourandsea-levelpressure(JRA55-dorepeat-year1990/91)xCO2of278ppmAtmosphericforcingforhistoricalspin-up1850–1958forsim-ulationA(i)andforsimulationA(ii)1750–1947:loopingNCEPyear1990;1948–2021:NCEP1836–1958:loopingfullJRA55reanalysis(i),JRA55-do-v1.4then1.5for2020–2021(ii)CORE-I(normal-year)forcing;from1948on-wards:NCEP-R1withCORE-IIcorrectionsNCEP6-hourlycyclicforcing(10yearsstartingfrom1948,i);1948–2021:transientNCEPforcingJRA55-do-v1.5.0repeated-year1961(i),transientJRA55-do-v1.5.0(ii)JRA55-docycling-year1958(i),JRA55-do-v1.5.0(ii)JRA55-do-v1.5repeat-year1959(i),v1.5.0(1959-2019),v1.5.0.1b(2020),v1.5.0.1(2021;ii)JRA55version1.3,repeatcyclebetween1958and2018(i),v1.3(1959–2018),v.1.5.0.1(2020–2021)1653-1957:repeatedcycleJRA55-dov1.5.01958–2018(i),v1.5.0(1958–2018),v1.5.0.1(2019–2021;ii)(i)repeatingJRA1958–2018,(ii)JRA1958–2021AtmosphericCO2forhistoricalspin-up1850–1958forsimulationA(i)andsimulationA(ii)xCO2providedbytheGCB;convertedtopCO2temperatureformulation(Sarmientoetal.,1992),monthlyresolution(i,ii)xCO2asprovidedbytheGCB,globalmean,annualresolution,con-vertedtopCO2withsea-levelpressureandwater-vapourpressure(i,ii)xCO2asprovidedbytheGCB,convertedtopCO2withsea-levelpressure(takenfromtheatmosphericforc-ing)andwater-vapourcorrection(i,ii)transientmonthlyxCO2providedbyGCB,noconversion(i,ii)xCO2asprovidedbytheGCB,convertedtopCO2withsea-levelpressureandwater-vapourpressure,globalmean,andmonthlyresolution(i,ii)xCO2asprovidedbytheGCB,convertedtopCO2withconstantsea-levelpressureandwater-vapourpressure,globalmean,andyearlyresolution(i,ii)xCO2atyear1959level(315ppm,i)andasprovidedbyGCB(ii),bothconvertedtopCO2withsea-levelpressureandwater-vapourpressure,globalmean,andyearlyresolutionxCO2asprovidedbytheGCB,convertedtopCO2withlocallyde-terminedatm.pressureandwater-vapourpres-sure(i,ii)xCO2asprovidedforCMIP6historicalsimulations,froman-nualresolution(i)andasprovidedbyGCB(ii),bothconvertedtopCO2withwater-vapourandsea-levelpressureannualglobalxCO2providedbyGCB,convertedtoequi-libriumCO2usingatmosphericpressureandWeissandPrice(1980)https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224854P.Friedlingsteinetal.:GlobalCarbonBudget2022TableA3.DescriptionofoceandataproductsusedforassessmentofSOCEAN.SeeTable4forreferences.Jena-MLSMPI-SOMFFNCMEMS-LSCE-FFNNWatsonetalNIES-NNJMA-MLROS-ETHZ-GRaCERLDEOHPDMethodSpatio-temporalin-terpolation(versionoc_v2022).Spatio-temporalfieldofocean-internalcarbonsourcesandsinksisfittotheSOCATv2022pCO2data.Includesamulti-linearregressionagainstenvironmentaldriverstobridgedatagaps.Afeed-forwardneuralnetwork(FFN)deter-minesthenon-linearrelationshipbetweenSOCATpCO2measure-mentsandenvironmentalpredictordatafor16biogeochemicalprovinces(definedthroughaself-organizingmap,SOM)andisusedtofilltheexistingdatagaps.Anensembleofneuralnetworkmodelstrainedon100subsampleddatasetsfromSOCATandenvironmentalpredictors.ThemodelsareusedtoreconstructseasurfacefugacityofCO2andconverttoair–seaCO2fluxes.ModifiedMPI-SOMFFNwithSOCATv2022pCO2database.Correctedtothesub-skintemperatureoftheoceanasmeasuredbysatellite(Goddijn-Murphyetal.,2015).Fluxcalculationcorrectedforthecoolandsaltysurfaceskin.MonthlyclimatologyforskintemperaturecorrectionderivedfromESACCIproductfortheperiod2003to2011(Merchantetal.,2019).Afeed-forwardneuralnetworkmodeltrainedonSOCAT2021fCO2andenvironmentalpre-dictordata.ThefCO2wasnormalizedtothereferenceyear2000byaglobalfCO2trend.WefittedthedependenceoffCO2onyearbylinearregression.WesubtractedthetrendfromfCO2andusedtheneuralnetworktomodelthenon-lineardependenceoftheresid-ualonpredictors.ThetrendwasaddedtomodelpredictionstoreconstructfCO2.Fieldsoftotalalkalinity(TA)wereestimatedbyusingamultiplelin-earregression(MLR)methodbasedonGLO-DAPv2.2021andsatelliteobservationdata.SOCATv2022fCO2datawereconvertedtodis-solvedinorganiccarbon(DIC)withtheTA.FieldsofDICwereestimatedbyusingaMLRmethodbasedontheDICandsatelliteobservationdata.Geospatialrandomclus-terensembleregressionisatwo-stepcluster-regressionapproach,wheremultipleclusteringinstanceswithslightvari-ationsareruntocreateanensembleofestimates.WeuseK-meanscluster-ingandacombinationofgradient-boostedtreesandfeed-forwardneuralnetworkstoestimateSOCATv2022fCO2.BasedonfCO2misfitbetweenobservedfCO2andeightoftheoceanbio-geochemicalmodelsusedinthisassessment.Theextremegradientboost-ingmethodlinksthismis-fittoenvironmentalob-servationstoreconstructthemodelmisfitacrossallspaceandtime,whichisthenaddedbacktomodel-basedfCO2esti-mate.Thefinalrecon-structionofsurfacefCO2istheaverageacrosstheeightreconstructions.Gasexchangepa-rameterizationWanninkhof(1992);transfercoefficientkscaledtomatchaglobalmeantransferrateof16.5cmh−1byNae-gler(2009)Wanninkhof(1992);transfercoefficientkscaledtomatchaglobalmeantransferrateof16.5cmh−1Wanninkhof(2014);transfercoefficientkscaledtomatchaglobalmeantransferrateof16.5cmh−1(Naegler,2009)Nightingaleetal.(2000)Wanninkhof(2014);transfercoefficientkscaledtomatchaglobalmeantransferrateof16.5cmh−1(Naegler,2009)Wanninkhof(2014);transfercoefficientkscaledtomatchaglobalmeantransferrateof16.5cmh−1(Naegler,2009).Wanninkhof(1992);averagedandscaledforthreereanalysiswinddatasetstoaglobalmean16.5cmh−1(afterNae-gler,2009;Fayetal.,2021)Wanninkhof(1992);averagedandscaledforthreereanalysiswinddatasetstoaglobalmean16.5cmh−1(afterNae-gler,2009;Fayetal.,2021)WindproductJMA55-doreanalysisERA5ERA5Meanandmeansquarewindmonthlyat1×1◦fromCCMP,0.25×0.25◦×6-hourlydata,ERA5JRA55JRA55,ERA5,NCEP1JRA55,ERA5,CCMP2Spatialresolution2.5◦longitude×2◦latitude1×1◦1×1◦1×1◦1×1◦1×1◦1×1◦1×1◦TemporalresolutiondailymonthlymonthlymonthlymonthlymonthlymonthlymonthlyAtmosphericCO2Spatiallyandtemporallyvaryingfieldbasedonat-mosphericCO2datafrom169stations(JenaCarbo-Scopeatmosphericinver-sionsEXTALL_v2021).Spatiallyvarying1×1◦atmosphericpCO2_wetcalculatedfromtheNOAAGMDmarineboundarylayerxCO2andNCEPsea-levelpres-surewiththemoisturecorrectionbyDicksonetal.(2007).Spatiallyandmonthlyvaryingfieldsofatmo-sphericpCO2computedfromCO2molefraction(CO2atmosphericinver-sionfromtheCopernicusAtmosphereMonitoringService)andatmosphericdry-airpressure,whichisderivedfrommonthlysurfacepressure(ERA5)andwater-vapourpres-surefittedbyWeissandPrice(1980).AtmosphericpCO2(wet)calculatedfromNOAAmarineboundarylayerXCO2andNCEPsea-levelpressure,withpH2OcalculatedfromCooperetal.(1998).The2021XCO2marineboundaryvalueswerenotavailableatsubmissionsoweusedpreliminaryvalues,esti-matedfrom2020valuesandtheincreaseatMaunaLoa.NOAAGreenhouseGasMarineBound-aryLayerReference,whichcanbeaccessedathttps://gml.noaa.gov/ccgg/mbl/mbl.html(lastaccess:25September2022).AtmosphericxCO2fieldsoftheJMA-GSAMinver-sionmodel(Makietal.,2010;Nakamuraetal.,2015)wereused.TheywereconvertedtopCO2byusingJRA55sea-levelpressure.The2021xCO2fieldswerenotavailableatthisstage,andweusedglobalxCO2incrementsfrom2020to2021.NOAA’smarineboundarylayerproductforxCO2islinearlyinterpolatedontoa1×1◦gridandre-sampledfromweeklytomonthly.xCO2ismul-tipliedbyERA5meansea-levelpressure,wherethelattercorrectedforwater-vapourpressureus-ingDicksonetal.(2007).Thisresultsaregiveninmonthly1×1◦pCO2atm.NOAA’smarineboundarylayerproductforxCO2islinearlyinterpolatedontoa1×1◦gridandre-sampledfromweeklytomonthly.xCO2ismul-tipliedbyERA5meansea-levelpressure,wherethelattercorrectedforwater-vapourpressureus-ingDicksonetal.(2007).Thisresultsaregiveninmonthly1×1◦pCO2atm.Totaloceanareaonnativegrid(km2)3.63E+083.63E+083.50E+083.52E+083.49E+083.10E+08(2.98E+08to3.16E+08,dependingonicecover)3.55E+083.61E+08methodtoextendproducttofullglobaloceancoverageArcticandmarginalseasaddedfollowingLand-schützeretal.(2020).Nocoastalcut.Fayetal.(2021)Methodhasnear-fullcov-erage.Fayetal.(2021)wasused,andgapswerefilledwithmonthlyclimatology.In-terannualvariabilitywasaddedtotheclimatologybasedonthetemporalevolutionoffiveproductsfortheyears1985through2020andthenonlyusingthisproductfortheyear2021.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224855TableA4.Comparisonoftheinversionset-upandinputfieldsfortheatmosphericinversions.AtmosphericinversionsseethefullCO2fluxes,includingtheanthropogenicandpre-industrialfluxes.Hence,theyneedtobeadjustedforthepre-industrialfluxofCO2fromthelandtotheoceanthatispartofthenaturalcarboncyclebeforetheycanbecomparedwithSOCEANandSLANDfromprocessmodels.SeeTable4forreferences.CopernicusAtmosphereMonitor-ingService(CAMS)Carbon-TrackerEurope(CTE)JenaCarboScopeUoENISMON-CO2CMS-FluxGONGGATHUCopernicusAtmosphereMonitor-ingService(CAMS)SatelliteVersionnumberv21r1v2022v2022UoEv6.1bv2022.1v2022v2022v2022FT21r2ObservationsAtmosphericobservationsHourlyresolution(well-mixedconditions)obspackGLOBALVIEWplusv7.0aandNRT_v7.2b,WDCGG,RAMCES,andICOSATCHourlyresolution(well-mixedconditions)obspackGLOBALVIEWplusv7.0aandNRT_v7.2bFlasksandhourlyresolutionfromvariousinstitutions(outliersremovedby2σcriterion)Hourlyresolution(well-mixedconditions)obspackGLOBALVIEWplusv7.0aandNRT_v7.2bHourlyresolution(well-mixedconditions)obspackGLOBALVIEWplusv7.0aandNRT_v7.2bACOS-GOSATv9r;OCO-2v10scaledtoWMO2019standard;andremoteflaskobservationsfromObsPack,GLOB-ALVIEWplus,v7.0a,andNRT_v7.2bOCO-2v10rdatascaledtotheWMO2019standardOCO-2v10rdatascaledtotheWMO2019standardBias-correctedACOSGOSATv9overlanduntilAugust2024plusbias-correctedACOSOCO-2v10overland,withbothrescaledtoX2019Periodcovered1979–20212001–20211957–20212001–20211990–20212010–20212015–20212015–20212010–2021PriorfluxesBiosphereandfiresORCHIDEE,GFEDv4.1sSiB4andGFASZeroCASAv1.0,climatol-ogyafter2016andGFED4.0VISITandGFEDv4.1sCARDAMOMCASAandGFEDv4.1sSiB4.2andGFEDv4.1sORCHIDEE,GFEDv4.1sOceanCMEMS-LSCE-FFNN2021CarboScopev2021CarboScopev2022TakahashiclimatologyJMAglobaloceanmapping(Iidaetal.,2015)MOM6TakahashiclimatologyTakahashiclimatologyCMEMS-LSCE-FFNN2021FossilfuelsGridFED2021.2cwithanextrapolationto2021basedonCar-bonmonitorandNO2GridFED2021.3+GridFED2022.2for2021cGridFEDv2022.2cGridFED2022.1cGridFEDv2022.2cGridFED2022.2cGridFED2021.3cwithanextrapolationto2021basedonCarbon-monitorGridFEDv2022.1cGridFED2021.2cwithanextrapolationto2021basedonCar-bonmonitorandNO2TransportandoptimizationTransportmodelLMDZv6TM5TM3GEOS-CHEMNICAM-TMGEOS-CHEMGEOS-Chemv12.9.3GEOS-CHEMLMDZv6WeatherforcingECMWFECMWFNCEPMERRAJRA55MERRAMERRA2GEOS-FPECMWFHorizontalresolutionGlobal3.75◦×1.875◦Global3◦×2◦,Eu-rope1◦×1◦,NorthAmerica1◦×1◦Global3.83◦×5◦Global4◦×5◦Isosahedralgrid∼225kmGlobal4◦×5◦Global2◦×2.5◦Global4◦×5◦Global3.75◦×1.875◦OptimizationVariationalEnsembleKalmanfil-terConjugategradient(re-ortho-normalization)dEnsembleKalmanfil-terVariationalVariationalNon-linearleastsquaresfour-dimensionalvariation(NLS-4DVar)EnsembleKalmanfilterVariationalahttps://doi.org/10.25925/20210801(Schuldtetal.,2021).bhttps://doi.org/10.25925/20220624(Schuldtetal.,2022).cGCP-GridFEDv2021.2,v2021.3,v2022.1,andv2022.2(Jonesetal.,2022)areupdatesthroughtheyear2021oftheGCP-GridFEDdatasetpresentedbyJonesetal.(2021).dOceanpriorisnotoptimized.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224856P.Friedlingsteinetal.:GlobalCarbonBudget2022TableA5.AttributionoffCO2measurementsfortheyear2021includedinSOCATv2022(Bakkeretal.,2016,2022)toinformoceanfCO2-baseddataproducts.PlatformnameRegionsNo.ofPrincipalinvestigatorsNo.ofPlatformmeasurementsdatasetstype1degreeNorthAtlantic,coastal71863Tanhua,T.1ShipAlawai_158W_21NTropicalPacific387Sutton,A.;DeCarlo,E.H.;Sabine,C.1MooringAtlanticExplorerNorthAtlantic,tropicalAtlantic,coastal34399Bates,N.R.16ShipAtlanticSailNorthAtlantic,coastal27496Steinhoff,T.;Körtzinger,A.7ShipBlueFinTropicalPacific60606Alin,S.R.;Feely,R.A.11ShipCapSanLorenzoNorthAtlantic,tropicalAtlantic,coastal44281Lefèvre,N.7ShipCCE2_121W_34NCoastal1333Sutton,A.;Send,U.;Ohman,M.1MooringCelticExplorerNorthAtlantic,coastal61118Cronin,M.10ShipF.G.WaltonSmithCoastal38375Rodriguez,C.;Millero,F.J.;Pierrot,D.;Wanninkhof,R.14ShipFinnmaidCoastal223438Rehder,G.;Bittig,H.C.;Glockzin,M.1ShipFRA56Coastal5652Tanhua,T.1ShipG.O.SarsArctic,NorthAtlantic,coastal82607Skjelvan,I.9ShipGAKOA_149W_60NCoastal402Monacci,N.;Cross,J.;Musielewicz,S.;Sutton,A.1MooringGordonGunterNorthAtlantic,coastal36058Wanninkhof,R.;Pierrot,D.6ShipGulfChallengerCoastal6375Salisbury,J.;Vandemark,D.;Hunt,C.W.6ShipHealyArctic,NorthAtlantic,coastal28998Sweeney,C.;Newberger,T.;Sutherland,S.C.;Munro,D.R.5ShipHenryB.BigelowNorthAtlantic,coastal67399Wanninkhof,R.;Pierrot,D.8ShipHeronIslandCoastal989Tilbrook,B.;Neill,C.;vanOo-jen,E.;Passmore,A.;Black,J.1MooringInvestigatorSouthernOcean,coastal,tropicalPacific,In-dianOcean120782Tilbrook,B.;Akl,J.;Neill,C.6ShipKC_BUOYCoastal2860Evans,W.;Pocock,K.1MooringKeifuMaruIINorthPacific,tropicalPacific,coastal10053Kadono,K.8ShipLaurenceM.GouldSouthernOcean2604Sweeney,C.;Newberger,T.;Sutherland,S.C.;Munro,D.R.1ShipMarionDufresneIndianOcean,SouthernOcean,coastal9911LoMonaco,C.;Metzl,N.1ShipNathanielB.PalmerSouthernOcean2376Sweeney,C.;Newberger,T.;Sutherland,S.C.;Munro,D.R.1ShipNewCentury2NorthPacific,tropicalPacific,NorthAtlantic,coastal198293Nakaoka,S.-I.;Takao,S.10ShipNewrest–ArtandFenetresNorthAtlantic,tropicalAtlantic,SouthAt-lantic,coastal17699Tanhua,T.2ShipQuadraIslandFieldStationCoastal81201Evans,W.;Pocock,K.1MooringRonaldH.BrownNorthAtlantic,coastal31661Wanninkhof,R.;Pierrot,D.3ShipRyofuMaruIIINorthPacific,tropicalPacific,coastal10464Kadono,K.8ShipSeaExplorerSouthernOcean,NorthAtlantic,coastal,trop-icalAtlantic37027Landshützer,P.;Tanhua,T.2ShipSikuliaqArctic,NorthPacific,coastal60549Sweeney,C.;Newberger,T.;Sutherland,S.C.;Munro,D.R.13ShipSimonStevinCoastal57055Gkritzalis,T.;Theetaert,H.;Cat-trijsse,A.;T’Jampens,M.11ShipSitkaTribeofAlaskaEnvironmentalResearchLaboratoryCoastal19086Whitehead,C.;Evans,W.;Lan-phier,K.;Peterson,W.;Kennedy,E.;Hales,B.1MooringSOFS_142E_46SSouthernOcean894Sutton,A.;Trull,T.;Shadwick,E.1MooringSoyoMaruTropicalPacific,coastal33234Ono,T.3ShipStationMNorthAtlantic447Skjelvan,I.1MooringStatsraadLehmkuhlNorthAtlantic,tropicalAtlantic,coastal47,881Becker,M.;Olsen,A.3ShipTAO125W_0NTropicalPacific241Sutton,A.1MooringTavastlandCoastal48421WillstrandWranne,A.;Stein-hoff,T.17ShipThomasG.ThompsonNorthAtlantic,tropicalAtlantic,NorthPa-cific,tropicalPacific,coastal47073Alin,S.R.;Feely,R.A.5ShipTransFuture5SouthernOcean,NorthPacific,tropicalPa-cific,coastal257424Nakaoka,S.-I.;Takao,S.22ShipTukumaArcticaNorthAtlantic,coastal70033Becker,M.;Olsen,A.23ShipWakatakaMaruNorthPacific,coastal13392Tadokoro,K.2ShipEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224857TableA6.AircraftmeasurementprogrammesarchivedbyCooperativeGlobalAtmosphericDataIntegrationProject(CGADIP;Schuldtetal.,2021,2022)thatcontributetotheevaluationoftheatmosphericinversions(Fig.B4).SitecodeMeasurementprogrammenameinObspackSpecificDOIDataprovidersAAOAirborneAerosolObservatory,Bondville,Illi-noisSweeney,C.;Dlugokencky,E.J.ABOVECarboninArcticReservoirsVulnerabilityEx-periment(CARVE)https://doi.org/10.3334/ORNLDAAC/1404Sweeney,C.,J.B.Miller,A.Kar-ion,S.J.Dinardo,andC.E.Miller.2016.CARVE:L2AtmosphericGasConcentra-tions,AirborneFlasks,Alaska,2012-2015.ORNLDAAC,OakRidge,Tennessee,USA.ACGAlaskaCoastGuardSweeney,C.;McKain,K.;Karion,A.;Dlugokencky,E.J.ACTAtmosphericCarbonandTransport–AmericaSweeney,C.;Dlugokencky,E.J.;Baier,B;Montzka,S.;Davis,K.AIRCORENOAANOAAAirCoreColmSweeney(NOAA)ANDBiancaBaier(NOAA)ALFAltaFlorestaGatti,L.V.;Gloor,E.;Miller,J.B.;AOAAircraftObservationofAtmospherictracegasesbyJMAghg_obs@met.kishou.go.jpBGIBradgate,IowaSweeney,C.;Dlugokencky,E.J.BNEBeaverCrossing,NebraskaSweeney,C.;Dlugokencky,E.J.BRZBerezorechka,RussiaSasakama,N.;Machida,T.CARBriggsdale,ColoradoSweeney,C.;Dlugokencky,E.J.CMACapeMay,NewJerseySweeney,C.;Dlugokencky,E.J.CONCONTRAIL(ComprehensiveObservationNetworkforTRacegasesbyAIrLiner)https://doi.org/10.17595/20180208.001Machida,T.;Matsueda,H.;Sawa,Y.;Niwa,Y.CRVCarboninArcticReservoirsVulnerabilityEx-periment(CARVE)Sweeney,C.;Karion,A.;Miller,J.B.;Miller,C.E.;Dlugokencky,E.J.DNDDahlen,NorthDakotaSweeney,C.;Dlugokencky,E.J.ECOEastCoastOutflowSweeney,C.;McKain,K.ESPEstevanPoint,BritishColumbiaSweeney,C.;Dlugokencky,E.J.ETLEastTroutLake,SaskatchewanSweeney,C.;Dlugokencky,E.J.FWIFairchild,WisconsinSweeney,C.;Dlugokencky,E.J.GSFCNASAGoddardSpaceFlightCenterAircraftCampaignKawa,S.R.;Abshire,J.B.;Riris,H.HAAMolokaiIsland,HawaiiSweeney,C.;Dlugokencky,E.J.HFMHarvardUniversityAircraftCampaignWofsy,S.C.HILHomer,IllinoisSweeney,C.;Dlugokencky,E.J.HIPHIPPO(HIAPERPole-to-PoleObservations)https://doi.org/10.3334/CDIAC/HIPPO_010Wofsy,S.C.;Stephens,B.B.;Elkins,J.W.;Hintsa,E.J.;Moore,F.IAGOS-CARIBICIn-serviceAircraftforaGlobalObservingSystemObersteiner,F.;Boenisch,H;Gehrlein,T.;Zahn,A.;Schuck,T.INXINFLUX(IndianapolisFluxExperiment)Sweeney,C.;Dlugokencky,E.J.;Shepson,P.B.;Turnbull,J.LEFParkFalls,WisconsinSweeney,C.;Dlugokencky,E.J.NHAOffshorePortsmouth,NewHampshire(IslesofShoals)Sweeney,C.;Dlugokencky,E.J.OILOglesby,IllinoisSweeney,C.;Dlugokencky,E.J.ORCORCAS(O2/N2RatioandCO2AirborneSouthernOceanStudy)https://doi.org/10.5065/D6SB445XStephens,B.B,Sweeney,C.,McKain,K.,Kort,E.PFAPokerFlat,AlaskaSweeney,C.;Dlugokencky,E.J.RBA-BRioBrancoGatti,L.V.;Gloor,E.;Miller,J.B.RTARarotongaSweeney,C.;Dlugokencky,E.J.SCACharleston,SouthCarolinaSweeney,C.;Dlugokencky,E.J.SGPSouthernGreatPlains,OklahomaSweeney,C.;Dlugokencky,E.J.;Biraud,S.TABTabatingaGatti,L.V.;Gloor,E.;Miller,J.B.TGCOffshoreCorpusChristi,TexasSweeney,C.;Dlugokencky,E.J.THDTrinidadHead,CaliforniaSweeney,C.;Dlugokencky,E.J.WBIWestBranch,IowaSweeney,C.;Dlugokencky,E.J.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224858P.Friedlingsteinetal.:GlobalCarbonBudget2022TableA7.Mainmethodologicalchangesintheglobalcarbonbudgetsincefirstpublication.Methodologicalchangesintroducedinoneyeararekeptforthefollowingyearsunlessnoted.Emptycellsmeantherewerenomethodologicalchangesintroducedthatyear.PublicationyearFossilfuelemissionsLUCemissionsReservoirsUncertainty&otherchangesGlobalCountry(territorial)Country(consumption)AtmosphereOceanLand2006aSplitinregions2007bELUCbasedonFAO-FRA2005andcon-stantELUCfor20061959–1979datafromMaunaLoa,dataaf-ter1980arefromtheglobalaverageBasedononeoceanmodeltunedtorepro-ducedobserved1990ssink±1σprovidedforallcomponents2008cConstantELUCfor20072009dSplitbetweenAnnexBandnon-AnnexBResultsfromanindependentstudydiscussedFire-basedemissionanomaliesusedfor2006–2008Basedonfouroceanmodelsnormalizedtoobservationswithcon-stantdeltaFirstuseoffiveDGVMstocomparewithbudgetresidual2010eProjectionforcurrentyearbasedonGDPEmissionsfortopemit-tersELUCupdatedwithFAO-FRA20102011fSplitbetweenAnnexBandnon-AnnexB2012g129countriesfrom1959129countriesandre-gionsfrom1990–2010basedonGTAP8.0ELUCfor1997–2011includesinteran-nualanomaliesfromfire-basedemissionsAllyearsfromglobalaverageBasedonfiveoceanmodelsnormalizedtoobservationswithratio10DGVMsavailableforSLAND.FirstuseoffourmodelstocomparewithELUC2013h250countries134countriesandregions1990–2011basedonGTAP8.1,withdetailedestimatesforyears1997,2001,2004,and2007ELUCfor2012es-timatedfrom2001–2010averageBasedonsixmodelscomparedwithtwodataproductstoyear2011CoordinatedDGVMex-perimentsforSLANDandELUCConfidencelevels,cumu-lativeemissions,andbud-getfrom17502014i3yearsofBPdata3yearsofBPdataExtendedto2012withupdatedGDPdataELUCfor1997–2013includesinteran-nualanomaliesfromfire-basedemissionsBasedonsevenmodelsBasedon10modelsInclusionofbreakdownofthesinksinthreelat-itudebandsandcom-parisonwiththreeatmo-sphericinversions2015jProjectionforcurrent-year-basedJanuary–AugustdataNationalemissionsfromUNFCCCextendedto2014alsoprovidedDetailedestimatesintroducedfor2011basedonGTAP9BasedoneightmodelsBasedon10modelswithassessmentofminimumrealismThedecadaluncertaintyfortheDGVMensemblemeannowuses±1σofthedecadalspreadacrossmodels2016k2yearsofBPdataAddedthreesmallcoun-triesandChina’semis-sionsfrom1990fromBPdata(thisreleaseonly)PreliminaryELUCus-ingFRA-2015shownforcomparisonanduseoffiveDGVMsBasedonsevenmodelsBasedon14modelsDiscussionofprojectionforfullbudgetforcurrentyear2017lProjectionincludesIndia-specificdataAverageoftwobook-keepingmodelsanduseof12DGVMsBasedoneightmodelsthatmatchtheobservedsinkforthe1990sandisnolongernormalizedBasedon15modelsthatmeetobservation-basedcriteria(seeSect.2.5)Landmulti-modelaver-agenowusedinmaincar-bonbudget,withthecar-bonimbalancepresentedseparatelyandanewtableofkeyuncertaintiesaRaupachetal.(2007).bCanadelletal.(2007).cGCP(2007).dLeQuéréetal.(2009).eFriedlingsteinetal.(2010).fPetersetal.(2012b).gLeQuéréetal.(2013);Petersetal.(2013).hLeQuéréetal.(2014).iLeQuéréetal.(2015a);jLeQuéréetal.(2015b).kLeQuéréetal.(2016).lLeQuéréetal.(2018a).EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224859TableA8.MappingofglobalcarboncyclemodelslandfluxdefinitionstothedefinitionoftheLULUCFnetfluxusedinnationalreportingtoUNFCCC.Non-intactlandsareusedhereasproxyfor“managedlands”inthecountryreporting;nationalgreenhousegasinventories(NGHGI)aregapfilled(seeSect.C2.3fordetails).Whereavailable,weprovideindependentestimatesofcertainfluxesforcomparison(valuesareinGtCyr−1).2002–20112012–2021ELUCfrombookkeepingestimates(fromTable5)1.361.24SLANDtotal(fromTable5)fromDGVMs−2.85−3.10innon-forestlandsfromDGVMs−0.74−0.83innon-intactforestfromDGVMs−1.67−1.81inintactforestsfromDGVMs−0.44−0.47inintactlandfromORCHIDEE-MICT−1.34−1.38ELUCplusSLANDonnon-intactlandsconsideringnon-intactforestsonlyfrombookkeepingELUCandDGVMs−0.31−0.56consideringallnon-intactlandfromORCHIDEE-MICT0.900.60Nationalgreenhousegasinventories(LULUCF)−0.37−0.54FAOSTAT(LULUCF)0.390.24https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224860P.Friedlingsteinetal.:GlobalCarbonBudget2022TableA9.Fundingsupportingtheproductionofthevariouscomponentsoftheglobalcarbonbudgetinadditiontotheauthors’supportinginstitutions(seetheAcknowledgementsforfurtherdetails).Funderandgrantnumber(whererelevant)AuthorinitialsAustralia,IntegratedMarineObservingSystem(IMOS)BTAustralianNationalEnvironmentScienceProgram(NESP)JGCBelgium,FWO(FlandersResearchFoundation,contractgrantno.I001821N)ThaGBNPParibasFoundationthroughClimate&Biodiversityinitiative,philanthropicgrantfordevelopmentsoftheGlobalCarbonAtlasPCCanada,TulaFoundationWE,KPChina,NationalNaturalScienceFoundation(grantno.41975155)XYChina,NationalNaturalScienceFoundation(grantno.42141020)WYChina,NationalNaturalScienceFoundationofChina(grantno.41921005)BZChina,ScientificResearchStart-upFunds(grantno.QD2021024C)fromTsinghuaShenzhenInternationalGraduateSchoolBZChina,SecondTibetanPlateauScientificExpeditionandResearchProgram(2022QZKK0101)TXChina,YoungEliteScientistsSponsorshipProgrambyCAST(grantno.YESS20200135)BZECCopernicusAtmosphereMonitoringServiceimplementedbyECMWFFCECCopernicusMarineEnvironmentMonitoringServiceimplementedbyMercatorOceanMGECH2020(4C;grantno.821003)PF,MOS,RMA,SS,GPP,PC,JIK,TI,LB,AJ,PL,LukG,NG,NMa,SZECH2020(CoCO2:grantno.958927)RMA,GPP,JIKECH2020(COMFORT:grantno.820989)LukG,MG,NGECH2020(CONSTRAIN:grantno.820829)RS,ThoGECH2020(ESM2025–EarthSystemModelsfortheFuture;grantagreementno.101003536).RS,ThoG,TI,LB,BDECH2020(JERICO-S3:grantno.871153)HCBECH2020(VERIFY:grantno.776810)MWJ,RMA,GPP,PC,JIK,MJMEfgInternationalTT,MGEuropeanSpaceAgencyClimateChangeInitiativeESA-CCIRECCAP2project655(ESRIN/4000123002/18/I-NB)SS,PCEuropeanSpaceAgencyOceanSODAproject(grantno.4000137603/22/I-DT)LukG,NGFrance,FrenchOceanographicFleet(FOF)NMeFrance,ICOS(IntegratedCarbonObservationSystem)FranceNLFrance,InstitutNationaldesSciencesdel’Univers(INSU)NMeFrance,InstitutpolairefrançaisPaul-EmileVictor(IPEV)NMeFrance,Institutderecherchefrançaissurlesressourcesmarines(IFREMER)NMeFrance,InstitutdeRecherchepourleDéveloppement(IRD)NLFrance,Observatoiredessciencesdel’universEcce-Terra(OSUatSorbonneUniversité)NMeGermany,DeutscheForschungsgemeinschaft(DFG)underGermany’sExcellenceStrategy–EXC2037“Climate,ClimaticChange,andSociety”–projectno.390683824TIGermany,FederalMinistryforEducationandResearch(BMBF)HCBGermany,FederalMinistryforEducationandResearch(BMBF)underproject“CDRSynTra”(01LS2101A)JPGermany,GermanFederalMinistryofEducationandResearchunderproject”DArgo2025”(03F0857C)TSGermany,HelmholtzAssociationATMOprogramAAGermany,HelmholtzYoungInvestigatorGroupMarineCarbonandEcosystemFeedbacksintheEarthSystem(MarESys),grantno.VH-NG-1301JH,OGGermany,ICOS(IntegratedCarbonObservationSystem)GermanyHCBHapag-LloydTT,MGIreland,MarineInstituteMCJapan,EnvironmentResearchandTechnologyDevelopmentFundoftheMinistryoftheEnvironment(JPMEERF21S20810)YNJapan,GlobalEnvironmentalResearchCoordinationSystem,MinistryoftheEnvironment(grantno.E1751)SN,ST,TOJapan,EnvironmentResearchandTechnologyDevelopmentFundoftheMinistryoftheEnvironment(JPMEERF21S20800)HTJapan,JapanMeteorologicalAgencyKKKuehne+NagelInternationalAGTT,MGMediterraneanShippingCompany(MSc)TT,MGMonaco,FondationPrinceAlbertIIdeMonacoTT,MGMonaco,YachtClubdeMonacoTT,MGNetherlands,ICOS(IntegratedCarbonObservationSystem)WPEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224861TableA9.Continued.Funderandgrantnumber(whererelevant)AuthorinitialsNorway,ResearchCouncilofNorway(N-ICOS-2,grantno.296012)AO,MB,ISNorway,NorwegianResearchCouncil(grantno.270061)JSSweden,ICOS(IntegratedCarbonObservationSystem)AWSweden,SwedishMeteorologicalandHydrologicalInstituteAWSweden,TheSwedishResearchCouncilAWSwissNationalScienceFoundation(grantno.200020-200511)QSTibet,SecondTibetanPlateauScientificExpeditionandResearchProgram(SQ2022QZKK0101)TXUKRoyalSociety(grantno.RP\R1\191063)CLQUK,NaturalEnvironmentResearchCouncil(SONATA:grantno.NE/P021417/1)RWUK,NaturalEnvironmentalResearchCouncil(NE/R016518/1)PIPUK,NaturalEnvironmentResearchCouncil(NE/V01417X/1)MWJUK,RoyalSociety:TheEuropeanSpaceAgencyOCEANFLUXprojectsJDSUKRoyalSociety(grantno.RP\R1\191063)CLQUSA,BIATribalResilienceCWUSA,CooperativeInstituteforModelingtheEarthSystembetweentheNationalOceanicandAtmosphericAdministrationGeophysicalFluidDynamicsLaboratoryandPrincetonUniversityandtheHighMeadowsEnvironmentalInstituteLRUSA,CooperativeInstituteforClimate,Ocean,andEcosystemStudies(CIOCES)underNOAACooperativeAgreementno.NA20OAR4320271KOUSA,DepartmentofEnergy,BiologicalandEnvironmentalResearchAPWUSA,DepartmentofEnergy,SciDac(DESC0012972)GCH,LPCUSA,EnergyExascaleEarthSystemModel(E3SM)project,DepartmentofEnergy,OfficeofScience,OfficeofBiologicalandEnvironmentalResearchGCH,LPCUSA,EPAIndianGeneralAssistanceProgramCWUSA,NASACarbonMonitoringSystemprogramandOCOScienceteamprogram(80NM0018F0583).JLUSA,NASAInterdisciplinaryResearchinEarthScience(IDS)(80NSSC17K0348)GCH,LPC,BPUSA,NationalCenterforAtmosphericResearch(NSFCooperativeAgreementno.1852977)DKUSA,NationalOceanicandAtmosphericAdministration,OceanAcidificationProgramDP,RW,SRA,RAF,AJS,NMMUSA,NationalOceanicandAtmosphericAdministration,GlobalOceanMonitoringandObservingProgramDRM,CSw,NRB,CRodr,DP,RW,SRA,RAF,AJSUSA,NationalScienceFoundation(grantno.1903722)HTUSA,StateofAlaskaNMMComputingresourcesADAHPCclusterattheUniversityofEastAngliaMWJCAMSinversionwasgrantedaccesstotheHPCresourcesofTGCCundertheallocationA0110102201FCCheyennesupercomputerdatawereprovidedbytheComputationalandInformationSystemsLaboratory(CISL)atNCARDKHPCclusterAetherattheUniversityofBremen,financedbyDFGwithinthescopeoftheExcellenceInitiativeITLMRI(FUJITSUServerPRIMERGYCX2550M5)YNNIES(SX-Aurora)YNNIESsupercomputersystemEKhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224862P.Friedlingsteinetal.:GlobalCarbonBudget2022AppendixB:SupplementaryfiguresFigureB1.Ensemblemeanair–seaCO2fluxfrom(a)globaloceanbiogeochemistrymodelsand(b)fCO2-baseddataproducts,averagedoverthe2012–2021period(kgCm−2yr−1).Positivenumbersindicateafluxintotheocean.(c)GriddedSOCATv2022fCO2measure-ments,averagedoverthe2012–2021period(µatm).In(a),modelsimulationAisshown.Thedataproductsrepresentthecontemporaryflux,i.e.includingoutgassingofriverinecarbon,whichisestimatedtoamountto0.65GtCyr−1globally.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224863FigureB2.EvaluationoftheGOBMsanddataproductsusingtheroot-mean-squarederror(RMSE)fortheperiod1990to2021betweentheindividualsurfaceoceanfCO2mappingschemesandtheSOCATv2022database.Theyaxisshowstheamplitudeoftheinterannualvariabilityoftheair–seaCO2flux(A-IAV),takenasthestandarddeviationofthedetrendedannualtimeseries.Resultsarepresentedfortheglobe,northernextratropics(>30◦N),tropics(30◦S–30◦N),andsouthernextratropics(<30◦S)fortheGOBMs(seelegend,circles)andforthefCO2-baseddataproducts(starsymbols).ThefCO2-baseddataproductsusetheSOCATdatabaseandarethereforenotindependentofthedata(seeSect.2.4.1).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224864P.Friedlingsteinetal.:GlobalCarbonBudget2022FigureB3.EvaluationoftheDGVMsusingtheInternationalLandModelBenchmarkingsystem(ILAMB;Collieretal.,2018)(left)absoluteskillscoresand(right)skillscoresrelativetoothermodels.Thebenchmarkingisdonewithobservationsforvegetationbiomass(Saatchietal.,2011;andglobalcarbonunpublisheddata;Avitabileetal.,2016),GPP(Jungetal.,2010;Lasslopetal.,2010),leafareaindex(DeKauweetal.,2011;Mynenietal.,1997),ecosystemrespiration(Jungetal.,2010;Lasslopetal.,2010),soilcarbon(Hugeliusetal.,2013;Todd-Brownetal.,2013),evapotranspiration(DeKauweetal.,2011),andrunoff(DaiandTrenberth,2002).Foreachmodel–observationcomparisonaseriesoferrormetricsarecalculated.Scoresarethencalculatedasanexponentialfunctionofeacherrormetric.Finally,foreachvariablethemultiplescoresfromdifferentmetricsandobservationaldatasetsarecombinedtogivetheoverallvariablescoresshownintheleftpanel.Overallvariablescoresincreasefrom0to1withimprovementsinmodelperformance.Thesetoferrormetricsvarywithdatasetandcanincludemetricsbasedontheperiodmean,bias,root-mean-squarederror,spatialdistribution,interannualvariabilityandseasonalcycle.TherelativeskillscoreshownintherightpanelisaZscore,whichindicatesinunitsofstandarddeviationthemodelscoresrelativetothemulti-modelmeanscoreforagivenvariable.Greyboxesrepresentmissingmodeldata.FigureB4.Evaluationoftheatmosphericinversionproducts.Themeanofthemodelminusobservationsisshownforfourlatitudebandsinfourperiods:(firstpanel)2001–2021,(secondpanel)2001–2010,(thirdpanel)2011–2021,and(fourthpanel)2015–2021.TheninesystemsarecomparedtoindependentCO2measurementsmadeaboardaircraftovermanyareasoftheworldbetween2and7kmabovesealevel.AircraftmeasurementsarchivedintheCooperativeGlobalAtmosphericDataIntegrationProject(Schuldtetal.,2021,2022)fromsites,campaigns,orprogrammesthathavenotbeenassimilatedandcoveratleast9months(exceptforSHprogrammes)between2001and2021havebeenusedtocomputethebiasesofthedifferencesinfour45◦latitudebins.Landandoceandataareusedwithoutdistinction,andobservationdensityvariesstronglywithlatitudeandtime,asseeninthelowerpanels.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224865FigureB5.Comparisonoftheestimatesofeachcomponentoftheglobalcarbonbudgetinthisstudy(blackline)withtheestimatesreleasedannuallybytheGCPsince2006.Greyshadingshowstheuncertaintyboundsrepresenting±1standarddeviationofthecurrentglobalcarbonbudgetbasedontheuncertaintyassessmentsdescribedinAppendixC.CO2emissionsfrom(a)fossilCO2emissions(EFOS)and(b)land-usechange(ELUC)andtheirpartitioningamong(c)theatmosphere(GATM),(d)land(SLAND),and(e)ocean(SOCEAN).SeethelegendforthecorrespondingyearsandTables3andA7forreferences.Thebudgetyearcorrespondstotheyearwhenthebudgetwasfirstreleased(allvaluesareinGtCyr−1).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224866P.Friedlingsteinetal.:GlobalCarbonBudget2022FigureB6.DifferencesintheHYDE/LUH2land-useforcingusedfortheglobalcarbonbudgetsGCB2020(Friedlingsteinetal.,2021),GCB2021(Friedlingsteinetal.,2022a),andGCB2022(Friedlingsteinetal.,2022b).Shownareyear-to-yearchangesincroplandarea(b)andpasturearea(c).Toillustratetherelevanceoftheupdateintheland-useforcingtotherecenttrendsinELUC,thetoppanelshowstheland-useemissionestimatefromthebookkeepingmodelBLUE(originalmodeloutput,i.e.excludingpeatfireanddrainageemissions).EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224867AppendixC:ExtendedmethodologyC1Methodology:fossilfuelCO2emissions(EFOS)C1.1CementcarbonationFromthemomentitiscreated,cementbeginstoabsorbCO2fromtheatmosphere,aprocessknownas“cementcarbona-tion”.WeestimatethisCO2sink,from1931onwardsastheaverageoftwostudiesintheliterature(Caoetal.,2020;Guoetal.,2021).TheGlobalCementandConcreteAssociationreportsamuchlowercarbonationrate,butthisisbasedonthehighlyconservativeassumptionof0%mortar(GCCA,2021).Modellingcementcarbonationrequiresestimationofalargenumberofparameters,includingthedifferenttypesofcementmaterialindifferentcountries,thelifetimeofthestructuresbeforedemolition,thelifetimeofcementwasteafterdemolition,andthevolumetricpropertiesofstructures(Xietal.,2016).Lifetimeisanimportantparameterbecausedemolitionresultsintheexposureofnewsurfacestothecar-bonationprocess.Themainreasonsfordifferencesbetweenthetwostudiesappeartobetheassumedlifetimesofcementstructuresandthegeographicresolution,buttheuncertaintyboundsofthetwostudiesoverlap.C1.2EmissionsembodiedingoodsandservicesCDIAC,UNFCCC,andBPnationalemissionstatistics“in-cludegreenhousegasemissionsandremovalstakingplacewithinnationalterritoryandoffshoreareasoverwhichthecountryhasjurisdiction”(Rypdaletal.,2006)andarecalledterritorialemissioninventories.Consumption-basedemis-sioninventoriesallocateemissionstoproductsthatarecon-sumedwithinacountryandareconceptuallycalculatedastheterritorialemissionsminusthe“embodied”territo-rialemissionstoproduceexportedproductsplustheemis-sionsinothercountriestoproduceimportedproducts(con-sumptionisequaltoterritorialminusexportsplusim-ports).Consumption-basedemissionattributionresults(e.g.DavisandCaldeira,2010)provideadditionalinformationtoterritorial-basedemissionsthatcanbeusedtounderstandemissiondrivers(HertwichandPeters,2009)andquantifyemissiontransfersbythetradeofproductsbetweencoun-tries(Petersetal.,2011b).Theconsumption-basedemissionshavethesameglobaltotalbutreflectthetrade-drivenmove-mentofemissionsacrosstheEarth’ssurfaceinresponsetohumanactivities.Weestimateconsumption-basedemissionsfrom1990–2020byenumeratingtheglobalsupplychainus-ingaglobalmodeloftheeconomicrelationshipsbetweeneconomicsectorswithinandbetweeneverycountry(An-drewandPeters,2013;Petersetal.,2011a).OuranalysisisbasedontheeconomicandtradedatafromtheGlobalTradeandAnalysisProject(GTAP;Narayananetal.,2015),andwemakedetailedestimatesfortheyears1997(GTAPversion5);2001(GTAP6);and2004,2007,2011,and2014(GTAP10.0a),covering57sectorsand141countriesandre-gions.Thedetailedresultsarethenextendedintoanannualtimeseriesfrom1990tothelatestyearofthegrossdomes-ticproduct(GDP)data(2020inthisbudget)usingGDPdatabyexpenditureincurrentexchangerateofUSdollars(USD;fromtheUNNationalAccountsmainaggregatesdatabase;UN,2021)andtimeseriesoftradedatafromGTAP(basedonthemethodologyinPetersetal.,2011a).Weestimatethesector-levelCO2emissionsusingtheGTAPdataandmethodology,addtheflaringandcementemissionsfromourfossilCO2dataset,andthenscalethenationaltotals(exclud-ingbunkerfuels)tomatchtheemissionestimatesfromthecarbonbudget.Wedonotprovideaseparateuncertaintyes-timatefortheconsumption-basedemissions;however,basedonmodelcomparisonsandsensitivityanalysis,theyareun-likelytobesignificantlydifferentthanfortheterritorialemis-sionestimates(Petersetal.,2012a).C1.3UncertaintyassessmentforEFOSWeestimatetheuncertaintyoftheglobalfossilCO2emis-sionsat±5%(scaleddownfromthepublished±10%at±2σtotheuseof±1σboundsreportedhere;Andresetal.,2012).Thisisconsistentwithamoredetailedanaly-sisofuncertaintyof±8.4%at±2σ(Andresetal.,2014)andatthehighendoftherangeof±5%–10%at±2σreportedby(Ballantyneetal.,2015).Thisincludesanas-sessmentofuncertaintiesintheamountsoffuelconsumed,thecarbonandheatcontentsoffuels,andthecombustionefficiency.Whileweconsiderafixeduncertaintyof±5%forallyears,theuncertaintyasapercentageofemissionsisgrowingwithtimebecauseofthelargershareofglobalemissionsfromemergingeconomiesanddevelopingcoun-tries(Marlandetal.,2009).Generally,emissionsfromma-tureeconomieswithgoodstatisticalprocesseshaveanuncer-taintyofonlyafewpercent(Marland,2008),whileemissionsfromstronglydevelopingeconomiessuchasChinahaveun-certaintiesofaround±10%(for±1σ;Greggetal.,2008;Andresetal.,2014).Uncertaintiesinemissionsarelikelytobemainlysystematicerrorsrelatedtounderlyingbiasesofenergystatisticsandtotheaccountingmethodusedbyeachcountry.C1.4GrowthrateinemissionsWereporttheannualgrowthrateinemissionsforadjacentyears(inpercentperyear)bycalculatingthedifferencebe-tweenthe2yearsandthennormalizingtotheemissionsinthefirstyear:(EFOS(t0+1)−EFOS(t0))/EFOS(t0)×100%.Weapplyaleap-yearadjustmentwhererelevanttoensurevalidinterpretationsofannualgrowthrates.Thisaffectsthegrowthratebyabout0.3%peryear(1/366)andcausescal-culatedgrowthratestogoupapproximately0.3%ifthefirstyearisaleapyearanddown0.3%ifthesecondyearisaleapyear.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224868P.Friedlingsteinetal.:GlobalCarbonBudget2022TherelativegrowthrateofEFOSovertimeperiodsofgreaterthan1yearcanberewrittenusingitslogarithmequiv-alentasfollows:1EFOSdEFOSdt=d(lnEFOS)dt.(C1)Herewecalculaterelativegrowthratesinemissionsformulti-yearperiods(e.g.adecade)byfittingalineartrendtoln(EFOS)inEq.(2),reportedinpercentperyear.C1.5Emissionsprojectionfor2022Togaininsightintoemissiontrendsfor2022,weprovideanassessmentofglobalfossilCO2emissions,EFOS,bycom-biningindividualassessmentsofemissionsforChina,USA,theEU,andIndia(thefourcountries/regionswiththelargestemissions)andtherestoftheworld.Themethodsarespecifictoeachcountryorregion,asde-scribedindetailbelow.ChinaWeusearegressionbetweenmonthlydataforeachfossilfuelandcementandannualdataforconsumptionoffossilfuelsorproductionofcementtoprojectfull-yeargrowthinfossilfuelconsumptionandcementproduction.Themonthlydataforeachproductconsistsofthefollowingelements.–Coal.ThisproductusesaproprietaryestimateformonthlyconsumptionofmaincoaltypesfromSXCoal.–Oil.TheproductusesproductiondatafromtheNationalBureauofStatistics(NBS),plusnetimportsfromtheChinaCustomsAdministration(i.e.grosssupplyofoil,notincludinginventorychanges).–Naturalgas.Thisproductusesthesamesourceasforoil.–Cement.ThisproductusesproductiondatafromNBS.Foroil,weusedataforproductionandnetimportsofrefinedoilproductsratherthancrudeoil.Thischoiceismadebe-causerefinedproductsareonestepclosertoactualconsump-tionandbecausecrudeoilcanbesubjecttolargemarket-drivenandstrategicinventorychangesthatarenotcapturedbyavailablemonthlydata.Foreachfuelandcement,wemakeaBayesianlinearre-gressionbetweenyear-on-yearcumulativegrowthinsupply(productionforcement)andfull-yeargrowthinconsumption(productionforcement)fromannualconsumptiondata.Intheregressionmodel,thegrowthrateinannualconsumption(productionforcement)ismodelledasaregressionparam-etermultipliedbythecumulativeyear-on-yeargrowthratefromthemonthlydatathroughJulyofeachyearforpastyears(through2021).WeusebroadGaussiandistributionscentredaround1aspriorsfortheratiosbetweenannualandthrough-Julygrowthrates.Wethenusetheposteriorsforthegrowthratestogetherwithcumulativemonthlysupplyorpro-ductiondatathroughJulyof2022toproduceaposteriorpre-dictivedistributionforthefull-yeargrowthrateforfossilfuelconsumptionandcementproductionin2022.IfthegrowthinsupplyorproductionthroughJulywereanunbiasedestimateofthefull-yeargrowthinconsump-tionorproduction,theposteriordistributionfortheratiobe-tweenthemonthlyandannualgrowthrateswouldbecen-tredaround1.However,inpracticetheratiosaredifferentfrom1(inmostcasesbelow1).Thisisaresultofvariousbiassingfactorssuchasunevenevolutioninthefirstandsec-ondhalfofeachyear,inventorychangesthataresomewhatanti-correlatedwithproductionandnetimports,differencesinstatisticalcoverage,andotherfactorsthatarenotcapturedinthemonthlydata.Forfossilfuels,themeanoftheposteriordistributionisusedasthecentralestimateforthegrowthratein2022,whiletheedgesofa68%credibleinterval(analogoustoa1σcon-fidenceinterval)areusedfortheupperandlowerbounds.Forcement,theevolutionfromJanuarytoJulyhasbeenhighlyatypicalowingtotheongoingturmoilinthecon-structionsector,andtheresultsoftheregressionanalysisareheavilybiasedbyequallyatypicalbutdifferentdynamicsin2021.Forthisreason,weuseanaverageoftheresultsoftheregressionanalysisandtheplaingrowthincementproduc-tionthroughJuly2022,sincethisresultsinagrowthratethatseemsmoreplausibleandinlinewithwherethecumulativecementproductionappearstobeheadedatthetimeofwrit-ing.USAWeuseemissionsestimatedbytheU.S.EnergyInforma-tionAdministration(EIA)intheirShort-TermEnergyOut-look(STEO)foremissionsfromfossilfuelstogetbothyear-to-date(YTD)informationandafull-yearprojection(EIA,2022).TheSTEOalsoincludesanear-termforecastbasedonanenergyforecastingmodelthatisupdatedmonthly(lastupdatewithpreliminarydatathroughAugust2022)andtakesintoaccountexpectedtemperatures,householdexpendituresbyfueltype,energymarkets,policies,andothereffects.WecombinethiswithourestimateofemissionsfromcementproductionusingthemonthlyUScementclinkerproductiondatafromUSGSforJanuary–June2022,assumingchangesincementproductionoverthefirstpartoftheyearapplythroughouttheyear.IndiaWeusemonthlyemissionsestimatesforIndiaupdatedfromAndrew(2020b)throughJuly2022.Theseestimatesarede-rivedfrommanyofficialmonthlyenergyandotheractiv-itydatasourcestoproducedirectestimatesofnationalCO2emissionswithouttheuseofproxies.EmissionsfromcoalEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224869arethenextendedtoAugustusingaregressionrelationshipbasedonpowergeneratedfromcoal,coaldispatchesbyCoalIndiaLtd.,thecompositePurchasingManagers’Index,time,anddayspermonth.Forthelast3–5monthsoftheyear,eachseriesisextrapolatedassumingtypicaltrends.EUWeusearefinementtothemethodspresentedbyAndrew(2021),derivingemissionsfrommonthlyenergydatare-portedbyEurostat.SomedatagapsarefilledusingdatafromtheJointOrganizationsDataInitiative(JODI,2022).Sub-annualcementproductiondataarelimited,butdataforGer-manyandPoland,thetwolargestproducers,suggestasmalldecline.ForfossilfuelsthisprovidesestimatesthroughJuly.WeextendcoalemissionsthroughAugustusingaregressionmodelbuiltfromgenerationofpowerfromhardcoal,powerfrombrowncoal,totalpowergeneration,andthenumberofworkingdaysinGermanyandPoland,thetwobiggestcoalconsumersintheEU.Thesearethenextendedthroughtheendoftheyearassumingtypicaltrends.Weextendoilemis-sionsbybuildingaregressionmodelbetweenourmonthlyCO2estimatesandoilconsumptionreportedbytheEIAforEuropeinitsShort-TermEnergyOutlook(Septemberedi-tion)andthenusingthismodelwithEIA’smonthlyfore-casts.Fornaturalgas,thestrongseasonalsignalallowstheuseofthebias-adjustedHolt–Wintersexponentialsmooth-ingmethod(Chatfield,1978).RestoftheworldWeusethecloserelationshipbetweenthegrowthinGDPandthegrowthinemissions(Raupachetal.,2007)toprojectemissionsforthecurrentyear.ThisisbasedonasimplifiedKayaIdentity,wherebyEFOS(GtCyr−1)isdecomposedbytheproductofGDP(USDyr−1)andthefossilfuelcarbonintensityoftheeconomy(IFOS;GtCUSD−1)asfollows:EFOS=GDP×IFOS.(C2)TakingatimederivativeofEq.(3)andrearranginggives1EFOSdEFOSdt=1GDPdGDPdt+1IFOSdIFOSdt,(C3)wheretheleft-handtermistherelativegrowthrateofEFOS,andtheright-handtermsaretherelativegrowthratesofGDPandIFOS,respectively,whichcansimplybeaddedlinearlytogivetheoverallgrowthrate.TheIFOSisbasedonGDPinconstantPPP(purchasingpowerparity)fromtheInternationalEnergyAgency(IEA)upto2017(IEA/OECD,2019)andextendedusingtheInter-nationalMonetaryFund(IMF)growthratesthrough2021(IMF,2022).InterannualvariabilityinIFOSisthelargestsourceofuncertaintyintheGDP-basedemissionsprojec-tions.WethususethestandarddeviationoftheannualIFOSfortheperiod2012–2021asameasureofuncertainty,re-flectinga±1σasintherestofthecarbonbudget.Forrest-of-worldoilemissionsgrowth,weusetheglobaloildemandforecastpublishedbytheEIAlessourprojectionsfortheotherfourregionsandestimateuncertaintyasthemaximumabsolutedifferenceovertheperiodavailableforsuchfore-castsusingthespecificmonthlyedition(e.g.August)com-paredtothefirstestimatebasedonmoresoliddatainthefollowingyear(April).WorldTheglobaltotalisthesumofeachofthecountriesandre-gions.C2Methodology:CO2emissionsfromland-use,land-usechange,andforestry(ELUC)ThenetCO2fluxfromland-use,land-usechange,andforestry(ELUC,calledland-usechangeemissionsintherestofthetext)includesCO2fluxesfromdeforestation,afforesta-tion,logging,andforestdegradation(includingharvestac-tivity);shiftingcultivation(cycleofcuttingforestforagri-culture,thenabandoning);andregrowthofforestsfollowingwoodharvestorabandonmentofagriculture.Emissionsfrompeatburninganddrainageareaddedfromexternaldatasets(seeAppendixC2.1below).Onlysomeland-managementactivitiesareincludedinourland-usechangeemissionses-timates(TableA1).Someoftheseactivitiesleadtoemis-sionsofCO2totheatmosphere,whileothersleadtoCO2sinks.ELUCisthenetsumofemissionsandremovalsduetoallanthropogenicactivitiesconsidered.Ourannualesti-matefor1960–2021isprovidedastheaverageofresultsfromthreebookkeepingapproaches(AppendixC2.1below):anestimateusingtheBookkeepingofLandUseEmissionsmodel(Hansisetal.,2015;hereafterBLUE),oneusingthecompactEarthsystemmodelOSCAR(Gasseretal.,2020),withbothBLUEandOSCARbeingupdatedheretonewland-useforcingcoveringthetimeperioduntil2021,andanupdatedversionoftheestimatepublishedbyHoughtonandNassikas(2017)(hereafterupdatedH&N2017).Allthreedatasetsarethenextrapolatedtoprovideaprojectionfor2022(AppendixC2.5below).Inaddition,weuseresultsfromdynamicglobalvegetationmodels(DGVMs;seeAp-pendixC2.2andTable4)tohelpquantifytheuncertaintyinELUC(AppendixC2.4)andthusbettercharacterizeourunderstanding.Notethatinthisbudget,weusethescien-tificELUCdefinition,whichcountsfluxesduetoenvironmen-talchangesonmanagedlandtowardsSLAND,asopposedtothenationalgreenhousegasinventoriesundertheUNFCCC,whichincludetheminELUCandthusoftenreportsmallerland-useemissions(Grassietal.,2018;Petrescuetal.,2020).However,weprovideamethodologyofmappingofthetwoapproachestoeachotherfurtherbelow(AppendixC2.3).https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224870P.Friedlingsteinetal.:GlobalCarbonBudget2022C2.1BookkeepingmodelsLand-usechangeCO2emissionsanduptakefluxesarecal-culatedbythreebookkeepingmodels.ThesearebasedontheoriginalbookkeepingapproachofHoughton(2003)thatkeepstrackofthecarbonstoredinvegetationandsoilsbe-foreandafteraland-usechange(transitionsbetweenvariousnaturalvegetationtypes,croplands,andpastures).Literature-basedresponsecurvesdescribedecayofvegetationandsoilcarbon,includingtransfertoproductpoolsofdifferentlife-times,aswellascarbonuptakeduetoregrowth.Inaddition,thebookkeepingmodelsrepresentlong-termdegradationofprimaryforestasloweredstandingvegetationandsoilcarbonstocksinsecondaryforestsandincludeforestmanagementpracticessuchaswoodharvests.BLUEandtheupdatedH&N2017excludelandecosys-tems’transientresponsetochangesinclimate,atmosphericCO2,andotherenvironmentalfactorsandbasethecarbondensitiesoncontemporarydatafromliteratureandinven-torydata.Sincecarbondensitiesthusremainfixedovertime,theadditionalsinkcapacitythatecosystemsprovideinre-sponsetoCO2fertilizationandsomeotherenvironmentalchangesisnotcapturedbythesemodels(Pongratzetal.,2014).Onthecontrary,OSCARincludesthistransientre-sponse,anditfollowsatheoreticalframework(GasserandCiais,2013)thatallowsseparatingbookkeepingland-useemissionsandthelossofadditionalsinkcapacity.Onlytheformerisincludedhere,whilethelatterisdiscussedinAp-pendixD4.Thebookkeepingmodelsdifferin(1)computa-tionalunits(spatiallyexplicittreatmentofland-usechangeforBLUE,country-levelfortheupdatedH&N2017andOS-CAR),(2)processesrepresented(seeTableA1),and(3)car-bondensitiesassignedtovegetationandsoilofeachvege-tationtype(basedonliteratureforBLUEandtheupdatedH&N2017,calibratedtoDGVMsforOSCAR).Anotabledifferencebetweenmodelsexistswithrespecttothetreat-mentofshiftingcultivation.TheupdateofH&N2017,in-troducedfortheGCB2021(Friedlingsteinetal.,2022a),changedtheapproachovertheearlierH&N2017version:H&N2017hadassumedthe“excessloss”oftropicalforests,i.e.whentheGlobalForestResourcesAssessment(FRA;FAO2020)indicatedthataforestlosslargerthanthein-creaseinagriculturalareasfromFAO(FAOSTAT2021)re-sultedfromconvertingforeststocroplandsatthesametimeoldercroplandswereabandoned.Thoseabandonedcrop-landsbegantorecovertoforestsafter15years.TheupdatedH&N2017nowassumesthatforestlossinexcessofincreasesincroplandandpasturesrepresentedanincreaseinshiftingcultivation.Whentheexcesslossofforestswasnegative,itwasassumedthatshiftingcultivationwasreturnedtoforest.Historicalareasinshiftingcultivationwereextrapolatedtak-ingintoaccountcountry-basedestimatesofareasinfallowin1980(FAO/UNEP,1981)andexpertopinion(fromHeini-mannetal.,2017).Incontrast,theBLUEandOSCARmod-elsincludesub-grid-scaletransitionsbetweenallvegetationtypes.Furthermore,theupdatedH&N2017assumesconver-sionofnaturalgrasslandstopasture,whileBLUEandOS-CARallocatepasturetransitionsproportionallyonallnat-uralvegetationthatexistsinagridcell.Thisisonerea-sonforgenerallyhigheremissionsinBLUEandOSCAR.Bookkeepingmodelsdonotdirectlycapturecarbonemis-sionsfrompeatfires,whichcancreatelargeemissionsandinterannualvariabilityduetosynergiesofland-useandcli-matevariabilityinSoutheastAsia,particularlyduringEl-Niñoevents,nordotheycaptureemissionsfromtheorganiclayersofdrainedpeatsoils.Tocorrectforthis,weaddpeatfireemissionsbasedontheGlobalFireEmissionDatabase(GFED4s;vanderWerfetal.,2017)tothebookkeepingmodels’output.EmissionsarecalculatedbymultiplyingthemassofdrymatteremittedbypeatfireswiththeCemissionfactorforpeatfiresindicatedintheGFED4sdatabase.Emis-sionsfromdeforestationfiresusedtoderiveELUCprojec-tionsfor2022arecalculatedanalogously.Asthesesatellite-derivedestimatesofpeatfireemissionsstartin1997only,wefollowtheapproachbyHoughtonandNassikas(2017)forearlieryears,whichrampsupfromzeroemissionsin1980to0.04PgCyr−1in1996,reflectingtheonsetofma-jorclearingofpeatlandsinequatorialSoutheastAsiainthe1980s.Similarly,weaddestimatesofpeatdrainageemis-sions.Inrecentyears,morepeatdrainageestimatesthatpro-videspatiallyexplicitdatahavebecomeavailable,andwethusextendedthenumberofpeatdrainagedatasetsconsid-ered.WeemployFAOpeatdrainageemissions1990–2019fromcroplandsandgrasslands(ConcheddaandTubiello,2020),peatdrainageemissions1700–2010fromsimulationswiththeDGVMORCHIDEE-PEAT(Qiuetal.,2021),andpeatdrainageemissions1701–2021fromsimulationswiththeDGVMLPX-Bern(LienertandJoos,2018;MüllerandJoos,2021),applyingtheupdatedLUH2forcingasalsousedbyBLUE,OSCAR,andtheDGVMs.WeextrapolatetheFAOdatato1850–2021bykeepingthepost-2019emis-sionsconstantat2019levels,bylinearlyincreasingtropi-caldrainageemissionsbetween1980and1990startingfrom0GtCyr−1in1980,consistentwithH&N2017’sassumption(HoughtonandNassikas,2017),andbykeepingpre-1990emissionsfromtheoftenolddrainedareasoftheextratropicsconstantat1990emissionlevels.ORCHIDEE-PEATdataareextrapolatedto2011–2021byreplicatingtheaverageemis-sionsin2000–2010(ChunjingQiu„personalcommunica-tion,2022).Further,ORCHIDEE-PEATonlyprovidespeatdrainageemissionsnorthof30◦N,andthuswefillthere-gionssouthof30◦Nusingtheaveragepeatdrainageemis-sionsfromFAOandLPX-Bern.Theaverageofthecar-bonemissionestimatesbythethreedifferentpeatdrainagedatasetsisaddedtothebookkeepingmodelstoobtainnetELUCandgrosssources.Thethreebookkeepingestimatesusedinthisstudydifferwithrespecttotheland-usechangedatausedtodrivethemodels.TheupdatedH&N2017basesitsestimatesdirectlyontheForestResourceAssessmentoftheFAO,whichpro-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224871videsstatisticsonforestareachangeandmanagementatin-tervalsof5yearsandiscurrentlyupdateduntil2020(FAO,2020).ThedataarebasedoncountryreportingtoFAOandmayincluderemote-sensinginformationinmorerecentas-sessments.Changesinland-useotherthanforestsarebasedonannual,nationalchangesincroplandandpastureareasre-portedbyFAO(FAOSTAT,2021).Ontheotherhand,BLUEusestheharmonizedland-usechangedataLUH2-GCB2022coveringtheentire850–2021period(anupdatetothepre-viouslyreleasedLUH2v2hdataset;Hurttetal.,2017;Hurttetal.,2020),whichwasalsousedasinputtotheDGVMs(AppendixC2.2).Itdescribesland-usechange,alsobasedontheFAOdataasdescribedinAppendixC2.2andtheHYDE3.3dataset(KleinGoldewijketal.,2017a,b),butpro-videdataquarter-degreespatialresolution,consideringsub-grid-scaletransitionsbetweenprimaryforest,secondaryfor-est,primarynon-forest,secondarynon-forest,cropland,pas-ture,rangeland,andurbanland(Hurttetal.,2020;Chinietal.,2021).LUH2-GCB2022providesadistinctionbetweenrangelandsandpasture,basedoninputsfromHYDE.Toconstrainthemodels’interpretationonwhetherrangelandimpliestheoriginalnaturalvegetationtobetransformedtograsslandornot(e.g.browsingonshrubland),aforestmaskwasprovidedwithLUH2-GCB2021;forestisassumedtobetransformedtograsslands,whileothernaturalvegetationremains(incaseofsecondaryvegetation)orisdegradedfromprimarytosecondaryvegetation(Maetal.,2020).ThisisimplementedinBLUE.OSCARwasrunwithbothLUH2-GCB2022andFAO/FRA(asusedwiththeupdatedH&N2017),wherethedriversofthelatterwerelinearlyex-trapolatedto2021usingtheir2015–2020trends.Thebest-guessOSCARestimateusedinourstudyisacombinationofresultsforLUH2-GCB2022andFAO/FRAland-usedataandalargenumberofperturbedparametersimulationsweightedagainstaconstraint(thecumulativeSLANDover1960–2020oflastyear’sGCB).AstherecordoftheupdatedH&N2017endsin2020,weextenditto2021byaddingthedifferenceoftheemissionsfromtropicaldeforestationanddegradation,peatdrainage,andpeatfirebetween2020and2021tothemodel’sestimatefor2020(i.e.consideringtheyearlyanoma-liesoftheemissionsfromtropicaldeforestationanddegra-dation,peatdrainage,andpeatfire).Thesamemethodisap-pliedtoallthreebookkeepingestimatestoprovideaprojec-tionfor2022.ForELUCfrom1850onwardsweaveragetheestimatesfromBLUE,theupdatedH&N2017,andOSCAR.Forthecumulativenumbersstarting1750,anaverageoffourearlierpublicationsisadded(30±20PgC1750–1850,roundedtothenearest5;LeQuéréetal.,2016).Weprovideestimatesofthegrossland-usechangefluxesfromwhichthereportednetland-usechangeflux,ELUC,isderivedasasum.Grossfluxesarederivedinternallybythethreebookkeepingmodels.Grossemissionsstemfromdecayingmaterialleftdeadonsiteandfromproductsaf-terclearingofnaturalvegetationforagriculturalpurposesorwoodharvesting,emissionsfrompeatdrainageandpeatburning,and,forBLUE,additionallyfromdegradationfromprimarytosecondarylandthroughusageofnaturalvegeta-tionasrangeland.Grossremovalsstemfromregrowthafteragriculturalabandonmentandwoodharvesting.GrossfluxesfortheupdatedH&N2017for2020andforthe2022pro-jectionofallthreemodelswerecalculatedbythechangeinemissionsfromtropicaldeforestationanddegradationandpeatburninganddrainageasdescribedforthenetELUCabove.Astropicaldeforestationanddegradationandpeatburninganddrainageallonlyleadtogrossemissionstotheatmosphere,onlygross(andnet)emissionsareadjustedthisway,whilegrosssinksareassumedtoremainconstantoverthepreviousyear..Thisyear,weprovideanadditionalsplitofthenetELUCintocomponentfluxestobetteridentifyreasonsfordiver-gencebetweenbookkeepingestimatesandtogivemorein-sightintothedriversofsourcesandsinks.Thissplitdis-tinguishesbetweenfluxesfromdeforestation(includingduetoshiftingcultivation);fluxesfromorganicsoils(i.e.peatdrainageandfires);afforestation,reafforestation,andwoodharvest(i.e.fluxesinforestsfromslashandproductdecayfollowingwoodharvesting,regrowthassociatedwithwoodharvestingorafterabandonment,includingreforestationandinshiftingcultivationcycles,andafforestation);andfluxesassociatedwithallothertransitions.C2.2Dynamicglobalvegetationmodels(DGVMs)Land-usechangeCO2emissionshavealsobeenestimatedusinganensembleof16DGVMsimulations.TheDGVMsaccountfordeforestationandregrowth,themostimportantcomponentsofELUC,buttheydonotrepresentallprocessesresultingdirectlyfromhumanactivitiesonland(TableA1).AllDGVMsrepresentprocessesofvegetationgrowthandmortality,aswellasdecompositionofdeadorganicmatterassociatedwithnaturalcycles,andincludethevegetationandsoilcarbonresponsetoincreasingatmosphericCO2concen-trationandtoclimatevariabilityandchange.Mostmodelsexplicitlysimulatethecouplingofcarbonandnitrogency-clesandaccountforatmosphericNdepositionandNfertil-izers(TableA1).TheDGVMsareindependentoftheotherbudgettermsexceptfortheiruseofatmosphericCO2con-centrationtocalculatethefertilizationeffectofCO2onplantphotosynthesis.AllDGVMsusetheLUH2-GCB2022datasetasinput,whichincludestheHYDEcropland/grazinglanddataset(KleinGoldewijketal.,2017a,b),andadditionalinformationonland-covertransitionsandwoodharvest.DGVMsusean-nual,half-degree(regriddedfrom5minresolution)fractionaldataoncroplandandpasturefromHYDE3.3.DGVMsthatdonotsimulatesubgrid-scaletransitions(i.e.netland-useemissions;seeTableA1)usedtheHYDEinfor-mationonagriculturalareachange.Forallcountries,withtheexceptionofBrazilandtheDemocraticRepublicofthehttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224872P.Friedlingsteinetal.:GlobalCarbonBudget2022Congo,thesedataarebasedontheavailableannualFAOstatisticsofchangeinagriculturallandareaavailablefrom1961uptoandincluding2017.TheFAOretrospectivelyrevisedtheirreportingfortheDemocraticRepublicoftheCongo,whichwasnewlyavailableuntil2020.InadditiontoFAOcountry-levelstatistics,theHYDE3.3cropland/graz-inglanddatasetisconstrainedspatiallybasedonmulti-yearsatellitelandcovermapsfromESACCILC(seebelow).Af-tertheyear2017,LUH2extrapolates,onagridcellbasis,thecropland,pasture,andurbandatalinearlybasedonthetrendovertheprevious5yearstogeneratedatauntiltheyear2021.Thisextrapolationmethodologyisnotappropriateforcoun-triesthathaveexperiencedrecentrapidchangesintherateofland-usechange,e.g.Brazil,whichhasexperiencedarecentupturnindeforestation.Hence,forBrazilwereplaceFAOstate-leveldataforcroplandandgrazinglandinHYDEbythosefromin-countrylandcoverdatasetMapBiomas(col-lection6)for1985–2020(Souzaetal.,2020).ESA-CCIisusedtospatiallydisaggregateasdescribedbelow.Similarly,anestimatefortheyear2021isbasedontheMapBiomastrend2015–2020.Thepre-1985periodisscaledwiththepercapitanumbersfrom1985fromMapBiomas,andthusthistransitionissmooth.HYDEusessatelliteimageryfromESA-CCIfrom1992–2018formoredetailedyearlyallocationofcroplandandgrazingland,withtheESAareadatascaledtomatchtheFAOannualtotalsatcountrylevel.Theoriginal300mspatialresolutiondatafromESAwereaggregatedtoa5arcminres-olutionaccordingtotheclassificationschemeasdescribedinKleinGoldewijketal.(2017a).DGVMsthatsimulatesubgridscaletransitions(i.e.grossland-useemissions;seeTableA1)usemoredetailedland-usetransitionandwoodharvestinformationfromtheLUH2-GCB2022dataset.LUH2-GCB2022isanupdateofthemorecomprehensiveharmonizedland-usedataset(Hurttetal.,2020)thatfurtherincludesfractionaldataonprimaryandsecondaryforestvegetation,aswellasallunderlyingtransi-tionsbetweenland-usestates(850-2020;Hurttetal.,2011,2017,2020;Chinietal.,2021;TableA1).Thisdatasetisofquarter-degreefractionalareasofland-usestatesandalltransitionsbetweenthosestates,includinganewwoodhar-vestreconstruction,newrepresentationofshiftingcultiva-tion,croprotations,andmanagementinformation,includingirrigationandfertilizerapplication.Theland-usestatesin-cludefivedifferentcroptypesinadditiontosplittinggrazinglandintomanagedpastureandrangeland.Woodharvestpat-ternsareconstrainedwithLandsat-basedtreecoverlossdata(Hansenetal.,2013).UpdatesofLUH2-GCB2022overlastyear’sversion(LUH2-GCB2021)areusingthemostrecentHYDErelease(coveringthetimeperiodupto2017,revi-siontoBrazilandtheDemocraticRepublicoftheCongoasdescribedabove).WeusethesameFAOwoodharvestdataaslastyearforalldatasetyearsfrom1961to2019andextrapolatetotheyear2022.TheHYDE3.3popula-tiondataarealsousedtoextendthewoodharvesttimese-riesbackintime.Otherwoodharvestinputs(foryearspriorto1961)remainthesameinLUH2.Theseupdatesintheland-useforcingareshownincomparisontothemorepro-nouncedversionchangefromtheGCB2020(Friedlingsteinetal.,2020)toGCB2021,whichwasdiscussedinFriedling-steinetal.(2022a)inFig.B6,andtheirrelevanceforland-useemissionsisdiscussedinSect.3.2.2.DGVMsimplementland-usechangedifferently(e.g.anincreasedcroplandfrac-tioninagridcellcaneitherbeattheexpenseofgrassland,shrubs,orforest,thelatterresultingindeforestation;landcoverfractionsofthenon-agriculturallanddifferbetweenmodels).Similarly,model-specificassumptionsareappliedtoconvertdeforestedbiomassordeforestedareaandotherforestproductpoolsintocarbon,anddifferentchoicesaremaderegardingtheallocationofrangelandsasnaturalvege-tationorpastures.ThedifferencebetweentwoDGVMsimulations(seeAp-pendixC4.1below),oneforcedwithhistoricalchangesinlanduseandasecondwithtime-invariantpre-industriallandcoverandpre-industrialwoodharvestrates,allowsquan-tificationofthedynamicevolutionofvegetationbiomassandsoilcarbonpoolsinresponsetoland-usechangeineachmodel(ELUC).UsingthedifferencebetweenthesetwoDGVMssimulationstodiagnoseELUCmeanstheDGVMsaccountforthelossofadditionalsinkcapacity(around0.4±0.3GtCyr−1;seeSect.2.7andAppendixD4),whereasthebookkeepingmodelsdonot.Asacriterionforinclusioninthiscarbonbudget,weonlyretainmodelsthatsimulateapositiveELUCduringthe1990s,asassessedintheIPCCAR4(Denmanetal.,2007)andAR5(Ciaisetal.,2013).AllDGVMsmetthiscriterion,al-thoughonemodelwasnotincludedintheELUCestimatefromDGVMsasitexhibitedaspuriousresponsetothetran-sientlandcoverchangeforcingafteritsinitialspin-up.C2.3MappingofnationalGHGinventorydatatoELUCAnapproachwasimplementedtoreconcilethelargegapbe-tweenland-useemissionsestimatesfrombookkeepingmod-elsandfromnationalGHGinventories(NGHGI)(seeTa-bleA8).Thisgapisduetodifferentapproachestocalculat-ing“anthropogenic”CO2fluxesrelatedtoland-usechangeandlandmanagement(Grassietal.,2018).Inparticular,thelandsinksduetoenvironmentalchangeonmanagedlandsaretreatedasnon-anthropogenicintheglobalcarbonbud-get,whiletheyaregenerallyconsideredanthropogenicinNGHGIs(“indirectanthropogenicfluxes”;Egglestonetal.,2006).Buildingonpreviousstudies(Grassietal.,2021),theapproachimplementedhereaddstheDGVMestimatesofCO2fluxesduetoenvironmentalchangefromcountries’managedforestarea(partofSLAND)totheELUCflux.ThissumisexpectedtobeconceptuallymorecomparabletoLU-LUCFthanELUC.ELUCdataaretakenfrombookkeepingmodels,inlinewiththeglobalcarbonbudgetapproach.TodetermineSLANDEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224873onmanagedforest,thefollowingstepsweretaken:spa-tiallygriddeddataof“natural”forestnetbiomeproductiv-ity(NBP)(SLAND,i.e.duetoenvironmentalchangeandex-cludingland-usechangefluxes)wereobtainedwithS2runsfromDGVMsupto2021fromtheTRENDYv11dataset.ResultswerefirstmaskedwithaforestmapthatisbasedonHansen(Hansenetal.,2013)treecoverdata.Todothiscon-version(“tree”coverto“forest”cover),weexcludegridcellswithlessthan20%treecoverandisolatedpixelswithmaxi-mumconnectivitylessthan0.5hafollowingtheFAOdefini-tionofforest.ForestNBPsarethenfurthermaskedwiththe“intact”forestmapfortheyear2013,i.e.forestareaschar-acterizedbynoremotelydetectedsignsofhumanactivity(Potapovetal.,2017).Thisway,weobtainedtheSLANDin“intact”and“non-intact”forestarea,whichpreviousstudies(Grassietal.,2021)indicatedtobeagoodproxy,respec-tively,for“unmanaged”and“managed”forestareaintheNGHGI.Notethatonlyfourmodels(CABLE-POP,CLAS-SIC,JSBACHandYIBs)hadforestNBPatgrid-celllevel.FortheotherDGVMs,whenagridcellhadforest,alltheNBPwasallocatedtoforest.However,sinceS2simulationsusepre-industrialforestcovermasksthatareatleast20%largerthantoday’sforest(Hurttetal.,2020),wecorrectedthisNBPusingaratiobetweenobserved(basedonHansenetal.,2013)andprescribed(fromDGVMs)forestcover.ThisratioiscalculatedforeachindividualDGVMthatprovidesinformationonprescribedforestcover(LPX-Bern,OCN,JULES,VISIT,VISIT-NIES,SDGVM).Fortheothers(IBIS,CLM5.0,ORCHIDEE,ISAM,DLEM,LPJ-GUESS),acom-monratio(medianratioofallthe10modelsthatprovidein-formationonprescribedforestcover)isused.ThedetailsofthemethodusedareexplainedinAlkama(2022).LULUCFdatafromNGHGIsarefromGrassietal.(2022a).WhileAnnexIcountriesreportacompletetimeseries1990–2020,fornon-AnnexIcountriesgap-fillingmea-sureswereappliedthroughlinearinterpolationbetweentwopointsand/orthroughextrapolationbackward(till1990)andforward(till2020)usingthesingleclosestavailabledatapoint.Forallcountries,theestimatesoftheyear2021areassumedtobeequaltothoseof2020.ThesedataincludeallCO2fluxesfromlandconsideredmanaged,whichinprinci-pleencompassesalllanduses(forestland,cropland,grass-land,wetlands,settlements,andotherland),changesamongthem,andemissionsfromorganicsoilsandfires.Inprac-tice,althoughalmostallAnnexIcountriesreportalllanduses,manynon-AnnexIcountriesreportonlyondeforesta-tionandforestland,andonlyfewcountriesreportonotherlanduses.Inmostcases,NGHGIsincludemostofthenat-uralresponsetorecentenvironmentalchangebecausetheyusedirectobservations(e.g.nationalforestinventories)thatdonotallowforseparatingdirectandindirectanthropogeniceffects(Egglestonetal.,2006).Toprovideadditional,largelyindependentassessmentsoffluxesonunmanagedvs.managedlands,weincludeaDGVMthatallowsdiagnosingfluxesfromunmanagedvs.managedlandsbytrackingvegetationcohortsofdifferentagesseparately.Thismodel,ORCHIDEE-MICT(Yueetal.,2018),wasrunusingthesameLUH2forcingastheDGVMsusedinthisbudget(Sect.2.5)andthebookkeepingmodelsBLUEandOSCAR(Sect.2.2).Old-agedforestwasclassi-fiedasprimaryforestafteracertainthresholdofcarbonden-sitywasreachedagain,andthemodel-internaldistinctionbe-tweenprimaryandsecondaryforestwasusedaproxyforun-managedvs.managedforests;agriculturallandsareaddedtothelattertoarriveattotalmanagedland.TableA8showstheresultingmappingofglobalcarboncyclemodels’landfluxdefinitionstothatoftheNGHGI(discussedinSect.3.2.2).ORCHIDEE-MICTestimatesforSLANDonintactforestsareexpectedtobehigherthanbasedonDGVMsincombinationwiththeNGHGImanagedandunmanagedforestdatabecausetheunmanagedforestarea,withabout27×106km2,isestimatedtobesubstantiallylargerbyORCHIDEE-MICTthanbytheNGHGI(lessthan10×106km2),whilemanagedforestareaisestimatedtobesmaller(22comparedto32×106km2).Relatedtothis,ELUCplusSLANDonnon-intactlandsisalargersourceesti-matedbyORCHIDEE-MICTcomparedtoNGHGI.WealsoshowFAOSTATemissionstotals(FAO,2021)asacompari-son,whichincludeemissionsfromnetforestconversionandfluxesonforestland(Tubielloetal.,2021)andCO2emis-sionsfrompeatdrainageandpeatfires.The2021datawereestimatedbyincludingactual2021estimatesforpeatlanddrainageandfireandacarryforwardfrom2020to2021fortheforestlandstockchange.TheFAOdatashowsaglobalsourceof0.24GtCyr−1averagedover2012–2021,incontrasttothesinkof−0.54GtCyr−1ofthegap-filledNGHGIdata.Mostofthisdifferenceisattributabletodif-ferentscopes:afocusoncarbonfluxesfortheNGHGIandafocusonareaandbiomassforFAO.Inparticular,theNGHGIdataincludesalargerforestsinkfornon-Annex1countriesresultingfromamorecompletecoverageofnon-biomasscarbonpoolsandnon-forestlanduses.NGHGIandFAOdataalsodifferintermsofunderlyingdataonforestland(Grassietal.,2022a).C2.4UncertaintyassessmentforELUCDifferencesbetweenthebookkeepingmodelsandDGVMsmodelsoriginatefromthreemainsources:thedifferentmethodologies,whichamongothersleadtoinclusionofthelossofadditionalsinkcapacityinDGVMs(seeAp-pendixD1.4),theunderlyingland-useorland-coverdataset,andthedifferentprocessesrepresented(TableA1).Weex-aminetheresultsfromtheDGVMsmodelsandofthebook-keepingmethodandusetheresultingvariationsasawaytocharacterizetheuncertaintyinELUC.Despitethesedifferences,theELUCestimatefromtheDGVMsmulti-modelmeanisconsistentwiththeaverageoftheemissionsfromthebookkeepingmodels(Table5).How-ever,therearelargedifferencesamongindividualDGVMshttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224874P.Friedlingsteinetal.:GlobalCarbonBudget2022(standarddeviationataround0.5GtCyr−1;Table5),be-tweenthebookkeepingestimates(averagedifference1850–2020BLUE-updatedH&N2017of0.8GtCyr−1,BLUE-OSCARof0.4GtCyr−1,OSCAR-updatedH&N2017of0.3GtCyr−1),andbetweentheupdatedestimateofH&N2017anditspreviousmodelversion(Houghtonetal.,2012).AfactorialanalysisofdifferencesbetweenBLUEandH&N2017attributedthemparticularlytodifferencesincar-bondensitiesbetweennaturalandmanagedvegetationorpri-maryandsecondaryvegetation(Bastosetal.,2021).Ear-lierstudiesadditionallyshowedtherelevanceofthediffer-entland-useforcingasapplied(inupdatedversions)alsointhecurrentstudy(Gasseretal.,2020).Ganzenmülleretal.(2022)recentlyshowedthatELUCestimateswithBLUEaresubstantiallysmallerwhenthemodelisdrivenbyanewhigh-resolutionland-usedataset(HILDA+).TheyidentifiedshiftingcultivationandthewayitisimplementedinLUH2asamainreasonforthisdivergence.Theyfurthershowedthatahigherspatialresolutionreducestheestimatesofbothsourcesandsinksbecausesuccessivetransitionsarenotade-quatelyrepresentedatcoarserresolution,whichhastheeffectthat–despitecapturingthesameextentoftransitionareas–overalllessarearemainspristineatthecoarsercomparedtothehigherresolution.TheuncertaintyinELUCof±0.7GtCyr−1reflectsourbestvaluejudgementthatthereisatleast68%chance(±1σ)thatthetrueland-usechangeemissionlieswithinthegivenrangefortherangeofprocessesconsideredhere.Priortotheyear1959,theuncertaintyinELUCwastakenfromthestan-darddeviationoftheDGVMs.WeassignlowconfidencetotheannualestimatesofELUCbecauseoftheinconsistenciesamongestimatesandofthedifficultiesinquantifyingsomeoftheprocessesinDGVMs.C2.5EmissionsprojectionsforELUCWeprojectthe2022land-useemissionsforBLUE,theup-datedH&N2017,andOSCAR,startingfromtheirestimatesfor2021assumingunalteredpeatdrainage,whichhaslowin-terannualvariability,andthehighlyvariableemissionsfrompeatfires,tropicaldeforestationanddegradationasestimatedusingactivefiredata(MCD14ML;Giglioetal.,2016).TheselattervariablesscalealmostlinearlywithGFEDoverlargeareas(vanderWerfetal.,2017),andthustheyallowfortrackingfireemissionsindeforestationandtropicalpeatzonesinnear-realtime.C3Methodology:oceanCO2sinkC3.1Observation-basedestimatesWeprimarilyusetheobservationalconstraintsassessedbyIPCCofameanoceanCO2sinkof2.2±0.7GtCyr−1forthe1990s(90%confidenceinterval;Ciaisetal.,2013)toverifythattheGOBMsprovidearealisticassessmentofSOCEAN.Thisisbasedonindirectobservationswithsevendifferentmethodologiesandtheiruncertaintiesandfurtheruseofthethreeofthesemethodsthataredeemedmostre-liablefortheassessmentofthisquantity(Denmanetal.,2007;Ciaisetal.,2013).Theobservation-basedestimatesusetheocean–landCO2sinkpartitioningfromobservedatmosphericCO2andO2/N2concentrationtrends(Man-ningandKeeling,2006;KeelingandManning,2014),anoceanicinversionmethodconstrainedbyoceanbiogeochem-istrydata(MikaloffFletcheretal.,2006),andamethodbasedonpenetrationtimescaleforchlorofluorocarbons(Mc-Neil,2003).TheIPCCestimateof2.2GtCyr−1forthe1990sisconsistentwitharangeofmethods(Wanninkhofetal.,2013).WerefrainfromusingtheIPCCestimatesforthe2000s(2.3±0.7GtCyr−1)andtheperiod2002–2011(2.4±0.7GtCyr−1,Ciaisetal.,2013),asthesearebasedontrendsderivedmainlyfrommodelsandonedataprod-uct(Ciaisetal.,2013).AdditionalconstraintssummarizedinAR6(Canadelletal.,2021)aretheinterioroceananthro-pogeniccarbonchange(Gruberetal.,2019)andoceansinkestimatesfromatmosphericCO2andO2/N2(Tohjimaetal.,2019),whichareusedformodelevaluationanddiscussion,respectively.WealsouseeightestimatesoftheoceanCO2sinkanditsvariabilitybasedonsurfaceoceanfCO2mapsobtainedbytheinterpolationofsurfaceoceanfCO2measurementsfrom1990onwardsduetosevererestrictionsondataavailabilitypriorto1990(Fig.10).Theseestimatesdifferinmanyre-spects:theyusedifferentmapsofsurfacefCO2,atmosphericCO2concentrations,windproducts,andgasexchangefor-mulationsasspecifiedinTableA3.WerefertothemasfCO2-basedfluxestimates.ThemeasurementsunderlyingthesurfacefCO2mapsarefromtheSurfaceOceanCO2At-lasversion2022(SOCATv2022;Bakkeretal.,2022),whichisanupdateofversion3(Bakkeretal.,2016)andcontainsquality-controlleddatathrough2021(seedataattributionTa-bleA5).EachoftheestimatesusesadifferentmethodtothenmaptheSOCATv2022datatotheglobalocean.Themethodsincludeadata-drivendiagnosticmethodcombinedwithamulti-linearregressionapproachtoextendbackto1957(Rödenbecketal.,2022;referredtohereasJena-MLS),threeneuralnetworkmodels(Landschützeretal.,2014;re-ferredtoasMPI-SOMFFN;Chauetal.,2022;CopernicusMarineEnvironmentMonitoringService,referredtohereasCMEMS-LSCE-FFNN;andZengetal.,2014;referredtoasNIES-NN),aclusterregressionapproach(GregorandGru-ber,2021,referredtoasOS-ETHZ-GRaCER),amulti-linearregressionmethod(Iidaetal.,2021;referredtoasJMA-MLR),andamethodthatrelatesthefCO2misfitbetweenGOBMsandSOCATtoenvironmentalpredictorsusingtheextremegradient-boostingmethod(Gloegeetal.,2022).TheensemblemeanofthefCO2-basedfluxestimatesiscalcu-latedfromthesesevenmappingmethods.Further,weshowthefluxestimateofWatsonetal.(2020),whoalsousetheMPI-SOMFFNmethodtomaptheadjustedfCO2datatotheglobe,resultinginasubstantiallylargeroceansinkesti-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224875mateowingtoanumberofadjustmentstheyappliedtothesurfaceoceanfCO2data.Concretely,theseauthorsadjustedtheSOCATfCO2downwardtoaccountfordifferencesintemperaturebetweenthedepthoftheshipintakeandtherel-evantdepthrightnearthesurface,andtheyincludedafurtheradjustmenttoaccountforthecoolsurfaceskintemperatureeffect.TheWatsonetal.(2020)fluxestimatehencediffersfromtheothersbytheirchoiceofadjustingthefluxtoacool,saltyoceansurfaceskin.Watsonetal.(2020)showedthatthistemperatureadjustmentleadstoanupwardcorrectionoftheoceancarbonsink,upto0.9GtCyr−1,that,ifcorrect,shouldbeappliedtoallfCO2-basedfluxestimates.Are-ductionofthisadjustmentto0.6GtCyr−1wasproposedbyDongetal.(2022).Theimpactofthecoolskineffectonair–seaCO2fluxisbasedonestablishedunderstandingoftemperaturegradients(asdiscussedbyGoddijn-Murphyetal2015)andlaboratoryobservations(JähneandHaußecker,1998;Jähne,2019),butinsitufieldobservationalevidenceislacking(Dongetal.,2022).TheWatsonetal.(2020)fluxestimatepresentedhereisthereforenotincludedintheen-semblemeanofthefCO2-basedfluxestimates.Thischoicewillbere-evaluatedinupcomingbudgetsbasedonfurtherlinesofevidence.Typically,dataproductsdonotcovertheentireoceanduetomissingcoastaloceansandseaicecover.TheCO2fluxfromeachfCO2-basedproductisalreadyatorabove99%coverageoftheice-freeoceansurfaceareaintwoprod-ucts(Jena-MLS,OS-ETHZ-GRaCER)andfilledbythedataproviderinthreeproducts(usingtheFayetal.,2021,methodforJMA-MLRandLDEO-HPDandtheLandschützeretal.,2020,methodologyforMPI-SOMFFN).Theproductsthatremainedbelow99%coverageoftheice-freeocean(CMEMS-LSCE-FFNN,MPI-SOMFFN,NIES-NN,UOx-Watson)werescaledbythefollowingprocedure.InpreviousversionsoftheGCB,themissingareaswereaccountedforbyscalingthegloballyintegratedfluxesbythefractionoftheglobaloceancoverage(361.9×106km2basedonETOPO1,AmanteandEakins,2009;EakinsandShar-man,2010)withtheareacoveredbytheCO2fluxpredic-tions.Thisapproachmayleadtounnecessaryscalingwhenthemajorityofthemissingdataareintheice-coveredregion(asisoftenthecase),wherefluxisalreadyassumedtobezero.Toavoidthisunnecessaryscaling,wenowscalefluxesregionally(north,tropics,south)tomatchtheice-freearea(usingNOAA’sOISSTv2;Reynoldsetal.,2002):FCOreg-scaled2=Aregion(1−ice)AregionFCO2·FCOregion2.(C4)InEq.(C4),Arepresentsarea,(1−ice)representstheice-freeocean,AregionFCO2representsthecoverageofthedataproductforaregion,andFCOregion2istheintegratedfluxforaregion.Wefurtheruseresultsfromtwodiagnosticoceanmod-els,Khatiwalaetal.(2013)andDeVries(2014),toestimatetheanthropogeniccarbonaccumulatedintheoceanpriorto1959.Thetwoapproachesassumeconstantoceancircula-tionandbiologicalfluxes,withSOCEANestimatedasare-sponseinthechangeinatmosphericCO2concentrationcali-bratedtoobservations.Theuncertaintyincumulativeuptakeof±20GtC(convertedto±1σ)istakendirectlyfromtheIPCC’sreviewoftheliterature(Rheinetal.,2013)orabout±30%fortheannualvalues(Khatiwalaetal.,2009).C3.2Globaloceanbiogeochemistrymodels(GOBMs)TheoceanCO2sinkfor1959–20121isestimatedusing10GOBMs(TableA2).TheGOBMsrepresentthephysical,chemical,andbiologicalprocessesthatinfluencethesur-faceoceanconcentrationofCO2andthustheair–seaCO2flux.TheGOBMsareforcedbymeteorologicalreanalysisandatmosphericCO2concentrationdataavailablefortheen-tiretimeperiod.Theymostlydifferinthesourceoftheat-mosphericforcingdata(meteorologicalreanalysis),spin-upstrategies,andhorizontalandverticalresolutions(TableA2).AllGOBMsexcepttwo(CESM-ETHZ,CESM2)donotin-cludetheeffectsofanthropogenicchangesinnutrientsupply(Duceetal.,2008).Theyalsodonotincludetheperturba-tionassociatedwithchangesinriverineorganiccarbon(seeSect.2.7andAppendixD3).FoursetsofsimulationswereperformedwitheachoftheGOBMs.SimulationAappliedhistoricalchangesinclimateandatmosphericCO2concentration.SimulationBisacon-trolsimulationwithconstantatmosphericforcing(normal-yearorrepeated-yearforcing)andconstantpre-industrialat-mosphericCO2concentration.SimulationCisforcedwithhistoricalchangesinatmosphericCO2concentrationbutrepeated-yearornormal-yearatmosphericclimateforcing.SimulationDisforcedbyhistoricalchangesinclimateandconstantpre-industrialatmosphericCO2concentration.ToderiveSOCEANfromthemodelsimulations,wesubtractedtheslopeofalinearfittotheannualtimeseriesofthecontrolsimulationBfromtheannualtimeseriesofsimulationA.As-sumingthatdriftandbiasarethesameinsimulationsAandB,wetherebycorrectforanymodeldrift.Further,thisdiffer-encealsoremovesthenaturalsteady-stateflux(assumedtobe0GtCyr−1globallywithoutrivers),whichisoftenamajorsourceofbiases.Thisapproachworksforallmodelset-ups,includingIPSL,wheresimulationBwasforcedwithconstantatmosphericCO2butobservedhistoricalchangesinclimate(equivalenttosimulationD).ThisapproachassuresthattheinterannualvariabilityisnotremovedfromIPSLsimulationA.Theabsolutecorrectionforbiasanddriftpermodelinthe1990svariedbetween<0.01and0.41GtCyr−1,withsevenmodelshavingpositivebiases,twohavingnegativebiases,andonehavingessentiallynobias(NorESM).TheMPImodelusesriverineinputandthereforesimulatesout-gassinginsimulationB.BysubtractingsimulationB,theoceancarbonsinkoftheMPImodelalsofollowsthedefi-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224876P.Friedlingsteinetal.:GlobalCarbonBudget2022nitionofSOCEAN.Thiscorrectionreducesthemodelmeanoceancarbonsinkby0.04GtCyr−1inthe1990s.Theoceanmodelscover99%to101%ofthetotaloceanareasothatareascalingisnotnecessary.C3.3GOBMevaluationanduncertaintyassessmentforSOCEANTheoceanCO2sinkforallGOBMsandtheensemblemeanfallswithin90%confidenceoftheobservedrange,or1.5to2.9GtCyr−1,forthe1990s(Ciaisetal.,2013)beforeandafterapplyingadjustments.AnexceptionistheMPImodel,whichsimulatesalowoceancarbonsinkof1.38GtCyr−1forthe1990sinsimulationAowingtothein-clusionofriverinecarbonflux.AfteradjustingtotheGCB’sdefinitionofSOCEANbysubtractingsimulationB,theMPImodelfallsintotheobservedrangewithanestimatedsinkof1.69GtCyr−1.TheGOBMsanddataproductshavebeenfurthereval-uatedusingthefugacityofseasurfaceCO2(fCO2)fromtheSOCATv2022database(Bakkeretal.,2016,2022).Wefocusedthisevaluationontheroot-mean-squarederror(RMSE)betweenobservedandmodelledfCO2andonameasureoftheamplitudeoftheinterannualvariabilityoftheflux(modifiedafterRödenbecketal.,2015).TheRMSEiscalculatedfromdetrended,annuallyandregionallyaveragedtimeseriescalculatedfromGOBMsanddataproductfCO2subsampledtoSOCATsamplingpointstomeasurethemisfitbetweenlarge-scalesignals(Haucketal.,2020).Tothisend,weapplythefollowingsteps:(i)subsampledatapointsforwhichthereareobservations(GOBMsordataproductsandSOCAT),(ii)averagespatially,(iii)calculateannualmean,(iv)detrendbothtimeseries(GOBMsordataproductsandSOCAT),and(v)calculateRMSE.Thisyear,wedonotap-plyanopen-oceanmaskof400mbutinsteadamaskbasedontheminimumareacoverageofthedat-products.Thisen-suresafaircomparisonoverequalareas.TheamplitudeoftheSOCEANinterannualvariability(A-IAV)iscalculatedasthetemporalstandarddeviationofthedetrendedannualCO2fluxtimeseriesafterareascaling(Rödenbecketal.,2015;Haucketal.,2020).ThesemetricsarechosenbecauseRMSEisthemostdirectmeasureofdata–modelmismatch,andtheA-IAVisadirectmeasureofthevariabilityofSOCEANonin-terannualtimescales.Weapplythesemetricsgloballyandbylatitudebands.ResultsareshowninFig.B2anddiscussedinSect.3.5.5.Wequantifythe1σuncertaintyaroundthemeanoceansinkofanthropogenicCO2byassessingrandomandsys-tematicuncertaintiesfortheGOBMsanddata-products.Therandomuncertaintiesaretakenfromtheensemblestan-darddeviation(0.3GtCyr−1forGOBMs,0.3GtCyr−1fordata-products).WederivetheGOBMssystematicuncer-taintybythedeviationoftheDICinventorychange1994–2007fromtheGruberetal.(2019)estimate(0.4GtCyr−1)andsuggestthesearerelatedtophysicaltransport(mix-ing,advection)intotheoceaninterior.Forthedataprod-ucts,weconsidersystematicuncertaintiesstemmingfromuncertaintyinfCO2observations(0.2GtCyr−1,Takahashietal.,2009;Wanninkhofetal.,2013),gastransferve-locity(0.2GtCyr−1,Hoetal.,2011;Wanninkhofetal.,2013;Roobaertetal.,2018),windproduct(0.1GtCyr−1,Fayetal.,2021),riverfluxadjustment(0.3GtCyr−1,Reg-nieretal.,2022,formally2σuncertainty),andfCO2map-ping(0.2GtCyr−1,Landschützeretal.,2014).Combin-ingtheseuncertaintiesastheirsquaredsums,weassignanuncertaintyof±0.5GtCyr−1totheGOBMensemblemeanandanuncertaintyof±0.6GtCyr−1tothedataprod-uctensemblemean.Theseuncertaintiesarepropagatedasσ(SOCEAN)=(1/22×0.52+1/22×0.62)1/2GtCyr−1andre-sultinan±0.4GtCyr−1uncertaintyaroundthebestestimateofSOCEAN.Weexaminetheconsistencybetweenthevariabilityofthemodel-basedandthefCO2-baseddataproductstoas-sessconfidenceinSOCEAN.Theinterannualvariabilityoftheoceanfluxes(quantifiedasA-IAV,thestandarddeviationaf-terdetrending,Fig.B2)ofthesevenfCO2-baseddataprod-uctsplustheWatsonetal.(2020)productfor1990–2021rangesfrom0.12to0.32GtCyr−1,withthelowerestimatescomingfromthetwoensemblemethods(CMEMS-LSCE-FFNN,OS-ETHZ-GRaCER).TheinterannualvariabilityintheGOBMsrangesbetween0.09and0.20GtCyr−1;hence,thereisoverlapwiththelowerA-IAVestimatesoftwodataproducts.Individualestimates(bothGOBMsanddataproducts)generallyproduceahigheroceanCO2sinkduringstrongElNiñoevents.ThereisemergingagreementbetweenGOBMsanddataproductsonthepatternsofdecadalvariabilityofSOCEAN,withaglobalstagnationinthe1990sandanextra-tropicalstrengtheninginthe2000s(McKinleyetal.,2020;Haucketal.,2020).ThecentralestimatesoftheannualfluxfromtheGOBMsandthefCO2-baseddataproductshaveacorrelationrof0.94(1990–2021).Theagreementbetweenthemodelsandthedataproductsreflectssomeconsistencyintheirrepresentationofunderlyingvariabilitysincethereislittleoverlapintheirmethodologyoruseofobservations.C4Methodology:landCO2sinkC4.1DGVMsimulationsTheDGVMsmodelrunswereforcedbyeitherthemergedmonthlyClimateResearchUnit(CRU)and6-hourlyJapanese55-yearReanalysis(JRA-55)datasetorbythemonthlyCRUdataset,withbothprovidingobservation-basedtemperature,precipitation,andincomingsurfacera-diationdataona0.5◦×0.5◦gridupdatedto2021(Harrisetal.,2014,2020).ThecombinationofCRUmonthlydatawith6-hourlyforcingfromJRA-55(Kobayashietal.,2015)isperformedwithmethodologyusedinpreviousyears(Viovy,2016)adaptedtothespecificsoftheJRA-55data.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224877IntroducedinGCB2021(Friedlingsteinetal.,2022a),in-comingshort-waveradiationfieldsareusedtotakeintoac-countaerosolimpactsandthedivisionoftotalradiationintodirectanddiffusecomponentsassummarizedbelow.Thediffusefractiondatasetoffers6-hourlydistributionsofthediffusefractionofsurfaceshort-wavefluxesovertheperiod1901–2021.Radiativetransfercalculationsarebasedonmonthlyaverageddistributionsoftroposphericandstrato-sphericaerosolopticaldepthand6-hourlydistributionsofcloudfraction.MethodsfollowthosedescribedintheMeth-odssectionofMercadoetal.(2009)butwithupdatedinputdatasets.ThetimeseriesofspeciatedtroposphericaerosolopticaldepthistakenfromthehistoricalandRCP8.5simulationsbytheHadGEM2-ESclimatemodel(Bellouinetal.,2011).TocorrectforbiasesinHadGEM2-ES,troposphericaerosolopticaldepthsarescaledoverthewholeperiodtomatchtheglobalandmonthlyaveragesobtainedovertheperiod2003–2020bytheCAMSreanalysisofatmosphericcomposition(Innessetal.,2019),whichassimilatessatelliteretrievalsofaerosolopticaldepth.ThetimeseriesofstratosphericaerosolopticaldepthistakenfromtheclimatologyofSatoetal.(1993),whichhasbeenupdatedto2012.Theyears2013–2020areassumedtobebackgroundyearsandthusreplicatethebackgroundyear2010.ThatassumptionissupportedbytheGlobalSpace-basedStratosphericAerosolClimatologytimeseries(1979–2016;Thomasonetal.,2018).Thetimeseriesofcloudfrac-tionisobtainedbyscalingthe6-hourlydistributionssim-ulatedintheJapaneseReanalysis(Kobayashietal.,2015)tomatchthemonthlyaveragedcloudcoverintheCRUTSv4.06dataset(Harrisetal.,2020).Surfaceradiativefluxesaccountforaerosol–radiationinteractionsfrombothtropo-sphericandstratosphericaerosolsandforaerosol–cloudin-teractionsfromtroposphericaerosols(exceptmineraldust).Troposphericaerosolsarealsoassumedtoexertinteractionswithclouds.Theradiativeeffectsofthoseaerosol–cloudinteractionsareassumedtoscalewiththeradiativeeffectsofaerosol–radiationinteractionsoftroposphericaerosolsusingregionalscalingfactorsderivedfromHadGEM2-ES.Diffusefractionisassumedtobe1incloudysky.Atmosphericconstituentsotherthanaerosolsandcloudsaresettoaconstantstandardmid-latitudesummeratmosphere,buttheirvariationsdonotaffectthediffusefractionofsurfaceshort-wavefluxes.Insummary,theDGVMsforcingdataincludetime-dependentgriddedclimateforcing,globalatmosphericCO2(DlugokenckyandTans,2022),griddedlandcoverchanges(seeAppendixC2.2),andgriddednitrogendepositionandfertilizers(seeTableA1forspecificmodelsdetails).FoursimulationswereperformedwitheachoftheDGVMs.Simulation0(S0)isacontrolsimulationthatusesfixedpre-industrial(year1700)atmosphericCO2con-centrations,cyclesearly20thcentury(1901–1920)climate,andappliesatime-invariantpre-industriallandcoverdistri-butionandpre-industrialwoodharvestrates.Simulation1(S1)differsfromS0byapplyinghistoricalchangesinat-mosphericCO2concentrationandNinputs.Simulation2(S2)applieshistoricalchangesinatmosphericCO2concen-tration,Ninputs,andclimate,whileapplyingtime-invariantpre-industriallandcoverdistributionandpre-industrialwoodharvestrates.Simulation3(S3)applieshistoricalchangesinatmosphericCO2concentration,Ninputs,climate,landcoverdistribution,andwoodharvestrates.S2isusedtoestimatethelandsinkcomponentoftheglobalcarbonbudget(SLAND).S3isusedtoestimatethetotallandfluxbutisnotusedintheglobalcarbonbudget.Wefur-therseparateSLANDintocontributionsfromCO2(=S1–S0)andclimate(=S2−S1+S0).C4.2DGVMevaluationanduncertaintyassessmentforSLANDWeapplythreecriteriaforminimumDGVMrealismbyincludingonlythoseDGVMswith(1)steadystateafterspinup,(2)globalnetlandflux(SLAND−ELUC),i.e.anatmosphere-to-landcarbonfluxoverthe1990srangingbe-tween−0.3and2.3GtCyr−1within90%confidenceofconstraintsbyglobalatmosphericandoceanicobservations(KeelingandManning,2014;Wanninkhofetal.,2013),and(3)globalELUCthatisacarbonsourcetotheatmosphereoverthe1990s,asalreadymentionedinAppendixC2.2.AllDGVMsmeetthesethreecriteria.Inaddition,theDGVMsresultsarealsoevaluatedus-ingtheInternationalLandModelBenchmarkingsystem(IL-AMB;Collieretal.,2018).Thisevaluationisprovidedheretodocument,encourage,andsupportmodelimprove-mentsthroughtime.ILAMBvariablescoverkeyprocessesthatarerelevantforthequantificationofSLANDandresult-ingaggregatedoutcomes.Theselectedvariablesarevege-tationbiomass,grossprimaryproductivity,leafareaindex,netecosystemexchange,ecosystemrespiration,evapotran-spiration,soilcarbon,andrunoff(seeFig.B3fortheresultsandforthelistofobserveddatabases).ResultsareshowninFig.B3anddiscussedinSect.3.6.5.FortheuncertaintyforSLAND,weusethestandarddevia-tionoftheannualCO2sinkacrosstheDGVMs,averagingtoabout±0.6GtCyr−1fortheperiod1959to2021.WeattachamediumconfidenceleveltotheannuallandCO2sinkanditsuncertaintybecausetheestimatesfromtheresidualbud-getandaveragedDGVMsmatchwellwithintheirrespectiveuncertainties(Table5).C5Methodology:atmosphericinversionsC5.1InversionsystemsimulationsNineatmosphericinversions(detailsofeacharegiveninTa-bleA4)wereusedtoinferthespatio-temporaldistributionoftheCO2fluxexchangedbetweentheatmosphereandthehttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224878P.Friedlingsteinetal.:GlobalCarbonBudget2022landoroceans.TheseinversionsarebasedonBayesianin-versionprincipleswithpriorinformationonfluxesandtheiruncertainties.Theyuseverysimilarsetsofsurfacemeasure-mentsofCO2timeseries(orsubsetsthereof)fromvariousflaskandinsitunetworks.OneinversionsystemalsousedsatellitexCO2retrievalsfromGOSATandOCO-2.EachinversionsystemusesdifferentmethodologiesandinputdatabutisrootedinBayesianinversionprinciples.Thesedifferencesmainlyconcerntheselectionoftheatmo-sphericCO2data,priorfluxes,spatialresolution,assumedcorrelationstructures,andmathematicalapproachesofthemodels.Eachsystemusesadifferenttransportmodel,whichwasdemonstratedtobeadrivingfactorbehinddifferencesinatmosphericinversion-basedfluxestimatesandspecifi-callytheirdistributionacrosslatitudinalbands(Gaubertetal.,2019;Schuhetal.,2019).Theinversionsystemsallprescribesimilarglobalfos-silfuelemissionsforEFOS;specifically,theGCP’sGriddedFossilEmissionsDatasetversion2022(GCP-GridFEDv2022.2;Jonesetal.,2022),whichisanupdatethrough2021ofthefirstversionofGCP-GridFEDpre-sentedbyJonesetal.(2021),oranotherrecentversionofGCP-GridFED(TableA4).AllGCP-GridFEDversionsscalegriddedestimatesofCO2emissionsfromEDGARv4.3.2(Janssens-Maenhoutetal.,2019)withinnationalterrito-riestomatchnationalemissionsestimatesprovidedbytheGCPfortheyears1959–2021,whicharecompiledfol-lowingthemethodologydescribedinAppendixC1.GCP-GridFEDv2022.2adoptstheseasonalityofemissions(themonthlydistributionofannualemissions)fromtheCarbonMonitor(Liuetal.,2020a,b;Douetal.,2022)forBrazil,China,allEU27countries,theUnitedKingdom,theUSA,andshippingandaviationbunkeremissions.TheseasonalitypresentinCarbonMonitorisuseddirectlyforyears2019–2021,whileforyears1959–2018theaverageseasonalityof2019and2021areapplied(avoidingtheyear2020duringwhichemissionsweremostimpactedbytheCOVID-19pan-demic).Forallothercountries,seasonalityofemissionsistakenfromEDGAR(Janssens-Maenhoutetal.,2019;Jonesetal.,2022),withasmallannualcorrectiontotheseasonalitypresentinyear2010basedonheatingorcoolingdegreedaystoaccountfortheeffectsofinterannualclimatevariabilityontheseasonalityofemissions(Jonesetal.,2021).EarlierversionsofGridFEDusedCarbonMonitor-basedseasonal-ityonlyfrom2019onwards.Inaddition,wenotethatGCP-GridFEDv2022.1andv2022.2includeemissionsfromce-mentproductionandthecementcarbonationCO2sink(Ap-pendixC1.1),whereasearlierversionsofGCP-GridFEDdidnotincludethecementcarbonationCO2sink.TheconsistentuseofrecentversionsofGCP-GridFEDforEFOSensuresaclosealignmentwiththeestimateofEFOSusedinthisbudgetassessment,enhancingthecomparabilityoftheinversion-basedestimatewiththefluxestimatesde-rivingfromDGVMs,GOBMs,andfCO2-basedmethods.ToensurethattheestimateduptakeofatmosphericCO2bythelandandoceanswasfullyconsistentwiththesumofthefossilemissionsfluxfromGCP-GridFEDv2022.2andtheat-mosphericgrowthrateofCO2,smallcorrectionstothefossilfuelemissionsfluxwereappliedtoinversionssystemsusingotherversionsofGCP-GridFED.ThelandandoceanCO2fluxesfromatmosphericinver-sionscontainanthropogenicperturbationandnaturalpre-industrialCO2fluxes.Onannualtimescales,naturalpre-industrialfluxesareprimarilylandCO2sinksandoceanCO2sourcescorrespondingtocarbontakenuponland,trans-portedbyriversfromlandtoocean,andoutgassedbytheocean.Thesepre-industriallandCO2sinksarethuscompen-satedovertheglobebyoceanCO2sourcescorrespondingtotheoutgassingofriverinecarboninputstotheocean,usingtheexactsamenumbersanddistributionsasdescribedfortheoceansinSect.2.4.Tofacilitatethecomparison,weadjustedtheinverseestimatesofthelandandoceanfluxesperlatitudebandwiththesenumberstoproducehistoricalperturbationCO2fluxesfrominversions.C5.2InversionsystemevaluationAllparticipatingatmosphericinversionsarecheckedforcon-sistencywiththeannualglobalgrowthrate,asbotharede-rivedfromtheglobalsurfacenetworkofatmosphericCO2observations.Inthisexercise,weusetheconversionfactorof2.086GtCppm−1toconverttheinvertedcarbonfluxestomolefractions,assuggestedbyPrather(2012).Thisnumberisspecificallysuitedforthecomparisontosurfaceobserva-tionsthatdonotresponduniformly(orimmediately)toeachyear’ssummedsourcesandsinks.ThisfactoristhereforeslightlysmallerthantheGCBconversionfactorinTable1(2.142GtCppm−1,Ballantyneetal.,2012).Overall,thein-versionsagreewiththegrowthrate,withbiasesbetween0.03and0.08ppm(0.06–0.17GtCyr−1)onthedecadalaverage.Theatmosphericinversionsarealsoevaluatedusingver-ticalprofilesofatmosphericCO2concentrations(Fig.B4).Morethan30aircraftprogrammesovertheglobe,eitherreg-ularprogrammesorrepeatedsurveysoveratleast9months,havebeenusedinordertodrawarobustpictureofthesys-temperformance(withspace–timedatacoveragethatisir-regularanddenserinthe0–45◦Nlatitudeband;TableA6).TheninesystemsarecomparedtotheindependentaircraftCO2measurementsbetween2and7kmabovesealevelbe-tween2001and2021.ResultsareshowninFig.B4,wheretheinversionsgenerallymatchtheatmosphericmolefrac-tionstowithin0.7ppmatalllatitudes,exceptforCTEu-ropein2011–2021overthemoresparselysampledSouthernHemisphere.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224879AppendixD:ProcessesnotincludedintheglobalcarbonbudgetD1ContributionofanthropogenicCOandCH4totheglobalcarbonbudgetEquation(1)onlypartlyincludesthenetinputofCO2totheatmospherefromthechemicaloxidationofreactivecarbon-containinggasesfromsourcesotherthanthecombustionoffossilfuels,suchas(1)cementprocessemissions,sincethesedonotcomefromcombustionoffossilfuels,(2)theoxi-dationoffossilfuels,and(3)theassumptionofimmediateoxidationofventedmethaneinoilproduction.However,itomitsanyotheranthropogeniccarbon-containinggasesthatareeventuallyoxidizedintheatmosphere,formingadiffusesourceofCO2,suchasanthropogenicemissionsofCOandCH4.Anattemptismadeheretoestimatetheirmagnitudeandidentifythesourcesofuncertainty.AnthropogenicCOemissionsarefromincompletefossilfuelandbiofuelburninganddeforestationfires.ThemainanthropogenicemissionsoffossilCH4thatmatterfortheglobal(anthropogenic)carbonbudgetarethefugitiveemissionsofcoal,oil,andgassectors(seebelow).TheseemissionsofCOandCH4contributeanetadditionoffossilcarbontotheatmosphere.InourestimateofEFOS,weassumed(Sect.2.1.1)thatallthefuelburnedisemittedasCO2,andthusCOan-thropogenicemissionsassociatedwithincompletefossilfuelcombustionanditsatmosphericoxidationintoCO2withinafewmonthsarealreadycountedimplicitlyinEFOSandshouldnotbecountedtwice(sameforELUCandanthro-pogenicCOemissionsbydeforestationfires).Thediffuseat-mosphericsourceofCO2derivingfromanthropogenicemis-sionsoffossilCH4isnotincludedinEFOS.Inreality,thediffusesourceofCO2fromCH4oxidationcontributestotheannualCO2growth.EmissionsoffossilCH4represent30%oftotalanthropogenicCH4emissions(Saunoisetal.,2020;theirtop-downestimateisusedbecauseitisconsistentwiththeobservedCH4growthrate),i.e.0.083GtCyr−1forthedecade2008–2017.Assumingsteadystate,anamountequaltothisfossilCH4emissionisallconvertedtoCO2byOHoxidation,andthisthereforeexplains0.083GtCyr−1oftheglobalCO2growthrate,withanuncertaintyrangeof0.061to0.098GtCyr−1takenfromthemin–maxoftop-downes-timatesinSaunoisetal.(2020).Ifthismin–maxrangeisassumedtobe2σbecauseSaunoisetal.(2020)didnotac-countfortheinternaluncertaintyoftheirminimumandmax-imumtop-downestimates,ittranslatesintoa1σuncertaintyof0.019GtCyr−1.OtheranthropogenicchangesinthesourcesofCOandCH4fromwildfires,vegetationbiomass,wetlands,rumi-nants,orpermafrostchangesaresimilarlyassumedtohaveasmalleffectontheCO2growthrate.TheCH4andCOemissionsandsinksarepublishedandanalysedseparatelyintheglobalmethanebudgetandglobalcarbonmonoxidebudgetpublications,whichfollowasimilarapproachtothatpresentedhere(Saunoisetal.,2020;Zhengetal.,2019).D2ContributionofothercarbonatestoCO2emissionsAlthoughwedoaccountforcementcarbonation(acarbonsink),thecontributionofemissionsoffossilcarbonates(car-bonsources)otherthancementproductionisnotsystem-aticallyincludedinestimatesofEFOS,exceptforAnnexIcountriesandlimeproductioninChina(AndrewandPeters,2021).ThemissingprocessesincludeCO2emissionsasso-ciatedwiththecalcinationoflimeandlimestoneoutsideofcementproduction.Carbonatesarealsousedinvariousin-dustries,includinginironandsteelmanufactureandinagri-culture.Theyarefoundnaturallyinsomecoals.CO2emis-sionsfromfossilcarbonatesotherthancementnotincludedinourdatasetareestimatedtoamounttoabout0.3%ofEFOS(estimatedbasedonCrippaetal.,2019).D3Anthropogeniccarbonfluxesintheland-to-oceanaquaticcontinuumTheapproachusedtodeterminetheglobalcarbonbudgetreferstothemean,variations,andtrendsintheperturbationofCO2intheatmosphere,referencedtothepre-industrialera.Carboniscontinuouslydisplacedfromthelandtotheoceanthroughtheland–oceanaquaticcontinuum(LOAC)comprisingfreshwaters,estuaries,andcoastalareas(Baueretal.,2013;Regnieretal.,2013).Asubstantialfractionofthislateralcarbonfluxisentirely“natural”andisthusasteady-statecomponentofthepre-industrialcarboncycle.Weac-countforthispre-industrialfluxwhereappropriateinourstudy(seeAppendixC3).However,changesinenvironmen-talconditionsandland-usechangehavecausedanincreaseinthelateraltransportofcarbonintotheLOAC–apertur-bationthatisrelevantfortheglobalcarbonbudgetpresentedhere.TheresultsoftheanalysisofRegnieretal.(2013)canbesummarizedintwopointsofrelevancefortheanthro-pogenicCO2budget.First,theanthropogenicperturbationoftheLOAChasincreasedtheorganiccarbonexportfromterrestrialecosystemstothehydrospherebyasmuchas1.0±0.5GtCyr−1sincepre-industrialtimes,mainlyow-ingtoenhancedcarbonexportfromsoils.Second,thisex-portedanthropogeniccarbonispartlyrespiredthroughtheLOAC,partlysequesteredinsedimentsalongtheLOAC,andtoalesserextenttransferredtotheopenoceanwhereitmayaccumulateorbeoutgassed.Theincreaseinstorageofland-derivedorganiccarbonintheLOACcarbonreser-voirs(burial)andintheopenoceancombinedisestimatedbyRegnieretal.(2013)at0.65±0.35GtCyr−1.Theinclu-sionofLOAC-relatedanthropogenicCO2fluxesshouldaf-fectestimatesofSLANDandSOCEANinEq.(1)butdoesnotaffecttheotherterms.RepresentationoftheanthropogenicperturbationofLOACCO2fluxesis,however,notincludedhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224880P.Friedlingsteinetal.:GlobalCarbonBudget2022intheGOBMsandDGVMsusedinourglobalcarbonbudgetanalysispresentedhere.D4LossofadditionallandsinkcapacityHistoricalland-coverchangewasdominatedbytransitionsfromvegetationtypesthatcanprovidealargecarbonsinkperareaunit(typically,forests)tootherslessefficientinremovingCO2fromtheatmosphere(typically,croplands).Theresultantdecreaseinlandsink,calledthe“lossofad-ditionalsinkcapacity”,canbecalculatedasthedifferencebetweentheactuallandsinkunderchanginglandcoverandthecounterfactuallandsinkunderpre-industriallandcover.Thistermisnotaccountedforinourglobalcarbonbudgetes-timate.Here,weprovideaquantitativeestimateofthistermtobeusedinthediscussion.SevenoftheDGVMsusedinFriedlingsteinetal.(2019)performedadditionalsimulationswithandwithoutland-usechangeundercycledpre-industrialenvironmentalconditions.Theresultinglossofadditionalsinkcapacityamountsto0.9±0.3GtCyr−1onaverageover2009–2018and42±16GtCaccumulatedbetween1850and2018(Obermeieretal.,2021).OSCAR,emulatingthebe-haviourof11DGVMs,findsvaluesofthelossofadditionalsinkcapacityof0.7±0.6GtCyr−1and31±23GtCforthesametimeperiod(Gasseretal.,2020).SincetheDGVM-basedELUCestimatesareonlyusedtoquantifytheuncer-taintyaroundthebookkeepingmodels’ELUC,wedonotaddthelossofadditionalsinkcapacitytothebookkeepingesti-mate.Authorcontributions.PF,MOS,MWJ,RMA,LukG,JH,CLQ,ITL,AO,GPP,WP,JP,ClS,andSSdesignedthestudy,conductedtheanalysis,andwrotethepaperwithinputfromJGC,PC,andRBJ.RMA,GPPandJIKproducedthefossilfuelemissionsandtheirun-certaintiesandanalysedtheemissionsdata.MHandGMprovidedfossilfuelemissiondata.JP,ThoG,ClS,andRAHprovidedthebookkeepingland-usechangeemissionswithsynthesisbyJPandClS.JH,LB,ÖG,NG,TI,KL,NMa,LR,JS,RS,HiT,andReWprovidedanupdateoftheglobaloceanbiogeochemicalmodels.MG,LucG,LukG,YI,AJ,ChR,JDS,andJZprovidedanupdateoftheoceanfCO2dataproducts,withsynthesisonbothstreamsbyJH,LukG,andNMa.SRA,NRB,MB,HCB,MC,WE,RAF,ThaG,KK,NL,NMe,NMM,DRM,SN,TO,DP,KP,ChR,IS,TS,AJS,CoS,ST,TT,BT,RiW,CW,andAWprovidedoceanfCO2measurementsfortheyear2021,withsynthesisbyAOandKO.AA,VKA,SF,AKJ,EK,DK,JK,MJM,MOS,BP,QS,HaT,APW,WY,XY,andSZprovidedanupdateofthedynamicglobalvegeta-tionmodels,withsynthesisbySSandMOS.WP,ITL,FC,JL,YN,PIP,ChR,XT,andBZprovidedanupdatedatmosphericinversion.WP,FC,andITLdevelopedtheprotocolandproducedtheevalu-ation.RMAprovidedpredictionsofthe2022emissionsandatmo-sphericCO2growthrate.PLprovidedthepredictionsofthe2022oceanandlandsinks.LPC,GCH,KKG,TMR,andGRvdWpro-videdforcingdataforland-usechange.RA,GG,FT,andCYpro-videddatafortheland-usechangeNGHGImapping.PPTprovidedkeyatmosphericCO2data.MWJproducedthemodelatmosphericCO2forcingandtheatmosphericCO2growthrate.MOSandNBproducedtheaerosoldiffuseradiativeforcingfortheDGVMs.IHprovidedtheclimateforcingdatafortheDGVMs.ERprovidedtheevaluationoftheDGVMs.MWJprovidedtheemissionpriorsforuseintheinversionsystems.ZLprovidedseasonalemissionsdataformostrecentyearsfortheemissionprior.MWJandMOSde-velopedthenewdatamanagementpipeline,whichautomatesmanyaspectsofthedatacollation,analysis,plotting,andsynthesis.PF,MOS,andMMJcoordinatedtheeffortandrevisedallfigures,ta-bles,text,and/ornumberstoensuretheupdatewasclearfromthe2021editionandinlinewiththehttp://globalcarbonatlas.org(lastaccess:25September2022).Competinginterests.Atleastoneofthe(co-)authorsisamem-beroftheeditorialboardofEarthSystemScienceData.Thepeer-reviewprocesswasguidedbyanindependenteditor,andtheauthorsalsohavenoothercompetingintereststodeclare.Disclaimer.Publisher’snote:CopernicusPublicationsremainsneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.Acknowledgements.WethankallpeopleandinstitutionswhoprovidedthedatausedinthisGlobalCarbonBudget2022andtheGlobalCarbonProjectmembersfortheirinputthroughoutthede-velopmentofthispublication.WethankNigelHawtinforproducingFigs.2and14.WethankThomasHawesfortechnicalsupportwiththedatamanagementpipeline.WethankEdDlugokenckyforpro-vidingatmosphericCO2measurements.WethankIanG.C.Ash-ton,FatemehCheginig,TrangT.Chau,SamDitkovsky,ChristianEthé,AmandaR.Fay,LonnekeGoddijn-Murphy,ThomasHold-ing,FabriceLacroix,EnhuiLiao,GalenA.McKinley,ShijieShu,RichardSims,JadeSkye,AndrewJ.Watson,DavidWillis,andDavidK.Woolffortheirinvolvementinthedevelopment,use,andanalysisofthemodelsanddataproductsusedhere.DanielKennedythanksallthescientists,softwareengineers,andadmin-istratorswhocontributedtothedevelopmentofCESM2.WethankJoeSalisbury,DougVandemark,ChristopherW.Hunt,andPeterLandschützer,whocontributedtotheprovisionofsurfaceoceanCO2observationsfortheyear2021(seeTableA5).WealsothankBenjaminPfeil,RocíoCastaño-Primo,andStephenD.JonesoftheOceanThematicCentreoftheEUIntegratedCarbonObser-vationSystem(ICOS)ResearchInfrastructure;EugeneBurgerofNOAA’sPacificMarineEnvironmentalLaboratory;andAlexKozyrofNOAA’sNationalCentersforEnvironmentalInformationfortheircontributiontosurfaceoceanCO2dataandmetadataman-agement.ThisisPMELcontribution5434.Wethankthescien-tists,institutions,andfundingagenciesresponsibleforthecollec-tionandqualitycontrolofthedatainSOCATandtheInterna-tionalOceanCarbonCoordinationProject(IOCCP),theSurfaceOceanLowerAtmosphereStudy(SOLAS),andtheIntegratedMa-rineBiosphereResearch(IMBeR)programfortheirsupport.WethankdataprovidersObsPackGLOBALVIEWplusv7.0andNRTv7.2foratmosphericCO2observations.Wethanktheindividu-alsandinstitutionsthatprovidedthedatabasesusedforthemodelevaluationsusedhere.WethankFortunatJoos,SamarKhatiwala,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224881andTimothyDeVriesforprovidinghistoricaldata.MatthewJ.Mc-GraththanksthewholeORCHIDEEgroup.IanHarristhankstheJapanMeteorologicalAgency(JMA)forproducingtheJapanese55-yearReanalysis(JRA-55).AnthonyP.WalkerthanksORNL,whichismanagedbyUT-Battelle,LLC,fortheDOEundercon-tractDE-AC05-100800OR22725.YosukeNiwathanksCSIRO,EC,EMPA,FMI,IPEN,JMA,LSCE,NCAR,NIES,NILU,NIWA,NOAA,SIO,andTU/NIPRforprovidingdataforNISMON-CO2.XiangjunTianthanksZheJin,YilongWang,TaoWang,andShi-longPiaofortheircontributionstotheGONGGAinversionsys-tem.BoZhengthanksthecommentsandsuggestionsfromPhilippeCiaisandFrédéricChevallier.FrédéricChevallierthanksMarineRemaud,whomaintainedtheatmospherictransportmodelfortheCAMSinversion.PaulI.PalmerthanksLiangFengandacknowl-edgesongoingsupportfromtheNationalCentreforEarthObser-vation.JunjieLiuthankstheJetPropulsionLaboratory,CaliforniaInstituteofTechnology.WileyEvansthankstheTulaFoundationforfundingsupport.AustralianoceanCO2dataweresourcedfromAustralia’sIntegratedMarineObservingSystem(IMOS);IMOSisenabledbytheNationalCollaborativeResearchInfrastructureStrat-egy(NCRIS).MargotCroninthanksAnthonyEnglish,ClyntGre-gory,andGordonFurey(P&OMaritimeServices)fortheirsupport.NathalieLefèvrethanksthecrewoftheCapSanLorenzoandtheUSIMAGOofIRDBrestfortechnicalsupport.HenryC.BittigisgratefulfortheskilfultechnicalsupportofMichaelGlockzinandBerndSadkowiak.MeikeBeckerandAreOlsenthankSparebankenVest/AgendaVestlandetfortheirsupportfortheobservationsontheStatsraadLehmkuhl.ThanosGkritzalisthanksthepersonnelandcrewofSimonStevin.MatthewW.JonesthanksAnthonyJ.De-GolforhistechnicalandconceptualassistancewiththedevelopmentofGCP-GridFED.FAOSTATisfundedbyFAOmemberstatesthroughtheircontributionstotheFAORegularProgramme;datacontribu-tionsbynationalexpertsaregratefullyacknowledged.Theviewsexpressedinthispaperaretheauthors’onlyanddonotnecessar-ilyreflectthoseofFAO.Finally,wethankallfunderswhohavesupportedtheindividualandjointcontributionstothiswork(seeTableA9),thereviewersofthismanuscriptandpreviousversions,andthemanyresearcherswhohaveprovidedfeedback.Financialsupport.Foralistofallfundersthathavesupportedthisresearch,pleaserefertoTableA9.Reviewstatement.ThispaperwaseditedbyDavidCarlsonandreviewedbyH.DamonMatthews,HélènePeiro,AnaMariaRoxanaPetrescu,MichioKawamiya,andoneanonymousreferee.ReferencesAhlström,A.,Raupach,M.R.,Schurgers,G.,Smith,B.,Arneth,A.,Jung,M.,Reichstein,M.,Canadell,J.G.,Friedlingstein,P.,Jain,A.K.,Kato,E.,Poulter,B.,Sitch,S.,Stocker,B.D.,Viovy,N.,Wang,Y.P.,Wiltshire,A.,Zaehle,S.,andZeng,N.:Thedominantroleofsemi-aridecosystemsinthetrendandvariabilityofthelandCO2sink,Science,348,895–899,https://doi.org/10.1126/science.aaa1668,2015.Alkama,R.:LandCarbonBudget:IntactandNon-IntactForestNBPfromTRENDYv11S2simulations[code],https://github.com/RamAlkama/LandCarbonBudget_IntactAndNonIntactForest,lastaccess:25September2022.Amador-Jiménez,M.,Millner,N.,Palmer,C.,Pennington,R.T.,andSileci,L.:TheUnintendedImpactofColombia’sCovid-19LockdownonForestFires,Environ.ResourceEcon.,76,1081–1105,https://doi.org/10.1007/s10640-020-00501-5,2020.Amante,C.andEakins,B.W.:ETOPO1GlobalReliefModelconvertedtoPanMaplayerformat,PANGAEA[dataset],https://doi.org/10.1594/PANGAEA.769615,2009.Andela,N.,Morton,D.C.,Giglio,L.,Chen,Y.,vanderWerf,G.R.,Kasibhatla,P.S.,DeFries,R.S.,Collatz,G.J.,Hantson,S.,Kloster,S.,Bachelet,D.,Forrest,M.,Lasslop,G.,Li,F.,Man-geon,S.,Melton,J.R.,Yue,C.,andRanderson,J.T.:Ahuman-drivendeclineinglobalburnedarea,Science,356,1356–1362,https://doi.org/10.1126/science.aal4108,2017.Andres,R.J.,Boden,T.A.,Bréon,F.-M.,Ciais,P.,Davis,S.,Erickson,D.,Gregg,J.S.,Jacobson,A.,Marland,G.,Miller,J.,Oda,T.,Olivier,J.G.J.,Raupach,M.R.,Rayner,P.,andTreanton,K.:Asynthesisofcarbondioxideemissionsfromfossil-fuelcombustion,Biogeosciences,9,1845–1871,https://doi.org/10.5194/bg-9-1845-2012,2012.Andres,R.J.,Boden,T.A.,andHigdon,D.:Aneweval-uationoftheuncertaintyassociatedwithCDIACestimatesoffossilfuelcarbondioxideemission,TellusB,66,23616,https://doi.org/10.3402/tellusb.v66.23616,2014.Andrew,R.M.:Acomparisonofestimatesofglobalcarbondioxideemissionsfromfossilcarbonsources,EarthSyst.Sci.Data,12,1437–1465,https://doi.org/10.5194/essd-12-1437-2020,2020a.Andrew,R.M.:TimelyestimatesofIndia’sannualandmonthlyfossilCO2emissions,EarthSyst.Sci.Data,12,2411–2421,https://doi.org/10.5194/essd-12-2411-2020,2020b.Andrew,R.M.:Towardsnearreal-time,monthlyfossilCO2emissionsestimatesfortheEuropeanUnionwithcurrent-yearprojections,Atmos.Pollut.Res.,12,101229,https://doi.org/10.1016/j.apr.2021.101229,2021.Andrew,R.M.andPeters,G.P.:Amulti-regioninput–outputtablebasedontheglobaltradeanalysisprojectdatabase(GTAP-MRIO),Econ.Syst.Res.,25,99–121,https://doi.org/10.1080/09535314.2012.761953,2013.Andrew,R.M.andPeters,G.P.:TheGlobalCarbonProject’sfossilCO2emissionsdataset(2021v34),Zenodo[dataset],https://doi.org/10.5281/ZENODO.5569235,2021.Angelsen,A.andKaimowitz,D.:RethinkingtheCausesofDe-forestation:LessonsfromEconomicModels,WorldBankRes.Obs.,14,73–98,https://doi.org/10.1093/wbro/14.1.73,1999.Aragão,L.E.O.C.,Anderson,L.O.,Fonseca,M.G.,Rosan,T.M.,Vedovato,L.B.,Wagner,F.H.,Silva,C.V.J.,SilvaJu-nior,C.H.L.,Arai,E.,Aguiar,A.P.,Barlow,J.,Berenguer,E.,Deeter,M.N.,Domingues,L.G.,Gatti,L.,Gloor,M.,Malhi,Y.,Marengo,J.A.,Miller,J.B.,Phillips,O.L.,andSaatchi,S.:21stCenturydrought-relatedfirescounteractthedeclineofAmazondeforestationcarbonemissions,Nat.Commun.,9,536,https://doi.org/10.1038/s41467-017-02771-y,2018.Archer,D.,Eby,M.,Brovkin,V.,Ridgwell,A.,Cao,L.,Mikola-jewicz,U.,Caldeira,K.,Matsumoto,K.,Munhoven,G.,Mon-tenegro,A.,andTokos,K.:AtmosphericLifetimeofFossilhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224882P.Friedlingsteinetal.:GlobalCarbonBudget2022FuelCarbonDioxide,Annu.Rev.EarthPl.Sc.,37,117–134,https://doi.org/10.1146/annurev.earth.031208.100206,2009.Arneth,A.,Sitch,S.,Pongratz,J.,Stocker,B.D.,Ciais,P.,Poulter,B.,Bayer,A.D.,Bondeau,A.,Calle,L.,Chini,L.P.,Gasser,T.,Fader,M.,Friedlingstein,P.,Kato,E.,Li,W.,Lindeskog,M.,Nabel,J.E.M.S.,Pugh,T.A.M.,Robertson,E.,Viovy,N.,Yue,C.,andZaehle,S.:Historicalcarbondioxideemissionscausedbyland-usechangesarepossiblylargerthanassumed,Nat.Geosci.,10,79–84,https://doi.org/10.1038/ngeo2882,2017.Arora,V.K.,Boer,G.J.,Christian,J.R.,Curry,C.L.,Denman,K.L.,Zahariev,K.,Flato,G.M.,Scinocca,J.F.,Merryfield,W.J.,andLee,W.G.:TheEffectofTerrestrialPhotosynthe-sisDownRegulationontheTwentieth-CenturyCarbonBudgetSimulatedwiththeCCCmaEarthSystemModel,J.Climate,22,6066–6088,https://doi.org/10.1175/2009JCLI3037.1,2009.Asaadi,A.,Arora,V.K.,Melton,J.R.,andBartlett,P.:Anim-provedparameterizationofleafareaindex(LAI)seasonalityintheCanadianLandSurfaceScheme(CLASS)andCanadianTer-restrialEcosystemModel(CTEM)modellingframework,15,6885–6907,https://doi.org/10.5194/bg-15-6885-2018,2018.Aumont,O.,Orr,J.C.,Monfray,P.,Ludwig,W.,Amiotte-Suchet,P.,andProbst,J.-L.:Riverine-driveninterhemispherictransportofcarbon,GlobalBiogeochem.Cy.,15,393–405,https://doi.org/10.1029/1999GB001238,2001.Aumont,O.,Ethé,C.,Tagliabue,A.,Bopp,L.,andGehlen,M.:PISCES-v2:anoceanbiogeochemicalmodelforcarbonandecosystemstudies,Geosci.ModelDev.,8,2465–2513,https://doi.org/10.5194/gmd-8-2465-2015,2015.Avitabile,V.,Herold,M.,Heuvelink,G.B.M.,Lewis,S.L.,Phillips,O.L.,Asner,G.P.,Armston,J.,Ashton,P.S.,Banin,L.,Bayol,N.,Berry,N.J.,Boeckx,P.,deJong,B.H.J.,DeVries,B.,Girardin,C.A.J.,Kearsley,E.,Lindsell,J.A.,Lopez-Gonzalez,G.,Lucas,R.,Malhi,Y.,Morel,A.,Mitchard,E.T.A.,Nagy,L.,Qie,L.,Quinones,M.J.,Ryan,C.M.,Ferry,S.J.W.,Sunder-land,T.,Laurin,G.V.,Gatti,R.C.,Valentini,R.,Verbeeck,H.,Wijaya,A.,andWillcock,S.:Anintegratedpan-tropicalbiomassmapusingmultiplereferencedatasets,Glob.ChangeBiol.,22,1406–1420,https://doi.org/10.1111/gcb.13139,2016.Baccini,A.,Walker,W.,Carvalho,L.,Farina,M.,Sulla-Menashe,D.,andHoughton,R.A.:Tropicalforestsareanetcarbonsourcebasedonabovegroundmeasurementsofgainandloss,Science,358,230–234,https://doi.org/10.1126/science.aam5962,2017.Bakker,D.C.E.,Pfeil,B.,Landa,C.S.,Metzl,N.,O’Brien,K.M.,Olsen,A.,Smith,K.,Cosca,C.,Harasawa,S.,Jones,S.D.,Nakaoka,S.,Nojiri,Y.,Schuster,U.,Steinhoff,T.,Sweeney,C.,Takahashi,T.,Tilbrook,B.,Wada,C.,Wanninkhof,R.,Alin,S.R.,Balestrini,C.F.,Barbero,L.,Bates,N.R.,Bianchi,A.A.,Bonou,F.,Boutin,J.,Bozec,Y.,Burger,E.F.,Cai,W.-J.,Castle,R.D.,Chen,L.,Chierici,M.,Currie,K.,Evans,W.,Feather-stone,C.,Feely,R.A.,Fransson,A.,Goyet,C.,Greenwood,N.,Gregor,L.,Hankin,S.,Hardman-Mountford,N.J.,Harlay,J.,Hauck,J.,Hoppema,M.,Humphreys,M.P.,Hunt,C.W.,Huss,B.,Ibánhez,J.S.P.,Johannessen,T.,Keeling,R.,Kitidis,V.,Körtzinger,A.,Kozyr,A.,Krasakopoulou,E.,Kuwata,A.,Land-schützer,P.,Lauvset,S.K.,Lefèvre,N.,LoMonaco,C.,Manke,A.,Mathis,J.T.,Merlivat,L.,Millero,F.J.,Monteiro,P.M.S.,Munro,D.R.,Murata,A.,Newberger,T.,Omar,A.M.,Ono,T.,Paterson,K.,Pearce,D.,Pierrot,D.,Robbins,L.L.,Saito,S.,Salisbury,J.,Schlitzer,R.,Schneider,B.,Schweitzer,R.,Sieger,R.,Skjelvan,I.,Sullivan,K.F.,Sutherland,S.C.,Sutton,A.J.,Tadokoro,K.,Telszewski,M.,Tuma,M.,vanHeuven,S.M.A.C.,Vandemark,D.,Ward,B.,Watson,A.J.,andXu,S.:Amulti-decaderecordofhigh-qualityfCO2datainversion3oftheSur-faceOceanCO2Atlas(SOCAT),EarthSyst.Sci.Data,8,383–413,https://doi.org/10.5194/essd-8-383-2016,2016.Bakker,D.C.E.,Alin,S.R.,Becker,M.,Bittig,H.C.,Castaño-Primo,R.,Feely,R.A.,Gkritzalis,T.Kadono,K.,Kozyr,A.,Lauvset,S.K.,Metzl,N.,Munro,D.R.,Nakaoka,S.-I.,Nojiri,Y.,O’Brien,K.M.,Olsen,A.,Pfeil,B.,Pierrot,D.,Steinhoff,T.,Sullivan,K.F.,Sutton,A.J.,Sweeney,C.,Tilbrook,B.,Wada,C.,Wanninkhof,R.,WillstrandWranne,A.,Akl,J.,Apelthun,L.B.,Bates,N.,Beatty,C.M.,Burger,E.F.,Cai,W.-J.,Cosca,C.E.,Corredor,J.E.,Cronin,M.,Cross,J.N.,DeCarlo,E.H.,DeGrandpre,M.D.,Emerson,S.,Enright,M.P.,Enyo,K.,Evans,W.,Frangoulis,C.,Fransson,A.,García-Ibáñez,M.I.,Gehrung,M.,Giannoudi,L.,Glockzin,M.,Hales,B.,Howden,S.D.,Hunt,C.W.,Ibánhez,J.S.P.,Jones,S.D.,Kamb,L.,Körtzinger,A.,Landa,C.S.,Landschützer,P.,Lefèvre,N.,LoMonaco,C.,Macovei,V.A.,MaennerJones,S.,Meinig,C.,Millero,F.J.,Monacci,N.M.,Mordy,C.,Morell,J.M.,Mu-rata,A.,Musielewicz,S.,Neill,C.,Newberger,T.,Nomura,D.,Ohman,M.,Ono,T.,Passmore,A.,Petersen,W.,Petihakis,G.,Perivoliotis,L.,Plueddemann,A.J.,Rehder,G.,Reynaud,T.,Rodriguez,C.,Ross,A.,Rutgersson,A.,Sabine,C.L.,Salisbury,J.E.,Schlitzer,R.,Send,U.,Skjelvan,I.,Stamataki,N.,Suther-land,S.C.,Sweeney,C.,Tadokoro,K.,Tanhua,T.,Telszewski,M.,Trull,T.,Vandemark,D.,vanOoijen,E.,Voynova,Y.G.,Wang,H.,Weller,R.A.,Whitehead,C.,andWilson,D.:Sur-faceOceanCO2AtlasDatabaseVersion2022(SOCATv2022)(NCEIAccession0253659),NOAANationalCentersforEnvi-ronmentalInformation[dataset],https://doi.org/10.25921/1h9f-nb73,2022.Ballantyne,A.P.,Alden,C.B.,Miller,J.B.,Tans,P.P.,andWhite,J.W.C.:Increaseinobservednetcarbondioxideuptakebylandandoceansduringthepast50years,Nature,488,70–72,https://doi.org/10.1038/nature11299,2012.Ballantyne,A.P.,Andres,R.,Houghton,R.,Stocker,B.D.,Wan-ninkhof,R.,Anderegg,W.,Cooper,L.A.,DeGrandpre,M.,Tans,P.P.,Miller,J.B.,Alden,C.,andWhite,J.W.C.:Au-ditoftheglobalcarbonbudget:estimateerrorsandtheirim-pactonuptakeuncertainty,Biogeosciences,12,2565–2584,https://doi.org/10.5194/bg-12-2565-2015,2015.Bastos,A.,Hartung,K.,Nützel,T.B.,Nabel,J.E.M.S.,Houghton,R.A.,andPongratz,J.:Comparisonofuncertaintiesinland-usechangefluxesfrombookkeepingmodelparameterisation,EarthSyst.Dynam.,12,745–762,https://doi.org/10.5194/esd-12-745-2021,2021.Bauer,J.E.,Cai,W.-J.,Raymond,P.A.,Bianchi,T.S.,Hopkinson,C.S.,andRegnier,P.A.G.:Thechangingcarboncycleofthecoastalocean,Nature,504,61–70,https://doi.org/10.1038/nature12857,2013.Beckman,J.andCountryman,A.M.:TheImportanceofAgri-cultureintheEconomy:ImpactsfromCOVID-19,Am.J.Agr.Econ.,103,1595–1611,https://doi.org/10.1111/ajae.12212,2021.Bellouin,N.,Rae,J.,Jones,A.,Johnson,C.,Haywood,J.,andBoucher,O.:AerosolforcingintheClimateModelIntercompar-isonProject(CMIP5)simulationsbyHadGEM2-ESandtheroleEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224883ofammoniumnitrate,J.Geophys.Res.-Atmos.,116,D20206,https://doi.org/10.1029/2011JD016074,2011.Bennington,V.,Gloege,L.,andMcKinley,G.A.:VariabilityintheGlobalOceanCarbonSinkFrom1959to2020byCor-rectingModelswithObservations,Geophys.Res.Lett.,49,e2022GL098632,https://doi.org/10.1029/2022GL098632,2022.Berthet,S.,Séférian,R.,Bricaud,C.,Chevallier,M.,Voldoire,A.,andEthé,C.:EvaluationofanOnlineGrid-CoarseningAlgorithminaGlobalEddy-AdmittingOceanBiogeochem-icalModel,J.Adv.ModelEarthSy.,11,1759–1783,https://doi.org/10.1029/2019MS001644,2019.Bourgeois,T.,Goris,N.,Schwinger,J.,andTjiputra,J.F.:Strati-ficationconstrainsfutureheatandcarbonuptakeintheSouth-ernOceanbetween30◦Sand55◦S,Nat.Commun.,13,340,https://doi.org/10.1038/s41467-022-27979-5,2022.Brancalion,P.H.S.,Broadbent,E.N.,de-Miguel,S.,Cardil,A.,Rosa,M.R.,Almeida,C.T.,Almeida,D.R.A.,Chakravarty,S.,Zhou,M.,Gamarra,J.G.P.,Liang,J.,Crouzeilles,R.,Hérault,B.,Aragão,L.E.O.C.,Silva,C.A.,andAlmeyda-Zambrano,A.M.:EmergingthreatslinkingtropicaldeforestationandtheCOVID-19pandemic,Perspect.Ecol.Conserv.,18,243–246,https://doi.org/10.1016/j.pecon.2020.09.006,2020.Brienen,R.J.W.,Phillips,O.L.,Feldpausch,T.R.,Gloor,E.,Baker,T.R.,Lloyd,J.,Lopez-Gonzalez,G.,Monteagudo-Mendoza,A.,Malhi,Y.,Lewis,S.L.,VásquezMartinez,R.,Alexiades,M.,ÁlvarezDávila,E.,Alvarez-Loayza,P.,Andrade,A.,Aragão,L.E.O.C.,Araujo-Murakami,A.,Arets,E.J.M.M.,Arroyo,L.,AymardC.,G.A.,Bánki,O.S.,Baraloto,C.,Bar-roso,J.,Bonal,D.,Boot,R.G.A.,Camargo,J.L.C.,Castilho,C.V.,Chama,V.,Chao,K.J.,Chave,J.,Comiskey,J.A.,CornejoValverde,F.,daCosta,L.,deOliveira,E.A.,DiFiore,A.,Er-win,T.L.,Fauset,S.,Forsthofer,M.,Galbraith,D.R.,Grahame,E.S.,Groot,N.,Hérault,B.,Higuchi,N.,HonorioCoronado,E.N.,Keeling,H.,Killeen,T.J.,Laurance,W.F.,Laurance,S.,Li-cona,J.,Magnussen,W.E.,Marimon,B.S.,Marimon-Junior,B.H.,Mendoza,C.,Neill,D.A.,Nogueira,E.M.,Núñez,P.,Pal-lquiCamacho,N.C.,Parada,A.,Pardo-Molina,G.,Peacock,J.,Peña-Claros,M.,Pickavance,G.C.,Pitman,N.C.A.,Poorter,L.,Prieto,A.,Quesada,C.A.,Ramírez,F.,Ramírez-Angulo,H.,Restrepo,Z.,Roopsind,A.,Rudas,A.,Salomão,R.P.,Schwarz,M.,Silva,N.,Silva-Espejo,J.E.,Silveira,M.,Stropp,J.,Tal-bot,J.,terSteege,H.,Teran-Aguilar,J.,Terborgh,J.,Thomas-Caesar,R.,Toledo,M.,Torello-Raventos,M.,Umetsu,R.K.,vanderHeijden,G.M.F.,vanderHout,P.,GuimarãesVieira,I.C.,Vieira,S.A.,Vilanova,E.,Vos,V.A.,andZagt,R.J.:Long-termdeclineoftheAmazoncarbonsink,Nature,519,344–348,https://doi.org/10.1038/nature14283,2015.Brienen,R.J.W.,Caldwell,L.,Duchesne,L.,Voelker,S.,Barichivich,J.,Baliva,M.,Ceccantini,G.,DiFilippo,A.,Helama,S.,Locosselli,G.M.,Lopez,L.,Piovesan,G.,Schön-gart,J.,Villalba,R.,andGloor,E.:Forestcarbonsinkneutral-izedbypervasivegrowth-lifespantrade-offs,Nat.Commun.,11,4241,https://doi.org/10.1038/s41467-020-17966-z,2020.Broecker,W.S.:Oceanchemistryduringglacialtime,Geochim.Cosmochim.Ac.,46,1689–1705,https://doi.org/10.1016/0016-7037(82)90110-7,1982.Bronselaer,B.,Winton,M.,Russell,J.,Sabine,C.L.,andKhati-wala,S.:AgreementofCMIP5SimulatedandObservedOceanAnthropogenicCO2Uptake,Geophys.Res.Lett.,44,12298–12305,https://doi.org/10.1002/2017GL074435,2017.Bruno,M.andJoos,F.:Terrestrialcarbonstorageduringthepast200years:AMonteCarloAnalysisofCO2datafromicecoreandatmosphericmeasurements,GlobalBiogeochem.Cy.,11,111–124,https://doi.org/10.1029/96GB03611,1997.Burton,C.,Betts,R.,Cardoso,M.,Feldpausch,T.R.,Harper,A.,Jones,C.D.,Kelley,D.I.,Robertson,E.,andWiltshire,A.:Representationoffire,land-usechangeandvegetationdynam-icsintheJointUKLandEnvironmentSimulatorvn4.9(JULES),Geosci.ModelDev.,12,179–193,https://doi.org/10.5194/gmd-12-179-2019,2019.Bushinsky,S.M.,Landschützer,P.,Rödenbeck,C.,Gray,A.R.,Baker,D.,Mazloff,M.R.,Resplandy,L.,Johnson,K.S.,andSarmiento,J.L.:ReassessingSouthernOceanAir-SeaCO2FluxEstimatesWiththeAdditionofBiogeochemicalFloatObservations,GlobalBiogeochem.Cy.,33,1370–1388,https://doi.org/10.1029/2019GB006176,2019.Canadell,J.G.,LeQuere,C.,Raupach,M.R.,Field,C.B.,Buiten-huis,E.T.,Ciais,P.,Conway,T.J.,Gillett,N.P.,Houghton,R.A.,andMarland,G.:ContributionstoacceleratingatmosphericCO2growthfromeconomicactivity,carbonintensity,andeffi-ciencyofnaturalsinks,P.Natl.Acad.Sci.USA,104,18866–18870,https://doi.org/10.1073/pnas.0702737104,2007.Canadell,J.G.,Monteiro,P.M.S.,Costa,M.H.,CotrimdaCunha,L.,Cox,P.M.,Eliseev,A.V.,Henson,S.,Ishii,M.,Jaccard,S.,Koven,C.,Lohila,A.,Patra,P.K.,Piao,S.,Rogelj,J.,Syampun-gani,S.,Zaehle,S.,andZickfeld,K.:GlobalCarbonandotherBiogeochemicalCyclesandFeedbacks,in:ClimateChange2021:ThePhysicalScienceBasis,ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmen-talPanelonClimateChange,editedby:Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.,Caud,N.,Chen,Y.,Goldfarb,L.,Gomis,M.I.,Huang,M.,Leitzell,K.,Lonnoy,E.,Matthews,J.B.R.,Maycock,T.K.,Waterfield,T.,Yelekçi,O.,Yu,R.,andZhou,B.,CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,673–816,https://doi.org/10.1017/9781009157896.007,2021.Cao,Z.,Myers,R.J.,Lupton,R.C.,Duan,H.,Sacchi,R.,Zhou,N.,ReedMiller,T.,Cullen,J.M.,Ge,Q.,andLiu,G.:Thespongeeffectandcarbonemissionmitigationpoten-tialsoftheglobalcementcycle,Nat.Commun.,11,3777,https://doi.org/10.1038/s41467-020-17583-w,2020.Chatfield,C.:TheHolt-WintersForecastingProcedure,J.Roy.Stat.Soc.C.,27,264–279,https://doi.org/10.2307/2347162,1978.Chau,T.T.T.,Gehlen,M.,andChevallier,F.:Aseamlessensemble-basedreconstructionofsurfaceoceanpCO2andair–seaCO2fluxesovertheglobalcoastalandopenoceans,Biogeosciences,19,1087–1109,https://doi.org/10.5194/bg-19-1087-2022,2022.Chevallier,F.,Fisher,M.,Peylin,P.,Serrar,S.,Bousquet,P.,Bréon,F.-M.,Chédin,A.,andCiais,P.:InferringCO2sourcesandsinksfromsatelliteobservations:MethodandapplicationtoTOVSdata,J.Geophys.Res.,110,D24309,https://doi.org/10.1029/2005JD006390,2005.Chini,L.,Hurtt,G.,Sahajpal,R.,Frolking,S.,KleinGoldewijk,K.,Sitch,S.,Ganzenmüller,R.,Ma,L.,Ott,L.,Pongratz,J.,andPoulter,B.:Land-useharmonizationdatasetsforannualglobalcarbonbudgets,EarthSyst.Sci.Data,13,4175–4189,https://doi.org/10.5194/essd-13-4175-2021,2021.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224884P.Friedlingsteinetal.:GlobalCarbonBudget2022Ciais,P.,Sabine,C.,Bala,G.,Bopp,L.,Brovkin,V.,Canadell,J.G.,Chhabra,A.,DeFries,R.,Galloway,J.,Heimann,M.,Jones,C.,LeQuéré,C.,Myneni,R.,Piao,S.,Thornton,P.,Willem,J.,Friedlingstein,P.,andMunhoven,G.:Car-bonandOtherBiogeochemicalCycles,in:ClimateChange2013:ThePhysicalScienceBasis,ContributionofWork-ingGroupItotheFifthAssessmentReportoftheInter-governmentalPanelonClimateChange,editedby:Intergov-ernmentalPanelonClimateChange,CambridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,https://doi.org/10.1017/CBO9781107415324.015,2013.Ciais,P.,Tan,J.,Wang,X.,Roedenbeck,C.,Chevallier,F.,Piao,S.-L.,Moriarty,R.,Broquet,G.,LeQuéré,C.,Canadell,J.G.,Peng,S.,Poulter,B.,Liu,Z.,andTans,P.:FivedecadesofnorthernlandcarbonuptakerevealedbytheinterhemisphericCO2gradi-ent,Nature,568,221–225,https://doi.org/10.1038/s41586-019-1078-6,2019.Ciais,P.,Bastos,A.,Chevallier,F.,Lauerwald,R.,Poulter,B.,Canadell,J.G.,Hugelius,G.,Jackson,R.B.,Jain,A.,Jones,M.,Kondo,M.,Luijkx,I.T.,Patra,P.K.,Peters,W.,Pon-gratz,J.,Petrescu,A.M.R.,Piao,S.,Qiu,C.,VonRandow,C.,Regnier,P.,Saunois,M.,Scholes,R.,Shvidenko,A.,Tian,H.,Yang,H.,Wang,X.,andZheng,B.:Definitionsandmeth-odstoestimateregionallandcarbonfluxesforthesecondphaseoftheREgionalCarbonCycleAssessmentandPro-cessesProject(RECCAP-2),Geosci.ModelDev.,15,1289–1316,https://doi.org/10.5194/gmd-15-1289-2022,2022.Collier,N.,Hoffman,F.M.,Lawrence,D.M.,Keppel-Aleks,G.,Koven,C.D.,Riley,W.J.,Mu,M.,andRanderson,J.T.:TheInternationalLandModelBenchmarking(ILAMB)System:De-sign,Theory,andImplementation,J.Adv.Model.EarthSy.,10,2731–2754,https://doi.org/10.1029/2018MS001354,2018.Conchedda,G.andTubiello,F.N.:DrainageoforganicsoilsandGHGemissions:validationwithcountrydata,EarthSyst.Sci.Data,12,3113–3137,https://doi.org/10.5194/essd-12-3113-2020,2020.Cooper,D.J.,Watson,A.J.,andLing,R.D.:VariationofpCO2alongaNorthAtlanticshippingroute(U.K.totheCaribbean):Ayearofautomatedobservations,Mar.Chem.,60,147–164,https://doi.org/10.1016/S0304-4203(97)00082-0,1998.Cox,P.M.,Pearson,D.,Booth,B.B.,Friedlingstein,P.,Hunting-ford,C.,Jones,C.D.,andLuke,C.M.:Sensitivityoftropicalcarbontoclimatechangeconstrainedbycarbondioxidevariabil-ity,Nature,494,341–344,https://doi.org/10.1038/nature11882,2013.Crippa,M.,Janssens-Maenhout,G.,Guizzardi,D.,VanDin-genen,R.,andDentener,F.:ContributionanduncertaintyofsectorialandregionalemissionstoregionalandglobalPM2.5healthimpacts,Atmos.Chem.Phys.,19,5165–5186,https://doi.org/10.5194/acp-19-5165-2019,2019.Dai,A.andTrenberth,K.E.:EstimatesofFreshwaterDis-chargefromContinents:LatitudinalandSeasonalVariations,J.Hydrometeorol.,3,660–687,https://doi.org/10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2,2002.Davis,S.J.andCaldeira,K.:Consumption-basedaccountingofCO2emissions,P.Natl.Acad.Sci.USA,107,5687–5692,https://doi.org/10.1073/pnas.0906974107,2010.DeKauwe,M.G.,Disney,M.I.,Quaife,T.,Lewis,P.,andWilliams,M.:AnassessmentoftheMODIScollec-tion5leafareaindexproductforaregionofmixedconiferousforest,RemoteSens.Environ.,115,767–780,https://doi.org/10.1016/j.rse.2010.11.004,2011.DeKauwe,M.G.,Medlyn,B.E.,Zaehle,S.,Walker,A.P.,Dietze,M.C.,Wang,Y.-P.,Luo,Y.,Jain,A.K.,El-Masri,B.,Hickler,T.,Wårlind,D.,Weng,E.,Parton,W.J.,Thornton,P.E.,Wang,S.,Prentice,I.C.,Asao,S.,Smith,B.,McCarthy,H.R.,Iversen,C.M.,Hanson,P.J.,Warren,J.M.,Oren,R.,andNorby,R.J.:Wheredoesthecarbongo?Amodel–dataintercomparisonofvegetationcarbonallocationandturnoverprocessesattwotem-perateforestfree-airCO2enrichmentsites,NewPhytol.,203,883–899,https://doi.org/10.1111/nph.12847,2014.Denman,K.L.,Brasseur,G.,Chidthaisong,A.,Ciais,P.,Cox,P.M.,Dickinson,R.E.,Hauglustaine,D.,Heinze,C.,Holland,E.,Ja-cob,D.,Lohmann,U.,Ramachandran,S.,LeitedaSilvaDias,P.,Wofsy,S.C.,andZhang,X.:CouplingsBetweenChangesintheClimateSystemandBiogeochemistry,in:ClimateChange2007:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFourthAssessmentReportoftheIntergovernmentalPanelonClimateChange,editedby:Solomon,S.,Qin,D.,Manning,M.,Marquis,M.,Averyt,K.,Tignor,M.M.B.,Miller,H.L.,andChen,Z.L.,CambridgeUniversityPress,Cambridge,UKandNewYork,USA,499–587,ISBN:9780521705967,2007.Denvil-Sommer,A.,Gehlen,M.,andVrac,M.:ObservationsystemsimulationexperimentsintheAtlanticOceanforenhancedsur-faceoceanpCO2reconstructions,OceanSci.,17,1011–1030,https://doi.org/10.5194/os-17-1011-2021,2021.DeVries,T.:TheoceanicanthropogenicCO2sink:Stor-age,air-seafluxes,andtransportsovertheindus-trialera,GlobalBiogeochem.Cy.,28,631–647,https://doi.org/10.1002/2013GB004739,2014.DeVries,T.,Holzer,M.,andPrimeau,F.:Recentincreaseinoceaniccarbonuptakedrivenbyweakerupper-oceanoverturning,Na-ture,542,215–218,https://doi.org/10.1038/nature21068,2017.DeVries,T.,Quéré,C.L.,Andrews,O.,Berthet,S.,Hauck,J.,Ilyina,T.,Landschützer,P.,Lenton,A.,Lima,I.D.,Now-icki,M.,Schwinger,J.,andSéférian,R.:Decadaltrendsintheoceancarbonsink,P.Natl.Acad.Sci.USA,116,11646–11651,https://doi.org/10.1073/pnas.1900371116,2019.Dickson,A.G.,Sabine,C.L.,andChristian,J.R.:GuidetobestpracticesforoceanCO2measurement,Sidney,BritishColumbia,NorthPacificMarineScienceOrganiza-tion,191pp.,PICESSpecialPublication3,IOCCPReport8,https://doi.org/10.25607/OBP-1342,2007.Dlugokencky,E.andTans,P.:Trendsinatmosphericcarbondioxide,NationalOceanicandAtmosphericAdministration,GlobalMonitoringLaboratory(NOAA/GML),http://www.gml.noaa.gov/gmd/ccgg/trends/global.html,lastaccess:25Septem-ber2022.Doney,S.C.,Lima,I.,Feely,R.A.,Glover,D.M.,Lindsay,K.,Mahowald,N.,Moore,J.K.,andWanninkhof,R.:Mech-anismsgoverninginterannualvariabilityinupper-oceaninor-ganiccarbonsystemandair–seaCO2fluxes:Physicalcli-mateandatmosphericdust,Deep-SeaRes.Pt.II,56,640–655,https://doi.org/10.1016/j.dsr2.2008.12.006,2009.Dong,Y.,Bakker,D.C.E.,Bell,T.G.,Huang,B.,Landschützer,P.,Liss,P.S.,andYang,M.:UpdateontheTemperatureCorrectionsofGlobalAir-SeaCO2FluxEstimates,Glob.Biogeochem.Cy.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget2022488536,e2022GB007360,https://doi.org/10.1029/2022GB007360,2022.Dou,X.,Wang,Y.,Ciais,P.,Chevallier,F.,Davis,S.J.,Crippa,M.,Janssens-Maenhout,G.,Guizzardi,D.,Solazzo,E.,Yan,F.,Huo,D.,Zheng,B.,Zhu,B.,Cui,D.,Ke,P.,Sun,T.,Wang,H.,Zhang,Q.,Gentine,P.,Deng,Z.,andLiu,Z.:Near-real-timeglobalgriddeddailyCO2emissions,TheInnovation,3,100182,https://doi.org/10.1016/j.xinn.2021.100182,2022.Duce,R.A.,LaRoche,J.,Altieri,K.,Arrigo,K.R.,Baker,A.R.,Capone,D.G.,Cornell,S.,Dentener,F.,Galloway,J.,Ganeshram,R.S.,Geider,R.J.,Jickells,T.,Kuypers,M.M.,Langlois,R.,Liss,P.S.,Liu,S.M.,Middelburg,J.J.,Moore,C.M.,Nickovic,S.,Oschlies,A.,Pedersen,T.,Prospero,J.,Schlitzer,R.,Seitzinger,S.,Sorensen,L.L.,Uematsu,M.,Ulloa,O.,Voss,M.,Ward,B.,andZamora,L.:ImpactsofAtmosphericAnthropogenicNitrogenontheOpenOcean,Science,320,893–897,https://doi.org/10.1126/science.1150369,2008.Eakins,B.W.andSharman,G.F.:NationalGeophysicalDataCen-ter:VolumesoftheWorld’sOceansfromETOPO1,U.S.De-partmentofCommerce,https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html(lastaccess:25September2022),2010.Eggleston,H.S.,Buendia,L.,Miwa,K.,Ngara,T.,andTan-abe,K.:Volume4:Agriculture,forestryandlanduse,in:2006IPCCguidelinesfornationalgreenhousegasinventories,https://www.ipccnggip.iges.or.jp/public/2006gl/vol4.html(lastaccess:25September2022),2006.EIA:U.S.EnergyInformationAdministration:Short-TermEnergyOutlook,http://www.eia.gov/forecasts/steo/outlook,lastaccess:25September2022.Erb,K.-H.,Kastner,T.,Luyssaert,S.,Houghton,R.A.,Kuem-merle,T.,Olofsson,P.,andHaberl,H.:Biasintheattribu-tionofforestcarbonsinks,Nat.Clim.Change,3,854–856,https://doi.org/10.1038/nclimate2004,2013.Erb,K.-H.,Kastner,T.,Plutzar,C.,Bais,A.L.S.,Carval-hais,N.,Fetzel,T.,Gingrich,S.,Haberl,H.,Lauk,C.,Niedertscheider,M.,Pongratz,J.,Thurner,M.,andLuys-saert,S.:Unexpectedlylargeimpactofforestmanagementandgrazingonglobalvegetationbiomass,Nature,553,73–76,https://doi.org/10.1038/nature25138,2018.Eskander,S.M.S.U.andFankhauser,S.:Reductioningreen-housegasemissionsfromnationalclimatelegislation,Nat.Clim.Change,10,750–756,https://doi.org/10.1038/s41558-020-0831-z,2020.Etheridge,D.M.,Steele,L.P.,Langenfelds,R.L.,Francey,R.J.,Barnola,J.-M.,andMorgan,V.I.:NaturalandanthropogenicchangesinatmosphericCO2overthelast1000yearsfromairinAntarcticiceandfirn,J.Geophys.Res.,101,4115–4128,https://doi.org/10.1029/95JD03410,1996.Eyring,V.,Bony,S.,Meehl,G.A.,Senior,C.A.,Stevens,B.,Stouffer,R.J.,andTaylor,K.E.:OverviewoftheCoupledModelIntercomparisonProjectPhase6(CMIP6)experimen-taldesignandorganization,Geosci.ModelDev.,9,1937–1958,https://doi.org/10.5194/gmd-9-1937-2016,2016.FAO:GlobalForestResourcesAssessment2020:Mainreport,FAO,Rome,Italy,184pp.,https://doi.org/10.4060/ca9825en,2020.FAO:FAOSTATStatisticalDatabase,domainsClimateChange,http://www.fao.org/faostat/en/#data/GT(lastaccess:25Septem-ber2022),2021.FAOSTAT:FAOSTAT:FoodandAgricultureOrganizationStatisticsDivision,http://faostat.fao.org/(lastaccess:25September2022),2021.FAO/UNEP:FoodandAgricultureOrganisation/UnitedNationsEnvironmentProgramme:Thestateoffoodandagriculture1981,https://www.fao.org/3/ap661e/ap661e.pdf(lastaccess:25September2022),1981.Fay,A.R.andMcKinley,G.A.:Globalopen-oceanbiomes:meanandtemporalvariability,EarthSyst.Sci.Data,6,273–284,https://doi.org/10.5194/essd-6-273-2014,2014.Fay,A.R.,Gregor,L.,Landschützer,P.,McKinley,G.A.,Gru-ber,N.,Gehlen,M.,Iida,Y.,Laruelle,G.G.,Rödenbeck,C.,Roobaert,A.,andZeng,J.:SeaFlux:harmonizationofair–seaCO2fluxesfromsurfacepCO2dataproductsusingastandardizedapproach,EarthSyst.Sci.Data,13,4693–4710,https://doi.org/10.5194/essd-13-4693-2021,2021.Feng,L.,Palmer,P.I.,Bösch,H.,andDance,S.:EstimatingsurfaceCO2fluxesfromspace-borneCO2dryairmolefractionobser-vationsusinganensembleKalmanFilter,Atmos.Chem.Phys.,9,2619–2633,https://doi.org/10.5194/acp-9-2619-2009,2009.Feng,L.,Palmer,P.I.,Parker,R.J.,Deutscher,N.M.,Feist,D.G.,Kivi,R.,Morino,I.,andSussmann,R.:EstimatesofEu-ropeanuptakeofCO2inferredfromGOSATXCO2retrievals:sensitivitytomeasurementbiasinsideandoutsideEurope,At-mos.Chem.Phys.,16,1289–1302,https://doi.org/10.5194/acp-16-1289-2016,2016.Friedlingstein,P.,Houghton,R.A.,Marland,G.,Hackler,J.,Boden,T.A.,Conway,T.J.,Canadell,J.G.,Raupach,M.R.,Ciais,P.,andLeQuéré,C.:UpdateonCO2emissions,Nat.Geosci.,3,811–812,https://doi.org/10.1038/ngeo1022,2010.Friedlingstein,P.,Andrew,R.M.,Rogelj,J.,Peters,G.P.,Canadell,J.G.,Knutti,R.,Luderer,G.,Raupach,M.R.,Schaeffer,M.,vanVuuren,D.P.,andLeQuéré,C.:PersistentgrowthofCO2emis-sionsandimplicationsforreachingclimatetargets,Nat.Geosci.,7,709–715,https://doi.org/10.1038/ngeo2248,2014.Friedlingstein,P.,Jones,M.W.,O’Sullivan,M.,Andrew,R.M.,Hauck,J.,Peters,G.P.,Peters,W.,Pongratz,J.,Sitch,S.,LeQuéré,C.,Bakker,D.C.E.,Canadell,J.G.,Ciais,P.,Jack-son,R.B.,Anthoni,P.,Barbero,L.,Bastos,A.,Bastrikov,V.,Becker,M.,Bopp,L.,Buitenhuis,E.,Chandra,N.,Chevallier,F.,Chini,L.P.,Currie,K.I.,Feely,R.A.,Gehlen,M.,Gilfillan,D.,Gkritzalis,T.,Goll,D.S.,Gruber,N.,Gutekunst,S.,Har-ris,I.,Haverd,V.,Houghton,R.A.,Hurtt,G.,Ilyina,T.,Jain,A.K.,Joetzjer,E.,Kaplan,J.O.,Kato,E.,KleinGoldewijk,K.,Korsbakken,J.I.,Landschützer,P.,Lauvset,S.K.,Lefèvre,N.,Lenton,A.,Lienert,S.,Lombardozzi,D.,Marland,G.,McGuire,P.C.,Melton,J.R.,Metzl,N.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.-I.,Neill,C.,Omar,A.M.,Ono,T.,Peregon,A.,Pierrot,D.,Poulter,B.,Rehder,G.,Resplandy,L.,Robertson,E.,Rödenbeck,C.,Séférian,R.,Schwinger,J.,Smith,N.,Tans,P.P.,Tian,H.,Tilbrook,B.,Tubiello,F.N.,vanderWerf,G.R.,Wilt-shire,A.J.,andZaehle,S.:GlobalCarbonBudget2019,EarthSyst.Sci.Data,11,1783–1838,https://doi.org/10.5194/essd-11-1783-2019,2019.Friedlingstein,P.,O’Sullivan,M.,Jones,M.W.,Andrew,R.M.,Hauck,J.,Olsen,A.,Peters,G.P.,Peters,W.,Pongratz,J.,Sitch,S.,LeQuéré,C.,Canadell,J.G.,Ciais,P.,Jackson,R.B.,Alin,S.,Aragão,L.E.O.C.,Arneth,A.,Arora,V.,Bates,N.R.,Becker,M.,Benoit-Cattin,A.,Bittig,H.C.,Bopp,L.,Bultan,https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224886P.Friedlingsteinetal.:GlobalCarbonBudget2022S.,Chandra,N.,Chevallier,F.,Chini,L.P.,Evans,W.,Florentie,L.,Forster,P.M.,Gasser,T.,Gehlen,M.,Gilfillan,D.,Gkritza-lis,T.,Gregor,L.,Gruber,N.,Harris,I.,Hartung,K.,Haverd,V.,Houghton,R.A.,Ilyina,T.,Jain,A.K.,Joetzjer,E.,Kadono,K.,Kato,E.,Kitidis,V.,Korsbakken,J.I.,Landschützer,P.,Lefèvre,N.,Lenton,A.,Lienert,S.,Liu,Z.,Lombardozzi,D.,Marland,G.,Metzl,N.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.-I.,Niwa,Y.,O’Brien,K.,Ono,T.,Palmer,P.I.,Pierrot,D.,Poul-ter,B.,Resplandy,L.,Robertson,E.,Rödenbeck,C.,Schwinger,J.,Séférian,R.,Skjelvan,I.,Smith,A.J.P.,Sutton,A.J.,Tan-hua,T.,Tans,P.P.,Tian,H.,Tilbrook,B.,vanderWerf,G.,Vuichard,N.,Walker,A.P.,Wanninkhof,R.,Watson,A.J.,Willis,D.,Wiltshire,A.J.,Yuan,W.,Yue,X.,andZaehle,S.:GlobalCarbonBudget2020,EarthSyst.Sci.Data,12,3269–3340,https://doi.org/10.5194/essd-12-3269-2020,2020.Friedlingstein,P.,Jones,M.W.,O’Sullivan,M.,Andrew,R.M.,Bakker,D.C.E.,Hauck,J.,LeQuéré,C.,Peters,G.P.,Peters,W.,Pongratz,J.,Sitch,S.,Canadell,J.G.,Ciais,P.,Jackson,R.B.,Alin,S.R.,Anthoni,P.,Bates,N.R.,Becker,M.,Bel-louin,N.,Bopp,L.,Chau,T.T.T.,Chevallier,F.,Chini,L.P.,Cronin,M.,Currie,K.I.,Decharme,B.,Djeutchouang,L.M.,Dou,X.,Evans,W.,Feely,R.A.,Feng,L.,Gasser,T.,Gilfil-lan,D.,Gkritzalis,T.,Grassi,G.,Gregor,L.,Gruber,N.,Gürses,Ö.,Harris,I.,Houghton,R.A.,Hurtt,G.C.,Iida,Y.,Ilyina,T.,Luijkx,I.T.,Jain,A.,Jones,S.D.,Kato,E.,Kennedy,D.,KleinGoldewijk,K.,Knauer,J.,Korsbakken,J.I.,Körtzinger,A.,Landschützer,P.,Lauvset,S.K.,Lefèvre,N.,Lienert,S.,Liu,J.,Marland,G.,McGuire,P.C.,Melton,J.R.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.-I.,Niwa,Y.,Ono,T.,Pier-rot,D.,Poulter,B.,Rehder,G.,Resplandy,L.,Robertson,E.,Rödenbeck,C.,Rosan,T.M.,Schwinger,J.,Schwingshackl,C.,Séférian,R.,Sutton,A.J.,Sweeney,C.,Tanhua,T.,Tans,P.P.,Tian,H.,Tilbrook,B.,Tubiello,F.,vanderWerf,G.R.,Vuichard,N.,Wada,C.,Wanninkhof,R.,Watson,A.J.,Willis,D.,Wiltshire,A.J.,Yuan,W.,Yue,C.,Yue,X.,Zaehle,S.,andZeng,J.:GlobalCarbonBudget2021,EarthSyst.Sci.Data,14,1917–2005,https://doi.org/10.5194/essd-14-1917-2022,2022a.Friedlingstein,P.,O’Sullivan,M.,Jones,M.W.,Andrew,R.M.,Gregor,L.,Hauck,L.,LeQuéré,C.,Luijkx,I.T.,Olsen,A.,Peters,G.P.,Peters,W.,Pongratz,J.,Schwingshackl,C.,Sitch,S.,Canadell,J.G.,Ciais,P.,Jackson,R.B.,Alin,S.,Alkama,R.,Arneth,A.,Arora,V.K.,Bates,N.R.,Becker,M.,Bellouin,N.,Bittig,H.C.,Bopp,L.,Chevallier,F.,Chini,L.P.,Cronin,M.,Evans,W.,Falk,S.,Feely,R.A.,Gasser,T.,Gehlen,M.,Gkritzalis,T.,Gloege,L.,Grassi,G,Gruber,N.,Gürses,Ö,Har-ris,I.,Hefner,M.,Houghton,R.A.,Hurtt,G.C.,Iida,Y.,Ily-ina,T.,Jain,A.T.,Jersild,A.,Kadono,K.,Kato,E.,Kennedy,D.,KleinGoldewijk,K.,Knauer,J.,Korsbakken,J.I.,Land-schützer,P.,Lefèvre,N.,Lindsay,Keith.,Liu,J.,Marland,G.,Mayot,N.,McGrath,M.J.,Metzl,N.,Monacci,N.M.,Munro,D.R.,Nakaoka,S.-I.,Niwa,Y.,O’Brien,K.,Ono,T.,Palmer,P.I.,Pan,N.,Pierrot,D.,Pocock,K.,Poulter,B.,Resplandy,L.,Robertson,E.,Rödenbeck,C.,Rodriguez,C.,Rosan,T.M.,Schwinger,J.,Séférian,R.,Shutler,J.D.,Skjelvan,I.,Steinhoff,T.,Sun,Q.,Sutton,A.J.,Sweeney,C.,Takao,S.,Tanhua,T.,Tans,P.P.,Tian,X.,Tian,H.,Tilbrook,B.,Tsujino,H.,Tubiello,F.,vanderWerf,G.R.,Walker,A.P.,Wanninkhof,R.,White-head,C.,Wranne,A.,Wright,R.M.,Yuan,W.,Yue,C.,Yue,X.,Zaehle,S.,Zeng,J.,Zheng,B.andZhu,L.:SupplementaldataoftheGlobalCarbonBudget2022,ICOS-ERICCarbonPortal[dataset],https://doi.org/10.18160/GCP-2022,2022b.Ganzenmüller,R.,Bultan,S.,Winkler,K.,Fuchs,R.,Zabel,F.,andPongratz,J.:Land-usechangeemissionsbasedonhigh-resolutionactivitydatasubstantiallylowerthanpreviouslyestimated,Environ.Res.Lett.,17,064050,https://doi.org/10.1088/1748-9326/ac70d8,2022.Gasser,T.andCiais,P.:Atheoreticalframeworkforthenetland-to-atmosphereCO2fluxanditsimplicationsinthedefinitionof“emissionsfromland-usechange”,EarthSyst.Dynam.,4,171–186,https://doi.org/10.5194/esd-4-171-2013,2013.Gasser,T.,Crepin,L.,Quilcaille,Y.,Houghton,R.A.,Ciais,P.,andObersteiner,M.:HistoricalCO2emissionsfromlanduseandlandcoverchangeandtheiruncertainty,Biogeosciences,17,4075–4101,https://doi.org/10.5194/bg-17-4075-2020,2020.Gaubert,B.,Stephens,B.B.,Basu,S.,Chevallier,F.,Deng,F.,Kort,E.A.,Patra,P.K.,Peters,W.,Rödenbeck,C.,Saeki,T.,Schimel,D.,VanderLaan-Luijkx,I.,Wofsy,S.,andYin,Y.:Globalatmo-sphericCO2inversemodelsconvergingonneutraltropicallandexchange,butdisagreeingonfossilfuelandatmosphericgrowthrate,Biogeosciences,16,117–134,https://doi.org/10.5194/bg-16-117-2019,2019.GCP:TheGlobalCarbonBudget2007,http://www.globalcarbonproject.org/carbonbudget/archive.htm(lastac-cess:25September2022),2007.Giglio,L.,Schroeder,W.,andJustice,C.O.:Thecol-lection6MODISactivefiredetectionalgorithmandfireproducts,RemoteSens.Environ.,178,31–41,https://doi.org/10.1016/j.rse.2016.02.054,2016.Gilfillan,D.andMarland,G.:CDIAC-FF:globalandnationalCO2emissionsfromfossilfuelcombustionandcementman-ufacture:1751–2017,EarthSyst.Sci.Data,13,1667–1680,https://doi.org/10.5194/essd-13-1667-2021,2021.Gloege,L.,McKinley,G.A.,Landschützer,P.,Fay,A.R.,Frölicher,T.L.,Fyfe,J.C.,Ilyina,T.,Jones,S.,Lovenduski,N.S.,Rodgers,K.B.,Schlunegger,S.,andTakano,Y.:QuantifyingErrorsinObservationallyBasedEstimatesofOceanCarbonSinkVariability,GlobalBiogeochem.Cy.,35,e2020GB006788,https://doi.org/10.1029/2020GB006788,2021.Gloege,L.,Yan,M.,Zheng,T.,andMcKinley,G.A.:Im-provedQuantificationofOceanCarbonUptakebyUs-ingMachineLearningtoMergeGlobalModelsandpCO2Data,J.Adv.Model.EarthSy.,14,e2021MS002620,https://doi.org/10.1029/2021MS002620,2022.Goddijn-Murphy,L.M.,Woolf,D.K.,Land,P.E.,Shutler,J.D.,andDonlon,C.:TheOceanFluxGreenhouseGasesmethodol-ogyforderivingaseasurfaceclimatologyofCO2fugacityinsupportofair–seagasfluxstudies,OceanSci.,11,519–541,https://doi.org/10.5194/os-11-519-2015,2015.Golar,G.,Malik,A.,Muis,H.,Herman,A.,Nurudin,N.,andLuk-man,L.:Thesocial-economicimpactofCOVID-19pandemic:implicationsforpotentialforestdegradation,Heliyon,6,e05354,https://doi.org/10.1016/j.heliyon.2020.e05354,2020.Goris,N.,Tjiputra,J.F.,Olsen,A.,Schwinger,J.,Lauvset,S.K.,andJeansson,E.:ConstrainingProjection-BasedEstimatesoftheFutureNorthAtlanticCarbonUptake,J.Climate,31,3959–3978,https://doi.org/10.1175/JCLI-D-17-0564.1,2018.Grassi,G.,House,J.,Kurz,W.A.,Cescatti,A.,Houghton,R.A.,Peters,G.P.,Sanz,M.J.,Viñas,R.A.,Alkama,R.,Arneth,A.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224887Bondeau,A.,Dentener,F.,Fader,M.,Federici,S.,Friedlingstein,P.,Jain,A.K.,Kato,E.,Koven,C.D.,Lee,D.,Nabel,J.E.M.S.,Nassikas,A.A.,Perugini,L.,Rossi,S.,Sitch,S.,Viovy,N.,Wiltshire,A.,andZaehle,S.:Reconcilingglobal-modelesti-matesandcountryreportingofanthropogenicforestCO2sinks,Nat.Clim.Change,8,914–920,https://doi.org/10.1038/s41558-018-0283-x,2018.Grassi,G.,Stehfest,E.,Rogelj,J.,vanVuuren,D.,Cescatti,A.,House,J.,Nabuurs,G.-J.,Rossi,S.,Alkama,R.,Viñas,R.A.,Calvin,K.,Ceccherini,G.,Federici,S.,Fujimori,S.,Gusti,M.,Hasegawa,T.,Havlik,P.,Humpenöder,F.,Korosuo,A.,Perugini,L.,Tubiello,F.N.,andPopp,A.:Criticaladjustmentoflandmit-igationpathwaysforassessingcountries’climateprogress,Nat.Clim.Change,11,425–434,https://doi.org/10.1038/s41558-021-01033-6,2021.Grassi,G.,Conchedda,G.,Federici,S.,AbadViñas,R.,Koro-suo,A.,Melo,J.,Rossi,S.,Sandker,M.,Somogyi,Z.,Vizzarri,M.,andTubiello,F.N.:Carbonfluxesfromland2000–2020:bringingclaritytocountries’reporting,EarthSyst.Sci.Data,14,4643–4666,https://doi.org/10.5194/essd-14-4643-2022,2022a.Grassi,G.,Schwingshackl,C.,Gasser,T.,Houghton,R.A.,Sitch,S.,Canadell,J.G.,Cescatti,A.,Ciais,P.,Federici,S.,Friedling-stein,P.,Kurz,W.A.,SanzSanchez,M.J.,AbadViñas,R.,Alkama,R.,Ceccherini,G.,Kato,E.,Kennedy,D.,Knauer,J.,Korosuo,A.,McGrath,M.J.,Nabel,J.,Poulter,B.,Rossi,S.,Walker,A.P.,Yuan,W.,Yue,X.,andPongratz,J.:Map-pingland-usefluxesfor2001–2020fromglobalmodelstona-tionalinventories,EarthSyst.Sci.DataDiscuss.[preprint],https://doi.org/10.5194/essd-2022-245,inreview,2022b.Gregg,J.S.,Andres,R.J.,andMarland,G.:China:EmissionspatternoftheworldleaderinCO2emissionsfromfossilfuelconsumptionandcementproduction,Geophys.Res.Lett.,35,L08806,https://doi.org/10.1029/2007GL032887,2008.Gregor,L.andGruber,N.:OceanSODA-ETHZ:aglobalgriddeddatasetofthesurfaceoceancarbonatesystemforseasonaltodecadalstudiesofoceanacidification,EarthSyst.Sci.Data,13,777–808,https://doi.org/10.5194/essd-13-777-2021,2021.Gruber,N.,Gloor,M.,MikaloffFletcher,S.E.,Doney,S.C.,Dutkiewicz,S.,Follows,M.J.,Gerber,M.,Jacobson,A.R.,Joos,F.,Lindsay,K.,Menemenlis,D.,Mouchet,A.,Müller,S.A.,Sarmiento,J.L.,andTakahashi,T.:Oceanicsources,sinks,andtransportofatmosphericCO2,GlobalBiogeochem.Cy.,23,GB1005,https://doi.org/10.1029/2008GB003349,2009.Gruber,N.,Clement,D.,Carter,B.R.,Feely,R.A.,vanHeuven,S.,Hoppema,M.,Ishii,M.,Key,R.M.,Kozyr,A.,Lauvset,S.K.,LoMonaco,C.,Mathis,J.T.,Murata,A.,Olsen,A.,Perez,F.F.,Sabine,C.L.,Tanhua,T.,andWanninkhof,R.:TheoceanicsinkforanthropogenicCO2from1994to2007,Science,363,1193–1199,https://doi.org/10.1126/science.aau5153,2019.Guan,D.,Liu,Z.,Geng,Y.,Lindner,S.,andHubacek,K.:ThegigatonnegapinChina’scarbondioxideinventories,Nat.Clim.Change,2,672–675,https://doi.org/10.1038/nclimate1560,2012.Gulev,S.K.,Thorne,P.W.,Ahn,J.,Dentener,F.J.,Domingues,C.M.,Gerland,S.,Gong,D.S.,Kaufman,S.,Nnamchi,H.C.,Quaas,J.,Rivera,J.A.,Sathyendranath,S.,Smith,S.L.,Trewin,B.,vonShuckmann,K.,andVose,R.S.:ChangingStateoftheClimateSystem,in:ClimateChange2021:ThePhysi-calScienceBasis.ContributionofWorkingGroupItotheSixthAssessmentReportoftheIntergovernmentalPanelonClimateChange,editedby:Masson-Delmotte,V.,Zhai,P.,Pirani,A.,Connors,S.L.,Péan,C.,Berger,S.,Caud,N.,Chen,Y.,Gold-farb,L.,Gomis,M.I.,Huang,M.,Leitzell,K.,Lonnoy,E.,Matthews,J.B.R.,Maycock,T.K.,Waterfield,T.,Yelekçi,O.,Yu,R.,andZhou,B.,CambridgeUniversityPress,Cam-bridge,UnitedKingdomandNewYork,NY,USA,287–422,https://doi.org/10.1017/9781009157896.004,2021.Guo,R.,Wang,J.,Bing,L.,Tong,D.,Ciais,P.,Davis,S.J.,An-drew,R.M.,Xi,F.,andLiu,Z.:GlobalCO2uptakebyce-mentfrom1930to2019,EarthSyst.Sci.Data,13,1791–1805,https://doi.org/10.5194/essd-13-1791-2021,2021.Gütschow,J.,Jeffery,M.L.,Gieseke,R.,Gebel,R.,Stevens,D.,Krapp,M.,andRocha,M.:ThePRIMAP-histnationalhistor-icalemissionstimeseries,EarthSyst.Sci.Data,8,571–603,https://doi.org/10.5194/essd-8-571-2016,2016.Gütschow,J.,Günther,A.,andPflüger,M.:ThePRIMAP-histna-tionalhistoricalemissionstimeseries(1750–2019)v2.3.1,Zen-odo[dataset],https://doi.org/10.5281/zenodo.5494497,2021.Hall,B.D.,Crotwell,A.M.,Kitzis,D.R.,Mefford,T.,Miller,B.R.,Schibig,M.F.,andTans,P.P.:RevisionoftheWorldMe-teorologicalOrganizationGlobalAtmosphereWatch(WMO/-GAW)CO2calibrationscale,Atmos.Meas.Tech.,14,3015–3032,https://doi.org/10.5194/amt-14-3015-2021,2021.Hansen,M.C.,Potapov,P.V.,Moore,R.,Hancher,M.,Turubanova,S.A.,Tyukavina,A.,Thau,D.,Stehman,S.V.,Goetz,S.J.,Loveland,T.R.,Kommareddy,A.,Egorov,A.,Chini,L.,Justice,C.O.,andTownshend,J.R.G.:High-ResolutionGlobalMapsof21st-CenturyForestCoverChange,Science,342,850–853,https://doi.org/10.1126/science.1244693,2013.Hansis,E.,Davis,S.J.,andPongratz,J.:Relevanceofmethodologicalchoicesforaccountingoflandusechangecarbonfluxes,GlobalBiogeochem.Cy.,29,1230–1246,https://doi.org/10.1002/2014GB004997,2015.Harris,I.,Jones,P.D.,Osborn,T.J.,andLister,D.H.:Up-datedhigh-resolutiongridsofmonthlyclimaticobservations–theCRUTS3.10Dataset,Int.J.Climatol.,34,623–642,https://doi.org/10.1002/joc.3711,2014.Harris,I.,Osborn,T.J.,Jones,P.,andLister,D.:Version4oftheCRUTSmonthlyhigh-resolutiongriddedmultivariateclimatedataset,Sci.Data,7,109,https://doi.org/10.1038/s41597-020-0453-3,2020.Hauck,J.,Zeising,M.,LeQuéré,C.,Gruber,N.,Bakker,D.C.E.,Bopp,L.,Chau,T.T.T.,Gürses,Ö.,Ilyina,T.,Landschützer,P.,Lenton,A.,Resplandy,L.,Rödenbeck,C.,Schwinger,J.,andSéférian,R.:ConsistencyandChallengesintheOceanCarbonSinkEstimatefortheGlobalCarbonBudget,Front.Mar.Sci.,7,571720,https://doi.org/10.3389/fmars.2020.571720,2020.Haverd,V.,Smith,B.,Nieradzik,L.,Briggs,P.R.,Woodgate,W.,Trudinger,C.M.,Canadell,J.G.,andCuntz,M.:AnewversionoftheCABLElandsurfacemodel(Subversionrevisionr4601)incorporatinglanduseandlandcoverchange,woodyvegetationdemography,andanoveloptimisation-basedapproachtoplantcoordinationofphotosynthesis,Geosci.ModelDev.,11,2995–3026,https://doi.org/10.5194/gmd-11-2995-2018,2018.Heinimann,A.,Mertz,O.,Frolking,S.,Christensen,A.E.,Hurni,K.,Sedano,F.,Chini,L.P.,Sahajpal,R.,Hansen,M.,andHurtt,G.:Aglobalviewofshiftingcultivation:Re-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224888P.Friedlingsteinetal.:GlobalCarbonBudget2022cent,current,andfutureextent,PLOSONE,12,e0184479,https://doi.org/10.1371/journal.pone.0184479,2017.Hertwich,E.G.andPeters,G.P.:CarbonFootprintofNations:AGlobal,Trade-LinkedAnalysis,Environ.Sci.Technol.,43,6414–6420,https://doi.org/10.1021/es803496a,2009.Hickler,T.,Smith,B.,Prentice,I.C.,Mjöfors,K.,Miller,P.,Arneth,A.,andSykes,M.T.:CO2fertilizationintemperateFACEex-perimentsnotrepresentativeofborealandtropicalforests,Glob.ChangeBiol.,14,1531–1542,https://doi.org/10.1111/j.1365-2486.2008.01598.x,2008.Ho,D.T.,Wanninkhof,R.,Schlosser,P.,Ullman,D.S.,Hebert,D.,andSullivan,K.F.:Towardauniversalrelationshipbe-tweenwindspeedandgasexchange:Gastransfervelocitiesmeasuredwith3He/SF6duringtheSouthernOceanGasEx-changeExperiment,J.Geophys.Res.-Oceans,116,C00F04,https://doi.org/10.1029/2010JC006854,2011.Hoesly,R.M.,Smith,S.J.,Feng,L.,Klimont,Z.,Janssens-Maenhout,G.,Pitkanen,T.,Seibert,J.J.,Vu,L.,Andres,R.J.,Bolt,R.M.,Bond,T.C.,Dawidowski,L.,Kholod,N.,Kurokawa,J.-I.,Li,M.,Liu,L.,Lu,Z.,Moura,M.C.P.,O’Rourke,P.R.,andZhang,Q.:Historical(1750–2014)anthro-pogenicemissionsofreactivegasesandaerosolsfromtheCom-munityEmissionsDataSystem(CEDS),Geosci.ModelDev.,11,369–408,https://doi.org/10.5194/gmd-11-369-2018,2018.Hong,C.,Burney,J.A.,Pongratz,J.,Nabel,J.E.M.S.,Mueller,N.D.,Jackson,R.B.,andDavis,S.J.:Globalandregionaldriversofland-useemissionsin1961–2017,Nature,589,554–561,https://doi.org/10.1038/s41586-020-03138-y,2021.Houghton,R.A.:Whyareestimatesoftheterrestrialcar-bonbalancesodifferent?,Glob.ChangeBiol.,9,500–509,https://doi.org/10.1046/j.1365-2486.2003.00620.x,2003.Houghton,R.A.andNassikas,A.A.:Globalandregionalfluxesofcarbonfromlanduseandlandcoverchange1850-2015:CarbonEmissionsFromLandUse,GlobalBiogeochem.Cy.,31,456–472,https://doi.org/10.1002/2016GB005546,2017.Houghton,R.A.,House,J.I.,Pongratz,J.,vanderWerf,G.R.,DeFries,R.S.,Hansen,M.C.,LeQuéré,C.,andRamankutty,N.:Carbonemissionsfromlanduseandland-coverchange,Bio-geosciences,9,5125–5142,https://doi.org/10.5194/bg-9-5125-2012,2012.Hubau,W.,Lewis,S.L.,Phillips,O.L.,Affum-Baffoe,K.,Beeck-man,H.,Cuní-Sanchez,A.,Daniels,A.K.,Ewango,C.E.N.,Fauset,S.,Mukinzi,J.M.,Sheil,D.,Sonké,B.,Sullivan,M.J.P.,Sunderland,T.C.H.,Taedoumg,H.,Thomas,S.C.,White,L.J.T.,Abernethy,K.A.,Adu-Bredu,S.,Amani,C.A.,Baker,T.R.,Banin,L.F.,Baya,F.,Begne,S.K.,Bennett,A.C.,Benedet,F.,Bitariho,R.,Bocko,Y.E.,Boeckx,P.,Boundja,P.,Brienen,R.J.W.,Brncic,T.,Chezeaux,E.,Chuyong,G.B.,Clark,C.J.,Collins,M.,Comiskey,J.A.,Coomes,D.A.,Dargie,G.C.,deHaulleville,T.,Kamdem,M.N.D.,Doucet,J.-L.,Esquivel-Muelbert,A.,Feldpausch,T.R.,Fofanah,A.,Foli,E.G.,Gilpin,M.,Gloor,E.,Gonmadje,C.,Gourlet-Fleury,S.,Hall,J.S.,Hamilton,A.C.,Harris,D.J.,Hart,T.B.,Hockemba,M.B.N.,Hladik,A.,Ifo,S.A.,Jeffery,K.J.,Jucker,T.,Yakusu,E.K.,Kearsley,E.,Kenfack,D.,Koch,A.,Leal,M.E.,Levesley,A.,Lindsell,J.A.,Lisingo,J.,Lopez-Gonzalez,G.,Lovett,J.C.,Makana,J.-R.,Malhi,Y.,Marshall,A.R.,Martin,J.,Mar-tin,E.H.,Mbayu,F.M.,Medjibe,V.P.,Mihindou,V.,Mitchard,E.T.A.,Moore,S.,Munishi,P.K.T.,Bengone,N.N.,Ojo,L.,Ondo,F.E.,Peh,K.S.-H.,Pickavance,G.C.,Poulsen,A.D.,Poulsen,J.R.,Qie,L.,Reitsma,J.,Rovero,F.,Swaine,M.D.,Talbot,J.,Taplin,J.,Taylor,D.M.,Thomas,D.W.,Toirambe,B.,Mukendi,J.T.,Tuagben,D.,Umunay,P.M.,vanderHeijden,G.M.F.,Verbeeck,H.,Vleminckx,J.,Willcock,S.,Wöll,H.,Woods,J.T.,andZemagho,L.:Asynchronouscarbonsinksat-urationinAfricanandAmazoniantropicalforests,Nature,579,80–87,https://doi.org/10.1038/s41586-020-2035-0,2020.Hugelius,G.,Bockheim,J.G.,Camill,P.,Elberling,B.,Grosse,G.,Harden,J.W.,Johnson,K.,Jorgenson,T.,Koven,C.D.,Kuhry,P.,Michaelson,G.,Mishra,U.,Palmtag,J.,Ping,C.-L.,O’Donnell,J.,Schirrmeister,L.,Schuur,E.A.G.,Sheng,Y.,Smith,L.C.,Strauss,J.,andYu,Z.:Anewdatasetforestimatingorganiccarbonstorageto3mdepthinsoilsofthenortherncir-cumpolarpermafrostregion,EarthSyst.Sci.Data,5,393–402,https://doi.org/10.5194/essd-5-393-2013,2013.Humphrey,V.,Zscheischler,J.,Ciais,P.,Gudmundsson,L.,Sitch,S.,andSeneviratne,S.I.:SensitivityofatmosphericCO2growthratetoobservedchangesinterrestrialwaterstorage,Nature,560,628–631,https://doi.org/10.1038/s41586-018-0424-4,2018.Humphrey,V.,Berg,A.,Ciais,P.,Gentine,P.,Jung,M.,Reich-stein,M.,Seneviratne,S.I.,andFrankenberg,C.:Soilmoisture–atmospherefeedbackdominateslandcarbonuptakevariability,Nature,592,65–69,https://doi.org/10.1038/s41586-021-03325-5,2021.Huntzinger,D.N.,Michalak,A.M.,Schwalm,C.,Ciais,P.,King,A.W.,Fang,Y.,Schaefer,K.,Wei,Y.,Cook,R.B.,Fisher,J.B.,Hayes,D.,Huang,M.,Ito,A.,Jain,A.K.,Lei,H.,Lu,C.,Maignan,F.,Mao,J.,Parazoo,N.,Peng,S.,Poulter,B.,Ricci-uto,D.,Shi,X.,Tian,H.,Wang,W.,Zeng,N.,andZhao,F.:Uncertaintyintheresponseofterrestrialcarbonsinktoenviron-mentaldriversunderminescarbon-climatefeedbackpredictions,Sci.Rep.,7,4765,https://doi.org/10.1038/s41598-017-03818-2,2017.Hurtt,G.,Chini,L.,Sahajpal,R.,Frolking,S.,Bodirsky,B.L.,Calvin,K.,Doelman,J.,Fisk,J.,Fujimori,S.,KleinGoldewijk,K.,Hasegawa,T.,Havlik,P.,Heinimann,A.,Humpenöder,F.,Jungclaus,J.,Kaplan,J.,Krisztin,T.,Lawrence,D.,Lawrence,P.,Mertz,O.,Pongratz,J.,Popp,A.,Riahi,K.,Shevliakova,E.,Stehfest,E.,Thornton,P.,vanVuuren,D.,andZhang,X.:input4MIPs.CMIP6.CMIP.UofMD.UofMDlandState-2-1-h,WorldClimateResearchProgramme[dataset],https://doi.org/10.22033/ESGF/input4MIPs.1127,2017.Hurtt,G.C.,Chini,L.P.,Frolking,S.,Betts,R.A.,Feddema,J.,Fis-cher,G.,Fisk,J.P.,Hibbard,K.,Houghton,R.A.,Janetos,A.,Jones,C.D.,Kindermann,G.,Kinoshita,T.,KleinGoldewijk,K.,Riahi,K.,Shevliakova,E.,Smith,S.,Stehfest,E.,Thomson,A.,Thornton,P.,vanVuuren,D.P.,andWang,Y.P.:Harmo-nizationofland-usescenariosfortheperiod1500–2100:600yearsofglobalgriddedannualland-usetransitions,woodhar-vest,andresultingsecondarylands,ClimaticChange,109,117–161,https://doi.org/10.1007/s10584-011-0153-2,2011.Hurtt,G.C.,Chini,L.,Sahajpal,R.,Frolking,S.,Bodirsky,B.L.,Calvin,K.,Doelman,J.C.,Fisk,J.,Fujimori,S.,KleinGoldewijk,K.,Hasegawa,T.,Havlik,P.,Heinimann,A.,Humpenöder,F.,Jungclaus,J.,Kaplan,J.O.,Kennedy,J.,Krisztin,T.,Lawrence,D.,Lawrence,P.,Ma,L.,Mertz,O.,Pon-gratz,J.,Popp,A.,Poulter,B.,Riahi,K.,Shevliakova,E.,Ste-hfest,E.,Thornton,P.,Tubiello,F.N.,vanVuuren,D.P.,andEarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224889Zhang,X.:Harmonizationofgloballandusechangeandman-agementfortheperiod850–2100(LUH2)forCMIP6,Geosci.ModelDev.,13,5425–5464,https://doi.org/10.5194/gmd-13-5425-2020,2020.IEA/OECD:InternationalEnergyAgency/OrganisationforEconomicCooperationandDevelopment:CO2emis-sionsfromfuelcombustion,https://webstore.iea.org/co2-emissions-from-fuel-combustion-2019-highlights(lastaccess:25September2022),2019.Iida,Y.,Kojima,A.,Takatani,Y.,Nakano,T.,Sugimoto,H.,Mi-dorikawa,T.,andIshii,M.:TrendsinpCO2andsea–airCO2fluxovertheglobalopenoceansforthelasttwodecades,J.Oceanogr.,71,637–661,https://doi.org/10.1007/s10872-015-0306-4,2015.Iida,Y.,Takatani,Y.,Kojima,A.,andIshii,M.:GlobaltrendsofoceanCO2sinkandoceanacidification:anobservation-basedreconstructionofsurfaceoceaninorganiccarbonvariables,J.Oceanogr.,77,323–358,https://doi.org/10.1007/s10872-020-00571-5,2021.Ilyina,T.,Six,K.D.,Segschneider,J.,Maier-Reimer,E.,Li,H.,andNúñez-Riboni,I.:GlobaloceanbiogeochemistrymodelHAMOCC:Modelarchitectureandperformanceascompo-nentoftheMPI-EarthsystemmodelindifferentCMIP5experimentalrealizations:TheModelHamoccwithinMpi-EsminCmip5,J.Adv.Model.EarthSy.,5,287–315,https://doi.org/10.1029/2012MS000178,2013.IMF:InternationalMonetaryFund:WorldEconomicOutlook,http://www.imf.org,lastaccess:25September2022.Inness,A.,Ades,M.,Agustí-Panareda,A.,Barré,J.,Benedic-tow,A.,Blechschmidt,A.-M.,Dominguez,J.J.,Engelen,R.,Eskes,H.,Flemming,J.,Huijnen,V.,Jones,L.,Kipling,Z.,Massart,S.,Parrington,M.,Peuch,V.-H.,Razinger,M.,Remy,S.,Schulz,M.,andSuttie,M.:TheCAMSreanalysisofat-mosphericcomposition,Atmos.Chem.Phys.,19,3515–3556,https://doi.org/10.5194/acp-19-3515-2019,2019.Ito,A.andInatomi,M.:Useofaprocess-basedmodelforas-sessingthemethanebudgetsofglobalterrestrialecosystemsandevaluationofuncertainty,Biogeosciences,9,759–773,https://doi.org/10.5194/bg-9-759-2012,2012.Jackson,R.B.,Canadell,J.G.,LeQuéré,C.,Andrew,R.M.,Korsbakken,J.I.,Peters,G.P.,andNakicenovic,N.:Reachingpeakemissions,Nat.Clim.Change,6,7–10,https://doi.org/10.1038/nclimate2892,2016.Jackson,R.B.,LeQuéré,C.,Andrew,R.M.,Canadell,J.G.,Ko-rsbakken,J.I.,Liu,Z.,Peters,G.P.,andZheng,B.:Globalen-ergygrowthisoutpacingdecarbonization,Environ.Res.Lett.,13,120401,https://doi.org/10.1088/1748-9326/aaf303,2018.Jackson,R.B.,Friedlingstein,P.,Andrew,R.M.,Canadell,J.G.,LeQuéré,C.,andPeters,G.P.:PersistentfossilfuelgrowththreatenstheParisAgreementandplanetaryhealth,Environ.Res.Lett.,14,121001,https://doi.org/10.1088/1748-9326/ab57b3,2019.Jackson,R.B.,Friedlingstein,P.,Quéré,C.L.,Abernethy,S.,An-drew,R.M.,Canadell,J.G.,Ciais,P.,Davis,S.J.,Deng,Z.,Liu,Z.,Korsbakken,J.I.,andPeters,G.P.:Globalfossilcarbonemis-sionsreboundnearpre-COVID-19levels,Environ.Res.Lett.,17,031001,https://doi.org/10.1088/1748-9326/ac55b6,2022.Jähne,B.:Air-SeaGasExchange,in:EncyclopediaofOceanSciences,Elsevier,1–13,https://doi.org/10.1016/B978-0-12-409548-9.11613-6,2019.Jähne,B.andHaußecker,H.:Air-watergasex-change,Annu.Rev.FluidMech.,30,443–468,https://doi.org/10.1146/annurev.fluid.30.1.443,1998.Jain,A.K.,Meiyappan,P.,Song,Y.,andHouse,J.I.:CO2emis-sionsfromland-usechangeaffectedmorebynitrogencycle,thanbythechoiceofland-coverdata,Glob.ChangeBiol.,19,2893–2906,https://doi.org/10.1111/gcb.12207,2013.Janssens-Maenhout,G.,Crippa,M.,Guizzardi,D.,Muntean,M.,Schaaf,E.,Dentener,F.,Bergamaschi,P.,Pagliari,V.,Olivier,J.G.J.,Peters,J.A.H.W.,vanAardenne,J.A.,Monni,S.,Doer-ing,U.,Petrescu,A.M.R.,Solazzo,E.,andOreggioni,G.D.:EDGARv4.3.2GlobalAtlasofthethreemajorgreenhousegasemissionsfortheperiod1970–2012,EarthSyst.Sci.Data,11,959–1002,https://doi.org/10.5194/essd-11-959-2019,2019.Jin,Z.,Wang,T.,Zhang,H.,Wang,Y.,Ding,J.,andTian,X.:Con-straintofsatelliteCO2retrievalontheglobalcarboncyclefromaChineseatmosphericinversionsystem,underreview,Sci.ChinaEarthSci.,inreview,2022.JODI:JointOrganisationsDataInitiative,https://www.jodidata.org,lastaccess:25September2022.Jones,M.W.,Andrew,R.M.,Peters,G.P.,Janssens-Maenhout,G.,De-Gol,A.J.,Ciais,P.,Patra,P.K.,Chevallier,F.,andLeQuéré,C.:GriddedfossilCO2emissionsandrelatedO2combus-tionconsistentwithnationalinventories1959–2018,Sci.Data,8,2,https://doi.org/10.1038/s41597-020-00779-6,2021.Jones,M.W.,Andrew,R.M.,Peters,G.P.,Janssens-Maenhout,G.,De-Gol,A.J.,Dou,X.,Liu,Z.,Pickers,P.,Ciais,P.,Patra,P.K.,Chevallier,F.,andLeQuéré,C.:GriddedfossilCO2emissionsandrelatedO−2combustionconsis-tentwithnationalinventories1959–2021,Zenodo[dataset],https://doi.org/10.5281/zenodo.4277266,2022.Joos,F.andSpahni,R.:Ratesofchangeinnaturalandanthropogenicradiativeforcingoverthepast20,000years,P.Natl.Acad.Sci.USA,105,1425–1430,https://doi.org/10.1073/pnas.0707386105,2008.Joos,F.,Spahni,R.,Stocker,B.D.,Lienert,S.,Müller,J.,Fis-cher,H.,Schmitt,J.,Prentice,I.C.,Otto-Bliesner,B.,andLiu,Z.:N2OchangesfromtheLastGlacialMaximumtothepreindustrial–Part2:terrestrialN2Oemissionsandcarbon–nitrogencycleinteractions,Biogeosciences,17,3511–3543,https://doi.org/10.5194/bg-17-3511-2020,2020.Jung,M.,Reichstein,M.,Ciais,P.,Seneviratne,S.I.,Sheffield,J.,Goulden,M.L.,Bonan,G.,Cescatti,A.,Chen,J.,deJeu,R.,Dolman,A.J.,Eugster,W.,Gerten,D.,Gianelle,D.,Gobron,N.,Heinke,J.,Kimball,J.,Law,B.E.,Mon-tagnani,L.,Mu,Q.,Mueller,B.,Oleson,K.,Papale,D.,Richardson,A.D.,Roupsard,O.,Running,S.,Tomelleri,E.,Viovy,N.,Weber,U.,Williams,C.,Wood,E.,Zaehle,S.,andZhang,K.:Recentdeclineinthegloballandevapotranspira-tiontrendduetolimitedmoisturesupply,Nature,467,951–954,https://doi.org/10.1038/nature09396,2010.Jung,M.,Reichstein,M.,Schwalm,C.R.,Huntingford,C.,Sitch,S.,Ahlström,A.,Arneth,A.,Camps-Valls,G.,Ciais,P.,Friedlingstein,P.,Gans,F.,Ichii,K.,Jain,A.K.,Kato,E.,Papale,D.,Poulter,B.,Raduly,B.,Rödenbeck,C.,Tra-montana,G.,Viovy,N.,Wang,Y.-P.,Weber,U.,Zaehle,S.,https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224890P.Friedlingsteinetal.:GlobalCarbonBudget2022andZeng,N.:CompensatorywatereffectslinkyearlygloballandCO2sinkchangestotemperature,Nature,541,516–520,https://doi.org/10.1038/nature20780,2017.Kato,E.,Kinoshita,T.,Ito,A.,Kawamiya,M.,andYama-gata,Y.:Evaluationofspatiallyexplicitemissionscenarioofland-usechangeandbiomassburningusingaprocess-basedbiogeochemicalmodel,J.LandUseSci.,8,104–122,https://doi.org/10.1080/1747423X.2011.628705,2013.Keeling,C.D.,Bacastow,R.B.,Bainbridge,A.E.,Ekdahl,C.A.,Guenther,P.R.,Waterman,L.S.,andChin,J.F.S.:At-mosphericcarbondioxidevariationsatMaunaLoaObservatory,Hawaii,TellusA.,28,538–551,https://doi.org/10.1111/j.2153-3490.1976.tb00701.x,1976.Keeling,R.F.andManning,A.C.:5.15–StudiesofRecentChangesinAtmosphericO2Content,in:TreatiseonGeochem-istry,2ndEdn.,editedby:Holland,H.D.andTurekian,K.K.,Elsevier,Oxford,385–404,https://doi.org/10.1016/B978-0-08-095975-7.00420-4,2014.Keppler,L.andLandschützer,P.:RegionalWindVariabilityMod-ulatestheSouthernOceanCarbonSink,Sci.Rep.,9,7384,https://doi.org/10.1038/s41598-019-43826-y,2019.Khatiwala,S.,Primeau,F.,andHall,T.:Reconstructionofthehis-toryofanthropogenicCO2concentrationsintheocean,Nature,462,346–349,https://doi.org/10.1038/nature08526,2009.Khatiwala,S.,Tanhua,T.,MikaloffFletcher,S.,Gerber,M.,Doney,S.C.,Graven,H.D.,Gruber,N.,McKinley,G.A.,Murata,A.,Ríos,A.F.,andSabine,C.L.:Globaloceanstor-ageofanthropogeniccarbon,Biogeosciences,10,2169–2191,https://doi.org/10.5194/bg-10-2169-2013,2013.KleinGoldewijk,K.,Beusen,A.,Doelman,J.,andStehfest,E.:An-thropogeniclanduseestimatesfortheHolocene–HYDE3.2,EarthSyst.Sci.Data,9,927–953,https://doi.org/10.5194/essd-9-927-2017,2017a.KleinGoldewijk,K.,Dekker,S.C.,andvanZanden,J.L.:Per-capitaestimationsoflong-termhistoricallanduseandthecon-sequencesforglobalchangeresearch,J.LandUseSci.,12,313–337,https://doi.org/10.1080/1747423X.2017.1354938,2017b.Kobayashi,S.,Ota,Y.,Harada,Y.,Ebita,A.,Moriya,M.,Onoda,H.,Onogi,K.,Kamahori,H.,Kobayashi,C.,Endo,H.,Miyaoka,K.,andTakahashi,K.:TheJRA-55Reanalysis:GeneralSpec-ificationsandBasicCharacteristics,J.Meteorol.Soc.Jpn.,93,5–48,https://doi.org/10.2151/jmsj.2015-001,2015.Kong,Y.,Zheng,B.,Zhang,Q.,andHe,K.:Globalandregionalcarbonbudgetfor2015–2020inferredfromOCO-2basedonanensembleKalmanfiltercoupledwithGEOS-Chem,Atmos.Chem.Phys.,22,10769–10788,https://doi.org/10.5194/acp-22-10769-2022,2022.Korsbakken,J.I.,Peters,G.P.,andAndrew,R.M.:UncertaintiesaroundreductionsinChina’scoaluseandCO2emissions,Nat.Clim.Change,6,687–690,https://doi.org/10.1038/nclimate2963,2016.Krinner,G.,Viovy,N.,deNoblet-Ducoudré,N.,Ogée,J.,Polcher,J.,Friedlingstein,P.,Ciais,P.,Sitch,S.,andPren-tice,I.C.:Adynamicglobalvegetationmodelforstudiesofthecoupledatmosphere-biospheresystem:DVGMforcou-pledclimatestudies,GlobalBiogeochem.Cy.,19,GB1015,https://doi.org/10.1029/2003GB002199,2005.Lacroix,F.,Ilyina,T.,andHartmann,J.:OceanicCO2outgassingandbiologicalproductionhotspotsinducedbypre-industrialriverloadsofnutrientsandcarboninaglobalmodelingap-proach,Biogeosciences,17,55–88,https://doi.org/10.5194/bg-17-55-2020,2020.Lacroix,F.,Ilyina,T.,Mathis,M.,Laruelle,G.G.,andReg-nier,P.:Historicalincreasesinland-derivednutrientinputsmayalleviateeffectsofachangingphysicalclimateontheoceaniccarboncycle,Glob.ChangeBiol.,27,5491–5513,https://doi.org/10.1111/gcb.15822,2021.Landschützer,P.,Gruber,N.,Bakker,D.C.E.,andSchuster,U.:Recentvariabilityoftheglobaloceancarbonsink,GlobalBiogeochem.Cy.,28,927–949,https://doi.org/10.1002/2014GB004853,2014.Landschützer,P.,Gruber,N.,Haumann,F.A.,Rödenbeck,C.,Bakker,D.C.E.,vanHeuven,S.,Hoppema,M.,Metzl,N.,Sweeney,C.,Takahashi,T.,Tilbrook,B.,andWanninkhof,R.:ThereinvigorationoftheSouthernOceancarbonsink,Science,349,1221–1224,https://doi.org/10.1126/science.aab2620,2015.Landschützer,P.,Gruber,N.,andBakker,D.C.E.:Decadalvaria-tionsandtrendsoftheglobaloceancarbonsink:decadalair-seaCO2fluxvariability,GlobalBiogeochem.Cy.,30,1396–1417,https://doi.org/10.1002/2015GB005359,2016.Landschützer,P.,Laruelle,G.G.,Roobaert,A.,andReg-nier,P.:AuniformpCO2climatologycombiningopenandcoastaloceans,EarthSyst.Sci.Data,12,2537–2553,https://doi.org/10.5194/essd-12-2537-2020,2020.Lasslop,G.,Reichstein,M.,Papale,D.,Richardson,A.D.,Ar-neth,A.,Barr,A.,Stoy,P.,andWohlfahrt,G.:Separationofnetecosystemexchangeintoassimilationandrespirationusingalightresponsecurveapproach:criticalissuesandglobalevaluation:SeparationofNEEintoGPPandRECO,Glob.ChangeBiol.,16,187–208,https://doi.org/10.1111/j.1365-2486.2009.02041.x,2010.Lawrence,D.M.,Fisher,R.A.,Koven,C.D.,Oleson,K.W.,Swenson,S.C.,Bonan,G.,Collier,N.,Ghimire,B.,vanKam-penhout,L.,Kennedy,D.,Kluzek,E.,Lawrence,P.J.,Li,F.,Li,H.,Lombardozzi,D.,Riley,W.J.,Sacks,W.J.,Shi,M.,Vertenstein,M.,Wieder,W.R.,Xu,C.,Ali,A.A.,Badger,A.M.,Bisht,G.,vandenBroeke,M.,Brunke,M.A.,Burns,S.P.,Buzan,J.,Clark,M.,Craig,A.,Dahlin,K.,Drewniak,B.,Fisher,J.B.,Flanner,M.,Fox,A.M.,Gentine,P.,Hoffman,F.,Keppel-Aleks,G.,Knox,R.,Kumar,S.,Lenaerts,J.,Le-ung,L.R.,Lipscomb,W.H.,Lu,Y.,Pandey,A.,Pelletier,J.D.,Perket,J.,Randerson,J.T.,Ricciuto,D.M.,Sanderson,B.M.,Slater,A.,Subin,Z.M.,Tang,J.,Thomas,R.Q.,ValMar-tin,M.,andZeng,X.:TheCommunityLandModelVersion5:DescriptionofNewFeatures,Benchmarking,andImpactofForcingUncertainty,J.Adv.ModelEarth,Sy.,11,4245–4287,https://doi.org/10.1029/2018MS001583,2019.LeQuéré,C.,Rödenbeck,C.,Buitenhuis,E.T.,Conway,T.J.,Langenfelds,R.,Gomez,A.,Labuschagne,C.,Ra-monet,M.,Nakazawa,T.,Metzl,N.,Gillett,N.,andHeimann,M.:SaturationoftheSouthernOceanCO2SinkDuetoRecentClimateChange,Science,316,1735–1738,https://doi.org/10.1126/science.1136188,2007.LeQuéré,C.,Raupach,M.R.,Canadell,J.G.,Marland,G.,Bopp,L.,Ciais,P.,Conway,T.J.,Doney,S.C.,Feely,R.A.,Foster,P.,Friedlingstein,P.,Gurney,K.,Houghton,R.A.,House,J.I.,Huntingford,C.,Levy,P.E.,Lomas,M.R.,Majkut,J.,Metzl,N.,Ometto,J.P.,Peters,G.P.,Prentice,I.C.,Randerson,J.T.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224891Running,S.W.,Sarmiento,J.L.,Schuster,U.,Sitch,S.,Taka-hashi,T.,Viovy,N.,vanderWerf,G.R.,andWoodward,F.I.:Trendsinthesourcesandsinksofcarbondioxide,Nat.Geosci.,2,831–836,https://doi.org/10.1038/ngeo689,2009.LeQuéré,C.,Takahashi,T.,Buitenhuis,E.T.,Rödenbeck,C.,andSutherland,S.C.:ImpactofclimatechangeandvariabilityontheglobaloceanicsinkofCO2,GlobalBiogeochem.Cy.,24,GB4007,https://doi.org/10.1029/2009GB003599,2010.LeQuéré,C.,Andres,R.J.,Boden,T.,Conway,T.,Houghton,R.A.,House,J.I.,Marland,G.,Peters,G.P.,vanderWerf,G.R.,Ahlström,A.,Andrew,R.M.,Bopp,L.,Canadell,J.G.,Ciais,P.,Doney,S.C.,Enright,C.,Friedlingstein,P.,Huntingford,C.,Jain,A.K.,Jourdain,C.,Kato,E.,Keeling,R.F.,KleinGold-ewijk,K.,Levis,S.,Levy,P.,Lomas,M.,Poulter,B.,Raupach,M.R.,Schwinger,J.,Sitch,S.,Stocker,B.D.,Viovy,N.,Zaehle,S.,andZeng,N.:Theglobalcarbonbudget1959–2011,EarthSyst.Sci.Data,5,165–185,https://doi.org/10.5194/essd-5-165-2013,2013.LeQuéré,C.,Peters,G.P.,Andres,R.J.,Andrew,R.M.,Boden,T.A.,Ciais,P.,Friedlingstein,P.,Houghton,R.A.,Marland,G.,Moriarty,R.,Sitch,S.,Tans,P.,Arneth,A.,Arvanitis,A.,Bakker,D.C.E.,Bopp,L.,Canadell,J.G.,Chini,L.P.,Doney,S.C.,Harper,A.,Harris,I.,House,J.I.,Jain,A.K.,Jones,S.D.,Kato,E.,Keeling,R.F.,KleinGoldewijk,K.,Körtzinger,A.,Koven,C.,Lefèvre,N.,Maignan,F.,Omar,A.,Ono,T.,Park,G.-H.,Pfeil,B.,Poulter,B.,Raupach,M.R.,Regnier,P.,Rödenbeck,C.,Saito,S.,Schwinger,J.,Segschneider,J.,Stocker,B.D.,Taka-hashi,T.,Tilbrook,B.,vanHeuven,S.,Viovy,N.,Wanninkhof,R.,Wiltshire,A.,andZaehle,S.:Globalcarbonbudget2013,EarthSyst.Sci.Data,6,235–263,https://doi.org/10.5194/essd-6-235-2014,2014.LeQuéré,C.,Moriarty,R.,Andrew,R.M.,Peters,G.P.,Ciais,P.,Friedlingstein,P.,Jones,S.D.,Sitch,S.,Tans,P.,Arneth,A.,Boden,T.A.,Bopp,L.,Bozec,Y.,Canadell,J.G.,Chini,L.P.,Chevallier,F.,Cosca,C.E.,Harris,I.,Hoppema,M.,Houghton,R.A.,House,J.I.,Jain,A.K.,Johannessen,T.,Kato,E.,Keel-ing,R.F.,Kitidis,V.,KleinGoldewijk,K.,Koven,C.,Landa,C.S.,Landschützer,P.,Lenton,A.,Lima,I.D.,Marland,G.,Mathis,J.T.,Metzl,N.,Nojiri,Y.,Olsen,A.,Ono,T.,Peng,S.,Peters,W.,Pfeil,B.,Poulter,B.,Raupach,M.R.,Regnier,P.,Rö-denbeck,C.,Saito,S.,Salisbury,J.E.,Schuster,U.,Schwinger,J.,Séférian,R.,Segschneider,J.,Steinhoff,T.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tilbrook,B.,vanderWerf,G.R.,Viovy,N.,Wang,Y.-P.,Wanninkhof,R.,Wiltshire,A.,andZeng,N.:Globalcarbonbudget2014,EarthSyst.Sci.Data,7,47–85,https://doi.org/10.5194/essd-7-47-2015,2015a.LeQuéré,C.,Moriarty,R.,Andrew,R.M.,Canadell,J.G.,Sitch,S.,Korsbakken,J.I.,Friedlingstein,P.,Peters,G.P.,Andres,R.J.,Boden,T.A.,Houghton,R.A.,House,J.I.,Keeling,R.F.,Tans,P.,Arneth,A.,Bakker,D.C.E.,Barbero,L.,Bopp,L.,Chang,J.,Chevallier,F.,Chini,L.P.,Ciais,P.,Fader,M.,Feely,R.A.,Gkritzalis,T.,Harris,I.,Hauck,J.,Ilyina,T.,Jain,A.K.,Kato,E.,Kitidis,V.,KleinGoldewijk,K.,Koven,C.,Landschützer,P.,Lauvset,S.K.,Lefèvre,N.,Lenton,A.,Lima,I.D.,Metzl,N.,Millero,F.,Munro,D.R.,Murata,A.,Nabel,J.E.M.S.,Nakaoka,S.,Nojiri,Y.,O’Brien,K.,Olsen,A.,Ono,T.,Pérez,F.F.,Pfeil,B.,Pierrot,D.,Poulter,B.,Rehder,G.,Rödenbeck,C.,Saito,S.,Schuster,U.,Schwinger,J.,Séférian,R.,Steinhoff,T.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tilbrook,B.,vanderLaan-Luijkx,I.T.,vanderWerf,G.R.,vanHeuven,S.,Van-demark,D.,Viovy,N.,Wiltshire,A.,Zaehle,S.,andZeng,N.:GlobalCarbonBudget2015,EarthSyst.Sci.Data,7,349–396,https://doi.org/10.5194/essd-7-349-2015,2015b.LeQuéré,C.,Andrew,R.M.,Canadell,J.G.,Sitch,S.,Kors-bakken,J.I.,Peters,G.P.,Manning,A.C.,Boden,T.A.,Tans,P.P.,Houghton,R.A.,Keeling,R.F.,Alin,S.,Andrews,O.D.,Anthoni,P.,Barbero,L.,Bopp,L.,Chevallier,F.,Chini,L.P.,Ciais,P.,Currie,K.,Delire,C.,Doney,S.C.,Friedlingstein,P.,Gkritzalis,T.,Harris,I.,Hauck,J.,Haverd,V.,Hoppema,M.,KleinGoldewijk,K.,Jain,A.K.,Kato,E.,Körtzinger,A.,Land-schützer,P.,Lefèvre,N.,Lenton,A.,Lienert,S.,Lombardozzi,D.,Melton,J.R.,Metzl,N.,Millero,F.,Monteiro,P.M.S.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.,O’Brien,K.,Olsen,A.,Omar,A.M.,Ono,T.,Pierrot,D.,Poulter,B.,Rö-denbeck,C.,Salisbury,J.,Schuster,U.,Schwinger,J.,Séférian,R.,Skjelvan,I.,Stocker,B.D.,Sutton,A.J.,Takahashi,T.,Tian,H.,Tilbrook,B.,vanderLaan-Luijkx,I.T.,vanderWerf,G.R.,Viovy,N.,Walker,A.P.,Wiltshire,A.J.,andZaehle,S.:GlobalCarbonBudget2016,EarthSyst.Sci.Data,8,605–649,https://doi.org/10.5194/essd-8-605-2016,2016.LeQuéré,C.,Andrew,R.M.,Friedlingstein,P.,Sitch,S.,Pongratz,J.,Manning,A.C.,Korsbakken,J.I.,Peters,G.P.,Canadell,J.G.,Jackson,R.B.,Boden,T.A.,Tans,P.P.,Andrews,O.D.,Arora,V.K.,Bakker,D.C.E.,Barbero,L.,Becker,M.,Betts,R.A.,Bopp,L.,Chevallier,F.,Chini,L.P.,Ciais,P.,Cosca,C.E.,Cross,J.,Currie,K.,Gasser,T.,Harris,I.,Hauck,J.,Haverd,V.,Houghton,R.A.,Hunt,C.W.,Hurtt,G.,Ily-ina,T.,Jain,A.K.,Kato,E.,Kautz,M.,Keeling,R.F.,KleinGoldewijk,K.,Körtzinger,A.,Landschützer,P.,Lefèvre,N.,Lenton,A.,Lienert,S.,Lima,I.,Lombardozzi,D.,Metzl,N.,Millero,F.,Monteiro,P.M.S.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.,Nojiri,Y.,Padin,X.A.,Peregon,A.,Pfeil,B.,Pierrot,D.,Poulter,B.,Rehder,G.,Reimer,J.,Rödenbeck,C.,Schwinger,J.,Séférian,R.,Skjelvan,I.,Stocker,B.D.,Tian,H.,Tilbrook,B.,Tubiello,F.N.,vanderLaan-Luijkx,I.T.,vanderWerf,G.R.,vanHeuven,S.,Viovy,N.,Vuichard,N.,Walker,A.P.,Watson,A.J.,Wiltshire,A.J.,Zaehle,S.,andZhu,D.:GlobalCarbonBudget2017,EarthSyst.Sci.Data,10,405–448,https://doi.org/10.5194/essd-10-405-2018,2018a.LeQuéré,C.,Andrew,R.M.,Friedlingstein,P.,Sitch,S.,Hauck,J.,Pongratz,J.,Pickers,P.A.,Korsbakken,J.I.,Peters,G.P.,Canadell,J.G.,Arneth,A.,Arora,V.K.,Barbero,L.,Bastos,A.,Bopp,L.,Chevallier,F.,Chini,L.P.,Ciais,P.,Doney,S.C.,Gkritzalis,T.,Goll,D.S.,Harris,I.,Haverd,V.,Hoffman,F.M.,Hoppema,M.,Houghton,R.A.,Hurtt,G.,Ilyina,T.,Jain,A.K.,Johannessen,T.,Jones,C.D.,Kato,E.,Keeling,R.F.,Gold-ewijk,K.K.,Landschützer,P.,Lefèvre,N.,Lienert,S.,Liu,Z.,Lombardozzi,D.,Metzl,N.,Munro,D.R.,Nabel,J.E.M.S.,Nakaoka,S.,Neill,C.,Olsen,A.,Ono,T.,Patra,P.,Peregon,A.,Peters,W.,Peylin,P.,Pfeil,B.,Pierrot,D.,Poulter,B.,Re-hder,G.,Resplandy,L.,Robertson,E.,Rocher,M.,Rödenbeck,C.,Schuster,U.,Schwinger,J.,Séférian,R.,Skjelvan,I.,Stein-hoff,T.,Sutton,A.,Tans,P.P.,Tian,H.,Tilbrook,B.,Tubiello,F.N.,vanderLaan-Luijkx,I.T.,vanderWerf,G.R.,Viovy,N.,Walker,A.P.,Wiltshire,A.J.,Wright,R.,Zaehle,S.,andZheng,B.:GlobalCarbonBudget2018,EarthSyst.Sci.Data,10,2141–2194,https://doi.org/10.5194/essd-10-2141-2018,2018b.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224892P.Friedlingsteinetal.:GlobalCarbonBudget2022LeQuéré,C.,Korsbakken,J.I.,Wilson,C.,Tosun,J.,Andrew,R.,Andres,R.J.,Canadell,J.G.,Jordan,A.,Peters,G.P.,andvanVuuren,D.P.:DriversofdecliningCO2emissionsin18developedeconomies,Nat.Clim.Change,9,213–217,https://doi.org/10.1038/s41558-019-0419-7,2019.LeQuéré,C.,Peters,G.P.,Friedlingstein,P.,Andrew,R.M.,Canadell,J.G.,Davis,S.J.,Jackson,R.B.,andJones,M.W.:FossilCO2emissionsinthepost-COVID-19era,Nat.Clim.Change,11,197–199,https://doi.org/10.1038/s41558-021-01001-0,2021.Li,W.,Ciais,P.,Peng,S.,Yue,C.,Wang,Y.,Thurner,M.,Saatchi,S.S.,Arneth,A.,Avitabile,V.,Carvalhais,N.,Harper,A.B.,Kato,E.,Koven,C.,Liu,Y.Y.,Nabel,J.E.M.S.,Pan,Y.,Pongratz,J.,Poulter,B.,Pugh,T.A.M.,Santoro,M.,Sitch,S.,Stocker,B.D.,Viovy,N.,Wiltshire,A.,Yousefpour,R.,andZaehle,S.:Land-useandland-coverchangecarbonemissionsbetween1901and2012constrainedbybiomassobservations,Biogeosciences,14,5053–5067,https://doi.org/10.5194/bg-14-5053-2017,2017.Liao,E.,Resplandy,L.,Liu,J.,andBowman,K.W.:Am-plificationoftheOceanCarbonSinkDuringElNiños:RoleofPolewardEkmanTransportandInfluenceonAtmo-sphericCO2,GlobalBiogeochem.Cy.,34,e2020GB006574,https://doi.org/10.1029/2020GB006574,2020.Lienert,S.andJoos,F.:ABayesianensembledataassimilationtoconstrainmodelparametersandland-usecarbonemissions,Biogeosciences,15,2909–2930,https://doi.org/10.5194/bg-15-2909-2018,2018.Liu,J.,Baskaran,L.,Bowman,K.,Schimel,D.,Bloom,A.A.,Parazoo,N.C.,Oda,T.,Carroll,D.,Menemenlis,D.,Joiner,J.,Commane,R.,Daube,B.,Gatti,L.V.,McKain,K.,Miller,J.,Stephens,B.B.,Sweeney,C.,andWofsy,S.:Car-bonMonitoringSystemFluxNetBiosphereExchange2020(CMS-FluxNBE2020),EarthSyst.Sci.Data,13,299–330,https://doi.org/10.5194/essd-13-299-2021,2021.Liu,Z.,Guan,D.,Wei,W.,Davis,S.J.,Ciais,P.,Bai,J.,Peng,S.,Zhang,Q.,Hubacek,K.,Marland,G.,Andres,R.J.,Crawford-Brown,D.,Lin,J.,Zhao,H.,Hong,C.,Boden,T.A.,Feng,K.,Peters,G.P.,Xi,F.,Liu,J.,Li,Y.,Zhao,Y.,Zeng,N.,andHe,K.:Reducedcarbonemissionestimatesfromfossilfuelcom-bustionandcementproductioninChina,Nature,524,335–338,https://doi.org/10.1038/nature14677,2015.Liu,Z.,Ciais,P.,Deng,Z.,Davis,S.J.,Zheng,B.,Wang,Y.,Cui,D.,Zhu,B.,Dou,X.,Ke,P.,Sun,T.,Guo,R.,Zhong,H.,Boucher,O.,Bréon,F.-M.,Lu,C.,Guo,R.,Xue,J.,Boucher,E.,Tanaka,K.,andChevallier,F.:CarbonMonitor,anear-real-timedailydatasetofglobalCO2emissionfromfossilfuelandcementproduction,Sci.Data,7,392,https://doi.org/10.1038/s41597-020-00708-7,2020a.Liu,Z.,Ciais,P.,Deng,Z.,Lei,R.,Davis,S.J.,Feng,S.,Zheng,B.,Cui,D.,Dou,X.,Zhu,B.,Guo,R.,Ke,P.,Sun,T.,Lu,C.,He,P.,Wang,Y.,Yue,X.,Wang,Y.,Lei,Y.,Zhou,H.,Cai,Z.,Wu,Y.,Guo,R.,Han,T.,Xue,J.,Boucher,O.,Boucher,E.,Cheval-lier,F.,Tanaka,K.,Wei,Y.,Zhong,H.,Kang,C.,Zhang,N.,Chen,B.,Xi,F.,Liu,M.,Bréon,F.-M.,Lu,Y.,Zhang,Q.,Guan,D.,Gong,P.,Kammen,D.M.,He,K.,andSchellnhuber,H.J.:Near-real-timemonitoringofglobalCO2emissionsrevealstheeffectsoftheCOVID-19pandemic,Nat.Commun.,11,5172,https://doi.org/10.1038/s41467-020-18922-7,2020b.Long,M.C.,Moore,J.K.,Lindsay,K.,Levy,M.,Doney,S.C.,Luo,J.Y.,Krumhardt,K.M.,Letscher,R.T.,Grover,M.,andSylvester,Z.T.:SimulationswiththeMa-rineBiogeochemistryLibrary(MARBL),JournalofAd-vancesinModelingEarthSystems,13,e2021MS002647,https://doi.org/10.1029/2021MS002647,2021.Ma,L.,Hurtt,G.C.,Chini,L.P.,Sahajpal,R.,Pongratz,J.,Frol-king,S.,Stehfest,E.,KleinGoldewijk,K.,O’Leary,D.,andDoelman,J.C.:Globalrulesfortranslatingland-usechange(LUH2)toland-coverchangeforCMIP6usingGLM2,Geosci.ModelDev.,13,3203–3220,https://doi.org/10.5194/gmd-13-3203-2020,2020.Maki,T.,Ikegami,M.,Fujita,T.,Hirahara,T.,Yamada,K.,Mori,K.,Takeuchi,A.,Tsutsumi,Y.,Suda,K.,andConway,T.J.:NewtechniquetoanalyseglobaldistributionsofCO2concentrationsandfluxesfromnon-processedobservationaldata,TellusB.,62,797–809,https://doi.org/10.1111/j.1600-0889.2010.00488.x,2010.Manning,A.andKeeling,R.F.:Globaloceanicandlandbioticcarbonsinksfromhttps://doi.org/10.1111/j.1600-0889.2006.00175.x,2006.Marland,G.:UncertaintiesinAccountingforCO2FromFossilFu-els,J.Indust.Ecol.,12,136–139,https://doi.org/10.1111/j.1530-9290.2008.00014.x,2008.Marland,G.,Hamal,K.,andJonas,M.:HowUncertainAreEstimatesofCO2Emissions?,J.Indust.Ecol.,13,4–7,https://doi.org/10.1111/j.1530-9290.2009.00108.x,2009.Masarie,K.A.andTans,P.P.:Extensionandintegrationofatmosphericcarbondioxidedataintoagloballycon-sistentmeasurementrecord,J.Geophys.Res.,100,11593,https://doi.org/10.1029/95JD00859,1995.Mather,A.:ThetransitionfromdeforestationtoreforestationinEurope,in:Agriculturaltechnologiesandtropicaldeforestation,editedby:Angelsen,A.andKaimowitz,D.,CABIinassociationwithcentreforinternationalForestryResearch,35–52,2001.Matricardi,E.A.T.,Skole,D.L.,Costa,O.B.,Pedlowski,M.A.,Samek,J.H.,andMiguel,E.P.:Long-termforestdegradationsurpassesdeforestationintheBrazilianAmazon,Science,369,1378–1382,https://doi.org/10.1126/science.abb3021,2020.Mauritsen,T.,Bader,J.,Becker,T.,Behrens,J.,Bittner,M.,Brokopf,R.,Brovkin,V.,Claussen,M.,Crueger,T.,Esch,M.,Fast,I.,Fiedler,S.,Fläschner,D.,Gayler,V.,Giorgetta,M.,Goll,D.S.,Haak,H.,Hagemann,S.,Hedemann,C.,Hoheneg-ger,C.,Ilyina,T.,Jahns,T.,Jimenéz-de-la-Cuesta,D.,Jungclaus,J.,Kleinen,T.,Kloster,S.,Kracher,D.,Kinne,S.,Kleberg,D.,Lasslop,G.,Kornblueh,L.,Marotzke,J.,Matei,D.,Meraner,K.,Mikolajewicz,U.,Modali,K.,Möbis,B.,Müller,W.A.,Nabel,J.E.M.S.,Nam,C.C.W.,Notz,D.,Nyawira,S.-S.,Paulsen,H.,Peters,K.,Pincus,R.,Pohlmann,H.,Pongratz,J.,Popp,M.,Raddatz,T.J.,Rast,S.,Redler,R.,Reick,C.H.,Rohrschnei-der,T.,Schemann,V.,Schmidt,H.,Schnur,R.,Schulzweida,U.,Six,K.D.,Stein,L.,Stemmler,I.,Stevens,B.,vonStorch,J.-S.,Tian,F.,Voigt,A.,Vrese,P.,Wieners,K.-H.,Wilkenskjeld,S.,Winkler,A.,andRoeckner,E.:DevelopmentsintheMPI-MEarthSystemModelversion1.2(MPI-ESM1.2)andItsRe-sponsetoIncreasingCO2,J.Adv.ModelEarthSy.,11,998–1038,https://doi.org/10.1029/2018MS001400,2019.McGrath,M.J.,Luyssaert,S.,Meyfroidt,P.,Kaplan,J.O.,Bürgi,M.,Chen,Y.,Erb,K.,Gimmi,U.,McInerney,D.,Naudts,K.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224893Otto,J.,Pasztor,F.,Ryder,J.,Schelhaas,M.-J.,andValade,A.:ReconstructingEuropeanforestmanagementfrom1600to2010,Biogeosciences,12,4291–4316,https://doi.org/10.5194/bg-12-4291-2015,2015.McKinley,G.A.,Fay,A.R.,Eddebbar,Y.A.,Gloege,L.,andLovenduski,N.S.:ExternalForcingExplainsRecentDecadalVariabilityoftheOceanCarbonSink,AGUAdvances,1,e2019AV000149,https://doi.org/10.1029/2019AV000149,2020.McNeil,B.I.:AnthropogenicCO2UptakebytheOceanBasedontheGlobalChlorofluorocarbonDataSet,Science,299,235–239,https://doi.org/10.1126/science.1077429,2003.Meiyappan,P.,Jain,A.K.,andHouse,J.I.:IncreasedinfluenceofnitrogenlimitationonCO2emissionsfromfuturelanduseandlandusechange,GlobalBiogeochem.Cy.,29,1524–1548,https://doi.org/10.1002/2015GB005086,2015.Melton,J.R.,Arora,V.K.,Wisernig-Cojoc,E.,Seiler,C.,Fortier,M.,Chan,E.,andTeckentrup,L.:CLASSICv1.0:theopen-sourcecommunitysuccessortotheCanadianLandSur-faceScheme(CLASS)andtheCanadianTerrestrialEcosys-temModel(CTEM)–Part1:Modelframeworkandsite-levelperformance,Geosci.ModelDev.,13,2825–2850,https://doi.org/10.5194/gmd-13-2825-2020,2020.Mercado,L.M.,Bellouin,N.,Sitch,S.,Boucher,O.,Huntingford,C.,Wild,M.,andCox,P.M.:Impactofchangesindiffusera-diationonthegloballandcarbonsink,Nature,458,1014–1017,https://doi.org/10.1038/nature07949,2009.Merchant,C.J.,Embury,O.,Bulgin,C.E.,Block,T.,Corlett,G.K.,Fiedler,E.,Good,S.A.,Mittaz,J.,Rayner,N.A.,Berry,D.,East-wood,S.,Taylor,M.,Tsushima,Y.,Waterfall,A.,Wilson,R.,andDonlon,C.:Satellite-basedtime-seriesofsea-surfacetem-peraturesince1981forclimateapplications,Sci.Data,6,223,https://doi.org/10.1038/s41597-019-0236-x,2019.MikaloffFletcher,S.E.,Gruber,N.,Jacobson,A.R.,Doney,S.C.,Dutkiewicz,S.,Gerber,M.,Follows,M.,Joos,F.,Lind-say,K.,Menemenlis,D.,Mouchet,A.,Müller,S.A.,andSarmiento,J.L.:InverseestimatesofanthropogenicCO2up-take,transport,andstoragebytheocean:air-seaexchangeofanthropogeniccarbon,GlobalBiogeochem.Cy.,20,GB2002,https://doi.org/10.1029/2005GB002530,2006.Müller,J.andJoos,F.:Committedandprojectedfuturechangesinglobalpeatlands–continuedtransientmodelsimulationssincetheLastGlacialMaximum,Biogeosciences,18,3657–3687,https://doi.org/10.5194/bg-18-3657-2021,2021.Myneni,R.B.,Ramakrishna,R.,Nemani,R.,andRunning,S.W.:Estimationofgloballeafareaindexandabsorbedparusingra-diativetransfermodels,IEEET.Geosci.Remote,35,1380–1393,https://doi.org/10.1109/36.649788,1997.Naegler,T.:Reconciliationofexcess14C-constrainedglobalCO2pistonvelocityestimates,TellusB.,61,372–384,https://doi.org/10.1111/j.1600-0889.2008.00408.x,2009.Nakamura,T.,Yamazaki,K.,Iwamoto,K.,Honda,M.,Miyoshi,Y.,Ogawa,Y.,andUkita,J.:AnegativephaseshiftofthewinterAO/NAOduetotherecentArcticsea-icereductioninlateautumn,J.Geophys.Res.Atmos.,120,3209–3227,https://doi.org/10.1002/2014JD022848,2015.Nakano,H.,Tsujino,H.,Hirabara,M.,Yasuda,T.,Motoi,T.,Ishii,M.,andYamanaka,G.:Uptakemechanismofan-thropogenicCO2intheKuroshioExtensionregioninanoceangeneralcirculationmodel,J.Oceanogr.,67,765–783,https://doi.org/10.1007/s10872-011-0075-7,2011.Narayanan,B.,Aguiar,A.,andMcDougall,R.:GlobalTrade,As-sistance,andProduction:TheGTAP9DataBase,Cent.Glob.TradeAnal.PurdueUniv.,https://www.gtap.agecon.purdue.edu/databases/v9/default.asp(lastaccess:25September2022),2015.NCEP:NationalCentersforEnvironmentalPrediction.ONIIndex.Cold&WarmEpisodesbySeason,https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php,lastaccess:25September2022.Nightingale,P.D.,Liss,P.S.,andSchlosser,P.:Mea-surementsofair-seagastransferduringanopenoceanalgalbloom,Geophys.Res.Lett.,27,2117–2120,https://doi.org/10.1029/2000GL011541,2000.Niwa,Y.,Ishijima,K.,Ito,A.,andIida,Y.:Towardalong-termatmosphericCO2inversionforelucidatingnaturalcarbonfluxes:technicalnotesofNISMON-CO2v2021.1,Prog.EarthPlanetSci.,9,42,https://doi.org/10.1186/s40645-022-00502-6,2022.Niwa,Y.,Langenfelds,R.,Krummel,P.,Loh,Z.,Worthy,D.,Hatakka,J.,Aalto,T.,Ramonet,M.,Delmotte,M.,Schmidt,M.,Gheusi,F.,Mihalopoulos,N.,Morgui,J.A.,Andrews,A.,Dlu-gokencky,E.,Lee,J.,Sweeney,C.,Thoning,K.,Tans,P.,DeWekker,S.,Fischer,M.L.,Jaffe,D.,McKain,K.,Viner,B.,Miller,J.B.,Karion,A.,Miller,C.,Sloop,C.D.,Saito,K.,Aoki,S.,Morimoto,S.,Goto,D.,Steinbacher,M.,Myhre,C.,Lund,H.O.,Stephens,B.,Keeling,R.,Afshar,S.,Paplawsky,B.,Cox,A.,Walker,S.,Schuldt,K.,Mukai,H.,Machida,T.,Sasakawa,M.,Nomura,S.,Ito,A.,Iida,Y.,andJones,M.W.:Long-termglobalCO2fluxesestimatedbyNICAM-basedInverseSimulationforMonitoringCO2(NISMON-CO2)(ver.2022.1),NationalInstituteforEnvironmentalStudiesJapan[dataset],https://doi.org/10.17595/20201127.001,2020.NOAA/ESRL:NOAAGreenhouseGasMarineBoundaryLayerReference,https://gml.noaa.gov/ccgg/mbl/mbl.html(lastaccess:25September2022),2019.Obermeier,W.A.,Nabel,J.E.M.S.,Loughran,T.,Hartung,K.,Bastos,A.,Havermann,F.,Anthoni,P.,Arneth,A.,Goll,D.S.,Lienert,S.,Lombardozzi,D.,Luyssaert,S.,McGuire,P.C.,Melton,J.R.,Poulter,B.,Sitch,S.,Sullivan,M.O.,Tian,H.,Walker,A.P.,Wiltshire,A.J.,Zaehle,S.,andPongratz,J.:Modelledlanduseandlandcoverchangeemissions–aspatio-temporalcomparisonofdifferentapproaches,EarthSyst.Dynam.,12,635–670,https://doi.org/10.5194/esd-12-635-2021,2021.O’Rourke,P.R.,Smith,S.J.,Mott,A.,Ahsan,H.,McDuffie,E.E.,Crippa,M.,Klimont,Z.,McDonald,B.,Wang,S.,Nicholson,M.B.,Feng,L.,andHoesly,R.M.:CEDSv_2021_04_21ReleaseEmissionData,Zenodo[dataset],https://doi.org/10.5281/zenodo.4741285,2021.Orr,J.C.,Najjar,R.G.,Aumont,O.,Bopp,L.,Bullister,J.L.,Dan-abasoglu,G.,Doney,S.C.,Dunne,J.P.,Dutay,J.-C.,Graven,H.,Griffies,S.M.,John,J.G.,Joos,F.,Levin,I.,Lindsay,K.,Matear,R.J.,McKinley,G.A.,Mouchet,A.,Oschlies,A.,Ro-manou,A.,Schlitzer,R.,Tagliabue,A.,Tanhua,T.,andYool,A.:BiogeochemicalprotocolsanddiagnosticsfortheCMIP6OceanModelIntercomparisonProject(OMIP),Geosci.ModelDev.,10,2169–2199,https://doi.org/10.5194/gmd-10-2169-2017,2017.O’Sullivan,M.,Zhang,Y.,Bellouin,N.,Harris,I.,Mercado,L.M.,Sitch,S.,Ciais,P.,andFriedlingstein,P.:Aerosol–lightinterac-https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224894P.Friedlingsteinetal.:GlobalCarbonBudget2022tionsreducethecarbonbudgetimbalance,Environ.Res.Lett.,16,124072,https://doi.org/10.1088/1748-9326/ac3b77,2021.O’Sullivan,M.,Friedlingstein,P.,Sitch,S.,Anthoni,P.,Arneth,A.,Arora,V.K.,Bastrikov,V.,Delire,C.,Goll,D.S.,Jain,A.,Kato,E.,Kennedy,D.,Knauer,J.,Lienert,S.,Lombardozzi,D.,McGuire,P.C.,Melton,J.R.,Nabel,J.E.M.S.,Pongratz,J.,Poulter,B.,Séférian,R.,Tian,H.,Vuichard,N.,Walker,A.P.,Yuan,W.,Yue,X.,andZaehle,S.:Process-orientedanalysisofdominantsourcesofuncertaintyinthelandcarbonsink,Nat.Commun.,13,4781,https://doi.org/10.1038/s41467-022-32416-8,2022.Palmer,P.I.,Feng,L.,Baker,D.,Chevallier,F.,Bösch,H.,andSomkuti,P.:NetcarbonemissionsfromAfricanbiospheredom-inatepan-tropicalatmosphericCO2signal,Nat.Commun.,10,3344,https://doi.org/10.1038/s41467-019-11097-w,2019.Pan,Y.,Birdsey,R.A.,Fang,J.,Houghton,R.,Kauppi,P.E.,Kurz,W.A.,Phillips,O.L.,Shvidenko,A.,Lewis,S.L.,Canadell,J.G.,Ciais,P.,Jackson,R.B.,Pacala,S.W.,McGuire,A.D.,Piao,S.,Rautiainen,A.,Sitch,S.,andHayes,D.:ALargeandPersistentCarbonSinkintheWorld’sForests,Science,333,988–993,https://doi.org/10.1126/science.1201609,2011.Pendrill,F.,Persson,U.M.,Godar,J.,Kastner,T.,Moran,D.,Schmidt,S.,andWood,R.:Agriculturalandforestrytradedriveslargeshareoftropicaldefor-estationemissions,GlobalEnviron.Chang.,56,1–10,https://doi.org/10.1016/j.gloenvcha.2019.03.002,2019.Peters,G.P.,Andrew,R.,andLennox,J.:Constructinganenvironmentally-extendedmulti-regionalinput–outputtableus-ingtheGTAPdatabase,Econ.Syst.Res.,23,131–152,https://doi.org/10.1080/09535314.2011.563234,2011a.Peters,G.P.,Minx,J.C.,Weber,C.L.,andEdenhofer,O.:Growthinemissiontransfersviainternationaltradefrom1990to2008,P.Natl.Acad.Sci.USA,108,8903–8908,https://doi.org/10.1073/pnas.1006388108,2011b.Peters,G.P.,Davis,S.J.,andAndrew,R.:Asynthesisofcarbonininternationaltrade,Biogeosciences,9,3247–3276,https://doi.org/10.5194/bg-9-3247-2012,2012a.Peters,G.P.,Marland,G.,LeQuéré,C.,Boden,T.,Canadell,J.G.,andRaupach,M.R.:RapidgrowthinCO2emissionsafterthe2008–2009globalfinancialcrisis,Nat.Clim.Change,2,2–4,https://doi.org/10.1038/nclimate1332,2012b.Peters,G.P.,Andrew,R.M.,Boden,T.,Canadell,J.G.,Ciais,P.,LeQuéré,C.,Marland,G.,Raupach,M.R.,andWilson,C.:Thechallengetokeepglobalwarmingbelow2◦C,Nat.Clim.Change,3,4–6,https://doi.org/10.1038/nclimate1783,2013.Peters,G.P.,LeQuéré,C.,Andrew,R.M.,Canadell,J.G.,Friedlingstein,P.,Ilyina,T.,Jackson,R.B.,Joos,F.,Korsbakken,J.I.,McKinley,G.A.,Sitch,S.,andTans,P.:Towardsreal-timeverificationofCO2emissions,Nat.Clim.Change,7,848–850,https://doi.org/10.1038/s41558-017-0013-9,2017.Peters,G.P.,Andrew,R.M.,Canadell,J.G.,Friedlingstein,P.,Jackson,R.B.,Korsbakken,J.I.,LeQuéré,C.,andPere-gon,A.:Carbondioxideemissionscontinuetogrowamidstslowlyemergingclimatepolicies,Nat.Clim.Change,10,3–6,https://doi.org/10.1038/s41558-019-0659-6,2020.Petrescu,A.M.R.,Peters,G.P.,Janssens-Maenhout,G.,Ciais,P.,Tubiello,F.N.,Grassi,G.,Nabuurs,G.-J.,Leip,A.,Carmona-Garcia,G.,Winiwarter,W.,Höglund-Isaksson,L.,Günther,D.,Solazzo,E.,Kiesow,A.,Bastos,A.,Pongratz,J.,Nabel,J.E.M.S.,Conchedda,G.,Pilli,R.,Andrew,R.M.,Schelhaas,M.-J.,andDolman,A.J.:EuropeananthropogenicAFOLUgreenhousegasemissions:areviewandbenchmarkdata,EarthSyst.Sci.Data,12,961–1001,https://doi.org/10.5194/essd-12-961-2020,2020.Pfeil,B.,Olsen,A.,Bakker,D.C.E.,Hankin,S.,Koyuk,H.,Kozyr,A.,Malczyk,J.,Manke,A.,Metzl,N.,Sabine,C.L.,Akl,J.,Alin,S.R.,Bates,N.,Bellerby,R.G.J.,Borges,A.,Boutin,J.,Brown,P.J.,Cai,W.-J.,Chavez,F.P.,Chen,A.,Cosca,C.,Fassbender,A.J.,Feely,R.A.,González-Dávila,M.,Goyet,C.,Hales,B.,Hardman-Mountford,N.,Heinze,C.,Hood,M.,Hoppema,M.,Hunt,C.W.,Hydes,D.,Ishii,M.,Johannessen,T.,Jones,S.D.,Key,R.M.,Körtzinger,A.,Landschützer,P.,Lauvset,S.K.,Lefèvre,N.,Lenton,A.,Lourantou,A.,Merlivat,L.,Midorikawa,T.,Mintrop,L.,Miyazaki,C.,Murata,A.,Naka-date,A.,Nakano,Y.,Nakaoka,S.,Nojiri,Y.,Omar,A.M.,Padin,X.A.,Park,G.-H.,Paterson,K.,Perez,F.F.,Pierrot,D.,Poisson,A.,Ríos,A.F.,Santana-Casiano,J.M.,Salisbury,J.,Sarma,V.V.S.S.,Schlitzer,R.,Schneider,B.,Schuster,U.,Sieger,R.,Skjel-van,I.,Steinhoff,T.,Suzuki,T.,Takahashi,T.,Tedesco,K.,Tel-szewski,M.,Thomas,H.,Tilbrook,B.,Tjiputra,J.,Vandemark,D.,Veness,T.,Wanninkhof,R.,Watson,A.J.,Weiss,R.,Wong,C.S.,andYoshikawa-Inoue,H.:Auniform,qualitycontrolledSurfaceOceanCO2Atlas(SOCAT),EarthSyst.Sci.Data,5,125–143,https://doi.org/10.5194/essd-5-125-2013,2013.Piao,S.,Ciais,P.,Friedlingstein,P.,deNoblet-Ducoudré,N.,Cadule,P.,Viovy,N.,andWang,T.:Spatiotem-poralpatternsofterrestrialcarboncycleduringthe20thcentury,GlobalBiogeochem.Cy.,23,GB4026,https://doi.org/10.1029/2008GB003339,2009.Piao,S.,Huang,M.,Liu,Z.,Wang,X.,Ciais,P.,Canadell,J.G.,Wang,K.,Bastos,A.,Friedlingstein,P.,Houghton,R.A.,LeQuéré,C.,Liu,Y.,Myneni,R.B.,Peng,S.,Pongratz,J.,Sitch,S.,Yan,T.,Wang,Y.,Zhu,Z.,Wu,D.,andWang,T.:Lowerland-useemissionsresponsibleforincreasednetlandcarbonsinkduringtheslowwarmingperiod,Nat.Geosci.,11,739–743,https://doi.org/10.1038/s41561-018-0204-7,2018.Pongratz,J.,Reick,C.H.,Houghton,R.A.,andHouse,J.I.:Ter-minologyasakeyuncertaintyinnetlanduseandlandcoverchangecarbonfluxestimates,EarthSyst.Dynam.,5,177–195,https://doi.org/10.5194/esd-5-177-2014,2014.Pongratz,J.,Schwingshackl,C.,Bultan,S.,Obermeier,W.,Haver-mann,F.,andGuo,S.:LandUseEffectsonClimate:Cur-rentState,RecentProgress,andEmergingTopics,Curr.Clim.ChangeRep.,7,99–120,https://doi.org/10.1007/s40641-021-00178-y,2021.Potapov,P.,Hansen,M.C.,Laestadius,L.,Turubanova,S.,Yaroshenko,A.,Thies,C.,Smith,W.,Zhuravleva,I.,Komarova,A.,Minnemeyer,S.,andEsipova,E.:Thelastfrontiersofwilder-ness:Trackinglossofintactforestlandscapesfrom2000to2013,Sci.Adv.,3,e1600821,https://doi.org/10.1126/sciadv.1600821,2017.Poulter,B.,Frank,D.C.,Hodson,E.L.,andZimmermann,N.E.:Impactsoflandcoverandclimatedataselectiononunder-standingterrestrialcarbondynamicsandtheCO2airbornefrac-tion,Biogeosciences,8,2027–2036,https://doi.org/10.5194/bg-8-2027-2011,2011.Poulter,B.,Freeborn,P.H.,Jolly,W.M.,andVarner,J.M.:COVID-19lockdownsdrivedeclineinactivefiresinsoutheast-EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224895ernUnitedStates,P.Natl.Acad.Sci.USA,118,e2105666118,https://doi.org/10.1073/pnas.2105666118,2021.Prather,M.:Interactivecommenton“Carbondioxideandclimateimpulseresponsefunctionsforthecomputationofgreenhousegasmetrics:amultimodelanalysis”byF.Joosetal.,Atmos.Chem.Phys.Discuss.,12,C8465–C8470,2012.Prentice,I.C.,Farquhar,G.D.,Fasham,M.J.R.,Goulden,M.L.,Heimann,M.,Jaramillo,V.J.,Kheshgi,H.S.,LeQuéré,C.,Sc-holes,R.J.,andWallace,D.W.R.:TheCarbonCycleandAtmo-sphericCarbonDioxide,inClimateChange2001:TheScientificBasis.ContributionofWorkingGroupItotheThirdAssessmentReportoftheIntergovernmentalPanelonClimateChange,editedby:Houghton,J.T.,Ding,Y.,Griggs,D.J.,Noguer,M.,vanderLinden,P.J.,Dai,X.,Maskell,K.,andJohnson,C.A.,Cam-bridgeUniversityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,183–237,ISBN:978-0521014953,2001.Price,J.T.andWarren,R.:LiteratureReviewofthePo-tentialof“BlueCarbon”ActivitiestoReduceEmissions,https://avoid-net-uk.cc.ic.ac.uk/wp-content/uploads/delightful-downloads/2016/03/Literature-review-of-the-potential-of-blue-carbon-activities-to-reduce-emissions-AVOID2-WPE2.pdf(lastaccess:25September2022),2016.Qin,Y.,Xiao,X.,Wigneron,J.-P.,Ciais,P.,Brandt,M.,Fan,L.,Li,X.,Crowell,S.,Wu,X.,Doughty,R.,Zhang,Y.,Liu,F.,Sitch,S.,andMoore,B.:CarbonlossfromforestdegradationexceedsthatfromdeforestationintheBrazilianAmazon,Nat.Clim.Change,11,442–448,https://doi.org/10.1038/s41558-021-01026-5,2021.Qiu,C.,Ciais,P.,Zhu,D.,Guenet,B.,Peng,S.,Petrescu,A.M.R.,Lauerwald,R.,Makowski,D.,Gallego-Sala,A.V.,Char-man,D.J.,andBrewer,S.C.:Largehistoricalcarbonemis-sionsfromcultivatednorthernpeatlands,Sci.Adv.,7,eabf1332,https://doi.org/10.1126/sciadv.abf1332,2021.Raupach,M.R.,Marland,G.,Ciais,P.,LeQuere,C.,Canadell,J.G.,Klepper,G.,andField,C.B.:GlobalandregionaldriversofacceleratingCO2emissions,P.Natl.Acad.Sci.USA,104,10288–10293,https://doi.org/10.1073/pnas.0700609104,2007.Regnier,P.,Friedlingstein,P.,Ciais,P.,Mackenzie,F.T.,Gruber,N.,Janssens,I.A.,Laruelle,G.G.,Lauerwald,R.,Luyssaert,S.,Andersson,A.J.,Arndt,S.,Arnosti,C.,Borges,A.V.,Dale,A.W.,Gallego-Sala,A.,Goddéris,Y.,Goossens,N.,Hartmann,J.,Heinze,C.,Ilyina,T.,Joos,F.,LaRowe,D.E.,Leifeld,J.,Meysman,F.J.R.,Munhoven,G.,Raymond,P.A.,Spahni,R.,Suntharalingam,P.,andThullner,M.:Anthropogenicperturba-tionofthecarbonfluxesfromlandtoocean,Nat.Geosci.,6,597–607,https://doi.org/10.1038/ngeo1830,2013.Regnier,P.,Resplandy,L.,Najjar,R.G.,andCiais,P.:Theland-to-oceanloopsoftheglobalcarboncycle,Nature,603,401–410,https://doi.org/10.1038/s41586-021-04339-9,2022.Reick,C.H.,Gayler,V.,Goll,D.,Hagemann,S.,Heidkamp,M.,Nabel,J.E.M.S.,Raddatz,T.,Roeckner,E.,Schnur,R.,andWilkenskjeld,S.:JSBACH3–ThelandcomponentoftheMPIEarthSystemModel:documentationofversion3.2,https://doi.org/10.17617/2.3279802,2021.Remaud,M.,Chevallier,F.,Cozic,A.,Lin,X.,andBous-quet,P.:OntheimpactofrecentdevelopmentsoftheLMDzatmosphericgeneralcirculationmodelonthesimula-tionofCO2transport,Geosci.ModelDev.,11,4489–4513,https://doi.org/10.5194/gmd-11-4489-2018,2018.Resplandy,L.,Keeling,R.F.,Rödenbeck,C.,Stephens,B.B.,Khatiwala,S.,Rodgers,K.B.,Long,M.C.,Bopp,L.,andTans,P.P.:Revisionofglobalcarbonfluxesbasedonareassessmentofoceanicandriverinecarbontransport,Nat.Geosci.,11,504–509,https://doi.org/10.1038/s41561-018-0151-3,2018.Reynolds,R.W.,Rayner,N.A.,Smith,T.M.,Stokes,D.C.,andWang,W.:AnImprovedInSituandSatelliteSSTAnalysisforClimate,J.Cli-mate,15,1609–1625,https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>,2.0.CO;2,2002.Rhein,M.,Rintoul,S.R.,Aoki,S.,Campos,E.,Chambers,D.,Feely,R.A.,Gulev,S.,Johnson,G.C.,Josey,S.A.,Kostianoy,A.,Mauritzen,C.,Roemmich,D.,andTalley,L.D.:Observa-tions:Ocean,in:ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange,editedby:Stocker,T.F.,Qin,D.,Plattner,G.-K.,Tignor,M.,Allen,S.K.,Boschung,J.,Nauels,A.,Xia,Y.,Bex,V.,andMidgley,P.M.,CambridgeUniversityPress,255–316,ISBN:9781107057991,2013Rödenbeck,C.,Houweling,S.,Gloor,M.,andHeimann,M.:CO2fluxhistory1982–2001inferredfromatmosphericdatausingaglobalinversionofatmospherictransport,Atmos.Chem.Phys.,3,1919–1964,https://doi.org/10.5194/acp-3-1919-2003,2003.Rödenbeck,C.,Keeling,R.F.,Bakker,D.C.E.,Metzl,N.,Olsen,A.,Sabine,C.,andHeimann,M.:Globalsurface-oceanpCO2andsea–airCO2fluxvariabilityfromanobservation-drivenoceanmixed-layerscheme,OceanSci.,9,193–216,https://doi.org/10.5194/os-9-193-2013,2013.Rödenbeck,C.,Bakker,D.C.E.,Metzl,N.,Olsen,A.,Sabine,C.,Cassar,N.,Reum,F.,Keeling,R.F.,andHeimann,M.:Interannualsea–airCO2fluxvariabilityfromanobservation-drivenoceanmixed-layerscheme,Biogeosciences,11,4599–4613,https://doi.org/10.5194/bg-11-4599-2014,2014.Rödenbeck,C.,Bakker,D.C.E.,Gruber,N.,Iida,Y.,Jacob-son,A.R.,Jones,S.,Landschützer,P.,Metzl,N.,Nakaoka,S.,Olsen,A.,Park,G.-H.,Peylin,P.,Rodgers,K.B.,Sasse,T.P.,Schuster,U.,Shutler,J.D.,Valsala,V.,Wanninkhof,R.,andZeng,J.:Data-basedestimatesoftheoceancarbonsinkvariability–firstresultsoftheSurfaceOceanpCO2Map-pingintercomparison(SOCOM),Biogeosciences,12,7251–7278,https://doi.org/10.5194/bg-12-7251-2015,2015.Rödenbeck,C.,Zaehle,S.,Keeling,R.,andHeimann,M.:His-toryofElNiñoimpactsontheglobalcarboncycle1957–2017:aquantificationfromatmosphericCO2data,Philos.T.Roy.Soc.B.,373,20170303,https://doi.org/10.1098/rstb.2017.0303,2018.Rödenbeck,C.,DeVries,T.,Hauck,J.,LeQuéré,C.,andKeel-ing,R.F.:Data-basedestimatesofinterannualsea–airCO2fluxvariations1957–2020andtheirrelationtoenvironmentaldrivers,Biogeosciences,19,2627–2652,https://doi.org/10.5194/bg-19-2627-2022,2022.Roobaert,A.,Laruelle,G.G.,Landschützer,P.,andRegnier,P.:UncertaintyintheglobaloceanicCO2uptakeinducedbywindforcing:quantificationandspatialanalysis,Biogeosciences,15,1701–1720,https://doi.org/10.5194/bg-15-1701-2018,2018.Rosan,T.M.,KleinGoldewijk,K.,Ganzenmüller,R.,O’Sullivan,M.,Pongratz,J.,Mercado,L.M.,Aragao,L.E.O.C.,Hein-rich,V.,Randow,C.V.,Wiltshire,A.,Tubiello,F.N.,Bastos,A.,https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224896P.Friedlingsteinetal.:GlobalCarbonBudget2022Friedlingstein,P.,andSitch,S.:Amulti-dataassessmentoflanduseandlandcoveremissionsfromBrazilduring2000–2019,Environ.Res.Lett.,16,074004,https://doi.org/10.1088/1748-9326/ac08c3,2021.Rypdal,K.,Paciornik,N.,Eggleston,S.,Goodwin,J.,Irving,W.,Penman,J.,andWoodfield,M.:Volume1:Introductiontothe2006Guidelinesin:2006IPCCguidelinesfornationalgreen-housegasinventories,https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html(lastaccess:25September2022),2006.Saatchi,S.S.,Harris,N.L.,Brown,S.,Lefsky,M.,Mitchard,E.T.A.,Salas,W.,Zutta,B.R.,Buermann,W.,Lewis,S.L.,Hagen,S.,Petrova,S.,White,L.,Silman,M.,andMorel,A.:Benchmarkmapofforestcarbonstocksintropicalregionsacrossthreecontinents,P.Natl.Acad.Sci.USA,108,9899–9904,https://doi.org/10.1073/pnas.1019576108,2011.Sarmiento,J.L.,Orr,J.C.,andSiegenthaler,U.:Apertur-bationsimulationofCO2uptakeinanoceangeneralcir-culationmodel,J.Geophys.Res.-Oceans.,97,3621–3645,https://doi.org/10.1029/91JC02849,1992.Sato,M.,Hansen,J.E.,McCormick,M.P.,andPol-lack,J.B.:Stratosphericaerosolopticaldepths,1850–1990,J.Geophys.Res.-Atmos.,98,22987–22994,https://doi.org/10.1029/93JD02553,1993.Saunois,M.,Stavert,A.R.,Poulter,B.,Bousquet,P.,Canadell,J.G.,Jackson,R.B.,Raymond,P.A.,Dlugokencky,E.J.,Houwel-ing,S.,Patra,P.K.,Ciais,P.,Arora,V.K.,Bastviken,D.,Berga-maschi,P.,Blake,D.R.,Brailsford,G.,Bruhwiler,L.,Carl-son,K.M.,Carrol,M.,Castaldi,S.,Chandra,N.,Crevoisier,C.,Crill,P.M.,Covey,K.,Curry,C.L.,Etiope,G.,Frankenberg,C.,Gedney,N.,Hegglin,M.I.,Höglund-Isaksson,L.,Hugelius,G.,Ishizawa,M.,Ito,A.,Janssens-Maenhout,G.,Jensen,K.M.,Joos,F.,Kleinen,T.,Krummel,P.B.,Langenfelds,R.L.,Laruelle,G.G.,Liu,L.,Machida,T.,Maksyutov,S.,McDon-ald,K.C.,McNorton,J.,Miller,P.A.,Melton,J.R.,Morino,I.,Müller,J.,Murguia-Flores,F.,Naik,V.,Niwa,Y.,Noce,S.,O’Doherty,S.,Parker,R.J.,Peng,C.,Peng,S.,Peters,G.P.,Prigent,C.,Prinn,R.,Ramonet,M.,Regnier,P.,Riley,W.J.,Rosentreter,J.A.,Segers,A.,Simpson,I.J.,Shi,H.,Smith,S.J.,Steele,L.P.,Thornton,B.F.,Tian,H.,Tohjima,Y.,Tubiello,F.N.,Tsuruta,A.,Viovy,N.,Voulgarakis,A.,Weber,T.S.,vanWeele,M.,vanderWerf,G.R.,Weiss,R.F.,Worthy,D.,Wunch,D.,Yin,Y.,Yoshida,Y.,Zhang,W.,Zhang,Z.,Zhao,Y.,Zheng,B.,Zhu,Q.,Zhu,Q.,andZhuang,Q.:TheGlobalMethaneBudget2000–2017,EarthSyst.Sci.Data,12,1561–1623,https://doi.org/10.5194/essd-12-1561-2020,2020.Schimel,D.,Alves,D.,Enting,I.G.,Heimann,M.,Joos,F.,Ray-naud,D.,Wigley,T.,Prater,M.,Derwent,R.,Ehhalt,D.,Fraser,P.,Sanhueza,E.,Zhou,X.,Jonas,P.,Charlson,R.,Rodhe,H.,Sadasivan,S.,Shine,K.P.,Fouquart,Y.,Ramaswamy,V.,Solomon,S.,Srinivasan,J.,Albritton,D.,Derwent,R.,Isak-sen,I.,Lal,M.,andWuebbles,D.:RadiativeForcingofCli-mateChange,in:ClimateChange1995TheScienceofClimateChange,ContributionofWorkingGroupItotheSecondAssess-mentReportoftheIntergovernmentalPanelonClimateChange,editedby:Houghton,J.T.,MeiraRilho,L.G.,Callander,B.A.,Harris,N.,Kattenberg,A.,andMaskell,K.,CambridgeUni-versityPress,Cambridge,UnitedKingdomandNewYork,NY,USA,ISBN978-0521559621,1995.Schimel,D.,Stephens,B.B.,andFisher,J.B.:EffectofincreasingCO2ontheterrestrialcarboncycle,P.Natl.Acad.Sci.USA,112,436–441,https://doi.org/10.1073/pnas.1407302112,2015.Schourup-Kristensen,V.,Sidorenko,D.,Wolf-Gladrow,D.A.,andVölker,C.:AskillassessmentofthebiogeochemicalmodelREcoM2coupledtotheFiniteElementSeaIce–OceanModel(FESOM1.3),Geosci.ModelDev.,7,2769–2802,https://doi.org/10.5194/gmd-7-2769-2014,2014.Schuh,A.E.,Jacobson,A.R.,Basu,S.,Weir,B.,Baker,D.,Bow-man,K.,Chevallier,F.,Crowell,S.,Davis,K.J.,Deng,F.,Den-ning,S.,Feng,L.,Jones,D.,Liu,J.,andPalmer,P.I.:Quanti-fyingtheImpactofAtmosphericTransportUncertaintyonCO2SurfaceFluxEstimates,GlobalBiogeochem.Cy.,33,484–500,https://doi.org/10.1029/2018GB006086,2019.Schuldt,K.N.,Mund,J.,Luijkx,I.T.,Aalto,T.,Abshire,J.B.,Aikin,K.,Andrews,A.,Aoki,S.,Apadula,F.,Baier,B.,Bak-win,P.,Bartyzel,J.,Bentz,G.,Bergamaschi,P.,Beyersdorf,A.,Biermann,T.,Biraud,S.C.,Boenisch,H.,Bowling,D.,Brails-ford,G.,Chen,G.,Chen,H.,Chmura,L.,Clark,S.,Climadat,S.,Colomb,A.,Commane,R.,Conil,S.,Cox,A.,Cristofanelli,P.,Cuevas,E.,Curcoll,R.,Daube,B.,Davis,K.,DeMazière,M.,DeWekker,S.,DellaColetta,J.,Delmotte,M.,DiGangi,J.P.,Dlugokencky,E.,Elkins,J.W.,Emmenegger,L.,Fang,S.,Fis-cher,M.L.,Forster,G.,Frumau,A.,Galkowski,M.,Gatti,L.V.,Gehrlein,T.,Gerbig,C.,Gheusi,F.,Gloor,E.,Gomez-Trueba,V.,Goto,D.,Griffis,T.,Hammer,S.,Hanson,C.,Haszpra,L.,Hatakka,J.,Heimann,M.,Heliasz,M.,Hensen,A.,Hermanssen,O.,Hintsa,E.,Holst,J.,Ivakhov,V.,Jaffe,D.,Joubert,W.,Kar-ion,A.,Kawa,S.R.,Kazan,V.,Keeling,R.,Keronen,P.,Kolari,P.,Kominkova,K.,Kort,E.,Kozlova,E.,Krummel,P.,Kubistin,D.,Labuschagne,C.,Lam,D.H.,Langenfelds,R.,Laurent,O.,Laurila,T.,Lauvaux,T.,Lavric,J.,Law,B.,Lee,O.S.,Lee,J.,Lehner,I.,Leppert,R.,Leuenberger,M.,Levin,I.,Levula,J.,Lin,J.,Lindauer,M.,Loh,Z.,Lopez,M.,Machida,T.,Mam-marella,I.,Manca,G.,Manning,A.,Manning,A.,Marek,N.V.,Martin,M.Y.,Matsueda,H.,McKain,K.,Meijer,H.,Mein-hardt,F.,Merchant,L.,Mihalopoulos,N.,Miles,N.,Miller,C.E.,Miller,J.B.,Mitchell,L.,Montzka,S.,Moore,F.,Morgan,E.,Morgui,J.-A.,Morimoto,S.,Munger,B.,Munro,D.,Myhre,C.L.,Mölder,M.,Müller-Williams,J.,Necki,J.,Newman,S.,Nichol,S.,Niwa,Y.,O’Doherty,S.,Obersteiner,F.,Paplawsky,B.,Peischl,F.,Peltola,O.,Piacentino,S.,Pichon,J.M.,Piper,S.,Plass-Duelmer,C.,Ramonet,M.,Ramos,R.,Reyes-Sanchez,E.,Richardson,S.,Riris,H.,Rivas,P.P.,Ryerson,T.,Saito,K.,Sargent,M.,Sasakawa,M.,Say,D.,Scheeren,B.,Schuck,T.,Schumacher,M.,Seifert,T.,Sha,M.K.,Shepson,P.,Shook,M.,Sloop,C.D.,Smith,P.,Steinbacher,M.,Stephens,B.,Sweeney,C.,Tans,P.,Thoning,K.,Timas,H.,Torn,M.,Trisolino,P.,Turnbull,J.,Tørseth,K.,Vermeulen,A.,Viner,B.,Vitkova,G.,Walker,S.,Watson,A.,Wofsy,S.,Worsey,J.,Worthy,D,Young,D.,Zaehle,S.,Zahn,A.,Zimnoch,M.,diSarra,A.G.,vanDinther,D.,andvandenBulk,P.:Multi-laboratorycompilationofatmosphericcarbondioxidedatafortheperiod1957–2020;obspack_co2_1_GLOBALVIEWplus_v7.0_2021-08-18;NOAAEarthSystemResearchLaboratory,GlobalMonitoringLabora-tory,https://doi.org/10.25925/20210801,2021.Schuldt,K.N.,Jacobson,A.R.,Aalto,T.,Andrews,A.,Bakwin,P.,Bergamaschi,P.,Biermann,T.,Biraud,S.C.,Chen,H.,Colomb,A.,Conil,S.,Cristofanelli,P.,DeMazière,M.,DeWekker,S.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224897Delmotte,M.,Dlugokencky,E.,Emmenegger,L.,Fischer,M.L.,Hatakka,J.,Heliasz,M.,Hermanssen,O.,Holst,J.,Jaffe,D.,Karion,A.,Kazan,V.,Keronen,P.,Kominkova,K.,Ku-bistin,D.,Laurent,O.,Laurila,T.,Lee,J.,Lehner,I.,Leuen-berger,M.,Lindauer,M.,Lopez,M.,Mammarella,I.,Manca,G.,Marek,M.V.,McKain,K.,Miller,C.E.,Miller,J.B.,Myhre,C.L.,Mölder,M.,Müller-Williams,J.,Piacentino,S.,Pichon,J.M.,Plass-Duelmer,C.,Ramonet,M.,Scheeren,B.,Schumacher,M.,Sha,M.K.,Sloop,C.D.,Smith,P.,Stein-bacher,M.,Sweeney,C.,Tans,P.,Thoning,K.,Trisolino,P.,Tørseth,K.,Viner,B.,Vitkova,G.,anddiSarra,A.G.:Multi-laboratorycompilationofatmosphericcarbondioxidedatafortheperiod2021–2022;obspack_co2_1_NRT_v7.2_2022-06-28;NOAAEarthSystemResearchLaboratory,GlobalMonitoringLaboratory,https://doi.org/10.25925/20220624,2022.Schwinger,J.,Goris,N.,Tjiputra,J.F.,Kriest,I.,Bentsen,M.,Bethke,I.,Ilicak,M.,Assmann,K.M.,andHeinze,C.:Eval-uationofNorESM-OC(versions1and1.2),theoceancarbon-cyclestand-aloneconfigurationoftheNorwegianEarthSys-temModel(NorESM1),Geosci.ModelDev.,9,2589–2622,https://doi.org/10.5194/gmd-9-2589-2016,2016.Schwingshackl,C.,Obermeier,W.,Bultan,S.,Grassi,G.,Canadell,J.G.,Friedlingstein,P.,Gasser,T.,Houghton,R.A.,Kurz,W.A.,Sitch,S.,andPongratz,J.:Separatingnaturalandland-useCO2fluxesatcountry-leveltoreconcileland-basedmitigationestimates,OneEarth,inreview,2022.Séférian,R.,Nabat,P.,Michou,M.,Saint-Martin,D.,Voldoire,A.,Colin,J.,Decharme,B.,Delire,C.,Berthet,S.,Chevallier,M.,Sénési,S.,Franchisteguy,L.,Vial,J.,Mallet,M.,Joetzjer,E.,Ge-offroy,O.,Guérémy,J.-F.,Moine,M.-P.,Msadek,R.,Ribes,A.,Rocher,M.,Roehrig,R.,Salas-y-Mélia,D.,Sanchez,E.,Terray,L.,Valcke,S.,Waldman,R.,Aumont,O.,Bopp,L.,Deshayes,J.,Éthé,C.,andMadec,G.:EvaluationofCNRMEarthSys-temModel,CNRM-ESM2-1:RoleofEarthSystemProcessesinPresent-DayandFutureClimate,J.Adv.Model.EarthSy.,11,4182–4227,https://doi.org/10.1029/2019MS001791,2019.Seiler,C.,Melton,J.R.,Arora,V.K.,Sitch,S.,Friedlingstein,P.,Anthoni,P.,Goll,D.,Jain,A.K.,Joetzjer,E.,Lienert,S.,Lombardozzi,D.,Luyssaert,S.,Nabel,J.E.M.S.,Tian,H.,Vuichard,N.,Walker,A.P.,Yuan,W.,andZaehle,S.:AreTer-restrialBiosphereModelsFitforSimulatingtheGlobalLandCarbonSink?,J.Adv.Model.EarthSy.,14,e2021MS002946,https://doi.org/10.1029/2021MS002946,2022.Sellar,A.A.,Jones,C.G.,Mulcahy,J.P.,Tang,Y.,Yool,A.,Wilt-shire,A.,O’Connor,F.M.,Stringer,M.,Hill,R.,Palmieri,J.,Woodward,S.,Mora,L.,Kuhlbrodt,T.,Rumbold,S.T.,Kelley,D.I.,Ellis,R.,Johnson,C.E.,Walton,J.,Abraham,N.L.,An-drews,M.B.,Andrews,T.,Archibald,A.T.,Berthou,S.,Burke,E.,Blockley,E.,Carslaw,K.,Dalvi,M.,Edwards,J.,Folberth,G.A.,Gedney,N.,Griffiths,P.T.,Harper,A.B.,Hendry,M.A.,He-witt,A.J.,Johnson,B.,Jones,A.,Jones,C.D.,Keeble,J.,Liddi-coat,S.,Morgenstern,O.,Parker,R.J.,Predoi,V.,Robertson,E.,Siahaan,A.,Smith,R.S.,Swaminathan,R.,Woodhouse,M.T.,Zeng,G.,andZerroukat,M.:UKESM1:DescriptionandEvalu-ationoftheU.K.EarthSystemModel,J.Adv.Model.EarthSy.,11,4513–4558,https://doi.org/10.1029/2019MS001739,2019.Shu,S.,Jain,A.K.,Koven,C.D.,andMishra,U.:Estima-tionofPermafrostSOCStockandTurnoverTimeUsingaLandSurfaceModelWithVerticalHeterogeneityofPer-mafrostSoils,GlobalBiogeochem.Cy.,34,e2020GB006585,https://doi.org/10.1029/2020GB006585,2020.Sitch,S.,Huntingford,C.,Gedney,N.,Levy,P.E.,Lomas,M.,Piao,S.L.,Betts,R.,Ciais,P.,Cox,P.,Friedlingstein,P.,Jones,C.D.,Prentice,I.C.,andWoodward,F.I.:Evaluationoftheter-restrialcarboncycle,futureplantgeographyandclimate-carboncyclefeedbacksusingfiveDynamicGlobalVegetationModels(DGVMs):UncertaintyInLandCarbonCycleFeedbacks,Glob.ChangeBiol.,14,2015–2039,https://doi.org/10.1111/j.1365-2486.2008.01626.x,2008.Smith,B.,Wårlind,D.,Arneth,A.,Hickler,T.,Leadley,P.,Silt-berg,J.,andZaehle,S.:ImplicationsofincorporatingNcy-clingandNlimitationsonprimaryproductioninanindividual-baseddynamicvegetationmodel,Biogeosciences,11,2027–2054,https://doi.org/10.5194/bg-11-2027-2014,2014.Souza,C.M.,Z.Shimbo,J.,Rosa,M.R.,Parente,L.L.,A.Alencar,A.,Rudorff,B.F.T.,Hasenack,H.,Matsumoto,M.,G.Ferreira,L.,Souza-Filho,P.W.M.,deOliveira,S.W.,Rocha,W.F.,Fon-seca,A.V.,Marques,C.B.,Diniz,C.G.,Costa,D.,Monteiro,D.,Rosa,E.R.,Vélez-Martin,E.,Weber,E.J.,Lenti,F.E.B.,Paternost,F.F.,Pareyn,F.G.C.,Siqueira,J.V.,Viera,J.L.,Neto,L.C.F.,Saraiva,M.M.,Sales,M.H.,Salgado,M.P.G.,Vascon-celos,R.,Galano,S.,Mesquita,V.V.,andAzevedo,T.:Recon-structingThreeDecadesofLandUseandLandCoverChangesinBrazilianBiomeswithLandsatArchiveandEarthEngine,Re-moteSens.,12,2735,https://doi.org/10.3390/rs12172735,2020.Stephens,B.B.,Gurney,K.R.,Tans,P.P.,Sweeney,C.,Pe-ters,W.,Bruhwiler,L.,Ciais,P.,Ramonet,M.,Bousquet,P.,Nakazawa,T.,Aoki,S.,Machida,T.,Inoue,G.,Vinnichenko,N.,Lloyd,J.,Jordan,A.,Heimann,M.,Shibistova,O.,Langen-felds,R.L.,Steele,L.P.,Francey,R.J.,andDenning,A.S.:WeakNorthernandStrongTropicalLandCarbonUptakefromVerticalProfilesofAtmosphericCO2,Science,316,1732–1735,https://doi.org/10.1126/science.1137004,2007.Stocker,T.,Qin,D.,andPlatner,G.-K.:ClimateChange2013:ThePhysicalScienceBasis.ContributionofWorkingGroupItotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange,editedby:IntergovernmentalPanelonCli-mateChange,CambridgeUniversityPress,Cambridge,ISBN9789291691388,2013.SXCoal:Monthlycoalconsumptionestimates,http://www.sxcoal.com/,lastaccess:25September2022.Takahashi,T.,Sutherland,S.C.,Wanninkhof,R.,Sweeney,C.,Feely,R.A.,Chipman,D.W.,Hales,B.,Friederich,G.,Chavez,F.,Sabine,C.,Watson,A.,Bakker,D.C.E.,Schuster,U.,Metzl,N.,Yoshikawa-Inoue,H.,Ishii,M.,Midorikawa,T.,Nojiri,Y.,Körtzinger,A.,Steinhoff,T.,Hoppema,M.,Olafsson,J.,Arnar-son,T.S.,Tilbrook,B.,Johannessen,T.,Olsen,A.,Bellerby,R.,Wong,C.S.,Delille,B.,Bates,N.R.,anddeBaar,H.J.W.:Cli-matologicalmeananddecadalchangeinsurfaceoceanpCO2,andnetsea–airCO2fluxovertheglobaloceans,Deep-SeaRes.Pt.II,56,554–577,https://doi.org/10.1016/j.dsr2.2008.12.009,2009.Terhaar,J.,Frölicher,T.L.,andJoos,F.:SouthernOceanan-thropogeniccarbonsinkconstrainedbyseasurfacesalinity,Sci.Adv.,7,eabd5964,https://doi.org/10.1126/sciadv.abd5964,2021.Terhaar,J.,Frölicher,T.L.,andJoos,F.:Observation-constrainedestimatesoftheglobaloceancarbonsinkfromhttps://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224898P.Friedlingsteinetal.:GlobalCarbonBudget2022Earthsystemmodels,Biogeosciences,19,4431–4457,https://doi.org/10.5194/bg-19-4431-2022,2022.Thomason,L.W.,Ernest,N.,Millán,L.,Rieger,L.,Bourassa,A.,Vernier,J.-P.,Manney,G.,Luo,B.,Arfeuille,F.,andPeter,T.:Aglobalspace-basedstratosphericaerosolcli-matology:1979–2016,EarthSyst.Sci.Data,10,469–492,https://doi.org/10.5194/essd-10-469-2018,2018.Tian,H.,Xu,X.,Lu,C.,Liu,M.,Ren,W.,Chen,G.,Melillo,J.,andLiu,J.:NetexchangesofCO2,CH4,andN2ObetweenChina’sterrestrialecosystemsandtheatmosphereandtheircon-tributionstoglobalclimatewarming,J.Geophys.Res.-Biogeo.,116,G02011,https://doi.org/10.1029/2010JG001393,2011.Tian,X.,Xie,Z.,Liu,Y.,Cai,Z.,Fu,Y.,Zhang,H.,andFeng,L.:Ajointdataassimilationsystem(Tan-Tracker)tosimulta-neouslyestimatesurfaceCO2fluxesand3-DatmosphericCO2concentrationsfromobservations,https://doi.org/10.5194/acp-14-13281-2014,2014.Tian,H.,Chen,G.,Lu,C.,Xu,X.,Hayes,D.J.,Ren,W.,Pan,S.,Huntzinger,D.N.,andWofsy,S.C.:NorthAmericanter-restrialCO2uptakelargelyoffsetbyCH4andN2Oemissions:towardafullaccountingofthegreenhousegasbudget,Cli-maticChange,129,413–426,https://doi.org/10.1007/s10584-014-1072-9,2015.Todd-Brown,K.E.O.,Randerson,J.T.,Post,W.M.,Hoffman,F.M.,Tarnocai,C.,Schuur,E.A.G.,andAllison,S.D.:CausesofvariationinsoilcarbonsimulationsfromCMIP5Earthsystemmodelsandcomparisonwithobservations,Biogeosciences,10,1717–1736,https://doi.org/10.5194/bg-10-1717-2013,2013.Tohjima,Y.,Mukai,H.,Machida,T.,Hoshina,Y.,andNakaoka,S.-I.:GlobalcarbonbudgetsestimatedfromatmosphericO2/N2andCO2observationsinthewesternPacificregionovera15-yearperiod,Atmos.Chem.Phys.,19,9269–9285,https://doi.org/10.5194/acp-19-9269-2019,2019.Torero,M.andFAO:ImpactoftheUkraine-RussiaconflictonglobalfoodsecurityandrelatedmattersunderthemandateoftheFoodandAgricultureOrganizationoftheUnitedNations(FAO),https://www.fao.org/3/nj164en/nj164en.pdf,lastaccess:25September2022.Tubiello,F.N.,Conchedda,G.,Wanner,N.,Federici,S.,Rossi,S.,andGrassi,G.:Carbonemissionsandremovalsfromforests:newestimates,1990–2020,EarthSyst.Sci.Data,13,1681–1691,https://doi.org/10.5194/essd-13-1681-2021,2021.Tyukavina,A.,Potapov,P.,Hansen,M.C.,Pickens,A.H.,Stehman,S.V.,Turubanova,S.,Parker,D.,Zalles,V.,Lima,A.,Kom-mareddy,I.,Song,X.-P.,Wang,L.,andHarris,N.:GlobalTrendsofForestLossDuetoFireFrom2001to2019,Front.RemoteSens.,3,825190,https://doi.org/10.3389/frsen.2022.825190,2022.UN:UnitedNationsStatisticsDivision:NationalAccountsMainAggregatesDatabase,http://unstats.un.org/unsd/snaama/Introduction.asp(lastaccess:25September2022),2021.UNFCCC:Synthesisreportforthetechnicalassessmentcompo-nentofthefirstglobalstocktake,https://unfccc.int/documents/461466,lastaccess:25September2022.Urakawa,L.S.,Tsujino,H.,Nakano,H.,Sakamoto,K.,Yamanaka,G.,andToyoda,T.:Thesensitivityofadepth-coordinatemodeltodiapycnalmixinginducedbypracticalimplementationsoftheisopycnaltracerdiffusionscheme,OceanModel.,154,101693,https://doi.org/10.1016/j.ocemod.2020.101693,2020.Vale,M.M.,Berenguer,E.,ArgollodeMenezes,M.,ViveirosdeCastro,E.B.,PugliesedeSiqueira,L.,andPortela,R.deC.Q.:TheCOVID-19pandemicasanopportunitytoweakenen-vironmentalprotectioninBrazil,Biol.Conserv.,255,108994,https://doi.org/10.1016/j.biocon.2021.108994,2021.vanderLaan-Luijkx,I.T.,vanderVelde,I.R.,vanderVeen,E.,Tsuruta,A.,Stanislawska,K.,Babenhauserheide,A.,Zhang,H.F.,Liu,Y.,He,W.,Chen,H.,Masarie,K.A.,Krol,M.C.,andPeters,W.:TheCarbonTrackerDataAssimila-tionShell(CTDAS)v1.0:implementationandglobalcar-bonbalance2001–2015,Geosci.ModelDev.,10,2785–2800,https://doi.org/10.5194/gmd-10-2785-2017,2017.vanderVelde,I.R.,Miller,J.B.,Schaefer,K.,vanderWerf,G.R.,Krol,M.C.,andPeters,W.:Terrestrialcyclingof13CO2byphotosynthesis,respiration,andbiomassburninginSiBCASA,Biogeosciences,11,6553–6571,https://doi.org/10.5194/bg-11-6553-2014,2014.vanderWerf,G.R.,Randerson,J.T.,Giglio,L.,Collatz,G.J.,Mu,M.,Kasibhatla,P.S.,Morton,D.C.,DeFries,R.S.,Jin,Y.,andvanLeeuwen,T.T.:Globalfireemissionsandthecontributionofdeforestation,savanna,forest,agricultural,andpeatfires(1997–2009),Atmos.Chem.Phys.,10,11707–11735,https://doi.org/10.5194/acp-10-11707-2010,2010.vanderWerf,G.R.,Randerson,J.T.,Giglio,L.,vanLeeuwen,T.T.,Chen,Y.,Rogers,B.M.,Mu,M.,vanMarle,M.J.E.,Morton,D.C.,Collatz,G.J.,Yokelson,R.J.,andKasibhatla,P.S.:Globalfireemissionsestimatesduring1997–2016,EarthSyst.Sci.Data,9,697–720,https://doi.org/10.5194/essd-9-697-2017,2017.vanWees,D.,vanderWerf,G.R.,Randerson,J.T.,Andela,N.,Chen,Y.,andMorton,D.C.:Theroleoffireinglobalforestlossdynamics,Glob.ChangeBiol.,27,2377–2391,https://doi.org/10.1111/gcb.15591,2021.VaittinadaAyar,P.,Bopp,L.,Christian,J.R.,Ilyina,T.,Krasting,J.P.,Séférian,R.,Tsujino,H.,Watanabe,M.,Yool,A.,andTjipu-tra,J.:ContrastingprojectionsoftheENSO-drivenCO2fluxvariabilityintheequatorialPacificunderhigh-warmingscenario,EarthSyst.Dynam.,13,1097–1118,https://doi.org/10.5194/esd-13-1097-2022,2022.Viovy,N.:CRUNCEPdataset,ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm(lastaccess:25September2022),2016.Vuichard,N.,Messina,P.,Luyssaert,S.,Guenet,B.,Zaehle,S.,Ghattas,J.,Bastrikov,V.,andPeylin,P.:Accountingforcar-bonandnitrogeninteractionsintheglobalterrestrialecosystemmodelORCHIDEE(trunkversion,rev4999):multi-scaleevalua-tionofgrossprimaryproduction,Geosci.ModelDev.,12,4751–4779,https://doi.org/10.5194/gmd-12-4751-2019,2019.Walker,A.P.,Quaife,T.,Bodegom,P.M.,DeKauwe,M.G.,Keenan,T.F.,Joiner,J.,Lomas,M.R.,MacBean,N.,Xu,C.,Yang,X.,andWoodward,F.I.:Theimpactofalternativetrait-scalinghypothesesforthemaximumphotosyntheticcarboxyla-tionrate(Vcmax)onglobalgrossprimaryproduction,NewPhy-tol.,215,1370–1386,https://doi.org/10.1111/nph.14623,2017.Walker,A.P.,DeKauwe,M.G.,Bastos,A.,Belmecheri,S.,Geor-giou,K.,Keeling,R.F.,McMahon,S.M.,Medlyn,B.E.,Moore,D.J.P.,Norby,R.J.,Zaehle,S.,Anderson-Teixeira,K.J.,Bat-tipaglia,G.,Brienen,R.J.W.,Cabugao,K.G.,Cailleret,M.,Campbell,E.,Canadell,J.G.,Ciais,P.,Craig,M.E.,Ellsworth,D.S.,Farquhar,G.D.,Fatichi,S.,Fisher,J.B.,Frank,D.C.,EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022P.Friedlingsteinetal.:GlobalCarbonBudget20224899Graven,H.,Gu,L.,Haverd,V.,Heilman,K.,Heimann,M.,Hun-gate,B.A.,Iversen,C.M.,Joos,F.,Jiang,M.,Keenan,T.F.,Knauer,J.,Körner,C.,Leshyk,V.O.,Leuzinger,S.,Liu,Y.,MacBean,N.,Malhi,Y.,McVicar,T.R.,Penuelas,J.,Pongratz,J.,Powell,A.S.,Riutta,T.,Sabot,M.E.B.,Schleucher,J.,Sitch,S.,Smith,W.K.,Sulman,B.,Taylor,B.,Terrer,C.,Torn,M.S.,Treseder,K.K.,Trugman,A.T.,Trumbore,S.E.,vanMantgem,P.J.,Voelker,S.L.,Whelan,M.E.,andZuidema,P.A.:IntegratingtheevidenceforaterrestrialcarbonsinkcausedbyincreasingatmosphericCO2,NewPhytol.,229,2413–2445,https://doi.org/10.1111/nph.16866,2021.Wanninkhof,R.:Relationshipbetweenwindspeedandgasex-changeovertheocean,J.Geophys.Res.-Oceans.,97,7373–7382,https://doi.org/10.1029/92JC00188,1992.Wanninkhof,R.:Relationshipbetweenwindspeedandgasex-changeovertheoceanrevisited,Limnol.Oceanogr.Methods.,12,351–362,https://doi.org/10.4319/lom.2014.12.351,2014.Wanninkhof,R.,Park,G.-H.,Takahashi,T.,Sweeney,C.,Feely,R.,Nojiri,Y.,Gruber,N.,Doney,S.C.,McKinley,G.A.,Lenton,A.,LeQuéré,C.,Heinze,C.,Schwinger,J.,Graven,H.,andKhatiwala,S.:Globaloceancarbonuptake:magni-tude,variabilityandtrends,Biogeosciences,10,1983–2000,https://doi.org/10.5194/bg-10-1983-2013,2013.Watson,A.J.,Schuster,U.,Shutler,J.D.,Holding,T.,Ashton,I.G.C.,Landschützer,P.,Woolf,D.K.,andGoddijn-Murphy,L.:Revisedestimatesofocean-atmosphereCO2fluxarecon-sistentwithoceancarboninventory,Nat.Commun.,11,4422,https://doi.org/10.1038/s41467-020-18203-3,2020.Watson,R.T.,Rohde,H.,Oeschger,H.,andSiegenthaler,U.:GreenhouseGasesandAerosols,in:ClimateChange:TheIPCCScientificAssessment.IntergovernmentalPanelonCli-mateChange(IPCC),editedby:Houghton,J.T.,Jenkins,G.J.,andEphraums,J.J.,CambridgeUniversityPress,Cambridge,ISBN978-0521403603,1990.Weiss,R.F.andPrice,B.A.:Nitrousoxidesolubilityinwaterandseawater,Mar.Chem.,8,347–359,https://doi.org/10.1016/0304-4203(80)90024-9,1980.Wenzel,S.,Cox,P.M.,Eyring,V.,andFriedlingstein,P.:Pro-jectedlandphotosynthesisconstrainedbychangesintheseasonalcycleofatmosphericCO2,Nature,538,499–501,https://doi.org/10.1038/nature19772,2016.Wilkenskjeld,S.,Kloster,S.,Pongratz,J.,Raddatz,T.,andRe-ick,C.H.:Comparingtheinfluenceofnetandgrossan-thropogenicland-useandland-coverchangesonthecar-boncycleintheMPI-ESM,Biogeosciences,11,4817–4828,https://doi.org/10.5194/bg-11-4817-2014,2014.Wiltshire,A.J.,Burke,E.J.,Chadburn,S.E.,Jones,C.D.,Cox,P.M.,Davies-Barnard,T.,Friedlingstein,P.,Harper,A.B.,Liddicoat,S.,Sitch,S.,andZaehle,S.:JULES-CN:acou-pledterrestrialcarbon–nitrogenscheme(JULESvn5.1),Geosci.ModelDev.,14,2161–2186,https://doi.org/10.5194/gmd-14-2161-2021,2021.Woodward,F.I.andLomas,M.R.:Vegetationdynamics–sim-ulatingresponsestoclimaticchange,Biol.Rev.,79,643–670,https://doi.org/10.1017/S1464793103006419,2004.Wright,R.M.,LeQuéré,C.,Buitenhuis,E.,Pitois,S.,andGibbons,M.J.:Roleofjellyfishintheplanktonecosystemrevealedusingaglobaloceanbiogeochemicalmodel,Biogeosciences,18,1291–1320,https://doi.org/10.5194/bg-18-1291-2021,2021.Wunder,S.,Kaimowitz,D.,Jensen,S.,andFeder,S.:Coronavirus,macroeconomy,andforests:Whatlikelyimpacts?,For.PolicyEcon.,131,102536,https://doi.org/10.1016/j.forpol.2021.102536,2021.Xi,F.,Davis,S.J.,Ciais,P.,Crawford-Brown,D.,Guan,D.,Pade,C.,Shi,T.,Syddall,M.,Lv,J.,Ji,L.,Bing,L.,Wang,J.,Wei,W.,Yang,K.-H.,Lagerblad,B.,Galan,I.,Andrade,C.,Zhang,Y.,andLiu,Z.:Substantialglobalcar-bonuptakebycementcarbonation,Nat.Geosci.,9,880–883,https://doi.org/10.1038/ngeo2840,2016.Xia,J.,Chen,Y.,Liang,S.,Liu,D.,andYuan,W.:Globalsimulationsofcarbonallocationcoefficientsfordeciduousvegetationtypes,TellusB,67,28016,https://doi.org/10.3402/tellusb.v67.28016,2015.Yeager,S.G.,Rosenbloom,N.,Glanville,A.A.,Wu,X.,Simpson,I.,Li,H.,Molina,M.J.,Krumhardt,K.,Mogen,S.,Lindsay,K.,Lombardozzi,D.,Wieder,W.,Kim,W.M.,Richter,J.H.,Long,M.,Danabasoglu,G.,Bailey,D.,Holland,M.,Lovenduski,N.,Strand,W.G.,andKing,T.:TheSeasonal-to-MultiyearLargeEnsemble(SMYLE)predictionsystemusingtheCommunityEarthSystemModelversion2,Geosci.ModelDev.,15,6451–6493,https://doi.org/10.5194/gmd-15-6451-2022,2022.Yin,X.:Responsesofleafnitrogenconcentrationandspe-cificleafareatoatmosphericCO2enrichment:aretrospec-tivesynthesisacross62species:Leafresponsetoatmo-sphericCO2enrichment,Glob.ChangeBiol.,8,631–642,https://doi.org/10.1046/j.1365-2486.2002.00497.x,2002.Yu,Z.,Ciais,P.,Piao,S.,Houghton,R.A.,Lu,C.,Tian,H.,Agath-okleous,E.,Kattel,G.R.,Sitch,S.,Goll,D.,Yue,X.,Walker,A.,Friedlingstein,P.,Jain,A.K.,Liu,S.,andZhou,G.:ForestexpansiondominatesChina’slandcarbonsinksince1980,Nat.Commun.,13,5374,https://doi.org/10.1038/s41467-022-32961-2,2022.Yuan,W.,Liu,D.,Dong,W.,Liu,S.,Zhou,G.,Yu,G.,Zhao,T.,Feng,J.,Ma,Z.,Chen,J.,Chen,Y.,Chen,S.,Han,S.,Huang,J.,Li,L.,Liu,H.,Liu,S.,Ma,M.,Wang,Y.,Xia,J.,Xu,W.,Zhang,Q.,Zhao,X.,andZhao,L.:Multi-yearprecipitationreductionstronglydecreasescarbonuptakeovernorthernChina,J.Geophys.Res.-Biogeo.,119,881–896,https://doi.org/10.1002/2014JG002608,2014.Yue,C.,Ciais,P.,Luyssaert,S.,Li,W.,McGrath,M.J.,Chang,J.,andPeng,S.:Representinganthropogenicgrosslandusechange,woodharvest,andforestagedynamicsinaglobalvegetationmodelORCHIDEE-MICTv8.4.2,Geosci.ModelDev.,11,409–428,https://doi.org/10.5194/gmd-11-409-2018,2018.Yue,X.andUnger,N.:TheYaleInteractiveterrestrialBiospheremodelversion1.0:description,evaluationandimplementationintoNASAGISSModelE2,Geosci.ModelDev.,8,2399–2417,https://doi.org/10.5194/gmd-8-2399-2015,2015.Zaehle,S.andFriend,A.D.:Carbonandnitrogencycledynam-icsintheO-CNlandsurfacemodel:1.Modeldescription,site-scaleevaluation,andsensitivitytoparameterestimates:Site-scaleevaluationofaC-Nmodel,GlobalBiogeochem.Cy.,24,GB1005,https://doi.org/10.1029/2009GB003521,2010.Zaehle,S.,Ciais,P.,Friend,A.D.,andPrieur,V.:Car-bonbenefitsofanthropogenicreactivenitrogenoffsetbynitrousoxideemissions,Nat.Geosci.,4,601–605,https://doi.org/10.1038/ngeo1207,2011.https://doi.org/10.5194/essd-14-4811-2022EarthSyst.Sci.Data,14,4811–4900,20224900P.Friedlingsteinetal.:GlobalCarbonBudget2022Zaehle,S.,Medlyn,B.E.,DeKauwe,M.G.,Walker,A.P.,Dietze,M.C.,Hickler,T.,Luo,Y.,Wang,Y.-P.,El-Masri,B.,Thornton,P.,Jain,A.,Wang,S.,Warlind,D.,Weng,E.,Parton,W.,Iversen,C.M.,Gallet-Budynek,A.,McCarthy,H.,Finzi,A.,Hanson,P.J.,Prentice,I.C.,Oren,R.,andNorby,R.J.:Evaluationof11ter-restrialcarbon–nitrogencyclemodelsagainstobservationsfromtwotemperateFree-AirCO2Enrichmentstudies,NewPhytol.,202,803–822,https://doi.org/10.1111/nph.12697,2014.Zeng,J.,Nojiri,Y.,Landschützer,P.,Telszewski,M.,andNakaoka,S.:AGlobalSurfaceOceanfCO2ClimatologyBasedonaFeed-ForwardNeuralNetwork,J.Atmos.Ocean.Tech.,31,1838–1849,https://doi.org/10.1175/JTECH-D-13-00137.1,2014.Zheng,B.,Chevallier,F.,Yin,Y.,Ciais,P.,Fortems-Cheiney,A.,Deeter,M.N.,Parker,R.J.,Wang,Y.,Worden,H.M.,andZhao,Y.:Globalatmosphericcarbonmonoxidebudget2000–2017inferredfrommulti-speciesatmosphericinversions,EarthSyst.Sci.Data,11,1411–1436,https://doi.org/10.5194/essd-11-1411-2019,2019.Zheng,B.,Ciais,P.,Chevallier,F.,Chuvieco,E.,Chen,Y.,andYang,H.:Increasingforestfireemissionsdespitethedeclineinglobalburnedarea,Sci.Adv.,7,eabh2646,https://doi.org/10.1126/sciadv.abh2646,2021.Zscheischler,J.,Mahecha,M.D.,Avitabile,V.,Calle,L.,Carval-hais,N.,Ciais,P.,Gans,F.,Gruber,N.,Hartmann,J.,Herold,M.,Ichii,K.,Jung,M.,Landschützer,P.,Laruelle,G.G.,Lauerwald,R.,Papale,D.,Peylin,P.,Poulter,B.,Ray,D.,Regnier,P.,Röden-beck,C.,Roman-Cuesta,R.M.,Schwalm,C.,Tramontana,G.,Tyukavina,A.,Valentini,R.,vanderWerf,G.,West,T.O.,Wolf,J.E.,andReichstein,M.:Reviewsandsyntheses:Anempiricalspatiotemporaldescriptionoftheglobalsurface–atmospherecar-bonfluxes:opportunitiesanddatalimitations,Biogeosciences,14,3685–3703,https://doi.org/10.5194/bg-14-3685-2017,2017.EarthSyst.Sci.Data,14,4811–4900,2022https://doi.org/10.5194/essd-14-4811-2022

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱