【推荐】全球光伏市场趋势2023(英版)VIP专享VIP免费

Global Trends in Solar Power
July 2023
Trends in Solar PV..………………………………………………..15
Global Solar Overview……………………………………………..7
Introduction…………………………………………………………….4
Executive Summary………………………………………………....3
Solar & Equity……………………………………………………….48
Way Forward………………………………………………………..53
References……………………………………………………..……54
Contents
1
2
3
4
7
5
6
4.1 NDCs and Renewable Energy Trends…………………………
16
4.2 Policy and Regulatory Trends…………………………………….
19
4.3 Solar Technology Trends……………………………………………
25
4.4 Solar Supply Chain Trends………………………………………
30
4.5 Solar Market Trends…………………………………………………
35
4.6 Solar Investment Trends……………………………………………
42
4.7 Solar Employment Trends………………………………………
45
Executive Summary
In response to an unprecedented health crisis, countries had hoped to seize the post Covid-19 opportunity for a
green and sustainable recovery. Renewable energy sector experienced record growth in power capacity in 2022 due
to the newly installed PV systems, overall rise in electricity demand, government incentives and growing awareness
of need to transition to clean energy sources.
The solar PV market maintained its record-breaking streak, with new capacity installations totalling to approximately
191 GW in 2022 (IRENA, 2023). This was the largest annual capacity increase ever recorded and brought the
cumulative global solar PV capacity to 1,133 GW. The solar PV market continued its steady growth despite
disruptions across the solar value chain, mainly due to sharp increases in the costs of raw materials and shipping. In
2022, 114 ISA countries (members and signatories) represented approximately 489 GW (43%) of the global solar PV
capacity. Europe & others region account for 56%of the total installed solar capacity among the ISA members
followed by the Asia-Pacific (36%), Latin America & Caribbean and Africa regions contributing to approximately 7%
and 1% respectively.
In addition to the increase in solar capacity installations, 135 countries had included renewable energy components
in their NDCs globally. The latest/revised renewable energy target in ISA Member countries are discussed in further
sections of this report. The number of countries with renewable energy policies increased in 2022, continuing the
multi-year trend seen in 2021 and 2020. Most countries support renewables with policy instruments that often vary
depending on the technology, scale or other features of installation (e.g., centralised or decentralised).
Innovation and cost trends are being increasingly seen across a broad range of technologies. The emergence of new
cell architectures has enabled higher efficiency levels. In particular, the most important market shift in cell
architecture has resulted from bifacial cells and modules. Other technology improvements of solar such as solar
trees, solar carports and floating solar are also discussed in this report. Solar PV cost trends emphasise on the major
drivers for reduction in the cost of solar PV in 2023 and the decline in costs of solar PV module and other
components. Major factors contributing to declining module costs included polysilicon availability and decline in the
shipping costs and raw materials.
The section on Solar Market Trends describes the ‘Distributed Renewables for Energy Access’ (DREA) systems, which
are a key solution for fulfilling the modern energy needs and also improving the livelihoods of hundreds of millions
of people presently lacking access to electricity/clean cooking solutions. It specifically holds the key in cases where
development of electric grid to deliver electricity up to the last mile is commercially not viable. Further, the report
captures the market trends covering solar infrastructure and electricity access rates in ISA Member countries.
Global investment in renewables reached USD 0.5 Tn in 2022 due to the global rise in solar PV installations. Solar PV
dominated investment in 2022, accounting for 64%of the renewable energy investment. The overall snapshot of the
investment trends across Asia-Pacific, Africa, Europe & others and Latin America & Caribbean regions are captured
in the solar PV investment trends section of this report.
This report is intended to educate the reader to understand the ongoing trends in the solar space across the world
in terms of technology, policy, employment etc. and could bring out positive change in the lives of people and the
planet.
1
Global trends in Solar Power
3
GlobalTrendsinSolarPowerJuly2023TrendsinSolarPV..………………………………………………..15GlobalSolarOverview……………………………………………..7Introduction…………………………………………………………….4ExecutiveSummary………………………………………………....3Solar&Equity……………………………………………………….48WayForward………………………………………………………..53References……………………………………………………..……54Contents12347564.1NDCsandRenewableEnergyTrends…………………………164.2PolicyandRegulatoryTrends…………………………………….194.3SolarTechnologyTrends……………………………………………254.4SolarSupplyChainTrends…………………………………………304.5SolarMarketTrends…………………………………………………354.6SolarInvestmentTrends……………………………………………424.7SolarEmploymentTrends…………………………………………45ExecutiveSummaryInresponsetoanunprecedentedhealthcrisis,countrieshadhopedtoseizethepostCovid-19opportunityforagreenandsustainablerecovery.Renewableenergysectorexperiencedrecordgrowthinpowercapacityin2022duetothenewlyinstalledPVsystems,overallriseinelectricitydemand,governmentincentivesandgrowingawarenessofneedtotransitiontocleanenergysources.ThesolarPVmarketmaintaineditsrecord-breakingstreak,withnewcapacityinstallationstotallingtoapproximately191GWin2022(IRENA,2023).ThiswasthelargestannualcapacityincreaseeverrecordedandbroughtthecumulativeglobalsolarPVcapacityto1,133GW.ThesolarPVmarketcontinueditssteadygrowthdespitedisruptionsacrossthesolarvaluechain,mainlyduetosharpincreasesinthecostsofrawmaterialsandshipping.In2022,114ISAcountries(membersandsignatories)representedapproximately489GW(43%)oftheglobalsolarPVcapacity.Europe&othersregionaccountfor56%ofthetotalinstalledsolarcapacityamongtheISAmembersfollowedbytheAsia-Pacific(36%),LatinAmerica&CaribbeanandAfricaregionscontributingtoapproximately7%and1%respectively.Inadditiontotheincreaseinsolarcapacityinstallations,135countrieshadincludedrenewableenergycomponentsintheirNDCsglobally.Thelatest/revisedrenewableenergytargetinISAMembercountriesarediscussedinfurthersectionsofthisreport.Thenumberofcountrieswithrenewableenergypoliciesincreasedin2022,continuingthemulti-yeartrendseenin2021and2020.Mostcountriessupportrenewableswithpolicyinstrumentsthatoftenvarydependingonthetechnology,scaleorotherfeaturesofinstallation(e.g.,centralisedordecentralised).Innovationandcosttrendsarebeingincreasinglyseenacrossabroadrangeoftechnologies.Theemergenceofnewcellarchitectureshasenabledhigherefficiencylevels.Inparticular,themostimportantmarketshiftincellarchitecturehasresultedfrombifacialcellsandmodules.Othertechnologyimprovementsofsolarsuchassolartrees,solarcarportsandfloatingsolararealsodiscussedinthisreport.SolarPVcosttrendsemphasiseonthemajordriversforreductioninthecostofsolarPVin2023andthedeclineincostsofsolarPVmoduleandothercomponents.Majorfactorscontributingtodecliningmodulecostsincludedpolysiliconavailabilityanddeclineintheshippingcostsandrawmaterials.ThesectiononSolarMarketTrendsdescribesthe‘DistributedRenewablesforEnergyAccess’(DREA)systems,whichareakeysolutionforfulfillingthemodernenergyneedsandalsoimprovingthelivelihoodsofhundredsofmillionsofpeoplepresentlylackingaccesstoelectricity/cleancookingsolutions.Itspecificallyholdsthekeyincaseswheredevelopmentofelectricgridtodeliverelectricityuptothelastmileiscommerciallynotviable.Further,thereportcapturesthemarkettrendscoveringsolarinfrastructureandelectricityaccessratesinISAMembercountries.GlobalinvestmentinrenewablesreachedUSD0.5Tnin2022duetotheglobalriseinsolarPVinstallations.SolarPVdominatedinvestmentin2022,accountingfor64%oftherenewableenergyinvestment.TheoverallsnapshotoftheinvestmenttrendsacrossAsia-Pacific,Africa,Europe&othersandLatinAmerica&CaribbeanregionsarecapturedinthesolarPVinvestmenttrendssectionofthisreport.Thisreportisintendedtoeducatethereadertounderstandtheongoingtrendsinthesolarspaceacrosstheworldintermsoftechnology,policy,employmentetc.andcouldbringoutpositivechangeinthelivesofpeopleandtheplanet.1GlobaltrendsinSolarPower3IntroductionInternationalSolarAlliancewaslaunchedonNovember30,2015byIndiaandFranceandISA’sframeworkagreementcameintoforceonDecember7,2017.HeadquarteredinIndia,theallianceof114countriesworkstoaddressenergyneedsandchallengesinMemberCountriesandscaleupsolarthroughmultipleflagshipinterventions.AspartofitsEaseofDoingSolar(EoDS)initiativewhichprovidesdataonrenewableenergywithafocusonsolarforindividualMemberCountries,ISAalsopublishestheGlobaltrendsinSolarPowerreportwhichprovidesanoverviewoftrendsintheSolarSector.AboutInternationalSolarAlliance(ISA)InternationalSolarAlliance(ISA)aimstoprovideadedicatedplatformforcooperationamongsolar-resource-richcountries,throughwhichtheglobalcommunity(governments,bilateral/multilateralorganizations,corporates,industryandthestakeholders)cancontributetohelpachievethecommongoalofincreasingtheuseandqualityofsolarenergy.Further,ISAseekstomeettheenergyneedsofitsprospectivemembercountriesinasafe,convenient,affordable,equitableandsustainablemanner.ISAhasconceptualizedtheEaseofDoingSolar(“EoDS”)reportforitsmembercountriestocaptureanddevelopaholisticviewofacountry’ssolarecosystem.TheGlobaltrendsinSolarPowerreport,asapartoftheEoDSinitiative,isenvisagedtopresentkeytrendsintheglobalsolarmarketwithafocusonISAmembercountries.Theobjectiveofthereportistocapturethebestpracticesandtrendsintheareaofpolicy,technology,marketeco-system,supplychainandinvestment/employmentintheindustrygloballywithafocusonISAmembercountries.Toavertthedeleteriouseffectsofclimatechange,theworldisundergoingamajortransitionintheenergysectortoachievenet-zerotargets.Renewableenergyoccupiesacentralroleinenergytransition,anditisevidentfromtheincreasingtrendofcapacityadditions,employments,andincreasingsolarenergyinvestments.Themajordriversfortheincreasedpenetrationofsolardeploymentaredescribedbelow,▪StrongpolicysupportforsolarPVisdrivingtheaccelerationincapacitygrowth-PolicysupportremainsaprincipaldriverofsolarPVdeploymentacrosstheglobe.▪SolarPVisthemajorrenewabletechnologyofchoiceintheprivatesector-CompaniesinvestinginsolarPVinstallationsontheirownpremisesareresponsiblefor30%oftotalinstalledPVcapacityasof2021.▪CompaniesenteringintocorporatePPAs–signingdirectcontractswithsolarPVoperatorsforthepurchaseofgeneratedelectricity.SolarPVplantsdominaterenewablesPPAs,withashareofalmost75%in2020.▪Netzeroambitionsofcorporate-Manycorporateshadsettheirambitiontobeanetzerocompany.Gettingtonetzerorequirestremendous,rapidchangeandlarge-scaletechnologydeploymentacrossindustries.2GlobaltrendsinSolarPower4GlossaryGlobaltrendsinSolarPower5AbbreviationDefinitionAPVAgrophotovoltaicBoSBalanceofSystemBnBillionCAGRCompoundAnnualGrowthRateCMERICentralMechanicalEngineeringResearchInstituteCSIRCouncilofScientificandIndustrialResearchCSPConcentratedSolarPowerDREADistributedRenewablesforenergyaccessEPCEngineering,procurementandconstructionEUEuropeanUnionEVElectricVehicleFIPFeed-inpremiumFITFeedInTariffGWGigawattGWhGigawatt-hourKmKilometrekWhKilowatt-hourLCOELevelizedcostofelectricityLNOBLeavenoonebehindMnMillionMUMillionUnitsMVAMillionVoltAmpereAbbreviationDefinitionMWMegawattMWhMegawatt-hourMWpMegawattpeakNDCNationallyDeterminedContributionOGSOff-GridSolutionsO&MOperationandMaintenancePLIProduction-linkedincentivePPAPowerpurchasingagreementPVPhotovoltaicP2PPeer-to-peerRERenewableEnergyRECRenewableEnergyCertificateRPSRenewablePortfolioStandardsSDGSustainableDevelopmentGoalsSHSSolarHomeSystemsSTEMScience,Technology,EngineeringandMathematicsTnTrillionTWhTerawatt-hourUNUnitedNationsUSDUnitedStatesDollarGlobalTrendsinRenewables&Solar135countrieshavenotifiednetzerotarget,covering88%ofglobalemissionsAtthe2021UNclimatesummit,countriesagreedtoaphase-downofunabatedcoalpower135countrieshavenotifiedrenewablepowertargets,and17countrieshavesolarspecifictargets3,372GWofglobalinstalledrenewablepowercapacityin2022USD0.5TrillioninrenewablesandUSD308Billioninvestedinsolarin20221,053GWofglobalinstalledsolarenergycapacityin202212.7MillionWorldwideemploymentinrenewableenergyin20214.3MillionjobsinsolarPV,catersonethirdofthetotalrenewableenergyworkforcein2021FossilfuelsubsidiesreachedUSD532Billionin2021GlobaltrendsinSolarPower6Source:REN21,IEA,IRENA;2022GlobalSolarOverview3GlobalSolarMarketArenewable-basedeconomyisagamechangerforamoresecure,low-costandsustainableenergyfuture.Developmentofrenewableenergyisatthecoreofenergytransition.Globallyrenewablesareexpectedtobecomethenewbaseloadaccountingfor50%ofthepowermixby2030and85%by2050(IRENA,2022).Globalrenewableinstalledcapacitygrowthacceleratedin2022addingupto295GW1.ThegrowthinrenewableenergypenetrationwaslargelybasedonnewlyinstalledPVsystems,overallriseinelectricitydemand,governmentincentivesandgrowingawarenessofneedtotransitiontocleanenergysources.Solarsectorisgainingtractioninrecentyearsandisbecomingadominantforceinrenewableenergydomain.ThesolarPVmarketmaintaineditsrecord-breakingstreakwithnewcapacityinstallationstotallingapproximately191GWin20221.Thegraphbelow,depictsthecumulativeglobalsolarPVcapacityinthelastdecade.CountrieslikeChina,theUnitedStates,Japan,IndiaandGermanyhavemadesomeofthesignificantcontributionstoglobalsolarPVcapacity.+31+30+38+40+50+77+103+104+112+139+175+191701041421822323094125166287679421,133020040060080010001200201120122013201420152016201720182019202020212022GlobalSolarPVCapacityandAnnualAdditionsinGW(2011-2022)Previousyear‘scapacityAnnualadditionsCumulativeglobalsolarPVcapacity37010414218223230941251662876794201002003004005006007008009001000201120122013201420152016201720182019202020212022GlobalSolarPVCapacityinGW,byCountry(2011-2022)ChinaUnitedStatesJapanIndiaGermanyRestofWorldWorldSource:REN21,IRENA;20221REN21,2022GlobaltrendsinSolarPower81,133RegionalInsightsAfricaThemarketleadersintheAfricanregionintermsoftotalsolarinstalledcapacityareEgypt,Algeria,Morocco,Senegal,andMaliwith2,949MWcapacitycontributing62%ofthetotalinstalledsolarcapacityinAfrica.Owingtohigherlevelsofsolarirradiationsintheregion,countriesinAfricaarebestowedwithlargesolarpotentialandtechnologicalfeasibility.Significantlylowlevelsofaccesstoelectricityinsomecountriespresentasignificantopportunityforoff-gridsolartechnologies.ThetotalinstalledcapacityofsolarPVinEgypthasreached1,704MWin2022from160MWin2017,grownataCAGRof60%.Thecountryistargetingrenewableenergycapacitytoreachelectricpowercontributiontargetof42%by2035asperEgypt’sIntegratedSustainableEnergyStrategy2035.EgyptAlgeriaAlgeriaconstitutesa9.2%shareinthetotalinstalledcapacityofsolarPVintheAfricanregion.Thetotalinstalledcapacityhasreached435MWin2022from400MWin2017,grownataCAGRof2%.By2030,itaspirestothedeploymentofsolarphotovoltaicandwindpoweraswellasthermalsolarenergyonalargescale.Italsoaimstoreachthetargetthat27%oftheelectricityproducednationallyisderivedfromrenewablesourcesofenergyby2030.Moroccoaccountsfor6.7%shareinthetotalinstalledsolarPVcapacityinAfrica.Thetotalinstalledcapacityhasreached318MWin2022from24MWin2017,grownataCAGRof68%.Moroccoistargetingtoachievea52%REshare(20%fromsolarenergy,20%fromwindenergyand12%fromhydraulicenergy)ingenerationmixby2030.MoroccoMaliconstitutesa4.8%shareinthetotalinstalledcapacityofsolarPVintheAfricanregion.Thetotalinstalledcapacityhasreached229MWin2022from19MWin2017,grownataCAGRof64%.Namibia’seffortsinrenewablescontributedtoa30%reductioninelectricityimportedin2018whichresultedin330MWofsolarPVgenerationperannumuntil2030.MaliSenegalaccountsfor5.5%shareinthetotalinstalledcapacityofsolarPVintheAfricanregion.OwingtothegovernmenttargettoincreasetheshareofREinthegenerationmixandfavourablepoliciesfortheREsector,thetotalinstalledcapacityhasreached263MWin2022from107MWin2017,grownataCAGRof20%.SenegalSource:IRENA,2022GlobaltrendsinSolarPower935.8%9.2%6.7%5.5%4.8%38.0%0%5%10%15%20%25%30%35%40%1,704MW435MW318MW263MW229MW1,804MWEgyptAlgeriaMoroccoSenegalMaliOthersTop5ISAMemberCountriesbySolarPVInstallation,2022(Total:2,949MW)AsiaPacificJapan,IndiaandAustraliahavethemajorinstallationsaccountingfor96.4%oftotalcapacityintheregion.TheAsiaandPacificregioncompriseadiverseanddynamicregionoftheglobe,with4.4Bnpeoplelivingin58markets,rangingfromthesmallislandeconomiesthatareamongthemostvulnerabletotheimpactoftheclimatechangetotheworld’slargestenergyconsumer.Alongwiththevastrenewableenergypotential,theregionalreadypossessessignificantknowledgeandexpertiseonrenewables.JapanisthemarketleaderinAsiaandPacificregionwith78,833MWofsolarPVcapacityinstalledin2022from49,500MWin2017,grownataCAGRof10%.TheJapanesegovernmentdevelopedasetofmeasurestoexpandsolarPV,whichincluderequiring60%ofnewresidentialbuildingstoincluderooftopPVandderegulatinglandzoningtoallowPVinstallationsonagriculturalland.JapanIndiaIndiahasshowntremendousgrowthovertherecentyearswiththetotalsolarPVinstalledcapacityreaching62,804MWin2022from17,923MWin2017,grownataCAGRof29%.Marketexpansionwasdrivenmainlybythefocusonlocalmanufacturing.Thecountryistargetingtoachieve50%cumulativeelectricpowerinstalledcapacityfromnon-fossilfuelbasedenergyresourcesby2030.ForAustralia,thetotalinstalledcapacityofsolarPVinthecountryhasreached26,789MWin2022from7,352MWin2017,grownataCAGRof30%.In2021,Australiasetanewglobalrecordof1kWofinstalledsolarPVpercapita,whichwas31%higherthanintherunner-upcountrytheNetherlands(0.765kWpercapita).AustraliaThetotalinstalledcapacityofsolarPVinthecountryhasreached2,940MWin2022from255MWin2017,grownataCAGRof63%.UAE’sNationalEnergyStrategy2050envisagesa50%shareofcleanenergy(renewablesandnuclear)intheinstalledpowercapacitymixby2050.UAESriLanka’sinstalledcapacityofsolarPVreached714MWin2022from131MWin2017,grownataCAGRof40%.Thecountrycommittedtoachieve70%renewableenergyinelectricitygenerationby2030aspartofitslatestNDC.SriLankaSource:IRENA,2022GlobaltrendsinSolarPower1045.1%35.9%15.3%1.7%0.4%1.5%0%5%10%15%20%25%30%35%40%45%50%78,833MW62,804MW26,789MW2,940MW714MW2,664MWJapanIndiaAustraliaUnitedArabEmiratesSrilankaOthersTop5ISAMemberCountriesbySolarInstallation,2022(Total:172GW)EuropeandothersUnitedStatesofAmericaisthetopmarketleaderinEurope&othersregionandthetotalsolarPVinstalledcapacityhasreached1,11,535MWin2022from41,357MWin2017,grownataCAGRof22%.Withincreasedconsumerdemand,theresidentialsectorbrokerecordswithrooftopinstallationsof4.2GW–up30%from2020andthehighestannualgrowthratesince2015–toreachatotalcapacityof23.1GW.USAGermanyGermanyisthesecondmarketleaderintheEuroperegionandthetotalsolarPVinstalledcapacityhasreached66,552MWin2022from42,291MWin2017,grownataCAGRof9%.Thecountryhascommittedtoincreaserenewableenergyinfinalenergyconsumptiontoreachatleast32%by2030.ThetotalinstalledcapacityinItalyhasreached25,077MWin2022from19,682MWin2017,grownataCAGRof5%.Italyhascommittedtoincreaserenewableenergyinfinalenergyconsumptiontoreachatleast32%by2030.ItalyNetherlandsinstalledcapacityofsolarPVhasreached22,590MWin2022from2,903MWin2017,grownataCAGRof51%.Theincreaseintheshareofsolarwasduetothreefactors:ahighernumberofPVinstallationsthatwentonlineduringtheyear,fallingelectricitydemand,andanexceptionalnumberofsunnyhours.NetherlandsSource:IRENA,2022GlobaltrendsinSolarPower1140.4%24.1%9.1%8.2%6.3%11.9%0%5%10%15%20%25%30%35%40%45%1,11,535MW66,552MW25,077MW22,590MW17,410MW32,863MWUnitedStatesofAmericaGermanyItalyNetherlandsFranceOthersTop5ISAMemberCountriesbySolarInstallation,2022(Total:243GW)ThemarketleadersintheregionareUnitedStatesofAmerica,Germany,Italy,NetherlandsandFrancewith243GWcapacitycontributing88.1%ofthetotalinstalledsolarcapacityintheregion.TheEUhasbeenafront-runnerinthespreadofsolarenergy.TheEuropeanGreenDealandtheREPowerEUplanhaveturnedsolarenergyintoabuildingblockoftheEU’stransitiontowardscleanenergy.TheaccelerateddeploymentofsolarenergycontributestoreducingtheEU’sdependenceonimportedfossilfuels.ThetotalinstalledcapacityofsolarPVinFrancehasreached17,410MWin2022from8,610MWin2017,grownataCAGRof15%.Francetargetstoreducetheshareofnuclearfrom70%to50%initselectricitymixby2035andcloseitscoalplantsby2022.Thegovernmentisseekingtoaccelerateprogressinsolarbystreamliningpermits,promotingflagshipinitiatives,andaligningregionalandnationalambitions.FranceUSAhasbeenincludedintheEuropeandOthersregionasperISA'sregionalclassificationofmembercountries.MajormarketsintheLACregionareBrazil,Chile,Argentina,DominicanRepublicandElSalvadorhavingtotalinstalledcapacityof32,731MWin2022,accountingfor96.8%oftotalcapacityintheregion.LatinAmericacomprisessomeofthemostdynamicrenewableenergymarketsintheworld,withmorethanaquarteroftheprimaryenergy(twicetheglobalaverage)comingfromrenewableenergysources.Thematuringtechnologiesandrenewableenergypolicyreformsofferanunprecedentedopportunitytofurthertapthevastrenewableenergypotentialintheregion.LatinAmericaandCaribbeanThetotalinstalledcapacityofsolarPVinBrazilhasreached24,079MWin2022from1,104MWin2017,grownataCAGRof85%.ThedistributedsolarinstallationledBrazil’smarketfornewlyaddedcapacity,with4GW,drivenbysoaringelectricitypricesduetoahydropowercrisisandbyanationalnetmeteringregulation.BrazilChileForChile,thetotalinstalledcapacityofsolarPVinthecountryhasreached6,142MWin2022from1,809MWin2017,grownataCAGRof28%.Chileishometooneofthehighestirradiationregionsintheworld,thedesertofAtacama,with“around60to70%ofsolarPV”capacityinstalledintheregionsofAtacama.ThetotalinstalledcapacityofsolarPVinArgentinahasreached1,104MWin2022from8.8MWin2017,grownataCAGRof163%.Amongtheseveralinitiativestoincreasethepowergeneration,theArgentiniangovernmenthaslaunchedtheRenovArProgrammetodeveloptheArgentina’srenewableenergysector.ArgentinaDominicanRepublic’sinstalledcapacityofsolarPVreached742MWin2022from106MWin2017,grownataCAGRof48%.Thecountryplansforthedisplacementoftheprivatevehiclesfleetby75%EVsand25%hybridsby2030withrechargingfromrenewablesourcesatanestimatedcostofUSD5Mn.DominicanRepublicThetotalinstalledcapacityofsolarPVinElSalvadorhasreached664MWin2022from120.5MWin2017,grownataCAGRof41%.ElSalvadorisintheprocessofimplementinganewlong-termnationalenergypolicy2020–2050,whichaimstoreduceelectricitytariffsinthecountrybyprioritisingrenewablesoverfuelimportsandfacilitatingtheremovalofelectricitysubsidies.ElSalvadorSource:IRENA,2022GlobaltrendsinSolarPower1271.2%18.2%3.3%2.2%2.0%3.2%0%10%20%30%40%50%60%70%80%24,079MW6,142MW1,104MW742MW664MW1,077MWBrazilChileArgentinaDominicanRepublicElSalvadorOthersTop5ISAMemberCountriesbySolarInstallation,2022(Total:33GW)AfricaPerCapitaElectricityDemandIn2022,Globalelectricitydemandreachedarecordhighof28,510TWh.Majoreconomieswereresponsibleforthemagnitudeofthisdemand:Chinafor8,840TWh(31%),Indiafor1,836TWh(6%),UnitedStatesfor4,335TWh(15%),theEuropeanUnionfor2,794TWh(10%),Japanfor968TWh(3%)andRussiafor1,102TWh(4%).Atagloballevel,theaveragepercapitaelectricitydemandreached3.6MWhin2022,withmajorcountriesabovetheglobalpercapitaaverage(UnitedStates13MWh,SouthKorea12MWh,China6.2MWh)andothercountriessuchasIndia1.3MWhandBangladesh0.6MWhfarbelow.Windandsolarmetthemajorityofdemandgrowth:In2022,growthinwindandsolarmet80%oftheincreaseinelectricitydemand,whilerenewablestogethermet92%ofthegrowth.InChina,windandsolarmet69%oftheelectricitydemandin2022.InIndia,windandsolarmet23%ofthedemandgrowth.IntheUnitedStates,windandsolarmet68%ofthedemandgrowth.Thefigurebelowshowstheelectricitydemandpercapitaacrossthe4geographicalregions(‘Africa’,‘Asia&Pacific’,‘Europeandothers’,‘LatinAmerica&Caribbean’),0.620.630.630.630.630.620.630.630.620.590.60.640.560.570.580.590.60.610.620.630.640.65201120122013201420152016201720182019202020212022PerCapitaElectricityDemandinMWh(2011-2022)Source:EMBER,2022▪TheAfricanregion’selectricitydemandpercapitaof0.6MWhissignificantlylowerthantheworldaverageof3.6MWhin2022.▪Africa’sproportionofelectricitydemandgrowthmetbycleanenergysourcesroughlydoubled,from23%during2008-2015to61%during2015-2022.Europeandothers6.176.26.136.026.056.116.146.156.095.926.26.055.755.85.855.95.9566.056.16.156.26.25201120122013201420152016201720182019202020212022PerCapitaElectricityDemandinMWh(2011-2022)Source:EMBER,2022▪TheEuroperegion’selectricitydemandpercapitaof6.05MWhissignificantlyhigherthantheworldaverageof3.6MWhin2022.▪Since2015,electricitydemandintheregionhasbeenbroadlyunchangedandthegrowthincleanpowerreducedfossilgeneration.▪EU’selectricitydemanddeclinedfrom6.2MWhto6.05MWhin2022duetothemildweather,alongsidedemandreductionmeasuresdriveninpartbyhighelectricitypricesacrosstheregion.GlobaltrendsinSolarPower13LatinAmericaandCaribbean2.382.432.482.452.52.492.482.532.492.482.62.692.202.302.402.502.602.702.80201120122013201420152016201720182019202020212022PerCapitaElectricityDemandinMWh(2011-2022)3.439.710.550.933.260.044.272.326.181.91.317.56.665.354.911.35.437.7610.576.690.1525.948.211.7913.221.614.7512.87051015202530PerCapitaElectricityDemand(MWh)in2022–ISAMemberCountriesSource:EMBER,2022▪TheLatinAmericaandCaribbeanregion’selectricitydemandpercapitaof2.7MWhisrelativelylowerthantheworldaverageof3.6MWhin2022.▪Thisregioneffectivelyincreasedthecleanpoweroverthelastfewyearstomeettherisingelectricitydemandandtoreducefossilgeneration.AsiaPacific2.192.272.382.492.492.582.712.872.942.963.183.310.000.501.001.502.002.503.003.50201120122013201420152016201720182019202020212022PerCapitaElectricityDemandinMWh(2011-2022)Source:EMBER,2022▪TheAsiaPacificregion’selectricitydemandpercapitaof3.3MWhisrelativelylowerthantheworldaverageof3.6MWhin2022.▪OverhalfoftheelectricitydemandincreaseinAsia(52%)wasmetwithcleanelectricityoverthelastfewyearsfrom2015to2022.Basedonthedataavailabilityfromthesecondarydatasources,theelectricityconsumptionpercapitaofISAMembercountriesarecapturedbelow,Fromtheabovefigure,itcanbenotedthattheNorwayhasthehighestelectricitydemandpercapitaof25.94MWhfollowedbySweden(13.22MWh)andUSA(12.87MWh)in2022.USA’selectricitydemandpercapitareached12.87MWh,morethanthreetimestheworldaverageof3.6MWh.Increaseddemandhasbeenprimarilymetbysolarandwindreplacinggasgenerationandretiringcoalplants.Thus,theUnitedStatestransitiontowindandsolarishappeningfasterthantheglobalaverage.Europe’selectricitydemandpercapitaof6.05MWhishigherthantheworldaverageof3.6MWh.EuropeanUnionisacriticalregionintheglobaltransitiontocleanpoweranditseffortstoreduceemissionsthroughwind,solarandothercleanelectricitysourceswillhaveasignificantimpacttoachievenetzeroby2050.Source:EMBER,2022GlobaltrendsinSolarPower14TrendsinSolarPV4NDCsandRenewableEnergyTrendsThesectionpresentsanoverviewofthelatestupdatesintheNDCfocusingontherenewableenergytargetsofISAmembercountries.Renewableenergyisoneofthekeycomponentsoftheenergytransition,butnotallcountrieshaveincludedtargetsfortheirdeploymentintheirNDCs.Basedonthedataavailabilityfromthesecondarydatasources,therevised/latestrenewableenergytargetsof34ISAMembercountriesarecapturedbelow:CountryAlgeriaAntigua&BarbudaBahrainBarbadosBelizeBoliviaCambodiaCameroonCapeVerdeDescription27%oftheelectricityproducednationallytobederivedfromrenewablesourcesofenergyby2030;4%achieved(2020)86%renewableenergygenerationfromlocalresourcesintheelectricitysectorby2030;7%achieved(2020)Renewableswillcover5%ofpeakcapacityin2025and10%in2035;1%achieved(2020)against2025targets95%shareofrenewableenergyintheelectricitymixby2030;7%achieved(2020)75%grossgenerationofelectricityfromrenewableenergysourcesby2030throughhydro,solar,windandbiomass;56%achieved(2020)By2030,19%oftheenergyconsumedwillcomefrompowerplantsbasedonalternativeenergies(biomass,solar,windandgeothermal);209%achieved(2020)25%oftherenewableenergyintheenergymix(solar,wind,hydro,biomass)by2030;218%achieved(2020)Toincreasetheshareofrenewableenergiesintheelectricitymixto25%by2035;263%achieved(2020)30%renewableenergyshareintheelectricitysupplyin2025andupto50%in2030;54%achieved(2020)4.1CountryCubaDominicaDominicanRepublicEgyptEUGrenadaGuyanaGuinea-BissauIndiaDescription24%ofelectricitygenerationbasedonrenewableenergysourcesinCubanelectricitymatrixby2030(biomass–14%;wind+solarPV–10%);89%achieved(2020)100%renewableenergyusageby2030,principallyfromtheharnessingofgeothermalresources;25%achieved(2020)Installationof479MWofsolarPVpowerby2030atanestimatedcostofUSD407.15Mn;66%achieved(2019)Installingrenewableenergycapacitiestoreachelectricpowercontributiontargetof42%by2035;26%achieved(2020)Atleast32%renewableenergyshareinfinalenergyconsumptionby2030.Incorporationof15MWofrenewableenergytotheexistingfeederlinenetworkby2030;23%achieved(2020)100%renewableelectricityby2025;13%achieved(2020)Increasetheshareofrenewableenergiesintheelectricitymixto58%by2030,fromhydro(40%)andrestfromsolarPVandwind;0%achieved(2020)Toachieveabout50%cumulativeelectricpowerinstalledcapacityfromnon-fossilfuel-basedenergyresourcesby2030;40%achieved(2020)GlobaltrendsinSolarPower16CountryCountryDescriptionIsraelMauritiusMoroccoMyanmarNicaraguaOmanPapuaNewGuineaSamoaDescriptionToincreasetheshareofrenewablepowergenerationto20%in2025and30%in2030;27%achieved(2020)against2025targets60%ofenergyneedstobeproducedfromgreensourcesby2030;35%achieved(2020)52%oftheinstalledelectricpowerfromrenewablesources,including20%fromsolarenergy,20%fromwindenergyand12%fromhydraulicenergyby2030;35%achieved(2020)Toincreasethetotalshareofrenewableenergy(solarandwind)to53.5%by2030,;90%achieved(2020)Toincreasethepercentageofelectricitygenerationthroughrenewableenergysourcessuchassolar,windandbiomassto60%by2030,withrespecttotheyear2007;91%achieved(2020)Toraisethepenetrationofrenewableenergyintheenergymixto20%in2030;2%achieved(2020)Toincreaselevelsofrenewablesintheenergymixforon-gridconnectionthroughincreasingtheshareofinstalledcapacityofrenewableenergyfrom30%in2015to78%in2030;35%achieved(2020)Toreach100%renewableelectricitygenerationby2025;38%achieved(2020)SaoTome&PrincipeSaudiArabiaSeychellesSriLankaSurinameTongaUnitedArabEmiratesVanuatuToincreasetheuseofrenewableenergysourcesupto49MW,mainlyfromsolar(32.4MW),hydroelectric(14MW)andbiomass(2.5MW);6%achieved(2019)Toincreasetheshareofrenewableenergytoreachapproximately50%oftheenergymixby2030;0.1%achieved(2020)Toincreasetherenewableenergyshareintheelectricitysupplyto15%in2030usingmainlywindandsolarPV;78%achieved(2020)Toachieve70%renewableenergyinelectricitygenerationby2030;55%achieved(2020)Tomaintainashareofelectricityfromrenewablesourcesabove35%by2030;146%achieved(2020)70%ofelectricitygeneratedfromrenewablesourcesby2030throughcombinationofsolar,windandbatterystorage;20%achieved(2020)NationalEnergyStrategy2050envisagesa50%shareofcleanenergy(renewablesandnuclear)intheinstalledpowercapacitymixby2050;9%achieved(2020)Toreachapproximately100%renewableenergyintheelectricitysectorby2030;29%achieved(2020)Source:UNFCCCNDCregistryGlobaltrendsinSolarPower17IncreaseinambitionofRenewableEnergyTargetsIntheEuropeanUnion-REPowerEUUntil2022,EuropereliedontheRussianFederationfor40%ofitsfossilgasand27%ofitsimportedoilvaluedataroundEUR400Bnayear.Theconflictandresultingsanctionshaveraisedconcernsregardingenergysecurityandenergycoststhathaveputextremelyhighfinancialpressureonconsumersandbusinesses.Inresponse,theEuropeanCommissionannounceditsREPowerEUstrategyinMarch2022withthegoalofreducingRussiangasimportsbytwo-thirdsbytheendof2022andentirelyby2030.Thestrategyfocusesonthreekeytopics,Securingnon-RussiansuppliesofoilandgasExpandingtheuseofrenewableenergyImprovingenergyefficiencyIftheproposalisadopted,theEuropeanUnion’s2030targetforrenewableswouldincreasefromthecurrent32%to45%oftheenergymix.TheREPowerEUplanwouldbringtotalrenewableenergygenerationcapacityto1,236GWby2030(including600GWsolarPVand510GWwind),15%higherthanthe1,067GWenvisagedunderFitfor55.Source:IRENA,2022GlobaltrendsinSolarPower18Box1PolicyandRegulatoryTrendsAsin2020,thepowersectorcontinuedtoreceivetherenewableenergypolicyattentionin2021.Policiestosupportrenewablesinthepowersectorinclude:renewableportfoliostandards(RPS),feed-inpolicies(tariffsandpremiums),auctionsandtenders,renewableenergycertificates(RECs),netmeteringandotherpoliciestoencourageself-consumption,aswellasfiscalandfinancialincentives(suchasgrants,rebatesandtaxcredits).Themajorpolicyandregulatorytrendstosupportsolarenergydeploymentaredescribedbelow,KeypoliciesDescriptionFeed-inTariff(FIT)/FeedinPremiumsPolicy▪FITsandFIPs,areusedtopromotecentralisedanddecentralisedrenewablepowergeneration,andtheyremainamongthemostwidelyusedpolicymechanismsforsupportingrenewablepower.▪Ireland,whichhadremoveditsFITin2015,re-introducedittoboostcitizenandcommunityparticipationintheenergytransition.▪TrinidadandTobagointroducedaFITtosupportsolarPVrooftopsystems.▪India'sintroductionoftime-of-day(ToD)tariffstoincentivizesolarpowergenerationduringpeakdemandperiods.▪Australia'ssolarfeed-intariff(FIT)programistransitioningtocompetitivetenders,promotingcost-effectivesolarenergydeployment.Developersnowsubmittariffproposals,andcontractsareawardedtoprojectswiththemostcompetitiverates.Renewableenergyauctionsortenders▪ItisacompetitiveprocesstoprocurelowcostAuctionsforrenewableenergyofferacompetitivewaytobuycheappowerfromrenewablesources.In2021,anumberofnationsheldnationalorsubnationalrenewableenergyauctionsortenders,asshowninthefigurebelow:▪Auction-basedsolarprojectspromotecompetitionamongdevelopers,leadingtocostreductions,increasedefficiency,andbettervalueformoney.▪Itopensopportunitiesforpricediscovery,ensuringselectionofthemosteconomicallycompetitiveprojectsaswellaslessensthesubsidyburdenonthegovernmentfordeploymentoflargescalesolarenergyprojects.7176728182858584838392364655606473839810911613102040608010012014020112012201320142015201620172018201920202021NumberofcountriesRenewableEnergyFeed-inTariffsandTendersFeed-intariff/premiumpaymentTenderingSource:REN21,20224.2GlobaltrendsinSolarPower19KeypoliciesDescriptionNetmetering▪Netmeteringcontinuedtobeapopularpolicyinstrumenttosupportrenewableenergyi.e.forrooftopsolarsegment▪Netmeteringisaregulatedarrangementinwhichelectricitygeneratorscanreceivecreditsforexcessgeneration,whichcanbeappliedtooffsetconsumptioninotherbillingperiods.Undernetmetering,customersreceivecreditatthelevelofretailelectricityprice.▪InIndia,Keralaintroducedanewnetmeteringrooftopprogrammewithagoalofinstallingsolarpanelson75,000homesandWestBengalintroducednetmeteringforhouseholdrooftopsolarPVbetween1kWand5kW.▪Malaysiaintroducedanewprogrammethatallowsresidentialcustomerstoexportsurplussolargenerationtothegrid.Financial/fiscalpolicies(grants,rebatesandtaxcredits)▪Atagloballevel,approximately17countriesintroducednewfinancialorfiscalpoliciesin2021,includingDenmark,France,Italy,AustraliaandNewZealand.▪InEurope,CroatiaimplementedanUSD8.4bnrebateprogrammeforrooftopsolarPVinstallationsforbusinessesandhouseholds.▪SwedenmadeavailableUSD28.7MninrebatesforhouseholdswhoinstallsolarPV.Renewableportfoliostandards(RPS)▪RPSmandatesrequiringutilitytoinstall/useacertainshareofrenewableenergy.▪Asof2021,31USstatesandtheDistrictofColumbiahadlegallybindingRPS.▪Colombiaintroducedanobligationforutilitiesoperatinginthewholesaleenergymarkettoensurethat10%oftheelectricitytheydistributeisgeneratedbyrenewabletechnologiesasof2022.Renewableenergycertificate(REC)Acertificateawardedtocertifythegenerationofrenewableenergy(typically1MWhofelectricity).RECsarepreferredinstrumenttomeetrenewableenergyobligations.GlobaltrendsinSolarPower20KeySolarPoliciesinISAMemberCountriesSNoCountriesFITRPSRECAfrica1Algeria2Benin3Botswana4BurkinaFaso5Burundi6Cameroon7CapeVerde8Chad9Comoros10DRCongo11Coted'Ivoire12Djibouti13Egypt14EquatorialGuinea15Eritrea16Ethiopia17Gabon18Gambia19Ghana20Guinea21Guinea-Bissau22Liberia23Madagascar24Malawi25Mali26Mauritius27Morocco28Mozambique29Namibia30Niger31Nigeria32RwandaSNoCountriesFITRPSREC33SaoTomePrincipe34Senegal35Seychelles36Somalia37SouthSudan38Sudan39Tanzania40TogoleseRepublic41Tunisia42Uganda43Zambia44ZimbabweAsia-Pacific45Australia46Bahrain47Bangladesh48Cambodia49Fiji50India51Japan52Kiribati53Maldives54Marshallislands55Myanmar56Nauru57Nepal58Oman59Palau60PapuaNewGuinea61Samoa62SaudiArabia63SriLanka64Syria65TongaExistingpolicies/schemesAbsenceofpolicies/schemesNote:FIT-Feed-inTariff;RPS-Renewableportfoliostandards;REC-RenewableEnergyCertificateGlobaltrendsinSolarPower21KeySolarPoliciesinISAMemberCountriesSNoCountriesFITRPSREC66Tuvalu67UnitedArabEmirates68Vanuatu69YemenEurope&others70Denmark71France72Germany73Greece74Hungary75Israel76Italy77Luxembourg78Netherlands79Norway80Sweden81UK82USALatinAmerica&Caribbean83AntiguaandBarbuda84Argentina85Barbados86BelizeSNoCountriesFITRPSREC87Bolivia88Brazil89Chile90CostaRica91Cuba92Dominica93DominicanRepublic94ElSalvador95Grenada96Guyana97Haiti98Jamaica99Nicaragua100Paraguay101Peru102SaintKittsandNevis103SaintVincentandtheGrenadines104SaintLucia105Suriname106TrinidadandTobago107VenezuelaMajorPolicygapsandChallenges1.Facilitatepermittingforutility-scalesystems-Lengthyandcomplicatedpermittingprocessesareoneofthemajorchallengestothefasterdeploymentofutility-scalesolarPVplantsinmanypartsoftheworld,especiallyinEurope.Developingclearrulesandpathwaysfordevelopersapplyingforaconstructionpermit,determiningstricttimeframesforapplicationprocessing,andpublicengagementintheidentificationoflandsuitableforinvestmentcouldsignificantlyacceleratesolarPVdeployment.2.EstablishabalancedpolicyenvironmentfordistributedPV-AppropriatepoliciesareneededtoattractinvestmentintodistributedsolarPVwhilealsosecuringsufficientrevenuetopayforfixednetworkassetsandensuringthatthecostburdenisallocatedfairlyamongallconsumers.Existingpolicies/schemesAbsenceofpolicies/schemesNote:FIT-Feed-inTariff;RPS-Renewableportfoliostandards;REC-RenewableEnergyCertificate;Source:REN21,2022GlobaltrendsinSolarPower22ARenewablePolicyTransitioninChinaChinahasshifteditsrenewableenergypricingpolicyfromapremiumFITmodeltoa“gridparity”modelwhererenewableandcoalplantssellelectricityatthesameprice.TheNationalEnergyAdministrationstoppedapprovingFITsforrenewableenergyprojectsin2018,whichwasfollowedbyadecisiontophaseoutFITschemes.ThemovewasdrivenbydelayinFITpaymentsandbytheplungingcostofPVmodules.ThepolicytransitionresultedannualsolarPVinstallationstofallapproximately30%in2019.However,asprosumerssoughttobenefitfromthefinalyearsofFIT,themarketgrew60%in2020,toreach55GWofnewinstallationsin2021.In2021,Chinaannouncedits14thFive-Year-Plan,putsacontinuedfocusonwindandsolarPVpoweraswellasenergyintegrationandenergystorage,aimingfora20%non-fossilfuelshareintheenergymixby2025.China’srecentlyannouncedtargetsforcarbonneutralityby2060havealsodrivendemandforrenewables.Source:REN21,2022GlobaltrendsinSolarPower23FossilFuelSubsidiesarebackontherise–GlobalScenarioAccordingtoIEA,energysubsidieshavebeenrisingsince2021afteranoticeabledipin2020duetotheCovidpandemic.In2021,reboundingfossilfuelpricesandenergyhadalreadyliftedfossilfuelconsumptionsubsidiestoUSD532billion,around20%above2019’spre-pandemiclevels.Atagloballevel,Russiawasthelargestsingleprovideroffossilfuelsubsidypayments,followedbyIranandChinain2021.AccordingtotheIEA,subsidiesfortheuseoffossilfuelsincreasedtomorethanUSD1Tnin2022,byfarthehighestyearlyvalueeverrecorded.In2022,thecostoffossilfuelsexperiencedsignificantfluctuationsandreachedexceptionallyhighlevelsduetogeopoliticaltensionsaffectingenergymarkets.Variouspolicymeasureswereimplementedtoshieldconsumersfromskyrocketingprices.However,theseinterventionshadanunintendedconsequenceofmaintainingtheartificialcompetitivenessoffossilfuelscomparedtolow-emissionalternatives.Source:IEA,2022Box3Box2▪Phasingoutfossilfuelsubsidiesisacrucialelementforsuccessfulcleanenergytransitions,ashighlightedintheGlasgowClimatePact.▪Fossilfuelconsumptionissubsidizedduetoend-userpricesbeinghighenoughtocoverthemarketvalueofthefuel.▪Duringanenergycrisis,governmentsprioritizeshieldingconsumersfrompriceimpactsratherthancommittingtophasingoutsubsidies.▪Thisapproachledtoasignificantincreaseinfossilfuelconsumptionsubsidiesin2022andtheimplementationofmeasurestomitigatetheimpactonenergybills.▪Whilethisprovidedtemporaryrelief,itreducedtheincentiveforconsumerstosaveortransitiontocleanerenergysources,thusdelayingasustainableresolutionofthecrisis.▪Moreover,thesesubsidiesdepletedpublicfundsthatcouldhavebeenallocatedtootherareas,includingcleanenergytransitions.30,80826,94927,20840,60133,62429,59347,44963,90843,29447,94040,25332,68820,60040,93815,88313,40130,86937,68421,79210,38327,04211,4416,6958,76416,09712,9799,34023,5779,6126,97613,42817,64211,8455,20921,00211,9389,2358,3948,5896,3034,82517,4690200004000060000800001000001200001400001600001800002000002015201620172018201920202021MillionUSDFossilFuelSubsidiesinISAMemberCountriesIndiaSaudiArabiaEgyptAlgeriaVenezuelaUnitedArabEmiratesSource:IEA,2022GlobaltrendsinSolarPower24SolarPVTechnologyTrendsTakingadvantageofthegrowingsolarPVcapacityacrosstheglobe,severalcountriesareunderwaytostimulatefuturemarketgrowth,exploringinnovativesolartechnologiesfrombifacialsolarcellsandfloatingsolarfarmstotheenergyharvestingtrees.Themajordevelopmentsareasfollows.TechnologiesDescriptionBifacialsolarcells▪Keyfeatures:Bifacialsolarpanelscangenerateupto30%moreenergythanmonofacialpanels.BifacialmoduleshavealsolowerBalanceofSystems(BOS)costsasfewermodulesareneededtoproducethesameamountofenergyastraditionalmodules.▪Worldwidedemandofbifacialmoduleshasalsoraised,withcountriessuchastheUnitedStates,BrazilandtheUnitedKingdomincreasinglyusethesemodulesforutilityscalePhotovoltaicplants.▪Basedonthepresentmarkettrend,bifacialsolarmodulesareextendingtheirgeographicalreachfromJapan,Europetotheemergingmarketsacrosstheglobe.Bifacialsolarmoduleshaveattractedalotofmarketattentionintherecentyears.▪TheInternationalTechnologyRoadmapforPhotovoltaic(ITRPV)predictsthatafterhavingaminimalpresencein2017,thebifacialconceptisexpectedtocaptureapproximately10%ofthemarketsharein2018,increaseto15%by2020,andpotentiallyreach40%withinthenextdecade(IRENA,2019).Solartrees▪Insolartree,thesolarmodulesareplantedonasinglepillar,whichresembleslikeatreetrunk.Solartreeservesthedualpurposeofbeinganenergygeneratoraswellasanartwork.▪Solartreesserveasacomplementaryoptiontorooftopsolar,offeringergonomicadvantagesovertraditionalsolarpanels.Theyrequirearound100timeslessspacecomparedtohorizontalsolarplantswhilegeneratinganequivalentamountofelectricity.Thismakessolartreesaviablesolutionforeconomiesfacingchallengesoflimitedlandandspaceavailability.4.3GlobaltrendsinSolarPower25TheCouncilofScientificandIndustrialResearch-CentralMechanicalEngineeringResearchInstitute(CSIR-CMERI)residentialcolonyinDurgapurisnowhometotheworld'slargestsolartree,developedbyCSIR-CMERI.Withaninstalledcapacityof11.5kW,thissolartreecangenerateanannualcleanpoweroutputofapproximately12,000-14,000units.Thedesignofthesolartreeensuresmaximumsunlightexposureforeachofitsapproximately35solarPVpanels,minimizingshadowareasbelow.Unlikerooftopsolarfacilities,thesolartree'sarmsholdingthepanelsareflexibleandadjustableaccordingtospecificneeds,providinganadditionaladvantage.Source:CSIR-CMERIWebsiteIndiadevelopsWorld’slargestSolarTreeBox4TechnologyDescriptionSolarcarports▪Solarcarportsareground-mountedsolarpanelsthatareinstalledinthevehicleparkinglots.Homedrivewayscanalsobelaidunderneathtoformacarport.▪SolarCarportsareverypopularalternativeandsupplementtotheclassicrooftopsystems,withthebenefitthatthesolarcarportscanbeinstalledentirelyindependentoftheroofangle,shapeandorientationofthehouse.▪Besidesprovidingtheshadetothevehiclesparkedunderneath,theycanefficientlygenerateelectricityandoffersanumberofbenefits.Ifsolarcarportsarecoupledwithawell-designedchargingsystem,theelectricityproducedcanbeusedforEVchargingthusreducingthecostsofrunningthevehicle.▪Anelevatedsolarcarporttrackthesunthroughouttheday,cangenerate50-70%moreenergythanfixedsolarcarportsystemsofsimilarsizeandtheyarebecomingastrongandattractiveeconomicpropositioninagrowingnumberofmarkets.▪Finally,spacesavingisanotherimportantaspect,ascarportsmakebetterutilisationoflandwhichisalreadyinuseforthevehicleparkingratherthanusinganopenland.Theenergygenerationdatafromthesolartreecanbemonitoredeitherreal-time/ondailybasis.TheSolarTreecanalsohavecertaincustomizablefeaturesforapplicationatdiversesites.TheSolarTreesaredesignedinamannertoensureminimumShadowArea,thuspotentiallymakingitavailableforwidespreadusageintheagriculturalactivitiessuchas,e-Tractorsande-PowerTillersandHighCapacityPumps.SolarTreescanbealignedwithAgricultureforsubstitutingprice-volatilefossilfuels.EachSolarTreehasthepotentialtosave10-12tonnesofCO2emissionsbeingreleasedintotheatmosphereasGHGwhencomparedwithfossilfuelfiredenergygeneration.Besides,thesurplusgeneratedpowercanbeincorporatedintotheenergygrid.ThisAgriculturalModelcanprovideaconstanteconomicreturnandsupportthefarmerstocountertheeffectsoftheuncertainvariationinagriculturerelatedactivities,thuscreatingfarminganEconomic&EnergySustainablepractice.ThesolartreehasthecapabilitytoincludeIOTbasedfeatures,i.e.round-the-clockCCTVsurveillanceinagriculturalfields,windspeed,rainfallprediction,real-timehumidity,andsoilanalyticssensors.Source:MinistryofScienceandTechnology(India),2016TataMotorsandTataPowerinaugurateIndia’slargestSolarCarportatitsCarPlantinPuneTataMotorsandTataPowerjointlyinauguratedIndia’slargestgrid-synchronizedsolarcarportattheTataMotorscarplantinChikhali,Pune.The6.2MWsolarcarportdeployedbyTataPowerwillgenerate86.4lakhkWhofelectricityperyearandisestimatedtodecrease7,000tonnesofcarbonemissionsannuallyand1.6lakhtonnesoveritslifecycle.GlobaltrendsinSolarPower26Box5TechnologyDescriptionFloatingsolarfarms/floatovoltaics▪Floatovoltaicsrefertothephotovoltaicsolarpowersystemsthatfloatondams,reservoirsandotherwaterbodies.▪Thesefloatingphotovoltaicpanelsgeneratelargeamountofelectricity,andthebestpartis,thattheydon’tuseanyspaceonrealestate/land.▪Duetothecoolingeffectofwater,thesefloatingsolarcellsgeneratemorepowerbyupto10%.However,floatingsolarPValsofacessomechallengessuchasfeasiblesiteselection,rustingduetomoistureandhighcostascomparedtoconventionalsolarplants.▪Besidesproducingelectricity,these‘floatovoltaics’arealsobeneficialinwatermanagementbyreducingwaterlossduetoevaporation.Spanningoverto30,000squaremeters,thesolarcarportwillnotonlygenerategreenpower,butwillalsoprovidecoveredparkingforcarsintheplant.Also,TataPowerSolarcommissionedsolarcarportwith2.67MWofcapacityatCochinInternationalAirport.Theprojectcomprisedof8,472solarpanelson27carportsspreadover20,289squaremeterofarea.Benefits:Offsets1,868tonnesofCO2atCochinInternationalAirportperannum,equivalentto46,700tonnesofCO2offsetin25years.Theplantgenerates11,000unitsofelectricitydaily.Source:TataPowerWebsiteHybridHydropowerandFloatingSolarPVsystemsinChinaThedevelopmentofthegridconnectedhybridsystemsthatcombinefloatingsolarphotovoltaicandhydropowertechnologiesisstillatanearlystage.Onlyasmallsystemof218kWphasbeendeployedinPortugal.In1989,theLongyangxiahydropowerplantwascommissionedwiththefourturbinesof320MWeach1,280MWintotal.ItservesasthefrequencyregulationandmajorloadpeakingpowerplantinChina’snorthwestpowergrid.TheassociatedGonghesolarplantis30kmsawayfromtheLongyangxiahydropowerplant.Theinitialphasewasbuilt&commissionedin2013withanameplatecapacityof320MW.Anadditional530MWpwascompletedin2015.ThePhotovoltaicplantisdirectlyconnectedthroughareserved330kVtransmissionlinetothehydropowersubstation.ThehybridsystemisoperatedsothattheenergygenerationofthehydroandFloatingSolarPhotovoltaiccomponentscomplementeachother.AfterthesolarPhotovoltaicwasincluded,thegridoperatorbegantoissueahigherpowerdispatchsetpointduringtheday.GlobaltrendsinSolarPower27Box6TechnologyDescriptionAgrophotovoltaic(APV)Asexpected,onatypicaldaytheoutputfromthehydrofacilityisnowdecreased,especiallyfrom11a.m.to4p.m.,whensolarPhotovoltaicgenerationishigh.Thesavedenergyisrequestedbytheoperatortobeutilisedduringtheearlymorningandlatenighthours.Althoughthedailygenerationpatternofthehydropowerhasvaried,thedailyreservoirwaterbalancecouldbemaintainedatthesamelevelasbeforetomeetthewaterrequirementsoftheotherdownstreamreservoirs.Allpowerproducedbythehybridsystemisfullyabsorbedbythegrid,withoutanyreduction.Thissystemshowsthathydroturbinescanprovideadequateresponsetodemand.Source:WorldBank,2018GlobaltrendsinSolarPower28FijiAgrophotovoltaicProjectinOvalauInordertoreduceFiji’srelianceonhydropower,theelectricityoutputisbecomingincreasinglyvolatileowingtoirregularannualrainfall,thisprojectaimstodevelopa4MWsolarPVpowergenerationsystemthatwillboostlocalagriculturalproduction,andtocombineitwitha5MWbatterystoragesystem.ThetotalprojectvalueisUSD10million,includingGreenclimatefund’sloanofUSD3.9MnandaUSD1.1Mngrant.Source:IRENA,2022Box7▪APVtechnologyalignswithsustainableagriculturepracticesbyutilizinglandefficientlyandpromotingrenewableenergygenerationinruralareas.▪APVsystemscanhelpfarmersdiversifyincomestreamsbygeneratingelectricityandpotentiallyaccessingadditionalrevenuestreamsthroughrenewableenergyincentives.▪ResearcheffortsarefocusedonunderstandingtheagronomicimpactsofAPVsystems,exploringcompatiblecropcombinations,andassessingthelong-termsustainabilityofthisintegratedapproach.The"Agrophotovoltaics–Resource-EfficientLandUse(APV-RESOLA)"project,situatedinGermanynearLakeConstance,hassuccessfullydemonstratedtheAPVconcept.Theprojectinvolveda194kWsolarsystemmountedona5-meter-highstructureabovelandusedforcultivatingcelery,clover,potatoes,andwinterwheat.Thefindingsconfirmedearlierresearch,withlanduseefficiencyreaching160%in2017and186%in2018(IRENA,2019).ItalyincludedUSD1.24Bninsupportforagrovoltaicsinitspost-COVIDrecoveryplan.FarmersarebeginningtogainwiderawarenessofthebenefitsofagriculturalPV–includinghighercropyields.TechnologyDescriptionSolarenergystorageSolarenergystoragesystemsstoressolarenergyduringthedaytoutiliseatnight/duringperiodsoflowsunlight,reducingtheneedforgridelectricity.Thereareseveralbenefitsofsolarstorage,includingstoringexcessenergyforuseduringperiodsofhighdemand,reducingrelianceonthegrid,andprovidingbackuppowerincaseofanoutage.Building-integratedphotovoltaics(BIPV)Building-integratedphotovoltaicsarephotovoltaicmaterialsthatareusedtoreplaceconventionalbuildingmaterialsinpartsofthebuildingenvelopesuchastheroof,skylights,orfacades.BIPVservesdual-purpose:theyserveasboththeouterlayerofastructureandgenerateelectricityforon-siteuseorexporttothegrid.Thekeybenefitsare:▪Nounoccupiedarearequired▪Decreasedheat-transmittance▪DecreasedharmfulirradianceSomeoftheconstraintsinclude:▪Highercapitalcostforinstallation▪Difficultandexpensivetoretrofitolderbuildings▪MorecomplexandrequireshighlabourchargesthannormalPVmodulesinstallationGlobaltrendsinSolarPower29Maryland,U.S-SolarandBatteryStorageforCustomerandAncillaryServicesSolarGridStorageLLCprovided500kWACstoragecomprisingabout300kWhoflithium-ionbatteriesandinvertercombinationtotheheadquartersofKonterrainMaryland.ThestorageandinvertersystemareconnectedtothesolarPVpanelswith400kWcapacity.ThekeyobjectiveoftheSolarGridStorageLLCistoprovideboththecustomerandthegridwithmultiplebenefits.Thisincludesfast-powerbalancingsupporttothelocalgrid,backupemergencypowerduringgridoutagesandreducedsystemcost.Thebatterystoragesystemsareconnectedtothelocalutilityandcanthusprovidearangeofancillaryserviceswhenrequiredbytheutilityorgridoperatorthroughnormaldispatch.SolarGridStorageLLC’sstandardserviceistoprovidetheinverterandstoragesystemataverylowcost.SolarGridrecoversthesecostsplusaprofitmarginthroughancillaryservicesprovidedtothegridandpaidbythegridoperator.Thus,SolarGridStorageLLCbusinessmodeleffectivelyutilisessolarbatterystoragetocapitaliseontheregulatorymarketsforancillaryservicesintheUnitedStates.Source:IRENA,2022Box8SolarSupplyChainTrendsThissectionfocusesonthetrendsinthesolarPVsupplychain,bottlenecksandmeasurestobuildamoresecuresupplychain.ForthesolarPVtechnology,themainsegmentsofthevaluechainincludemanufacturingofequipment,constructionandinstallation,andO&M,plusarangeofsupportservices,enablingfunctionsandgovernanceaspects.ManufacturingConstructionandInstallationOperationandMaintenanceSolarSupplyChain-OverviewSource:IRENA,2022ThesolarPVmanufacturingcapacityshiftedfromEurope,theUnitedStatestoChinaoverthelastdecade.In2022,ChinadominatestheglobalsolarPVsupplychains.TheglobalmanufacturingcapacityofsolarPVjumpedfromapproximately25GW(2010)to220GW(2022),withChinaaccountingfor97%oftheproduction.Inaddition,300GWofmanufacturingcapabilitieshavealreadybeenannounced,underlyingthewillingnesstopreventotheractorsfromgainingsignificantsharesofthemarket.TheChinesemarketdominancereflectstheabilityoflocalcompaniestogainbenefitfromtheeconomiesofscale,andthegovernmentsupportwhichhassetstrategiclong-termgoalsintheindustry.Between2017and2021,aroundhalfofthetotalChineseproductionofPVmoduleshasbeendeliveredtoAsia-PacificregionsandIndiawhiletheotherhalfdeliveredtoEurope,withsmalleramountsdirectedtoLatinAmericaandCaribbeanandtherestoftheworld.4.4GlobaltrendsinSolarPower30KeydeterminantsofsolarsupplychainRawmaterialavailabilityManufacturingcapacityandtechnologyMarketdemandandgrowthPriceandcostdynamicsInnovationandresearchanddevelopmentTradepoliciesandregulationsTheskewedgeographicalconcentrationinsolarPVsupplychainhasledtheEuropeanUnion,IndiaandtheUnitedStatestointroducepolicyincentivestosupportdomesticsolarPVproduction.However,diversifyingsolarPVmanufacturingwillbepossibleonlyiftheproductioncostsreducetoensurecompetitivenesswiththelowest-costproducers(likeChina)inbothshortandlongterm.Chinahasinfrastructureandindustrialpoliciesthatbuiltanintegratedsupplychainwithlargeeconomiesofscale.Lowlabourcostisalsoakeyenabler.China’sindustrialpoliciesfocusingonsolarPVhaveenabledeconomiesofscaleandenabledcontinuousinnovationthroughoutthesupplychain.In2021,Thailand,VietnamandMalaysiahavebecomemanufacturingandassemblyhubs,togetherrepresentingapproximately9%ofcellandmoduleproduction.FurtherJapan,IndiaandSingaporeaccountfor10.5%ofcelland7.6%ofmoduleproduction.GlobaltrendsinSolarPower3178.20%96.80%88.60%3.20%0.50%0.20%18.30%2.50%2.80%0.30%0.20%8.40%0%10%20%30%40%50%60%70%80%90%100%201020212027WafersChinaEuropeAsia-PacificRestoftheWorld28.60%79.20%89.20%19.40%8.00%2.40%21.50%6.00%2.00%30.50%6.80%6.40%0%10%20%30%40%50%60%70%80%90%100%201020212027PolysiliconChinaEuropeAsia-PacificRestoftheWorldSource:IEA,202255.70%74.70%73.90%12.80%2.80%2.00%18.70%15.40%10.70%12.80%7.10%13.40%0%10%20%30%40%50%60%70%80%90%100%201020212027ModulesChinaEuropeAsia-PacificRestoftheWorld57.90%85.10%79.50%7.30%0.60%0.70%28.40%12.40%9.90%6.40%1.90%9.90%0%10%20%30%40%50%60%70%80%90%100%201020212027CellsChinaEuropeAsia-PacificRestoftheWorldBasedontheIEADataandStatistics(2022),theprevious,andexpectedsolarPVmanufacturingcapacitybasedondifferenttechnologiesbyregionfortheFY2010,FY2021and2027providedbelow,▪Manufacturingactivitiesaccountedfor1.6MnofthePVjobs;constructionandinstallationaccountedforalmost1Mnjobs,withO&Maccountingfor0.8millionjobs.▪China’sdominantroleinsolarPVemploymentreflectsitsstrongpositionasboththedominantmanufacturerofequipmentanditscommandingpositionincapacityinstallations.▪Supportedbyindustrialpolicymeasures,ChinaishometothebulkoftheglobalPVsupplychain.Approximately72%ofglobalpolysiliconproductiontakesplaceinChina,withmassiveexpansionofcapacityunderconstructionorplanned.KeyTrendsinSolarPVManufacturingChinaIndia▪TheIndiangovernmentimposedimportdutiesof40%onallmodulesand25%onallcellseffectiveApril2022.▪Thecountryalsointroducedaproduction-linkedincentive(PLI)schemetoboostdomesticmanufacturingofhigh-efficiencymodules.Thisoffersfinancialsupportforprojectdeveloperswhocommittosettingupproductionfacilitiesalongthesupplychain.▪In2021,therisingcostsinChinahadknock-oneffectonmoduleprices.IndianPVimportssanktoalowofapproximatelyUSD500Mn,downfromalmostUSD4Bnin2018.USA▪TheInflationReductionAct,passedinAugust2022,embraceselementsofabroaderindustrialpolicy.▪Itincludesmanufacturingcreditsforcleanenergy,inadditiontoalong-termextensionofexistingsolarandwindtaxcreditsandmanyotherclimateandhealthprovisions.▪Acleanmanufacturingtaxcreditalonecouldtriggerapproximately1,15,000job-years(direct,indirectandinducedjobs),andtaxcreditsforsolar,windandbatterymanufacturingcouldcreateanother5,61,000jobs.GlobaltrendsinSolarPower32Inthepastyear,risingglobalcommoditypriceshaveledtohighermaterialcostsforsolarPVmanufacturing.Today,ChinaandASEANcountries(VietNam,ThailandandMalaysia)havethelowestsolarPVmodulemanufacturingcostsforallsegmentsofthesupplychain.Economiesofscale,supplychainintegration,relativelylowenergycostsandlabourproductivitymakeChinathemostcompetitivesolarmodulemanufacturerworldwide.HigherinvestmentcostsinIndiaaretheprimaryreasonforthecostdifferentialwithChina,whilehigheroverheadandlabourcostsmakesUSPVmanufacturingnotascompetitive.InEurope,risingenergypricesfollowingRussia’sinvasionofUkrainewidenedthecostgapwithChina.Today,EUindustrialenergypricesaremorethantriplethoseofChina,IndiaandtheUnitedStates.ThesolarPVmanufacturingsupplychainisinfluencedbyfactorssuchasland,energy,capital,andlabor.However,governmentindustrialpoliciesplayacriticalroleinshapingviablesupplychains.Polysiliconproductionrequiressignificantcapitalinvestmentsandskilledlabor.Solarcellmanufacturingreliesonaccesstomodernproductionequipmentandskilledmachineoperators.Moduleproduction,focusedonassembly,requireslesstechnicalskillcomparedtocellfabrication.DiversifyingsolarPVsupplychainsrequiresaddressingkeychallenges-ThecostcompetitivenessofexistingsolarPVmanufacturingisakeychallengetodiversifysupplychains.Chinaisthemostcost-competitivecountrytomanufacturecomponentsofthesolarPVsupplychain.CostsinChinaare20%lowerthanintheUnitedStates,10%lowerthaninIndiaand35%lowerthaninEurope.Largevariationsinlabour,andinvestmentexplainthesevariations.Intheabsenceofmanufacturingsupportandfinancialincentives,thebankabilityofmanufacturingprojectsremainslimitedoutsideChinaandfewcountriesinSoutheastAsia.Low-costelectricityisakeyenablerforthecompetitivenessofthesolarPVsupplychain.Electricityaccountsforover40%ofproductioncostsforpolysiliconand20%foringots/wafers.Solarpanelmanufacturerscanalsousetheirownrenewableelectricityonsite,therebyreducingbothelectricitybillsandemissions.GovernmentpoliciesarevitaltobuildamoresecuresolarPVsupplychain-Highcommoditypricesandsupplychainbottlenecksresultedintheincreaseof20%insolarpanelpricesoverthelastyear.Globally,policiestosupportsolarPVhavefocusedmostlyonincreasingdemandandloweringcosts.However,sustainableandresilientsupplychainsareneededtoensuretimelyandcost-effectivedeliveryofsolarpanels.GovernmentsneedtoturntheirattentiontoensuringthesecurityofsolarPVsuppliesasanintegralpartofcleanenergytransition.GlobaltrendsinSolarPower33SolarPVCostTrendsOneofthekeytrendsinthesolarPVindustryin2023isthecontinueddeclineinthecostofcomponentsrequiredforsolarpanelinstallations,suchassolarcellsandinverters.Thisisduetotheincreasedmanufacturingefficiency,advancesintechnologyandeconomiesofscale.ManufacturershavebecomemoreefficientintheirsolarPVproductionprocesses,leadingtoproducesolarpanelsatamuchfasterpace.Advancesintechnologyhaveledtomanufacturingofsolarcellsandinvertersatalowercost.Theeconomiesofscalehaveresultedinthecost-effectiveproductionofsolarpanelsinlargerquantities.Thefigurebelowdepictsthekeydriversinvolvedinreducingthepriceofsolarpanels,Technologyimprovementsthathavereducedsystemlosseshaveplayedavitalrole.Therecentadoptiontowardsanincreaseduseofbifacialmoduleshasincreasedtheperformanceofthesolarpanelbygeneratingmoreenergy(thanmono-facialpanels).Further,solarPVmodulepricesreturntothedownwardcurvetheywerefollowingpriortothecovid-19pandemic,aspolysiliconsupplybecomesmoreabundant.Therawmaterialandshippingcostsdeclinein2023alsohasadirectimpactonsolarcomponentprices.Advancesintechnology1Manufacturingefficiency2Economiesofscale3GlobaltrendsinSolarPower34KeyfactorsinfluencingpriceofSolarPVModulesSource:IEA,2020SolarPVModulePriceTrendKeyfactorsinfluencingpriceofSolarPVModules▪Technologicaladvancements:Thecontinuousimprovementinsolarcellefficiency,manufacturingprocesses,andmaterialutilizationhasledtocostreductionsandincreasedmoduleoutput,resultinginlowerprices.▪Scaleofproduction:Asthesolarindustryexpandedandproductionvolumesincreased,economiesofscalekickedin.Largermanufacturingcapacitiesallowedforbulkpurchasingofrawmaterialsandequipment,reducingproductioncosts,anddrivingdownmoduleprices.▪Policiesandincentives:Variouspolicies,suchasfeed-intariffs,taxcredits,andsubsidies,haveplayedasignificantroleindrivingdemandforsolarPVinstallations.Theseincentiveshavestimulatedmarketgrowth,increasedcompetition,andultimatelyledtopricereductions.▪Reductioninmanufacturingcosts:Overtime,manufacturershaveoptimizedproductionprocesses,improvedyieldrates,andreducedmanufacturingcosts.Factorssuchasautomation,economiesofscale,andincreasedcompetitionamongmanufacturershavecontributedtocostsavingsandsubsequentlylowermoduleprices.▪Supplyanddemanddynamics:Fluctuationsinsupplyanddemandhaveinfluencedmoduleprices.Increaseddemandhasstrainedthesupplychainattimes,resultingintemporarypricespikes.Conversely,oversupplysituationshaveledtopricedeclines.▪Rawmaterialprices:ThepricesofkeyrawmaterialsusedinsolarPVmodules,suchassilicon,silver,andaluminium,haveexperiencedfluctuations.Changesinthesematerialcostscanimpactmoduleprices,althoughtechnologicaladvancementsandmanufacturingefficiencieshavehelpedmitigatetheimpact.▪Tradepoliciesandtariffs:Tradepolicies,includingimportdutiesandtariffs,haveaffectedthepriceofsolarPVmodules.Impositionoftariffsonmoduleimportshasdisruptedthesupplychainandincreasedpricesinsomeinstances.▪Balanceofsystemcosts:Thecomponentsbeyondthemoduleitself,suchasinverters,mountingstructures,andinstallationcosts,ithasanindirectimpactonmoduleprices.Asthebalanceofsystemcostsdecreasedduetotechnologicaladvancementsandmarketcompetition,itcreateddownwardpressureonoverallsystemprices,includingmodules.▪Researchanddevelopment(R&D)investments:InvestmentsinsolarPVresearchanddevelopmenthavedriventechnologicaladvancementsandinnovation.R&Dinitiativeshaveledtothediscoveryofnewmaterials,manufacturingtechniques,andcelldesigns,allofwhichhavecontributedtopricereductionsovertime.▪Globalmarketdynamics:ChangesintheglobalsolarPVmarket,includingtheemergenceofnewmarkets,regionalvariationsindemand,andgeopoliticalfactors,haveinfluencedmoduleprices.Marketdynamicsimpactthebalanceofsupplyanddemand,whichinturnaffectsprices.USD0.2perWattSolarMarketTrendsTheriseofincreasinglycost-effectiveenergystoragecombinedwithgreaterdemand-sideflexibilityandtheexpansionoftransmissioninfrastructureismakingitpossibleforregionstotransitiontofullyrenewable-basedpowersystems.Anotherfactorenablingthetransitiontosolar-basedenergysystemsistheimprovementintheelectricityaccessrates,especiallyintheoff-gridareas.Thefigurebelowhighlightstheshareofthepopulationwithaccesstoelectricityin2020acrossISAMemberCountries,StatusofAccesstoElectricity(%)–ISAMemberCountries44%≤0%64%≤45%94%≤65%100%≤95%Bytheendof2020,91%2oftheglobalpopulationhadaccesstoelectricity.InAsia&Pacific,accesstoelectricityreached92.9%in2020,Europeandothers(100%),LatinAmerica(96.4%).InAfrica,accesstoelectricityratesalmosttripledfromapproximately8Mnbetween2000and2013to24Mnpeoplebetween2014and2019.Thepopulationwithoutelectricityaccess,peakedat613Mnin2013,declinedprogressivelyto572Mnin2019.MuchofthistransitioncamefromcountriessuchasKenya,Senegal,Rwanda,GhanaandEthiopia,whilemorethan40%ofSub-SaharanAfricancountriesdonotyethaveofficialelectricityaccesstargets.Mostofthegapinelectricityaccesscanbeattributedtothecountrieswherepopulationgrowthhasoutpacedtheelectrificationrate,suchasBurundi,Chad,MalawiandDemocraticrepublicofCongo.Thesecountriesshouldeffectivelyutilisethenaturalsolarpotentialtoimprovetheelectricityaccessrates.ThefigurebelowhighlightsthesolarradiationavailabilityacrossISAMembercountries,Source:WorldBank,20202IRENA,20224.5ISAMemberCountrieswithlowestElectricityAccess(%)–AfricaBenin41.4%BurkinaFaso18.9%Burundi11.7%Chad11.1%DRCongo19.1%Guinea44.7%GuineaBissau33.3%Madagascar33.7%Malawi14.9%Mali50.6%Mozambique30.6%Niger19.3%SouthSudan7.2%Source:WorldBank,2020GlobaltrendsinSolarPower35DistributedRenewablesforEnergyAccess(DREA)systemsarerenewable-basedsystems(stand-aloneoff-gridsystems)thatcangenerateanddistributeenergyindependentlyofacentralisedelectricitygrid.DREAsystemsprovideawiderangeofservicesincludingcooking,lighting,spaceheatingandcoolingintheurbanandruralareasofthedevelopingworld.DREAsystemrepresentsanessentialsolutionforfulfillingmodernenergyneedsandalsoimprovingthelivelihoodsofhundredsofmillionsofpeoplepresentlylackingaccesstoelectricity/cleancookingsolutions.Stand-alonesystemsandMini-gridsareconsideredastheleastcostoptionforprovidingaccesstoelectricitytonearlyhalfofthepopulationinSub-SaharanAfricaby2030.DistributedRenewablesforEnergyAccessFurther,toimprovetheelectricityaccessratesacrossAfricaandothersuchregionswithloweraccessrates,DistributedRenewablesforEnergyAccess(DREA)couldbeapossiblesolution.GlobalHorizontalIrradiation(GHI)inkWh/m2/day–ISAMemberCountriesSource:GlobalSolarAtlas,2020ThefiguresfromtheGlobalSolarAtlasfromWorldBankrevealtheaveragepotentialofsolarenergyaroundtheworldandthisinfographicshowsthesolaradvantageofAfricancountriesmanyofwhichareISAMemberCountries.Therealityisthatmostofthesenationshavenotyettakenactiontoutilisethisadvantage.Approximately,20%oftheglobalpopulationlivingin70countriespossessexcellentconditionsforsolar.AsignificantquantumofsolarenergypotentialinAfricaisstilluntappedandrepresentsauniqueopportunitytoprovideaffordable,reliable,andsustainableelectricityservicestoalargeshareofpopulationwhereimprovedeconomicopportunitiesandqualityoflifearethemostneeded.InBenin,BurkinaFaso,Fiji,PapuaNewGuinea,Rwanda,Samoa,TanzaniaandVanuatu–atleast9%ofthepopulationhasbenefitedfromoff-gridsolarlightingsystems.5.4≤4.54.4≤3.16.3≤5.53.0≤2.4(Unit:kWh/m2/day)GlobaltrendsinSolarPower36Top5ISAMemberCountrieswithhighestElectricityAccess(%)fromDistributedRenewableEnergySolutions,20222%4%3%5%5%6%4%0%1%2%3%4%5%6%7%8%9%10%NepalRwandaVanuatuFijiBangladeshShareofpopulationconnectedtosolarPVmini-gridsShareofpopulationusingsolarhomesystems(11-50W)Shareofpopulationusingsolarhomesystems(>50W)Source:REN21,2022Fordistributedrenewableenergysystemsforenergyaccess,Micro-gridtypicallyreferstoanindependentgridnetworkoperatingonascaleoflessthan10kWpower,whiletheminigridsaredesignedtogenerate10kWormorepowerusingrenewableenergythatdistributeselectricitytoalimitednumberofcustomers.Unliketraditionalgridsystems,microgridsaredecentralizedandlocatedclosetotheareatheyserve.Microgridscanserveasasupplementtoalarger,connectedgridsystemorasastand-alonepowersource.1.SolarMicrogrids/MinigridsGlobaltrendsinSolarPower37SolarPVmini-gridsarethepreferredtechnologyforprovidingelectricityaccessacrossAfricaandAsia.Theglobalinstalledcapacityofsolarmini-gridstotalled365MWin2019.Thegraphbelowshowstheregion-wisetrendoftotalinstalledcapacityofmini-gridsinISAMembercountries,Source:IRENA,2021Thefigurebelowshowsthetop5ISAMembercountrieswithhighestelectricityaccessratefromoff-gridsolarsolutions(solarhomesystemsandmini-grids)in2019.2.12.84.68.19.874.2246.7262.0280.4283.716.72419.36924.93531.10938.34550.00750.73256.03360.02860.271.3792.1032.2492.2492.2534.1314.72616.67517.94917.9490.0120.0120.0170.0170.0173.7673.7673.7673.7673.7670.050.0100.0150.0200.0250.0300.02010201120122013201420152016201720182019Region-wiseTrendofInstalledCapacityinSolarMini-grids(MW)AfricaAsiaLatinAmeric&CaribbeanMiddleEastInWestAfrica,Nigeriahasoneoftheworld’slargestmini-gridsupportprogrammesundertheNigeriaElectrificationProject(NEP)andaimstoelectrify300,000householdsand30,000localenterprisesthroughprivatesector-drivensolar-hybridmini-gridsby2023.Nigeria’sRuralElectrificationAuthoritycommissionedseveralinstallationsin2020,includingtwosolar-hybridmini-grids(totalling135kW)developedbyRenewviaEnergyanda234kWsolar-hybridmini-gridinstalledbyalocaldevelopertopowernearly2,000households.In2021,theAuthoritysignedagreementswithHuskPowertobuildsevenminigridsprovidingover5,000newconnections.GlobaltrendsinSolarPower38EnergyAccessintheHealthSector-NigeriaRenewableenergysolutionshavesupportedtheprovisionofhealthcareandotheressentialservices,especiallysincethestartoftheCOVID-19pandemic.Solutionsrangefromsmall-scaleoff-gridinstallationsforunelectrifiedruralclinics,tolarger,steadypowerdeliveryservicesforurbanclinicsthathousecrucialmedicaldevicesbutaresubjecttounreliablegrids.Duringthepandemic,therehasbeenaparticularfocusoncoldchainstokeepCOVID-19vaccineschilledfromproductiontodelivery.Thesecoldstoragefacilitiesrequirea24/7powersupply,whichhascomefromhybridsolar/diesel,battery/invertersystemsordirect-drivesolarrefrigerators.During2020and2021,avarietyofinitiativesincludedminigridsandmicrogridsinthehealthsector:•Nigeria’sRuralElectrificationAgencydevelopedseveralsolarmini-gridsforuseathospitalsandotherhealthcarefacilitiesasanemergencyresponsetoCOVID-19.Healthfacilitiesalsowereafocusofseveralotherdonor-drivenmini-gridinitiatives.•PowerAfrica,fundedbytheUSAgencyforInternationalDevelopment,directedUSD4.1millioningrantstooffgridcompaniesin2020toelectrifyhealthclinicsinruralandperi-urbanareasthroughmini-grids.Source:REN21,2022Box9SolarPVforElectricityAccess-ChadAtagloballevel,Chadhasoneofthelowestelectricityaccessrates.Asof2019,approximately8%ofthepopulationinthecountryhadelectricityaccess,withasignificantgapbetweenurban(20%)andrural(1%)areas.Apartfrom1MWwindpowerplantinthecountry,electricityissuppliedonlybygenerators,whichbreakdownregularly.Theenergysituationaffectsqualityoflifeandhinderssocio-economicdevelopment,especiallyinChad’ssecondlargestcity,Abéché.With80,000inhabitants,thecityremainsunconnectedtothenationalgridandhasstruggledtodevelopitsinfrastructurebecauseofsecuritychallenges.InnoVent,theFrenchrenewableenergyfirmhasdevelopedChad’sfirstsolarpowerplantinAbéché.Thepilotphaseoftheplant(1MW)wasbuiltbetween2020andNovember2021,withsoldiersprovidingsecurityforbothpersonnelandequipment.In2021,thefirstelectricitywasdeliveredtothenationalgridinthecountry.Source:REN21,2022Box104.75.88.716.929.647.768.586.0107.2133.450.967.995.4133.0161.6177.6178.5204.4196.3209.10.60.60.91.82.11.82.55.84.94.92010201120122013201420152016201720182019Region-wiseTrendofInstalledCapacityinSolarLights&HomeSystems(MW)AfricaAsia&PacificLatinAmerica&CarribeanGlobaltrendsinSolarPower39Source:IRENA,20212.SolarLightsandSolarHomeSystems(SHS)TheSolarhomesystemsareoff-gridsolarsystems,ratedat11watts(W)andabove,thatcanbeusedforlightingandtopowersmallelectricalappliances.Asof2020,100Mnpeoplehadgainedaccesstobasicresidentialelectricityservicesthroughtheuseofsolarlightingandsolarhomesystems.In2019,SHSsuppliedelectricitytoapproximately8MnpeopleinBangladesh,4.4MnpeopleinIndiaand3.4MnpeopleinKenya.InAsia&Pacific,theinstalledcapacityofsolarlightsandSHSincreasedfrom51MWin2010to209MWin2019,followedbyAfricawith4.6MWin2010toreach133.4MWin2019andLatinAmerica&Caribbeanwithonly0.6MWin2010toreach4.9MWin2019.Thegraphbelowshowstheregion-wisetrendoftotalinstalledsolarlightsandhomesystems.Nigeriasupports5MillionSHS/Minigridconnectionsservingupto25MillioncustomersundertheSolarPowerNaijaInitiativeTohelptheeconomicrecoveryinresponsetotheCOVID-19pandemic,theNigeriangovernmenthaslaunchedaninitiativeaspartoftheEconomicSustainabilityPlantoachievetheroll-outof5Millionnewsolarbasedconnectionsinthecommunitiesthatarenotgridconnected.TheSolarConnectionInterventionFacilitywillsupplementthegovernment’seffortforprovidingaffordablepowertounderservedruralcommunitiesthroughtheprovisionoflongtermlow-interestcreditfacilitiestotheNigerianElectrificationProjectNEP,assemblers/manufacturersofsolarcomponentsandoff-gridenergyretailersinthecountry.The5MillionSolarPowerNaijaconnectionschemeisaFederalgovernmentinitiativethataimsto,i.Expandenergyaccessto25Mnindividuals(5millionnewconnections)throughtheprovisionofsolarhomesystems/connectiontothemini-gridii.Increaselocalcontentintheoff-gridsolarvaluechainandalsofacilitatethegrowthofthelocalmanufacturingindustry.iii.Incentivizetheformationof250,000newjobsintheenergysector.Source:RuralElectrificationAgencyofNigeriaWebsiteBox11SolarHomeSystemswithMicroCreditsinBangladeshRuralelectrificationthroughsolarPVtechnologyisbecomingmorepopulardaybydayinBangladesh.SolarHomeSystemsaredecentralizedandareparticularlysuitableforinaccessibleandremoteareas.Underthe“RuralElectrificationProgram”oftheGovernmentofBangladesh,about3MnSHShavebeeninstalledinthelast16years.Ofthese3Mn,around1.5MnwereinstalledbytheGrameenShaktisince1996.GrameenShaktifocusesontheoff-gridruralareas.GrameenShaktiisalsopromotingthesmallSolarHomeSystemtotargetthelow-incomeruralhouseholds.SolarHomeSystemcanbeusedtolightupshops,homesandfishingboatsetc.Itcanalsobeusedtochargecellularphonesaswellastorunradios,televisions,andcassetteplayers.SolarHomeSystemshavebecomeincreasinglypopularamongusersbecausetheypresentanattractivealternativetoconventionalelectricity.Advantagesincludenomonthlybills,nofuelcosts,verylowrepairandmaintenancecosts,easyinstallationanywhere,etc.SolarHomeSystemsinstalledbytheGrameenShaktihashadabeneficialimpactonruralhouseholds.GrameenShaktihasintroducedamicroutilitymodeltoreachthepoorerpeopleinruralareaswhocannotaffordSHSseparately.Morethan1.5MnSHShavebeeninstalledinBangladeshthroughthemicrocreditsystemprovidedbytheGrameenShakti.MakingitpossibletochargemobilephoneswithSHSprovidesnewaccesstomorereliabletelecommunicationinoff-gridareas.Around10Mnpeoplearegettingbenefitsfromthesystems,andseveraltonnesofCO2areabatedeachyearasoneSolarHomeSystemsaves0.2tonneofCO2/yearfromavoidedkeroseneuse.Source:InternationalNetworkforSustainableEnergyWebsite3.SolarPumpsIndevelopingcountries,mostofthepopulationdependsonagricultureforlivingandtheagriculturalsectorcontributesasignificantshareoftheGDP.Unavailabilityofwaterforirrigationduetodependenceonrainandabsenceofaffordablewaterpumpsduetounavailabilityofelectricityisamajorchallengethissectorisfacing.SolarPumpisoneoftheproventechnologiesthataimtoincreasetheyieldofagriculturallandsbymakingwatersupplyavailableinareaswherethegridisnotavailable.Bangladeshtargetstodeploy50,000solarpumpsby2025andMorocco,100,000by2022.Indiaalsotargetedtoachieveasolarcapacityof30.8GWby2022undertheKusumSolarPumpScheme.GlobaltrendsinSolarPower40Box121.52.63.24.25.06.58.39.212.813.312.612.615.220.351.9109.5181.6355.3537.8563.90.60.60.70.80.91.01.11.51.72.22010201120122013201420152016201720182019Region-wiseTrendofInstalledCapacityinSolarPumps(MW)AfricaAsia&PacificLatinAmerica&CarribeanThegraphbelowshowstheregion-wisetrendoftotalinstalledcapacityofsolarpumpstill2019,consideringonlyISAMembercountries.InAsia&Pacific,theinstalledcapacityofsolarpumpsincreasedfrom12.6MWin2010andreached564MWin2019,followedbyAfricawith1.5MWin2010toreach13.3MWin2019andLatinAmerica&Caribbeanwith0.6MWin2010toreach2.2MWin2019.Nearly70%ofIndia’ssaltismadeinthe‘RannofKutch’inGujarat.Themajorityof43,000saltpanfarmersutiliseinefficientdieselpoweredwaterpumpsforextractingbrinefromgroundaspartofsaltharvestingprocess.Thedieselaccountsforasignificantproportionoffarmersproductioncosts.Infact,farmersspendupto40%oftheirannualrevenuebuyingdieselforthenextproductionseason,thusreducingdisposableincome.Twopilotprojects,carriedoutbytheSelfEmployedWomen’sAssociation,havedemonstratedthatpoweringpumpswithsolarenergycandecreaseproductioncosts,increasereliability,efficiencyandsaltharvestoutputs,resultingintheimprovedrurallivelihoods.AnnualsavingsforafarmerrosetoINR83,000-a161%raisewhencomparedtothoseusingdiesel-poweredpumpswithadditionalbenefitsincludingreducedairpollution.AcrosstheKutch,replacingdieselwaterpumpswithsolarandhybridsolar/dieselonescouldpotentiallyreduceCO2emissionsby115,000tonnes.Themulti-functionalnatureofsolarpanelsalsoincreasesitsvalue,particularlyfortheoff-gridvillages,enablingcomplementaryusessuchaspoweringthehouseholds.Interestingly,somesalttraders-whousuallyloansalt-pan-workermoneytopurchasedieselforirrigation,havenowacquiredthesolarpumpsandareleasingthemouttosaltpanworkersonanannualbasis.Inthismanner,theyareabletorecovertheirinvestmentinthreeyears,whilemakingthetechnologyaccessibleforsaltpanworkerswhonowneednotincurthecapitalcostsofthesystem.Source:NRDC,2018ReducingProductionCostsusingSolarPumps:IndiaGlobaltrendsinSolarPower41Box13Source:IRENA,2021SolarPVInvestmentTrendsTheannualinvestmentsinrenewableenergycontinuedapositivetrendin2022.GlobalinvestmentinrenewablesreachedUSD430Bnin2021andin2022theyfurtherincreasedby16%reachingalmostUSD0.5Tn.SolarPVcontinuedtodominateinvestmentin2022,accountingfor64%oftherenewableenergyinvestment.ThestronggrowthinsolarPVinvestmentin2021expandedfurtherin2022,toreachapproximatelyUSD308Bn.Increasedmaturityanddecliningcostsattractedinvestmentsinsolartechnologies,particularlyinsolarPVdeployment,whichaccountsforapproximately90%oftotalsolarinvestmentsbetween2013-2020.Thefigurebelowrepresentstheglobalinvestmenttrendsacrossrenewableenergyandsolar,4.6Source:IRENA,2022165142170138134162226308340263351322329348430499010020030040050060020152016201720182019202020212022USDBillionGlobalInvestmentinSolar(2015-2022)SolarPVRenewableenergy42GlobaltrendsinSolarPowerTheincreaseinrenewableenergyinvestmentshasbeendrivenby,1)Policymakersgrowingawarenessoftheimportanceofrenewableenergyinfightingclimatechange,strengtheningenergysecurityandreducingdependenceonvolatileenergysources;2)Investorsappetiteforalternativestobalanceoutthevolatilityandrisksofinvestmentsinfossilfuels.RegionalHighlightsTheoverallsnapshotoftheinvestmenttrendsacrossrenewablesonregionalbasisissummarisedbelow,EuropeandothersInEurope,theEuropeanCommissionpresentedaGreenDealIndustrialPlan,whichwouldprovideinvestmentaidandtaxbreakstowardstechnologicaldevelopment,manufacturing,productionandinstallationofnet-zeroproductsingreensectorsincludingrenewablesandhydrogen.TheplanlookstomobiliseEUR225BninloansfromitsexistingRecoveryandResilienceFacility,andanadditionalEUR20Bningrants.EuropeattractedUSD54Bnin2019andUSD67Bnin2020(16%and19%oftheglobaltotal,respectively).AsperIRENA,theinvestmentsreachedUSD77Bnin2021,butdroppedtoUSD61Bnin2022.In2020,investmentsintheregiongrewby24%comparedto2019,drivenprimarilybyanthreefoldincreaseintheNetherlandsandafourfoldincreaseininvestmentsintheUnitedKingdom.GlobaltrendsinSolarPower43AfricaLatinAmericaandCaribbeanAfricanregionremainsthemajordestinationforoff-gridrenewablesinvestment-Between2010-2021,theregionattractedUSD2.2Bn,morethan70%ofglobaloff-gridinvestments.WithinAfrica,thecountriessuchasKenya,theUnitedRepublicofTanzaniaandRwandaattractedhigherinvestments.Investmentinthesecountriesbenefitedfromtheexistingmobilemoneyecosystem,whichwasleveragedbythepay-as-you-go(PAYGO)businessmodel.Approximately78%ofthetotalcommitmentsinoff-gridrenewablesbetween2010-2021involvedthefundingofprojectsusingPAYGO,withEastAfricaaccountingforUSD917Mn.AsiaandPacificAsiaandPacificregioncontinuestoattractthemajorityofglobalrenewableenergyinvestmentofUSD170Bnin2020.InvestmentinrenewableenergyhasgrownsignificantlyinVietNam,whichovertookJapantobecomethesecond-largestdestinationin2020,largelyduetoexpiringofFITpolicy.From2013to2020,investmentgrewbyanaverageof219%peryear,risingfromUSD47MntoUSD18.7Bn.However,aftertheexpirationofFIT,investmentsdeclinedquicklyfromUSD18.7Bnin2020toUSD9.7Bnin2021tolessthanUSD4.7Bnin2022.TheregionattractedUSD137Mninoff-gridrenewableenergyinvestmentsin2019,ledprimarilybyMyanmar.During2020-2021,investmentsplummetedtoUSD3Mn,likelyduetothepandemicandpoliticaldevelopments.UnitedStatesconsistentlyattractedthemajorityofsolarinvestmentssince2013.IntheUnitedStates,the2022InflationReductionAct–encompassingnewtaxcredits,USD30Bningrantsandloansforcleanenergygenerationandstorage,andUSD60Bninsupportofmanufacturingoflow-carboncomponents–isexpectedtoattractUSD114Bninvestmentby2031.LatinAmericaandCaribbeanregionattracted4.9%ofglobalinvestmentsin2020,followedbyAsiaandAfrica.During2018-2021,LatinAmericaandCaribbeanattractedUSD21Mn,equivalenttolessthan1.5%ofcumulativecommitmentsoverthatperiod.Theregionhaselectricityaccessratesofmorethan90%.Withsmallersharesofthepopulationlivinginoff-gridlocations,theseregionsrepresentrelativelysmallmarketsfordecentralisedenergysystems.InvestmentTrendsinVietnamandThailandVietnam’srapidindustrialisationhaspromptedasurgeinenergydemand.Muchofthisindustrialgrowthhasbeenfuelledbyforeigndirectinvestment,ascompanieslooktodiversifytheirsupplychainsawayfromChina.Rooftopsolarinstallationsinindustrialparkshavegrowntomeetthesecompaniesrequirementforrenewableenergy(andmoreclimate-friendlyproducts).ThecountryhasincentivisedthegrowthofrenewableenergygenerationviaFiTsinthesolarindustry.Tariffsforonshoreandoffshorewindweremademoregenerousin2018afterpoorinitialuptake.Coalisstilltheprimarysourceofelectricityproductioninthecountry,thoughslowdevelopmentofnewplantsledthegovernmenttopivottosolar(andlaterwind)alongwithgastomeetitsrisingenergyneeds(GovernmentofVietnam,2016).Incontrast,investmentinneighbouringThailandhasbeenanaemic.Thiscanbepartlyexplainedbydifferencesinthetwocountries’stagesofeconomicgrowth,andenergymixes,amongotherfactors.Whileendowedwithsimilarnaturalresources,economicgrowthinthe1990shelpedThailandsetupawellfunctioningandrobustpowersupply.Asubsequentdeclineineconomicgrowthratesslowedenergydemandsignificantly,andThailand’sdemandnowlagsthatofitsrapidlyindustrialisingneighbour.Thailand’sPowerDevelopmentPlanaimsfora10GWexpansioninsolarPVcapacityby2037,whereasVietnamhastargetedanadditional18GWofsolarPVcapacityby2030andanother18GWfromwindpower.WithrenewableenergygrowthinThailandremainingtepidfortheforeseeablefuture,privateenergygiantssuchasSuperEnergyCorphavebeenincreasinglyturningtoforeignmarkets,includingVietnam,tofuelgrowth.BothVietnamandThailandhaveusedgenerousFiTstohelpgrowthesupplyofrenewableenergy.However,Vietnam’shighenergydemandandambitiousrenewableenergytargetshavemadeFiTsamoreeffectivepolicytool.Source:IRENA,2023Box14GlobaltrendsinSolarPower44SolarPVEmploymentTrendsTherenewableenergysectoremployed12.7Mnpeople,directlyandindirectly,in2021.Abouttwo-thirdsofalljobsareinAsia,andChinaaccountsfor42%oftheglobaltotal.ItisfollowedbytheEuropeanUnionandBrazilwith10%each,andtheUnitedStatesandIndiawith7%each.Thenumbercontinuedtogrowworldwideoverthepastdecade,withmostjobsinthesolarPV,bioenergy,hydropowerandwindpowerindustries.In2021,solarPVemployed4.3Mnjobs,thefastest-growingsector,accountingformorethanathirdofthetotalrenewableenergyworkforce.ThefigurebelowshowstheGlobalRenewableenergyemploymenttrendsbysolaracross2012-2021,7.38.59.510.010.110.511.111.512.012.71.42.32.52.83.13.43.73.84.04.3024681012142012201320142015201620172018201920202021MillionJobsRenewablesandSolarPVEmployment(2012-2021)RenewablesSolarPVSource:IRENA,2022Theseemploymenttrendsareshapedbyamultitudeoffactors,includinginvestments,newandcumulativecapacities,andbyabroadarrayofpolicymeasurestoenablerenewableenergydeployment,generateviablesupplychainsandcreateaskilledworkforce.ThefigurebelowhighlightstheGlobalrenewableenergyemploymentin2021bytechnology,In2021,SolarPVcontributedtothehighestnumberofjobsglobally,followedbyBioenergywith3.4Mnjobs,Hydropower(2.4Mnjobs),Wind(1.4Mnjobs),Solarheating/cooling(0.8Mnjobs).ConsideringsolarPVemployment,Chinaaloneaccountsfor63%ofPVjobs3in2021.Source:IRENA;2022Othersincludesgeothermalenergy,CSPandOceanenergy3IRENA,20224.70.40.81.42.43.44.30.00.51.01.52.02.53.03.54.04.55.0OthersSolarheating/coolingWindHydropowerBioenergySolarPVMillionjobsRenewableEnergyEmploymentbyTechnology(2021)GlobaltrendsinSolarPower45Basedonthesecondarydatasources,solarPVemployment(2021)inISAMemberCountriesarecapturedbelow,SNoCountriesNumberofjobs(inthousand)1UnitedStatesofAmerica2552India2173Japan150.54Bangladesh1205Brazil115.26Germany51.37Australia358Nigeria34.29Uganda23.7910Netherlands20.111France17.63412Italy14.9813Chile12.214Ethiopia12.1815UnitedKingdom6.416UnitedArabEmirates5.117Israel518Greece3.668SNoCountriesNumberofjobs(inthousand)19Denmark3.3520Sweden3.121Egypt1.922Mali1.923Argentina1.3924Ghana1.23425Zambia1.226Rwanda1.07527Guinea128Morocco129Hungary0.72930Algeria0.531Namibia0.4632Peru0.3833Luxembourg0.2334Norway0.2235Nicaragua0.236Tunisia0.2Source:IRENA,2022Fromtheabovetable,itcanbeseenthattheUnitedStatesofAmericaisthetopperformeramongISAMembercountriesinprovidingthesolarPVemploymentto255,000workersfollowedbyIndiaandJapan.AtaGloballevel,Chinaaccountedforabout2.7Mnjobs(i.e.63%ofPVemploymentworldwide).AsiaPacificcountrieshost79%oftheworld’sPVjobs,reflectingtheregion’scontinueddominanceofmanufacturingandstrongpresenceininstallations.TheremainingjobswereintheAmericas(7.7%ofalljobs),Europe(6.8%)andtherestoftheworld(4.9%)4.SolarPVEmploymentin2021:ISAMemberCountries4IRENA,2022GlobaltrendsinSolarPower46RenewableEnergyEmploymentlandscapeinVietnam&AustraliaVietnamisamajormanufacturer,exporterandinstallerofPVcellsandmodules.Solarcellproductionrosefromjust37MWin2014to3.75GW;moduleoutputincreasedfrom1.2GWto8.5GWin2021(WoodMackenzie,2022a).Thebreakneckexpansionofdomesticsolarinstallations,triggeredbyhighFITs,broughttotalcapacityfrom105MWin2018to17GWin2020.Asaresult,thecountry’selectricitygridbecameseverelyoverloaded,leadingtocurtailments.Despitesomegridimprovements,thedomesticsolarPVexpansioncametoanabrupthaltin2021,andemphasisshiftedtooff-gridrooftopdeployment.Theunprecedentedinstallationsin2020resultedinsignificanteconomicactivityandjobcreation.Morethanahundrednewinstallationcompaniesweresetupinsouth-centralNinhThuanprovince,whichwashometoaround2.5GWofinstallationsin2021.Asinstallationsshotup,Vietnam’ssolarPVworkforceroseto1,26,300jobsin2020.In2021,thelackofinstallationsapartfromtherooftopadditionshasresultedinreductionoftheworkforce.InthePacific,Australiacompletedsomeofitslargestsolarprojectsin2021,accordingtotheCleanEnergyCouncil(2022).Newcapacityadditionsincluded3.3GWofsmall-scalesolarand1.2GWoflarge-scalesolar.TheCleanEnergyCouncilreportsanother9.3GWworthofrenewableenergyprojectsunderconstructionorfinanciallycommittedattheendof2021,representingover35,000jobs,includingalmost21,000inNewSouthWales.Meanwhile,thefederalgovernment’sbioenergyroadmapcreatedsome26,200full-timejobs.ThegovernmentcommittedaboutAUD464Mntotheconstructionofsevenregionalhydrogenhubs,whichmightcreate1,30,000jobsby2030(CleanEnergyCouncil,2022).Source:IRENA,2022GlobaltrendsinSolarPower47Box15Solar&Equity5Solar&GenderEquityTheinclusionofwomeninrenewableenergyweavestogetherSDG5ongenderequalityandwomen’sempowermentwhereasSDG7onaffordableandcleanenergy.Genderequityrefersto‘theprovisionoffairnessandjusticeindistributionofbenefitsandresponsibilitiesbetweenwomenandmen’.Theenergyindustryhaslongbeenknownforitsmale-dominatedcultureandunequalopportunitiesforwomen’scareeradvancement.AtaGlobalscenario,theshareofwomenworkingfulltimeinthesolarPVindustryis40%,thehighestshareofanyrenewableenergysub-sector.40%21%0%10%20%30%40%50%SolarPVWindWomeninWind&SolarPVindustry,2021MostwomeninsolarPVholdadministrativejobs(58%),followedbynon-STEM(science,technology,engineeringandmathematics)technicalpositions(38%).Itiswellreportedthatacrosstheeconomy,inpolicymakingandgovernance,women’spresenceoncompanyboardsandinseniormanagementpositionsislow.AccordingtoIRENA’ssolarPVsurvey,womenholdbarely30%ofmanagerialjobsand17%ofseniormanagementpositions,faringbetterinsolarPVcomparedtothewindpower.58%38%35%32%0%10%20%30%40%50%60%70%AdministrationNon-STEMtechnicalOtherNon-technicalSTEMWomeninSolarPVworkforce2021,byrole30%17%13%8%0%5%10%15%20%25%30%35%ManagementSeniormanagementWomeninManagementpositionsinSolarPVandWindenergy,2021SolarPVWindSource:IRENA,2022Source:IRENA,20225GlobaltrendsinSolarPower49Therefore,whilewomenarebetterrepresentedinsolarPVmanagementthaninothertechnologiesandsectors,substantialeffortsareneededtoenablegreaterparticipationofwomenatalllevelsandtoexpandtheskillsandtalentsneededtodrivethetransformation.Women’sshareofsolarPVemploymentissmallerinEuropeandothers,LatinAmericaandtheCaribbeanthanintheAsia-PacificandAfricaregions.InthesolarPVsector,womenarerepresentedinadministrativepositionsacrosstheglobe.Thespreadbetweenwomen’ssharesinadministrationandinallotherrolesismostpronouncedincompaniesintheAsia-Pacificregion.27%33%38%40%0%5%10%15%20%25%30%35%40%45%EuropeandothersLatinAmerica&CarbbeanAfricaAsiaPacificWomenintheSolarPVworkforce,byregionSolarSisterIsAddressingGenderEquityandClimateChange-AfricaSolarSister,anetworkofwomenentrepreneursoperatinginmultipleAfricancountries,hasenabled3millionindividualstoaccesscleanenergyasof2022.Whatsetsitapartisitsdedicationtoempoweringwomeninestablishingsustainableenterpriseswithintheircommunities.Theinitiativerecruits,trains,andsupportsfemaleentrepreneurs,equippingthemwithoff-gridsolarproductslikesolarlighting.SolarSister'seffortsbenefitruralcommunitiesbyprovidingassistance,generatingincomeforwomenentrepreneurs,andexpandingtheavailabilityofcleanenergysources.Sinceitsestablishmentin2010,SolarSisterhasassistedover7,000entrepreneurs,distributedmorethan647,250cleanenergyproducts,andimpacted3millionpeople.EnergyequityisacrucialaspectofSolarSister'smission.Byofferingeconomicopportunitiestowomen,theprogramhasfacilitatedthecreationofcleanenergybusinessesforover6,800entrepreneurs.Asignificant86%ofthesebusinessesfocusprimarilyonsupportingwomen,althoughmenarealsoinvolvedtosomeextent.TheproductssoldbySolarSisterentrepreneurshavesuccessfullypreventedtheemissionofover946,763metrictonnesofCO2.Source:SolarSisterWebsiteBox16Source:IRENA,2022GlobaltrendsinSolarPower50Victoria(Australia)launchedaUSD11Mnplantosubsidise50%ofthecostofapprenticeships,professionalmentoringandongoingeducationforwomenenteringtherenewablesindustryaselectricians,plumbersandsolarinstallers,etc.InAfrica,thestate-ownedEthiopiaElectricUtilitylookstoemploy30%womenby2030byprovidingscholarshipsandinternshipsinSTEM(science,technology,engineeringandmath)fields.EffortstowardsGenderEquityBarbadosAlongsideprovidingsocialassistance,theBarbadiangovernmentprioritizesthefacilitationandsupportofwomen'sentrepreneurshipandbusinessdevelopmentasameanstoaddresstheincreasinglevelsofunemployment,layoffs,andcontributetotheeconomicrecoveryefforts.Inordertoadheretotheoverarchingprincipleofglobalsustainabledevelopment,whichemphasizestheinclusionofallindividuals,itisimperativethattheclimatefinancestrategyensuresequitablerepresentationofvariousaspectssuchasgender,indigenouscommunities,peoplewithdisabilities,andyouth.BelizeBoliviaBoliviaiscommittedtointegratingagenderperspectiveintoitsPlurinationalPolicyforClimateChangeinordertoaddressinequalitygapsinvariousdimensions.Thisrecognitionstemsfromtheunderstandingthatclimatechangeimpactswomenandmendifferentlyandacknowledgesthecrucialrolethatwomenplayinareassuchaswatermanagement,agriculturalproduction,foodandenergysecurity,andcommunityresilience.Therefore,Boliviaisdedicatedtoincorporatingagenderandintergenerationalapproachintoitsclimatepolicytoensureinclusivityandequality.Cambodiaupholdsfourkeymeasures:promotinggenderequality,fosteringinnovation,ensuringinclusivity,andempoweringwomen.CambodiaCapeVerdeImplementtheGenderandEnergyActionPlanandprovidesupportforthegrowthoflocalenterpriseswhileactivelyencouragingeconomicopportunitiesforwomen,withaspecificfocusontherenewableenergysector.TheMinistryofNew&RenewableEnergy(MNRE)hasbeenactivelypromotingtheinvolvementofwomenintherenewableenergysector.Recently"WomeninRenewableEnergy(RE):CallforAction"wasorganizedtorecognizethecontributionsofwomenentrepreneursandleadersintheREsectorandtochartapathforthefuture.Toexpeditethisinitiative,MNREhasestablishedanempoweredcommitteeconsistingofgovernmentofficials,experts,andindustryassociations.IndiaGlobaltrendsinSolarPower51FinancingforWomeninSolarBarrierstoWomen’sinclusionintheSolarSectorMultiplebarrierslimitwomen’sabilitytoaccessenergytechnologiesandparticipateinsolarprojectsandprograms.Avarietyofpervasivefactorsinteractattheindividual,institutional,andsocietallevelsthatdirectlylimitwomen’sinclusioninthesector,including:•GenderandSocialNorms-Gendernormsandintrahouseholddynamicsinhibitwomen’saccesstoenergytechnologies.Inaddition,menarethemainpurchasersofenergyproducts,evenwhenwomenaretheprimaryendusers;thisresultsinskewedconsumerdataandproductsthatdonotalwaysreflecttheneedsorpreferencesofwomen.Asinothersectors,gendernormsandbias,aswellasbroadersystemicbarriers,limitwomen’sabilitytoentertheworkforceandobtainfunding.•Lackofappropriatefinancingforwomen-ownedandledbusinesses-Althoughfinancialinstitutionsincreasinglydesigngender-neutralpoliciesandservices,thesetendtoreflectthepreferencesofmen.Researchshowsthatwomen’sbusinessesmay,forexample,needacombinationoffinancialandnonfinancialproductsandservices,includingtraining,mentoring,networking,andotheradvisoryservices.Specifically,forearly-stageoff-gridenergyenterprises,financingforwomentogrowandsustaintheirbusinessesislimited.Microfinanceandtraditionalruralvillagesavingsandloanassociationsandcooperativesarethemostcommonfinancingoptionsavailabletowomen.•Lackofpoliciesthataddressgenderinequalityinthesolarsector-Genderdiscriminationinlaws,policies,andregulationsprohibitandinhibitwomenfromaccessingthebenefitsofenergyservicesandfromactivelyparticipatinginthesector.The2021Women,BusinessandtheLaw(WorldBank,2021)reportsthat75countrieslimitwomen’spropertyrightsinsomeform,andvariouslegalbarrierspreventwomenfromworkinginspecificsectorsandoccupations.Renewableenergypoliciesandframeworkscanbecatalyticinintroducinglaborconditionsthatareconducivetowomen’sactiveparticipationinthesector,althoughevenwhenenergyframeworksincludesomegenderconsiderations,womenaremostlycharacterizedaspotentialbeneficiariesratherthanasagentsofchange.▪Energyequityaimstoensurethatdisadvantagedcommunitieshaveequalaccesstocleanenergyandarenotdisproportionatelyaffectedbypollution.Itrequiresfairanddistributionofbenefitsintheenergysystemthroughintentionaldesignofsystems,technology,proceduresandpolicies.▪Committingtoequityincleanenergyprograms,policies,andinvestmentscanimproveandexpandcleanenergyservicesandtechnologiesformarginalizedgroupswhilecreatingmorejustprocesses,outcomes,andsystems.▪Cleanenergyservicescanreduceenergycosts,createjobs,andpromotethehealth,safety,andwell-beingofresidents.▪Policymakers,utilitiesandotherdecisionmakerscanaddresstheseenergyburdendisparitiesthroughcleanenergypoliciesandprograms.▪Equitableenergypoliciesoftenimproveenergyaccessandaffordability,proceduraljustice,economicparticipationandcommunityownership,andhealthandenvironmentalimpacts.Solar&EnergyEquityGlobaltrendsinSolarPower52WayForwardDespitetheongoingexpansionofrenewablesaroundtheworld,significantchallengesremainwhichinclude:•Certainrenewablepowermarketsfollowaboom-bustcycleduetoshort-term,unpredictablepolicymaking,asevidencedin2021bythesurgeinoffshorewindpowerinChinatomeetafeed-intariffdeadlineandbythecollapseofVietnam’ssolarPVmarketaftertwoyearsofgenerousincentives.•Transmissionbottlenecksandnetworkexpansioninsomecountrieshaveheldbackthedeploymentofrenewables.•Unstablesupplychains(relatedtoaconcentrationoftechnologysuppliersinfewcountries)candelayprojectsandraisecosts,leadingtounpredictablepricerisesthatputpressureontheeconomicvalidityofprojects.•Localcapacityandknowledgegapsremainachallengeduringtheconstructionandoperationphasesinemergingmarketsandremotelocations.Futureeditionsofthe“GlobaltrendsinSolarpower”reportwillaimtowardscapturingtheglobalandregionallevelinsightsrelatedtothesolarsectorwhicharequintessentialinfurtherreinforcingtheanalysisforISAMembercountries.Also,intheupcomingeditions,greateremphasiswillbegiventoincludethebestandemergingpracticesintheareaofpolicy,technologyandmarketeco-systemintheISAmembercountries.Inclusion&analysisofnewchapterspertainingtotheSolarmarketecosystem,desiredkeytrendsintheglobalsolarmarketrelatedtodigitalandemergingtechnologiesetcaresomeotheradditionalinitiativestoenhancetheoutcomesandoutreachofGlobaltrendsinSolarPower.Effortstowardsaddressingthedevelopmentofsolarsectorasmentionedabove,shouldbeaddressedatafasterpace,tofacilitatethedeploymentofsolarenergyandtoachievethetransitiontoanet-zeroeconomy.6GlobaltrendsinSolarPower53References1.https://www.irena.org/media/Files/IRENA/Agency/Publication/2022/Sep/IRENA_Renewable_energy_and_jobs_2022.pdf?rev=7c0be3e04bfa4cddaedb4277861b1b612.https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf3.https://www.iea.org/reports/solar-pv-global-supply-chains/executive-summary4.https://iea.blob.core.windows.net/assets/d2eea0e8db02dc64332c/SpecialReportonSolarPVGlobalSupplyChains.pdf5.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Power_Generation_Costs_2021.pdf?rev=34c22a4b244d434da0accde7de7c73d86.https://www.iea.org/data-and-statistics/charts/technology-cost-trends-for-solar-pv-module-2015-20217.https://www.irena.org/News/pressreleases/2020/Dec/IRENA-Offers-El-Salvador-a-Strategic-Action-Plan-to-Drive-Energy-Transformation8.https://www.iea.org/reports/fossil-fuels-consumption-subsidies-20229.https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf10.https://www.worldbank.org/en/news/feature/2022/06/28/changing-lives-and-livelihoods-in-tanzania-one-electricity-connection-at-a-time11.https://www.worldbank.org/en/news/press-release/2021/06/07/report-universal-access-to-sustainable-energy-will-remain-elusive-without-addressing-inequalities12.https://solarsister.org/who-we-are/13.https://documents1.worldbank.org/curated/en/099325010202269787/pdf/P17515003f94c80d10b9480478743e58b7f.pdf14.https://documents1.worldbank.org/curated/en/099325010202269787/pdf/P17515003f94c80d10b9480478743e58b7f.pdf15.https://www.aceee.org/topic/energy-equity16.https://iea-pvps.org/wp-content/uploads/2021/04/IEA_PVPS_Snapshot_2021-V3.pdf17.https://nep.rea.gov.ng/federal-governments-5milion-solar-connections-program/18.https://documents1.worldbank.org/curated/en/579941540407455831/pdf/Floating-Solar-Market-Report-Executive-Summary.pdf19.https://www.tatapower.com/media/PressReleaseDetails/1865/tata-motors-and-tata-power-inaugurate-indias-largest-solar-carport-at-its-car-plant-in-pune#:~:text=Spanning%20over%2030%2C000%20square%20meters,Power%20on%20August%2031%2C%202020.20.https://www.pv-magazine.com/2023/03/22/new-global-solar-capacity-additions-hit-191-gw-in-2022-says-irena/21.https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_RE_Capacity_Statistics_2023.pdf?rev=d2949151ee6a4625b65c82881403c2a722.https://www.iea.org/reports/sdg7-data-and-projections/access-to-electricity23.https://www.weforum.org/agenda/2022/07/africa-solar-power-energy-sustainability-climate-change24.https://energy.gov.za/files/esources/renewables/r_solar.html25.https://globalsolaratlas.info/download/world26.https://ember-climate.org/data-catalogue/yearly-electricity-data/27.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jan/IRENA_NDCs_RE_Targets_2022.pdf7GlobaltrendsinSolarPower5428.https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_RE_Capacity_Statistics_2023.pdf?rev=d2949151ee6a4625b65c82881403c2a729.https://stateofgreen.com/en/news/the-current-pv-global-supply-chain/30.https://www.iea.org/data-and-statistics/charts/solar-pv-manufacturing-capacity-and-production-by-country-and-region-2021-202731.https://www.iea.org/reports/solar-pv-global-supply-chains/executive-summary32.https://www.iea.org/reports/world-energy-investment-2022/overview-and-key-findings33.https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Feb/IRENA_CPI_Global_RE_finance_2023.pdf?rev=8668440314f34e588647d3994d94a78534.https://about.bnef.com/energy-transition-investment/35.https://www.greenworldinvestor.com/2011/08/14/bipv-solar-explained-building-integrated-photovoltaics-glass-efficiencycurtain-wallwindows-and-technology/36.https://www.pv-magazine.com/2020/04/23/solar-pavement-for-outdoor-applications/37.https://www.nrdc.org/sites/default/files/worth-their-salt-improving-livelihoods-of-women-salt-farmers-through-clean-energy-in-the-salt-pans-of-gujarat_2018-09-10.pdf38.https://www.iea.org/data-and-statistics/charts/evolution-of-solar-pv-module-cost-by-data-source-1970-202039.https://documents1.worldbank.org/curated/en/579941540407455831/pdf/Floating-Solar-Market-Report-Executive-Summary.pdf40.https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Nov/IRENA_Future_of_Solar_PV_2019.pdf?rev=d2e0fb395422440bbeb74c69bbe2dc9941.https://solarsister.org/solar-sister-is-addressing-gender-equity-energy-poverty-and-climate-change/GlobaltrendsinSolarPower55DisclaimerThisreporthasbeenpreparedbyErnst&YoungLLP(“EY”or“we”),inaccordancewithanengagementagreementwiththeInternationalSolarAlliance.Ernst&YoungLLP’sobligationstothe[InternationalSolarAlliance]aregovernedbythatengagementagreement.Thisdisclaimerappliestoallotherparties(“thirdparty”).ISAandEYhavetakenallreasonablestepstoensurethattheinformationcontainedhereinhasbeenobtainedfromreliablesources.Wehavetakenduecaretovalidatetheauthenticityandcorrectnessofsourcesusedtoobtaintheinformation;however,neithertheISA,EYnoranyoftheirrespectivepartners,officers,employees,consultantsoragents,provideanyrepresentationsorwarranties,expressedorimplied,astotheauthenticity,accuracyorcompletenessoftheinformation,dataoropinionsthatthirdpartiesorsecondarysourcesprovidedtous.Theinformationandimages(ifany)providedoranalysedintheReporthavebeencollatedfromvariousindustrysources,includingwebresources,public-domaininformationsourcesandourinternaldatabases.WehaveensuredreasonablecaretovalidatethedatapresentedintheReport;however,wehavenotconductedanaudit,duediligenceoranindependentverificationofsuchinformation.Itisalsotobenotedthattheimagespresented(ifany)arepictorialrepresentationsoftheoverallconceptandareinnowayintendedtorepresentanyconcreteimageryfortheproposeddevelopment.Allqualitativeandquantitativeinputsandassumptions,usedinthereport,arederivedfromdesktopresearchand/orindustryinteractions,inputsreceivedfromMemberCountries,andsubsequentlysubmittedtoNationalFocalPointsandContactPointsoftheISAmembercountriesforreviewandvalidation.Nothirdpartyshouldactonthebasisofanyinformationcontainedinthisreportwithoutconsideringand,ifnecessary,takingappropriateadviceupontheirownparticularcircumstances.Thisreporthasbeenpreparedforgeneralinformationalpurposesonlyandisnotintendedtoberelieduponasaccounting,tax,orotherprofessionaladvice.Refertoyouradvisorsforspecificadvice.Itistobenotedthatmapsandflagspresentedareforthepurposeofpictorialrepresentationonlyandareinnowayintendedtorepresentanyconcreteimagery,accurateterritoriesorboundariesofthecountriesorregionsandarenottobescaled.AllflagshavebeensourcedfromWorldAtlaswebsite(https://www.worldatlas.com/countries).Thisreport(andanyextractfromit)maynotbecopied,paraphrased,reproduced,ordistributedinanymannerorform,whetherbyphotocopying,electronically,byinternet,withinanotherdocumentorotherwise,withoutISA’sandEY’spriorwrittenpermission.TheReportoritscontentsshallnotbereferredtoorquotedinanyregistrationstatement,prospectus,offeringmemorandum,annualreport,anypubliccommunication,loanagreementorotheragreementordocumentwithoutISA’sandEY’spriorwrittenconsent.ISAandEYacceptnoresponsibilitytoupdatethisreportinlightofsubsequenteventsorforanyotherreason.ISA,EYandtheirmembers,partners,employeesandagentsdonotacceptorassumeanyresponsibilityorliabilityinrespectofthisreport,ordecisionsbasedonit,toanythirdpartyinrelationtothecontentofreport.Shouldsuchthirdpartychoosetorelyonthisreport,thenthatthirdpartydosoattheirownrisk.GlobaltrendsinSolarPower56

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱