苏格兰爱丁堡改造低碳商业建筑价值评估报告征求意见稿AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotlandDraftforComments梁希1,2,潘巍3,江梦菲1,郭怡璞1,吕京弘4,李佳2,陈欣宇4XiLiang1,2,WeiPan3,MengfeiJiang1,YipuGuo1,JinghongLyu4,JiaLi2,XinyuChen41爱丁堡大学商学院1UniversityofEdinburghBusinessSchool2中英(广东)CCUS中心2UK-China(Guangdong)CCUSCentre3香港大学土木工程系3DepartmentofCivilEngineering,UniversityofHongKong4独立咨询顾问4IndependentConsultant二零一六年三月March2016AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland鸣谢Acknowledgement这份报告由苏格兰资金协会与香港研究资助局(X_HKU711/14)提供资金支持。ThisworkdescribedinthisreportwassupportedbyagrantfromtheSFC/RGCJointResearchSchemesponsoredbytheScottishFundingCouncilandtheResearchGrantsCouncilofHongKong(X_HKU711/14).感谢PhilipCurry为这份报告提出的评论与修改意见。WewouldliketoexpressgratitudetoPhilipCurryfortheusefulcomments,revisionsandengagementthroughthewritingprocessofthisreport.主要发现KeyMessages中英(广东)CCUS中心-3-主要发现KeyMessages●爱丁堡已有一些正在将现有传统商业建筑进行改造或翻修成零排和低碳理念建筑的具体实例。●Thereareconcreteexamplesofretrofittingorrefurbishingexistingcommercialbuildingstolow-carbondesigninEdinburgh●初步实物改造方案分析报告显示,保留零排放和低碳设计建筑改造会带来巨大价值。●Apreliminaryrealoptionanalysisshowsasubstantialoptionvalueinkeepinglowcarbonbuilding(LZB)retrofitoptionopen●新建筑应一律强制设计为‘低碳排放建筑改造状态’或‘低碳排放状态’。●Newbuildingsshouldbemandatedtodesignina‘LowCarbonBuildingRetrofitReadiness’statusor‘LCBReadiness’1.1建筑行业中的能源消耗1.1EnergyConsumptionintheBuildingSector随着全球经济的迅速增长,人类对能源的需求和消耗也日益增大,世界能源危机及其在使用过程中对环境带来的严重负面影响日益突出。截止到2013年,在过去的20年里,世界总能源消耗在2013年增长了48%,达到9321百万吨。同时二氧化碳的排放量增长了56%,达到32190公吨。两者的年平均增长率分别为2.1%和2.4%(图1)。欧盟多个国家自1992年联合国气候变化框架公约(UNFCCC)后,开始致力于处理能源和环境问题。虽然能源消耗问题和二氧化碳排放量在这之后得到了一定程度上的控制,欧盟国家的能源消耗和二氧化碳排放量仍然分别占世界总量的12%和10%(IEA,2015)。Therapidgrowthoftheworldeconomyrequiressubstantialdemandandconsumptionforenergy,resultinginexhaustionofenergyresourcesandadverseenvironmentalimpacts.Duringthelasttwodecades,theworld’stotalfinalenergy第一章引言ChapterOneIntroduction苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-4-中英(广东)CCUS中心consumptionincreasedby48%to9,321MtoewhileCO2emissionsincreasedby56%,reaching32,190Mtin2013,withanaverageannualincreaseof2.1%and2.4%respectively(Fig.1).TheEuropeanUnion(EU)countriesendeavouredtotackleenergyandenvironmentissuesaftertheagreementoftheUnitedNationsFrameworkConventiononClimateChange(UNFCCC)in1992.AlthoughtheenergyconsumptionandCO2emissionsseemedsubsequentlytobeundercontrol(Fig.2),finalenergyconsumptionandCO2emissionsintheEUcontributed12%and10%oftheworld’stotalnumbersrespectively(IEA,2015).能源末端消耗通常主要以工业部门为主,其他行业包括农业,商业和公共服务业,房地产紧跟其后,其余的部分由交通部门和非能源利用组成。然而,发达国家建筑行业的能耗超过了其他所有的主要行业且占总能耗的20%-40%(Perez-Lombard,etal.,2008)。2004年欧盟建筑能耗占总能耗的37%,超过工业部门的28%和交通部门的32%。到2010年,欧盟的建筑能耗占总能耗的比重增加到了40%(EUCommission,2010)。以英国为例,建筑的内部温度调节所占能源消耗的比例多达42%(DECC,2010)且该行业占英国二氧化碳排放总量的43%(DCLG,2015)。该数据略微高于欧盟的数据,部分原因是由于重工业向服务业转型的结果(Perez-Lombard,etal.,2008)。Finalenergyconsumptionisusuallydominatedbytheindustrysector,followedbyothersincludingagriculture,commercialandpublicservices,residentialandnon-specified,therestbeingcomposedofthetransportsectorandnon-energyuse.However,thebuildingsectorindevelopedcountriesaccountsfor20-40%ofthetotalfinalenergyconsumptionandhasexceededtheothermajorsectors(Perez-Lombard,etal.,2008).In2004,energyconsumptioninbuildingsectorintheEUwas37%offinalenergy,biggerthanindustry(28%)andtransport(32%).In2010,itincreasedto40%oftotalenergyconsumptionintheEU(EUCommission,2010).IntheUK,upto42%oftheenergyconsumptionisspentinheatingandcoolingthebuildings(DECC,2010)and43%ofalltheUK’scarbonemissionsarecausedbythebuildingsector(DCLG,2015).ThisisslightlyabovetheEuropeanfigureandpartlyduetotheshiftawayfromheavyindustrytowardsservicesectoractivities(Perez-Lombard,etal.,2008).此外,建筑行业仍在扩张。居民建筑和非居民建筑的二氧化碳排放量分别占大约英国二氧化碳总排放量的25%和18%(DECC,2015)。其中英国的非居民建筑楼层区域预计到2050年将增加35%,同时60%的现有建筑仍然处于使用期(LCICG,2012)。苏格兰的公共服务业类建筑在2013年排放了1.2百万吨二氧化碳当量,占苏格兰温室气体排放量的2.3%。假如建筑业和其他行业的发展在不善的废物管理制度管理下,或资源利用效率较低的情况下,都将会导致危害环境的严重后果(DCLG,2015)。所以,对于建筑业来说,降低能耗,特别是降低碳排放量是应对气候变化问第一章引言ChapterOneIntroduction中英(广东)CCUS中心-5-题的一个重要举措。对建筑业的低碳创新改造将给英国提供一个良好的契机,帮助其提高能源使用效率并降低温室气体排放量。Furthermore,thebuildingsectorisexpanding.Theenergyusedbydomesticandnon-domesticbuildingsaccountsforapproximately25%and18%ofUKcarbonemissions(DECC,2015),anditisexpectedthatnon-domesticfloorareaintheUKwillincreaseby35%by2050,while60%ofexistingbuildingswillstillbeinuse(LCICG,2012).PublicsectorbuildingsinScotlandemitted1.2MtCO2e,whichrepresented2.3%ofScottishGHGemissionsin2013.Buildingsandotherdevelopmentscanalsobeenvironmentallyhazardousthroughpoorwastemanagementorinefficientuseofresources(DCLG,2015).Therefore,reducingenergyuse,andinparticularemissionsofgreenhousegases(GHGs)inthebuildingsectorareessentialfortacklingclimatechangeissueandretrofittingexistingbuildingsoffersasignificantopportunitytohelpimproveenergyefficiencyandreducegreenhouseemissionsintheUK.1.2苏格兰的建筑业能源政策1.2BuildingEnergyPolicyinScotland苏格兰政府对实现其2050年目标(即将苏格兰地区的净温室气体排放量在1990的水平上降低80%)做出了郑重的承诺。其中,中期(2020年)的目标是将苏格兰地区的净温室气体排放量在1990的水平上至少降低42%。此外,在2011年至2019期间的每一年的年碳排放量目标须和该期间的排放减少量保持一致,进而使其能够达成中期目标和图1-1自1990年以来世界能源消耗总量和二氧化碳排放量来源:国际能源署(IEA)Figure1.World’stotalfinalenergyconsumptionandCO2emissionssince1990.Source:InternationalEnergyAgency(IEA).11.11.21.31.41.51.6WorldEnergyConsumptionWorldCO2emissions苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-6-中英(广东)CCUS中心2050目标。另外,2020年至2050年期间的碳排放年度目标必须比前一年度的目标至少减少3%(气候改变法案,2009)。TheScottishGovernmenthavedeclaredastrongcommitmenttoachievethe2050targetdefinedas80%lowernetScottishemissionsthanthe1990baseline.Theinterimtarget,whichissetforyear2020,isatleast42%lowernetScottishemissionsthanthebaseline.Moreover,foreachyearintheperiod2011-2019,theannualcarbonemissiontargetmustbesetatanamountthatisconsistentwithareductionoverthatperiodofnetScottishemissionsamountswhichwouldallowtheinterimandthe2050targettobemet.Foreachyearintheperiod2020-2050,thetargetmustbesetatanamountthatisatleast3%lessthanthetargetfortheprecedingyear(ClimateChangeBill,2009).苏格兰建筑行动法案是由议会于2003年2月20日通过的,该法案对建筑、建筑标准、核查和认证、建筑物权证等方面制订了相关规定。之后,2007年沙利文报告提出了关于建设低碳建筑的路线图、降低碳排放量的期望和建筑标准中涉及能源利用效率等问题。该报告同时还建议所有非居民建筑物的所有者应执行对二氧化碳排放量和能源利用的评估并同时开展建筑升级改造工程。ThebillfortheBuilding(Scotland)Actwaspassedbytheparliamenton20thFebruary2003,includingprovisionswithrespecttobuildings,buildingstandards,verificationandcertification,buildingwarrantsetc.In2007,theSullivanReportproposedaroutemapfordeliveryofverylowcarbonbuildings,settingaspirationsforcarbonabatementandenergyefficiencywithinFigure.2.EU28countries’totalfinalenergyconsumptionandCO2emissionssince1990.Source:InternationalEnergyAgency(IEA).图1-2自1990年欧盟28个国家总最终能耗和二氧化碳排放量来源:国际能源署(IEA)0.80.850.90.9511.051.1199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013EU28EnergyConsumptionEU28CO2emissions第一章引言ChapterOneIntroduction中英(广东)CCUS中心-7-buildingstandards.Thereportalsosuggestedthatallownersofnon-domesticbuildingsshouldconductacarbonandenergyassessmentandproduceaprogrammeforupgrading.2007年沙利文报告同时提出关于如何提升现有建筑物碳的能源利用率的方法的若干设想。该报告建议引入一项法律条例,条例要求所有非居民建筑的所有者实施对二氧化碳排放量和能源利用的评估,并同时开展建筑升级改造工程,该条例已被纳入苏格兰气候变化法案第50条。TheSullivanReport(2007)alsoconsideredwaysinwhichcarbonandenergyperformanceofexistingbuildingscanbeimproved.Introductionoflegislationtorequireallownersofnon-domesticbuildingstoconductassessmentsofcarbonandenergyandproduceaprogrammeforupgradingwererecommended,andledtotheinclusionofSection50intheClimateChange(Scotland)Bill.2009苏格兰气候变化行动法案重点强调了非居民建筑的能源利用情况、提升能源利用率和再生热能等问题。同年,苏格兰政府发布了可再生能源框架以支持欧盟可再生能源的需求将在2020年达到20%的目标。Therefore,energyperformanceofnon-domesticbuildings,andpromotionofenergyefficiencyandrenewableheatwereemphasizedinthe2009ClimateChange(Scotland)Act.Inthesameyear,theScottishGovernmentissuedtheRenewableEnergyFrameworktoadvocatetheEUtargetof20%renewableenergyby2020,andplayitsroleinmeetingthecontributionproposedfortheUKfor15%renewableenergyandaimtogofurtherthanthat(to20%).2007年沙利文报告中有关的建议基本全已实施运行。在最近发表的2013年《沙利文报告-苏格兰低碳建筑标准策略》中,为了能让低碳建筑标准更好的实施,该报告承继了以往报告中的建议,并回顾了为应对欧盟自2019年要求建立‘近零排放’新建筑的要求的相关能源标准。AlmostalloftherecommendationsfromtheoriginalSullivanReportin2007havenowbeentakenforward.InthemostrecentlySullivanReportin2013:ALowCarbonBuildingStandardsStrategyforScotland:tosupportamoresuccessfulimplementationoflowcarbonbuildingstandards,andsubjecttothepreviousrecommendation,subsequentreviewofenergystandardsweresuggestedtobeprogrammedtoalignwiththeEUDirectiverequirementfor‘nearlyzeroenergy’newbuildingsfrom2019.苏格兰政府同时利用该建筑标准和规划系统帮助建设低碳建筑。苏格兰政府的建筑标准部门在2015年10月1日发布了关于建筑标准规则的新指导信息。其中包括主要针对第六部分(能源)居民建筑和非居民建筑的新技术手册。该标准现在同时适用于非居民建筑的扩张,且该建筑的总占地面积范围将扩大至少100平方米或者25%。图1-3总结了苏格兰建筑能源政策在过去12年的发展。lowcarbonbuildings.TheScottishGovernment,BuildingStandardsDivision(BSD)haspublished苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-8-中英(广东)CCUS中心newguidanceregardingBuildingStandardscompliancefrom1October2015,includingnewTechnicalHandbookswithmajorrevisionstoSection6(Energy)Domestic&Non-domestic.Thestandardnowappliestoextensionstonon-domesticbuildingsthatincreasethetotalareabymorethan100m2or25%.Figure3showsthetimelineofpolicyregardingbuildingenergyinScotlandover12years.1.3关于改造非居民建筑的文献1.3LiteratureonRetrofittingofNon-domesticBuildings建筑改造的主要目的是通过利用一种成本效益好的方案重建已有的建筑从而将其益处最大化(Markus,1979)。建筑改造在建筑遭到严重破坏、折旧和房地产的投资价值有所损失的情况下可立即进行。然而,由于如今的传统经济效益分析理论中融入了更多关于社会和环境因素对商业的影响作用,曼斯菲尔德(2009)建议涉及到企业社会责任(CSR)和社会责任性投资(SRI)的可持续性政策将可能对建筑改造的行动起到推动作用,从而致力于解决能源效率的提升、降低碳排放量和其他可持续性发展问题。Themainproposalforretrofittingistoextendthebeneficialuseofanexistingbuildingbytakingacost-effectivealternativetoredevelopment(Markus,1979).Retrofittingmaybeinitiatedsuddenlyduetoprofounddamage,ordrivenbydepreciationandthelossofaproperty’sinvestmentvalue(Aikivouri,1996).However,sincetheconventionaleconomicperformanceanalysishasbeenextendedwithmoreconsiderationofthesocialandenvironmentalimpactsofabusiness,Mansfield(2009)suggestedthatsustainabilitypolicieswithrespecttothecorporatesocialresponsibility(CSR)andsocially20032004200520062007200820092010201120122013201420152003Building(Scotland)ActProvidesprovisionwithrespecttobuildings,buildingstandards,verificationandcertification,buildingwarrantsetc.TimelineofBuildingEnergyPolicyinScotland2007SullivanReportRecommendsintroductionoflegislationtorequireallownersofnon-domesticbuildingstoconductassessmentsofcarbonandenergyandproduceprogrammeforupgrading2009ClimateChange(Scotland)ActEmphasizesenergyperformanceofnon-domesticbuildings,andpromotionofenergyefficiencyandrenewableheat2009RenewableEnergyFrameworkAdvocatestheEUtargetof20%renewableenergyrequirementsby2020,andplayitsroleinmeetingthecontributionproposedfortheUKfor15%renewableenergyandaimtogofurtherthanthatto20%2013SullivanReportsubsequentreviewofenergystandardsaresuggestedtoalignwiththeEUDirectiverequirementfor‘nearlyzeroenergy’newbuildingsfrom20192010BuildingStandardsBuildingStandardsTechnicalHandbookDomestic/Non-domestic20102015BuildingStandardsThelatestissueoftechnicalhandbooksfordomesticandnon-domestic图1-3关于苏格兰建筑能源政策发展的时间轴Figure.3.TimelineofBuildingEnergyPolicyinScotland第一章引言ChapterOneIntroduction中英(广东)CCUS中心-9-responsibleinvestment(SRI)maybringforwardthetimingofretrofitting,thusmakinganefforttoaddressenergyefficiency,CO2emissionsandothersustainabilityissues.马等(2012)认为建筑改造的过程分为五个步骤,第一步是工程的开展和改造前的调查;第二步是能源审查和效益评估;第三步是改造方案的确认;第四步是执行和投产;第五步是确认和核实节能减排的效果。成功的建筑改造取决于多个因素包括政策和法规、改造技术,建筑的具体信息和其他不确定因素。由于现有可利用的改造技术手段较多,所以准确可靠的预测和确认成本效益最高的改造手段对于建筑改造是至关重要的。不同技术手段的效益评估通常是通过能耗模拟和能耗模型进行的。Maetal.(2012)identifiedfivestepsintheprocessofabuildingretrofit:projectsetupandpre-retrofitsurvey,energyauditandperformanceassessment,identificationofretrofitoptions,implementationandcommissioningandthelastonevalidationandverificationofenergysaving.Asuccessfulretrofitprogrammedependsonmanyfactorsincludingpolicyandregulation,retrofittechnologies,buildingspecificinformationandotheruncertainties.Sincethereareawiderangeofretrofittechnologiesreadilyavailable,hencereliableestimationandthemostcost-effectiveretrofitoptionsidentificationforparticularprojectsonexistingbuildingsisessentialforsustainablebuildingretrofit.Performanceofdifferentoptionsiscommonlyevaluatedusingenergysimulationandmodelling.此外,经济可行性分析可以用来比较改造技术并得出最有经济效益的改造方法,同时还可以衡量该方法的投资及收益(Maetal.,2012)。为了降低建筑业的温室气体排放量,克赫斯特等(2011)通过对宾夕法尼亚匹兹堡和德克萨斯州奥斯汀两个案例研究了现有的居民建筑和非居民建筑改造的成本和收益。他们分析了改造所花费的资本、人工费、改造后的消费者净收益,并对资金约束的权衡、社会储蓄、和减少温室气体的排放进行了评估。其中,净现值(NPV)是用于衡量净储蓄的指标。他们的研究结果表明,国家的股票市场、需求和效率的不确定性在很大程度上影响预期结果。Maetal.(2012)identifiedfivestepsintheprocessofabuildingretrofit:projectsetupandpre-retrofitsurvey,energyauditandperformanceassessment,identificationofretrofitoptions,implementationandcommissioningandthelastonevalidationandverificationofenergysaving.Asuccessfulretrofitprogrammedependsonmanyfactorsincludingpolicyandregulation,retrofittechnologies,buildingspecificinformationandotheruncertainties.Sincethereareawiderangeofretrofittechnologiesreadilyavailable,hencereliableestimationandthemostcost-effectiveretrofitoptionsidentificationforparticularprojectsonexistingbuildingsisessentialforsustainablebuildingretrofit.Performanceofdifferentoptionsiscommonlyevaluatedusingenergysimulationandmodelling.苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-10-中英(广东)CCUS中心瑞萨那和乔德瑞(2013)通过运用建筑能源系统的综合工程经济评价模型研究完善了上述报告。为了提高对改造技术进行精确性能估算的速度,他们修改了标准方法并用TRNSYS建立能源模型。同时,布尔等通过运用动态能耗模拟EnergyPlus7.2版本和jEPlus1.4版本模型对英国学校的改造方法的能源效率进行评估。由于这些建筑改造将持续很多年,他们引入了成本和碳排放量的周期影响概念。他们研究发现获得碳回报的时间比财务回报和其他所有需要后续重新改造所投入的方法所需要的回报的都要短。RysanekandChoudhary(2013)augmentedtheabovestudybyemployingacombinedengineering-economicassessmentmodelofabuildingenergysystem.TheymodifiedthestandardapproachtobuildingenergymodellingbyusingTRNSYSinordertoimprovethespeedatwhichaccurateperformanceestimationsofnumerousretrofitoptionsaremade.Meanwhile,Bulletal.assessedenergyefficientretrofitoptionsforschoolsintheUKbyconductingdynamicenergysimulationsofarangeofenergyretrofitmeasuresusingEnergyPlusv.7.2andjEPlusv.1.4.Theyintroducedlifecycleeffectsoncostsandcarbonemissionssincetheseretrofitswilllastformanyyears.Theyfoundthatcarbonpaybackisshorterthanfinancialpaybackandalloptionsandcombinationofoptionsrepaidthecarboninvestedinthem.在麦克阿瑟和乔夫在2015年报告中,其中的一个案例研究,包含了一大批全球租户和他们的英国投资组合中的40处房产。他们的改造目标是在2007年至2017年期间让投资组合的碳排放量降低50%。麦克阿瑟和乔夫认为让该组合达到其目标的最佳机会是运用历史能源使用数据对该组合进行评估和分类。阿斯特等2016年提出了关于改造现有建筑的能源效率规划的经济学分析,并以此倡导全新低碳排放建筑的发展。OneofthecasestudiesinMcArthurandJofeh’sresearch(2015)involvedalargeglobaltenantwith40propertiesintheirUKportfolioandtheirretrofittinggoalistoreduceportfoliocarbonemissionsby50%between2007and2017.McArthurandJofehidentifiedthebestopportunitiesintheportfoliotoachievethegoalbyassessingandsortingportfoliosusinghistoricenergyusedata.Asteetal.(2016)alsopresentedeconomicanalysisreferringtolocalenergyefficiencyprogramsforretrofittingexistingbuildingandforpromotingnewlowemissionsbuildings.1.4报告结构1.4ReportStructure瑞萨那和乔德瑞2013年提出,当节约能源和降低排放成为过去十年里首要目标的同时,全球经济衰退和之后的公共债务危机也使‘节省能源效率的成本‘成为一个流行改造现有建筑的基本原理。不同的建筑有其各自独特的建筑学、地理学和使用特点,因此改造方法必须在建筑群内进行合理的分析。同时通过运用计算建筑能源模型来调查每个改造方法的第一章引言ChapterOneIntroduction中英(广东)CCUS中心-11-成本和收益。Whilstenergysavingandemissionreductionmighthavebeenthe‘toppriority’inthepreviousdecade,theglobaleconomyrecessionandthefollowingpublicdebtcrisismade‘energyefficiencycostsaving’asthepopularrationaleforretrofittingexistingbuildings(RysanekandChoudhary,2013).Differenttypesofbuildingexhibituniquearchitectural,geographicalandoperationalcharacteristics,thereforeretrofitoptionsmustberationallyanalysedforeveryindividualbuildinginabuildingstock,andcomputationalbuildingenergymodelsmustbeemployedtoinvestigatethecostandbenefitoftheseoptions.同时,英国商业建筑的改造进度仍然缓慢和分散。英国和美国的新研究提出需要重大的改革来推动大规模的建筑改造。同时全新的创新型融资模型可以创造新的机遇(迪克森,2014)。此外,尽管已有许多关于居民建筑减排和新建筑的研究,但现有非居民建筑的不同种类的高效低碳设计改造现有研究是很有限的。此外,大部分的研究都主要针对现有商业办公建筑能源和环境绩效的数值模拟,因此十分需要增加针对非居民建筑改造的实例研究。Meanwhile,progressinretrofittingtheUK’scommercialpropertiescontinuestobeslowandfragmented.NewresearchfromtheUKandUSAsuggeststhatradicalchangesareneededtodrivelarge-scaleretrofitting,andthatnewandinnovativemodelsoffinancingcancreatenewopportunities(Dixon,2014).Moreover,despiteanumberofstudiesoncarbonreductioninresidentialbuildingsandnewbuildings,thereislimitedresearchintothedisaggregatedpotentialforenergyandcarbonbyretrofittingtheexistingnon-domesticbuildingswithmoreefficientandlow-carbondesigns.Also,moststudiesonenergyandenvironmentalperformanceoftheretrofitofexistingcommercialofficebuildingswerecarried苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-12-中英(广东)CCUS中心outbasedonnumericalsimulations,morestudieswithpracticalcasestudiesonnon-domesticbuildingretrofitsareessentiallyneeded.因此,此报告通过对改造方案的价值研究来评估改造爱丁堡现有商业建筑的潜在收益。此报告的目的是对英国的非居民建筑改造的经济效益进行评估并通过提供政策机制来缩小差距。模型的一般假设是基于对爱丁堡六个商业建筑改造的技术性和财务表现的分析。此报告同时提出新建筑应被设计为‘低碳排放建筑改造状态’或‘低碳排放状态’。Therefore,thisreportevaluatesthepotentialbenefitsfromretrofittingexistingcommercialbuildingsinEdinburghCitythroughassessingtheoptionvalueofretrofitting.Thepurposeofthispaperistoassesstheeconomicsintheretrofitinnon-domesticbuildingsinUK,andprovidepolicymechanismstobridgethegap.ThegenericassumptionofthemodelisbasedonanalysingthetechnicalandfinancialperformanceofsixcommercialbuildingretrofitcasesinEdinburghCity.Thereportalsoproposesthatnewbuildingsshouldbedesignedina‘LowCarbonBuildingRetrofitReadiness’statusor‘LCBReadiness’.报告的结构如下:第二章概述评估方法。评估方法包括技术评估机制、财务现金流估值法和评估将新建筑设计成低碳排放建筑价值的新兴实物期权。第三章呈现技术实例研究。第四章展现模型结果概述及其潜在的结果影响。Thereportisstructuredasfollows:ChapterTwogivesanoverviewofevaluationmethodologies,incl.thetechnologyassessmentmechanism,financialcashflowvaluationmethod,andthenovelrealoptionapproachforassessingthevalueofmakingnewbuildingsdesignedinalowcarbonretrofitreadinessstatus.TheChapterThreepresentsthetechnicalcasestudies.ChapterFourpresentsthemodelresultsandoutlinesthepotentialimplications.第二章方法论ChapterTwoMethodology中英(广东)CCUS中心-13-传统的金融期权定价方法采用的是实物期权分析(ROA)。该方法自二十世纪七十年代开始便用于不确定性或灵活性较大的实物资产估值(梅尔斯,1977)。这是因为另一种确定性现值法无法获得每个决策点1的连续期权价值。此报告使用ROA模型,调查研究将建筑改造为低碳排放建筑的经济效益。Thetraditionalfinancialoptionpricingmethodology,theRealOptionApproach(ROA),hasbeenappliedtovaluingrealassetswhichareeitheruncertainorflexiblesincethe1970s(Myers,1977).Thisisbecauseanalternative,deterministicnetpresentvaluemethodfailstocapturetheoptionvalueinvolvedinthesequentialdecision-makingateachdecisionnode.ThisstudyappliesROAtoinvestigatetheeconomicsofretrofittingabuildingtolowcarbonbuildingstatus.现有关于ROA在能源部门的研究可以分为三组:(1)在市场不确定的情况下对个人投资决策的分析,例如:电力、化石燃料、和/或碳市场(罗斯维尔,2006;福汀等,2008;斯哥约瓦等,2008;杨等,2008);(2)R&D的最优1作为实物期权模型的一部分,投资决策是在每一个决策点做出的。1Asapartofarealoptionmodel,theinvestmentdecisionismadeateachdecisionnode.化和公司的商业化及能源技术的普及(库巴罗路等,2005;谭等,2007;史迪奇等,2007);(3)在不确定或较为灵活的能源系统下的公共能源政策决策的调查研究(李和新恩,2005;马雷克和卡皮奥,2006;林等,2007;福兹和斯哥约瓦,2010;朱和范,2011)。TheexistingROAstudiesintheenergysectorcouldbeclassifiedintothreeclusters:(1)analysisoftheprivateinvestmentdecisionsundermarketuncertainty,e.g.electricity,fossilfuel,and/orcarbonmarkets(Rothwell,2006;Fortinetal,2008;Szolgayovaetal,2008;Yangetal,2008);(2)optimisationofR&D,commercialisationanddiffusionofenergytechnologiesofafirm(Kumbarogluetal,2005;Tanetal,2007;Siddiquietal,2007);(3)investigationofpublicenergypolicydecision-makinginanuncertainorflexibleenergysystem(LeeandShih,2005;MarrecoandCarpio,2006;Linetal,2007;FussandSzolgayova,2010;ZhuandFan,2011).此报告的研究方法论是建立于上述ROA研究成果上的。我们采用项目投资人(例如商业建筑的投资人)的角度来调查分析商业建筑改造后的期权价值。不确定性是推动期权价值的一个因素。若干不确定因素可能潜在地影第二章方法论ChapterTwoMethodology苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-14-中英(广东)CCUS中心响投资决策,其中包含技术贡献率(或自适应率),全球低碳碳建筑的内部容量,天然气、电力的价格和碳价格。ThemethodologyofthisstudybuildsontheknowledgeandunderstandinggainedfromtheexistingROAstudiesdescribedabove.Wetaketheperspectiveofaprojectinvestor(e.g.commercialbuildinginvestor)investigatingthevalueofexercisingaretrofitoptioninacommercialbuilding.Uncertaintyisthedriveroftheoptionvalue.Anumberofuncertaintiesmaypotentiallyaffectthisinvestmentdecision,includingthetechnologyprogressratio(orlearningrate),globalinstalledcapacityoflowcarbonbuilding,gasandelectricitypricesandcarbonprice.Highlearningratewoulddrivedowntheeconomicofscales,whichhelpstoincreaseattractionofretrofittingoption.Thecapacityshouldbeexaminedtoprovideconstraintoflowcarbonbuildingworldwide.Thepriceofgasandelectricitypriceandcarbonpricearebothpositivelycorrelatedtobuildingretrofitting.由于在模化碳价格的过程中存在显著的政策不确定因素,因此在现实中政策变化的影响比碳市场更有可能性成为低碳碳建筑改造的推动因素。在此报告中,我们简化了假设,并假定投资决策仅由市场因素所决定。为了确定改造低碳建筑的可能性,随机自由现金流模型被同于为了预估低碳碳建筑每一年产生的未来现金流的现值,建立了随机自由现金流模型。第T年未来现金流的现值计算方法为:Becausetherearesignificantpolicyuncertaintiesinmodellingthecarbonpriceandtheregulatorymotiveotherthanexistingcarbonmarketsare,inreality,likelyapossibledriverforlowcarbonbuildingretrofit.Inthisstudy,wesimplifytheassumptionandassumetheinvestmentisdrivensolelybymarketfactors.Toidentifytheprobabilityofretrofittingalow-carbonbuilding,astochasticfreecashflowmodelhasbeenbuilttoestimateeachyear’snetpresentvalueoffuturecashflowsgeneratedbylowcarbonretrofit.ThenetpresentvalueofthefuturecashflowatyearTisgivenby:(2-1)年商业建筑在决策点时的使用寿命yearPresentlifeofthecommercialbuildingatadecisionnode年建筑的使用年限yearLifetimeofbuilding$第T年的未来现金流的现值$PresentvalueofthefuturecashflowatyearT$第T年的租金收入$Revenuefromrentalatyeart$第T年的投资现金流$Investingcashflowatyeart$第T年的非燃料和非碳运营现金流量$Non-fuelandnon-carbonoperatingcashflowatyeart$第T年电力、天谈起和碳的费用Ft$Paymentforelectricity,gasandcarbonatyeart第二章方法论ChapterTwoMethodology中英(广东)CCUS中心-15-%私人票据贴现率(所需的内部收益率)%PrivateDiscountRate(requiredinternalrateofreturn)将建筑改造成低碳建筑的主要驱动因素是假设建筑物所带来的收入会随着租金的提升、二氧化碳排放量和能源花费的降低而有所提升。由于改造后未来价值的不确定性,此报告采用强有力的概率分析方法蒙特卡洛来分析此种情况。Themaindriverforretrofittingabuildingtolowcarbonbuildingisassumedtobeanincreaseinrevenuedrivenbyincreasingrentandareductionofcarbonandenergybill.ThevalueofafutureretrofitisinherentlyuncertainandarobustexplorationwithprobabilisticMonte-Carloanalysishasbeenconductedtotakethisintoconsideration.理论上,增加时间序列的个数会导致高期货价值,但是实际的投资决策更可能是每一年做出的,因为评估一个高等投资决策会产生成魔沉没成本(例如详细的施工设计和经济评估,特别的电路板组件)。因此,此报告运用近似等同于真实的决策过程的离散时间间隔的方法进行分析(普兰缇哥,1998).。此处假设决策仅仅在每一年的年末被提出。换句话说,如果一个改造项目在第t年开始实施,进一步的设施升级可以在t+N年进行。对于一个拥有50年经济寿命的建筑来说,改造过程有24个时间序列,或决策点。Intheory,increasingthenumberoftime-stepswouldresultinhigheroptionvalues,butactualinvestmentdecisionsaremorelikelytobemadeonanannualbasis,becausetheprocesstoevaluateanupgradeinvestmentdecisionwouldincursunkcosts(e.g.detailedengineeringandeconomicassessment,specialboardassemblies).Therefore,thestudyisconductedwithdiscretetimeintervalstoapproximatetherealdecision-makingprocess(Plantinga,1998).Ithasbeenassumedthatthedecisionisonlymadeattheendofeachyear.Inotherwords,ifoneretrofittakesplaceinyeart,afurtherupgradecouldalsobemadeatyeart+N.Fora50yeareconomiclifetimetherearetherefore24time-steps,ordecisionnodes.在每个决策点,改造一座商业建筑的决策取决于一次改造资本投资的成本和未来节省的成本之总和的平衡及收益增长。Ateachdecisionnode,thedecisiontoretrofitacommercialbuildingdependsuponthebalancebetweenthecostofaone-offcapitalinvestmenttoretrofitandthesumoffuturecostsavingsandrevenueincrease.技术自适应学习率在此报告中被假设转化为低碳技术打进市场将降低改造成本的概念,因此这些因素对于决定改造后期权的价苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-16-中英(广东)CCUS中心值是至关重要的。这些自适应学习率主要针对于建筑改造的总资本成本。其中改造成本(RCOST)是由单因素学习曲线模型(阿尔卑斯,2008;乔津歌,2010)给出的:Technologylearningrates,assumedinthisstudytobetranslatedintoareductionoftheretrofitcostwithnewlowcarbontechnologiesenteringthemarket,arethereforecriticaltodeterminethevalueoftheoptionconsideredforretrofitting.Theselearningratesfocusonthetotalcapitalcostofretrofittingthebuilding.TheRCOSTisheremodelledbyaone-factorlearningcurvemodel(Alberth,2008;Jungingeretal,2010),givenby:(2-2)英镑第n年的改造成本GBPRetrofitcostatyearn平方米第n年的低碳商业建筑的全球容量m2Globalcapacityoflowcarboncommercialbuildingatyearn自适应学习率Learningrate为了简便起见,假设技术学习率和全球部署能力率将不会受到其他假设或其他模型的影响,因此它们是外部的、相互独立的价值。有关低碳改造学习率的估测研究是很稀少的。此报告假设学习率为5%。Forsimplicity,itisassumedthatthetechnologylearningrateandtheglobaldeploymentcapacityratearenotaffectedbyotherassumptionsorthemodelspecification,sothattheyareexogenous,independentvalues.Thereisalackofstudyestimatingthelearningrateforlowcarbonretrofit.Thestudyassumesalearningrateof5%.另外,技术学习率m和全球低碳改造的发电机容量被假设符合随机性(此假设符合麦当劳和施屯侯塞(2001)的研究关于历史能源技术学习率不是常量而是随机变化的研究)。然而有关证明低碳建筑的学习率和部署率符合随机过程的文献十分缺乏。基于我们对以往学习和部署的过程的最佳理解,假设的学习率是假设符合均值回归模型且有在其长期均值假设中的假设回复率的0.5的趋势中上下徘徊。同样地,假设的安装容量的部署率遵从随机变化且在其假设均值回复率0.25中的上下徘徊。Inaddition,itisassumedthatastochasticprocessappliestothetechnologylearningrate,m,andtherateofglobalinstalledgenerationcapacitywithlowcarbonretrofit(thisfollowsfindingsfromMcDonaldandSchrattenholzer(2001)whoshowedthatthehistoricalenergytechnologylearningratesisnotconstantandvariesstochastically).However,thereisalackofliteraturestojustifythestochasticprocessoflearningratesanddeploymentratesforlowcarbonbuilding.Basedonourbestknowledgewithareferenceofpastlearninganddeploymentprocess,thehypotheticallearningrateisassumedtofollowameanrevertingprocessandtendstodrifttowardsitslongtermmeanassumptionatahypotheticalreversionrateof0.5;similarly,thehypotheticaldeploymentrateofinstalledcapacity第二章方法论ChapterTwoMethodology中英(广东)CCUS中心-17-variesstochasticallyanddriftstowardsitsmeanvaluewithameanhypotheticalreversionrateof0.25.低碳建筑的技术学习率和部署率的过程可以写成以下形式:Theprocessoftechnologylearningrateanddeploymentrateoflowcarbonbuildingcapacitycanbewrittenas:(2-3)均值回转率Meanrevertingrate$第t年率$Rateatyeart$长期均衡点$LongrunequilibriumRate标准韦纳过程的随机变量RandomvariablefollowingastandardWienerprocess因此改造的主要障碍是建造低碳建筑所必要的预付资本投资。电力价格、天然气价格和碳价格不确定性的随机过程由均值回复过程模型来实现,如等式2-4。Themainbarriertotheretrofitisthusthecostoftheupfrontcapitalinvestmentnecessarytomakeabuildinginlowcarbonstatus.Torepresenttheuncertaintyforelectricityprice,gaspriceandcarbonpriceastochasticprocessismodelledbyameanrevertingprocess,asinEquation2-4.(2-4)-漂移系数-Driftfactor(growth)-均值回复率-Meanrevertingrate$第t年的价格$Priceatyeart$长期均衡价格$Longrunequilibriumprice-标准韦纳过程下的随机变量-RandomvariablefollowingastandardWienerprocess为了补充此报告中模型假设中的不确定因素,采用敏感性分析被采用调查分析改造期权在不同电力、天然气、学习率、改造所需的资本和碳价格增长的情况下的价值。行使期权改造建筑的界限的设立目的是估计每个决策点形式齐全的可能性,。因此ROA决策框架在具备以下几种特点时是一个较复杂的模型:Tocomplementwithuncertaintiesinthemodelassumptionsforthisstudy,asensitivityanalysisisconductedtoinvestigatethevalueofretrofitoptionsfordifferentelectricity,gasandcarbonpricegrowthscenariosaswellasdifferentlearningratesandrequiredcapitalforupgrade.Theboundaryforexercisingtheoptiontoretrofitthebuildingaimstoestimatetheprobabilityofexercisingtheoptionateachdecisionnode.ThustheROAdecision-makingframeworkisacomplexmodelwiththefollowingcharacteristics:●这是一个美式的期权,即期权可以在从现在到任何一个到期日内行使。●ItisanAmericanstyleclaimoption,i.e.optionscouldbeexercisedanytimefrom苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-18-中英(广东)CCUS中心nowtoanyexpirydate;●由于行使期权时产生了沉没成本,每一年只考虑一个决策点。●Becauseofthesunkcostinexercisingtheoption,onlyonedecisionnodeperyearisconsidered;●在基础情景中电力和天然气的价格均假设为不会增长,所以在该情况下,电力和煤炭价格的漂移(即增长)为零。●Inthebaselinescenario,itisassumedthatboththeelectricitypriceandthegaspricearenotgrowing,thusinthatcase,thedrift(i.e.growth)ofelectricityandcoalpriceislow;and●后项算法被用于估计最佳行使界限。●Abackwardlookingalgorithmisusedtoestimatetheoptimalexerciseboundary.在评估一个改造期权时(即改造的净收益),采用四步启发式方法被采用于评估升级一个建筑的期权价值:Inevaluatingaretrofitoption(i.e.thenetbenefitofretrofit),aheuristicapproachinfourstepsisappliedtoevaluateoptionstoupgradeabuilding:(a)确定每一个处于随机过程变量的样本轨迹(a)Identifythesamplepathsforeachvariableundergoingastochasticprocess;(b)基于现今的改造成本和随机变量(即改造成本,燃料价格,电力价格,碳价格,部署率和学习率)的信息,使用最小二乘回归方法和蒙特卡罗方法来估计每个决策点升级的可能性和改造期权的价值。(b)UsealeastsquareregressionmethodwithMonte-Carlosimulationtoestimatethe第二章方法论ChapterTwoMethodology中英(广东)CCUS中心-19-probabilityofupgradeandthevalueoftheretrofitoptionateachoptiondecisionnode,basedonthecurrentretrofitcostandthecurrentinformationofstochasticvariables(i.e.retrofitcost,fuelprice,electricityprice,carbon,deploymentrate,andlearningrate);(c)对经后项演绎方法行使改造期权的最初价值进行估算。(c)Estimatetheinitialvalueoftheretrofitoptionexercisedthroughabackwarddeductionapproach;(d)计算第0年的改造期权平均值(c)Estimatetheinitialvalueoftheretrofitoptionexercisedthroughabackwarddeductionapproach;预估的建筑租金在初始时期t的价格为。很明显取决于上一时期所实现的房租水平,即。假设当下低碳建筑在市场I的租金水平记为。如果做出了一个改造决策,则租金水平()将成为当下低碳建筑的市场租金水平和下一时期低碳建筑的初始市场租金水平,即。若未做出改造决策,则市场租金水平将会维持在且。改造期权的价值可以用以下的贝尔曼方程(2-5)来估计。Theestimatedbuildingrentallevelatthebeginningofperiodtis.Itisclearthatx_tdependsontherealizationsoftherentallevelinthepreviousperiods,i.e.,.Supposethatthecurrentrentallevelforlow-carbonbuildingatthemarketIdenotedsIfanretrofitdecisionismade,thentherentallevel()becomesthecurrentlowcarbonbuildingmarketrentallevelandthebeginninglowcarbonbuildingmarketrentallevelofnextperiodis,i.e.,.Ifnoretrofitdecisionismade,thenthemarketrentallevelremainsatand.ThevalueofretrofitoptionscanbeevaluatedbythefollowingBellmanequation(2-5).(2-5)这里的期望的取值是根据下一时期的市场改造成本水平和终值=0。wheretheexpectationistakenwithrespecttothemarketretrofitcostlevelofnextperiodandtheterminalvalueV_T(x_T,e_T)=0.t年在决策点是建筑的现有的经济寿命tyearPresenteconomiclifeofthebuildingatadecisionnodeT年建筑的寿命TyearsLifetimeofthebuilding$第t年改造方案的随机价值Vt$Stochasticvalueoftheretrofitoption(s)atyeart$第t+1年预估的改造方案价值$Estimatedvalueoftheretrofitoptionatyeart+1$第t+1年改造方案的运营现金流现值的预估边际效益在第t年行使$Estimatedmarginalbenefitinthe苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-20-中英(广东)CCUS中心presentvalueofoperatingcashflowatyeart+1witharetrofitoptionexercisedatyeart$第t年的建筑租金水平$Buildingrentallevelatyeart$第t年的预估低碳建筑的市场租金水平(估计值)$Estimatedmarketrentallevelforlowcarbonbuildingatyeart(estimated)r%零风险折现率r%Risk-freerealdiscountrate$第t年的一次建筑改造的资本投资成本$One-offcapitalcostinvestmenttoretrofitthebuildingatyeart决定是否在第0年对未来的低碳技术做出额外投资的决定取决于所需的额外投资的现值S0和可以用于改造建筑方法的均值。换言之,对低碳建筑的额外投资会被证明合理当投资的现值(I0)低于方案的预期价值(2-6)。Thedecisiontomakeanadditionalinvestmentatyear0tofuture-prooflowcarbonreadinessdependsonthepresentvalueoftheadditionalinvestmentrequired,S0,andthemeanvalueoftheoptiontobeabletoretrofitthebuilding.Inotherwords,anadditionalinvestmenttofuture-proofabuildingwithlowcarbonreadinessstatuswouldbejustifiedifthepresentvalueoftheinvestment(I0)islowerthantheanticipatedvalueoftheoption(2-6).投资,当不投资,当(2-6)"Invest,if"不DoNot"Invest,if"(2-6)$第0年对于未来商业建筑的额外投资$Additionalinvestmentatyear0tofuture-proofthecommercialbuilding$能将建筑改造成低碳建筑的方案价值$Valueoftheoptiontobeabletoretrofitthebuildingtoalowcarbostatus值得注意的是,在现实中,对建筑的额外投资在现实中需根据地点本身的特点进行详细的设计研究。此报告虽没有介绍一个运用于典型案例的方法论,但在实际工程中仍然可作为决策参考。同时,初始投资I0并没有直接添加入现金流模型。模型的价值V0以美元计价,并采用能在不同假设下的天然气价格,电力的卖出价,碳价格,技术学习率和部署率能将建筑改造成低碳建筑的成熟方案。是否投资商业建筑的决策不在此报告的研究范围。Itshouldbenotedthattheinvestmentrequiredtofuture-proofthebuilding,I0,issitespecific,andwould,inpractice,requireadetaileddesignstudy.Thescopeofthisanalysisislimitedtointroducingamethodologyappliedtoanillustrativecasestudy,whichcouldalsobeusedtoassistdecision-makinginrealprojects.Also,theinitialinvestmentI0isnotaddeddirectlytothecashflowmodel.TheoutcomeofthemodelisthevalueV0,in$,oftheoptionofbeingabletoretrofitthebuildingunderthedifferentassumptionsforgasprice,electricitysellingprice,carbonpricetechnologylearningrateanddeploymentrate.Thedecisiontoinvestornotinacommercialbuildingisoutofthescopeofthisstudy.第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-21-此报告对苏格兰爱丁堡六座商业建筑案例进行了相关评论,其中包括:ThestudyreviewssixcommercialbuildingcasestudiesatEdinburghCity,Scotland,including:-爱丁堡诺顿公园大厦-NortonParkBuilding,Edinburgh-电话房-TelephoneHouse-阿福科特小路周边-Advocate’sClose-斯科顿楼-ScotstounHouse-克雷米勒中心-SpaceCraigmillar-低碳创新爱丁堡中心-EdinburghCentreforCarbonInnovation爱丁堡诺顿公园大厦NortonParkBuilding,Edinburgh背景Background诺顿公园大厦的前身是一所二等景点学校。该大厦的办公室主要用于爱丁堡的自愿者组织。在二十世纪90年代早期,由于该学校属于一所多余的学校,洛锡安区地区委员会将诺顿大厦改作为一个适合做慈善事业的办事处。该大厦的所有者,阿尔比恩信托希望这个在1998年竣工的建筑能进行一次环境再开发。该大厦的很多方面经评测需要翻新,其中包括能源使用、建筑材料、照明、室内用水、通风系统和制冷。NortonParkBuildingisaformerschoollistedasGradeII.ItsofficesaremainlyusedforvoluntaryorganizationsinEdinburgh.Intheearlyyearsof1990s,theLothianRegionalCouncilselectedNortonParkBuilding,asasuitableofficeforcharities.Theownerofthebuilding,TheAlbionTrustwantedanenvironmentalredevelopmentofthebuildingwhichwascompletedin1998.Manyaspectsofthebuildingwereassessedandrenovated,includingenergyuse,constructionmaterials,lighting,waterconsumption,ventilationandcooling.大厦的描述、设计和建设BuildingDescription,Design&Construction形态结构FormandFabric诺顿公园是一个属于二等景点的,拥有黑第三章案例研究ChapterThreeCaseStudies苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-22-中英(广东)CCUS中心色板岩屋顶的红砂岩的建筑。当其内部结构进行节能翻新时,其外观将受到很少影响。NortonParkisaredsandstoneGradeIIlistedbuildingwithablackslateroof.Therewaslittlechangemadetotheexternalappearancewhileenergyefficientrefurbishmentwasmadetoitsfabric.墙壁和屋顶将大量使用矿物棉材料装修。墙壁现具备0.2W/m2K的U值同时屋顶具有0.1W/m2K的U值。原来的框格窗新装修了木制结构的充氩双层玻璃。窗户现在拥有0.85W/m2K的U值。Thewallsandroofwerehighlyinsulatedwithmineralwool.WallsnowhaveaU-valueof0.2W/m2KandtheroofhasaU-valueof0.1W/m2K.Wooden-framed,argon-filleddoubleglazingwasinstalledinadditiontotheoriginalsashwindows.ThewindowsnowhaveaU-valueof0.85W/m2K.通风系统Ventilation大厦的通风系统现被安装在建筑的中央核心位置,该系统通宵运行。在夏季可以保持凉爽适宜的温度,在寒冷的冬季将从室外进入室内的空气进行加热并维持在20.5摄氏度。太阳能供暖系统通过已被加热的屋顶石板给大厦顶层的空气进行预热。Aventilationsystemhasbeeninstalledinthecentralcoreofthebuilding.Thesystemrunovernightinthesummertokeepcomforttemperatureandinthewinteritheatstheincomingairtoaconstant20.5degreeCelsius.Asolarheatingsystemmakesuseofairthatiswarmedbybeingdrawnundertheroofslatestopreheattheairsupplytothetopfloorofthebuilding.采暖Heating暖气管和空气处理机组的供暖由两个燃气冷凝锅炉代替1910年的锅炉。该大厦被划分了15个供暖区,每个区的恒温器均被设置为与机械通风设备提供的新鲜空气相同的20.5摄氏度。该大厦供暖系统的运营时间为周一至周四上午7:30到下午3:00,周五的上午7:30到下午的2:00。Theexistingboilerfrom1910hasbeenreplacedbytwogas-firedcondensingboilerstosupplyheattoradiatorsandtoair-handlingunits.Thebuildingisdividedinto15heatingzones.Thethermostatineachzoneissetat20.5degreeCelsius,thesametemperatureofthefreshairprovidedbythemechanicalventilation.Thebuildingisheatedfrom7:30amto3:00pmonMondaytoThursdayandfrom7:30amto2:00pmonFridays.诺顿公园拥有太阳能供暖系统来预热通风设备中的空气。该系统会将大厦南面屋顶板岩处的外部冷空气拖曳过来,屋顶石板会由于阳光的照射受热反过来对进入大厦的空气进行加热,一旦空气经过收集器通常会在进入大厦二层办公室之前被加热。NortonParkhasasolarheatingsystemthatpreheatsventilationair.Thesystemworksbydrawingcoldairfromoutsideundersouth-facing第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-23-roofslates.Theslatesarewarmedbythesunandinturntheyheattheincomingair.Oncetheairhaspassedthroughthecollectoritisthenconventionallyheatedbeforebeingdistributedtothesecondflooroffices.外部进入的空气一旦从屋顶石板内拖曳进来将会立即和室内的空气温度进行对比。外部空气的温度平均会被增加6摄氏度且在晴天是太阳能收集器会将外部进入的空气增加差不多20摄氏度。NortonParkhasasolarheatingsystemthatpreheatsventilationair.Thesystemworksbydrawingcoldairfromoutsideundersouth-facingroofslates.Theslatesarewarmedbythesunandinturntheyheattheincomingair.Oncetheairhaspassedthroughthecollectoritisthenconventionallyheatedbeforebeingdistributedtothesecondflooroffices.室内用水WaterConsumption为了实现室内用水量最小化,屋顶处的储水槽将集中收集雨水。随后储水槽中的水可部分用于冲洗厕所。Inordertominimizetheuseofwater,rainwaterfromtheroofiscollectedinastoragetank.ItisthenusedasapartofwaterusageforflushingWCs.照明和采光LightingandDaylighting初始设计的阁楼限制了阁楼以下区域的采光。为了增强光照的同时防止光线太过刺眼,窗户的半处位置安装了遮阳板,遮阳板由建筑师设计制造。遮阳板由木制架子组成并安装在窗户中间的位置。可以通过手动调节遮阳板的角度来适当增加光线的亮度。为了增强采光亮度,屋顶的照明灯增加到4个。照明的设计符合节能的要求,同时允许通过调节转换将灯靠近窗户附近并实现与办公室内部照明控制系统分开。当在一个预先设置的期间内若监测到室内没有物体活动时,传感器将自动关闭每个办公室和会议室的电灯。电灯声控关闭系统的时间可以人为调节。该大厦的能源管理应用建筑物能源管理系统(BEMS),该管理系统监控采暖和通风设备的运行。Theoriginaldesignofmezzanineslimitstheaccessofdaylighttosomeareasbelowthem.Thuslightshelveshavebeenfittedhalfwaydownthewindowinordertoincreaselightandreduceglare.Thelightshelvesarecreatedbythearchitect.Theyconsistofwoodenshelvesfittedhalfwaydownthewindows.Theiranglescanbealteredbyhandtoincreaselightpenetration.4rooflightswereaddedtoincreasethelevelofdaylight.Thedesignofthelightingisenergyefficient.Switchesallowthelightsclosesttothewindowstobecontrolledseparatelyfromthoseintheinteriorareasoftheoffices.Sensorsautomaticallyswitchofflightinginindividualofficesandmeetingroomswhennomovementhasbeendetectedforasetperiodoftime.Thetimedelayonthelightsturningoffcanbeadjusted.ABuildingEnergyManagementSystem(BEMS)isusedtomanageenergy.Itmonitorsandcontrols苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-24-中英(广东)CCUS中心theheatingandventilationoperation.环保设计和环保产品Environmentallyfriendlydesignandproducts材料尽可能重复利用:Materialsarereusedwherepossible:●从当地供应商购买产品从而降低运输成本和燃油损耗●Productsweretobeobtainedfromlocalsupplierstominimisetransportcostsandfueluse●使用二手材料●Second-handmaterialsweretobeused●使用可再生木材和木制产品●Timberandtimberproductswerefromsustainablesources●选择低耗能的建筑材料,例如用胶合木梁代替钢铁材料●Constructionmaterialswithlowembodiedenergywereselected,suchasglulambeamsratherthansteel●避免使用将会引起室内空气综合症的产品,包括聚氯乙烯(PVC)●Productslinkedwithsickbuildingsyndrome,includingPVC,wereavoided●使用天然纤维地毯、漆布和水性涂料●Naturalfibrecarpeting,linoleumandwater-basedpaintswereused.该建筑将考虑装配易移动和可回收利用的建筑产品。同时,建筑设计有蝙蝠的巢穴来增强野生动物的多样性。Theconstructionhastakentheeasyremovalandrecyclingofbuildingproductsintoconsideration.Moreover,batboxesaredesignedtopromotewildlifediversity.能源管理的结果EnergyManagementOutcomes该大厦曾在1999年雇用一位后勤经理,聘用该后勤经理后能耗律由原先的249千瓦时/年减少到了150千瓦时/年。能源使用所产生的碳排放量也从每年80公吨降低到50公吨。Afacilitymanagerwasappointedin1999.Theenergyconsumptionwas249kWh/yearbeforetheappointmentandithasbeenreducedto150kWh/year.Carbonemissionsassociatedwiththeenergyusehasalsoreducedfrom80to50tonnesayear.成本和融资CostandFunding翻新诺顿公园大厦的总成本为2,837,000英镑,相当于每平方米将花费756英镑。TherefurbishmentofNortonParkBuildingcostatotalof£2,837,000includingfees.Thisisequivalentto£756/m2.爱丁堡电话房TelephoneHouse,Edinburgh背景Background电话房是在1973年建造的,该建筑用于第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-25-英国电信公司(BT)的电话交换台办公室。在二十世纪80年代末,为了兑现英国电信公司改进其能源的可持续利用性的承诺,该建筑得到翻新。TelephoneHousewasbuiltin1973.ItwasusedbyBritishTelecom(BT)asanofficeandtelephoneexchange.Inthelate1980s,thebuildingwentthroughrefurbishmentduetoBT’scorporatecommitmenttoenergysustainability.该建筑是一个十字型并同时拥有从中心地带延伸出的2个六层和2个七层的楼翼,可以在办公电子设备密集的电脑组件附近提供制冷设置。Thebuildinghasacruciformshapewith2six-storeyand2seven-storeywingsextendingfromacentralcore.Thebuildingprovidescoolinginthecomputersuitewherethereisahighconcentrationofofficeequipment.建筑描述,设计和建造BuildingDescription,Design&Construction采暖Heating屋顶机房装配了两个586千瓦的常规燃气锅炉。热水通过规定的线路通过周边对流散热器和加热器给整栋建筑物供暖。热度是由控制供水线路转换闸的室内温度传感器设定的。一个供暖分支负责给食堂空气搬运单位和一楼接待处的换流器供暖。补充区域的控暖和能通过BEMS系统远程单独操控已被证明是十分成功的。区域划分和具备灵活工作时间的相关程序的建立,可以避免之前该建筑对供暖24小时的需求。Two586kWconventionalgas-firedboilerswereintroducedtotherooftopplantroom.Hotwaterisdeliveredviazonedcircuitstoperimeterconvectorheatersthroughoutthebuilding.Heatlevelsaresetbyroomtemperaturesensorswhichcontroldivertervalvesinthewatersupplycircuit.Abranchdistributioncircuitprovidesheatingforthecanteen’sairhandlingunit,andforconvectorsinthegroundfloorreceptionarea.CompensatedzonecontroloftheheatingandtheabilitytoisolatesectionswithineachzoneremotelybytheBEMShasprovedtobeverysuccessful.Thezoningandassociatedprogrammerwithflexiblescheduleshavecombinedtoavoidthepreviousneedforthewholebuildingtobeheatedatalltimes.生活用热水Domestichotwater苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-26-中英(广东)CCUS中心两个87.6千瓦的直燃式煤气锅炉代替了原有位于屋顶装置房的水加热器来为该建筑提供生活用水,相同的直燃式煤气锅炉同样在一楼的厨房区域也有配置。两者的系统都不消耗集中供水储量。Two87.6kWdirect-firedgasboilersforDHWsupplyhavereplacedtheoriginalcalorifiersintherooftopplantroom.Another,similarboilerisinstalledinthegroundfloorkitchen,andsuppliesDHWforthisarea.Neithersystemusescentralhotwaterstorage.采光Lighting办公室的人造光线主要来源于天花板上的两个隐藏式灯管和四个荧光灯管组成,加上灯光较暗的灯组和桌上可个人控制的台灯。大部分办公室的中心区域和所有的厕所都有灯光较暗的灯组。Artificiallightingintheofficeaccommodationismainlybyrecessedtwinandquadruplefluorescenttubes,complementedbycompactfluorescentdownlighterunitsanddesklampsunderindividualcontrol.Thecentralaccessareasinmostofficesandalltoiletshavecompactfluorescentdownlighterunits.建设能源管理系统BuildingEnergyManagementSystem能源管理系统(BEMS)对建筑中所有的供暖、制冷和机械通风系统进行监控。该系统同时也应用在英国电信公司的其他苏格兰地区的办公楼中。TheBEMSmonitorsandcontrolsallheating,coolingandmechanicalventilationsystemsofthehouse.ItisalsousedforotherBTbuildingsinScotland.成本Cost在1990年10月和1991年9月的监控期间内,该建筑消耗了978,000千瓦时的天然气和140万千瓦时的电力,分别花费了10,232镑和66,704镑,其中总电力的大约31%用于计算机室。DuringthemonitoringperiodOct1990toSep1991,thebuildingconsumedabout978000kWhofgasand1.4millionkWhofelectricity,thecostofwhichwas£10,232and£66,704respectively.About31%theoftotalelectricityisusedinthecomputerroom.关于涉及能耗的方面,该建筑的天然气消耗要比典型的同种建筑要少很多。由于每个办公桌使用的都是微型计算机,电力消费稍稍超过“良好的实践水平“。Asforenergyconsumption,thegasconsumptionisconsiderablybetterthanatypicalofficeofthistype.Duetotheuseofmicrocomputersoneverydesk,theconsumptionisslightlyinexcessof“goodpracticelevels”.供暖能源使用是66.0千瓦时每平方米。对供暖的适当控制以适应内部设备所产生的高热量,使得能源的使用较低。Heatingenergyis66.0kWh/m².Theapplicationofappropriatecontrolstosuitthehighinternal第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-27-equipmentheatgainscontributetothisverylowuseofenergy.热水所消耗的能源是66.0千瓦时每平方米。该建筑的面积,决定了厨房和全年分布的电源操作所需的热能是很少的。Hotwaterenergyuseis66.0kWh/m².Itisconsideredasmalluseofenergyforabuildingofthissizewithcateringkitchensanddistributionmainsoperationalthroughouttheyear.办公设备所消耗的能源为36.2千瓦时每平方米。能耗只要来源于台式电脑打印机、绘图机、复印机、台灯和风扇。这些设备24小时全天都会打开。Theofficeequipmentuses36.2kWh/m²ofenergy.Theenergyisgeneratedmainlyfromdesktopcomputers,printers,plotters,copiers,desklightingandpersonalfans.Thesefacilitiesarecontinuallyturnedon24hoursaday.制冷负荷在大楼可用期间随着办公设备的增加而用量增加。制冷能耗为7.1千瓦时每平方米。Thecoolingloadhasincreasedwiththeincreasedamountofofficeequipmentduringthelifeofthebuilding.This7.1kWh/m²ofenergyconsumption.厨房餐饮的总耗能为26.0千瓦时每平方米。其中消耗天然气18.9千瓦时每平方米,消耗电力7.1千瓦时每平方米。高能耗的原因是大量的入住率和每周提供六天的热餐。Thecoolingloadhasincreasedwiththeincreasedamountofofficeequipmentduringthelifeofthebuilding.This7.1kWh/m²ofenergyconsumption.采光照明的能耗为28.0千瓦时每平方米。由于电灯的设计和自动控制系统的有效利用,该能耗已经达到最优,整个建筑都安装了节能灯。该低能耗负荷,正是由于合理的人工、自动控制和良好的管理导致的。Lightingconsumes28.0kWh/m².Itisconsideredabestpracticeoflightingefficiencybecauseoflightingdesignandeffectiveuseoftheautomaticcontrolsystem.Economicallightingisachievedbyinstallingefficientluminairesandlampsthroughoutthebuilding.Thislowinstalledpowerloadisaugmentedbymanualandautomaticcontrols,andgoodmanagement.结论Summary每年可减少的总二氧化碳排放量为19千克每平方米,相当于201,552千克。实现低能耗主要原因是区域控制在最大程度上减少了内部供暖的耗能。当重新装修完成时,一个每年供暖和热水的成本为每平方米73分并拥有良好控制系统的建筑将会建成。所有的改进都将使得英国电信公司得以恪守其高效能源管理的承诺。同时,天然气成本下降超过40美元且照明的能耗已经超过了当下良好的标准。Thetotalsavingof19kg/m²ofcarbondioxideisanannualsavingof201,552kg.Thelowenergyconsumptionforheatingandtheeffectivenessofzonecontrolstotakefulladvantageofinternalheatgainshavebeenamajorfactor苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-28-中英(广东)CCUS中心inthisperformance.Inthecompletionoftherefurbishment,awell-controlledbuildingiscreatedwithannualheatingandhotwatercosting73ppersquaremetreoftreatedarea.AlloftheseimprovementsaresustainedbyBTscorporatecommitmenttoenergymanagement.Atthesametime,gasheatingcostsisdownbyover£40andelectricityconsumptionforlightingexceedscurrentgoodpracticetarget.爱丁堡阿福科特小路周边Advocate’sClose,Edinburgh背景Background阿福科特小路周边位于爱丁堡老街的中心地带-王子街北部的边缘,这是一个曾经作为爱丁堡城市委员会的历史悠久的地段。该建筑超过11层楼,建筑的年龄从16世纪到20世纪中不等。老街建筑的人字纹图案是由和高街建筑的长期竞争而形成的,这些建筑建成于16世纪中期。需要改造的区域是阿福科特小路周边的中心位置,该位置处于在皇家英里和科伯恩路之前的狭小区域。Advocate’sCloseissituatedintheheartofEdinburgh’sOldTown,ontheedgeofPrincesStreetGardens,tothenorth.ItisahistoricsitethatwasformerlyoccupiedbytheCityofEdinburghCouncil.Encompassing9listedbuildingsover11storeys,thesitedropsover10storeysfromthetoptothelowestlevel,andbuildingsrangeinagefrom16thtomid-20thCentury.ThecharacteristicherringbonepatternofdevelopmentintheOldTownevolvedfromthetightfeudingofpropertyfrontingtheHighStreetandwaswellestablishedbythemidsixteenthcentury.TheareathatwasunderretrofitdevelopmentisinthecentreofAdvocate’sClose,anarrowclosefromTheRoyalMiletoCockburnStreet.建筑描述、设计和建造BuildingDescription,Design&Construction为了保留原始建筑,该地点新增加一系列全新改造方案。这些新建筑将会融入进16世纪中期建造的老建筑中。Whileretainingtheexistingbuildings,aseriesofnewquarterscombiningrehabilitationandalterationweredesignedtoaddtothesite.Thisnewseriesofnewbuildingsaretointegrateintotheoldbuildingsestablishedbythemidsixteenthcentury.新的屋顶阁楼代替了先前移除的上层楼层。新建筑和老建筑的建筑材料是相同的,外部材料使用乱石墙、琢石石雕、灰色粉刷和混凝土。所选的材料颜色统一了所有部件的颜色,新建筑将以浅黄色的石堆代替原有的灰色石堆,同时使用天然砂岩、板岩、深灰陶瓦外墙、木材和铝。原有的木梁和铸铁梁被移除,利用上百个钢梁来克服由于系统跟踪和滑轮所产生的超负荷物流问题,木梁同时被重新安排和利用于该建筑内。外部覆层为灰色铝的全新窗户代替了原有经过翻修的白色木制窗户。第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-29-许多外墙都得到了保留同时内部结构得到了修改、移除或替换了全新的钢制和混凝土框架。这些改动使一座两层楼山形墙建筑建造在老建筑之上。Previouslyremovedupperfloorswerereplacedbynewrooftopextensions.Thebuildingmaterialswerechosentounifydifferentelementsofoldandnewdesigns.Externalmaterials,suchasexposedrandomrubble,ashlarstonework,greyrenderandconcrete,wereused.Thematerialpalettechosenunifiesthesedisparateelements,replacingthegreyrenderwithabuffcolouredrenderandusingnaturalsandstone,slate,darkgreyterracottacladding,timberandaluminiumfornewbuildingelements.Hundredsofsteelbeamswerebroughtintothebuildingtoovercomeover-sailingissuesbyasystemoftracksandpulleys,amajorlogisticalissueinitself.Existingtimberbeamsandcastironcolumnswereremoved.Timbersarethenredressedandreusedoffsite.Newgreyaluminiumwindowscomplementthesurroundingcladding,incontrastwiththeexistingtimberwindows,whichwereoverhauledandrepaintedwhite.Anumberofexistingfacadeswereretainedwhilsttheinternalstructurewasmodifiedor,removedandcompletelyreplacedwithanewsteelandconcreteframe.Thiswasnecessarytoallowatwostoreysreinstatedgableblockwithcrowstepstobeconstructedabove.结论Summary该建筑改造是一个成功的在原有历史建筑基础上对建筑进行进一步的改造和调整的苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-30-中英(广东)CCUS中心一次成功的尝试,并延续了老街以往的建筑风格。此次改造增加了街道上的活动和人流量,特别是复兴路罗克斯堡法院地区。另外一栋可住19人的公寓在改造地区内的大卫博斯韦尔的房子附近建成,公寓在这片区域内十分热销。许多小型的工作室和顶层公寓在2014年内有87%的入住率。当地的社区获得了阿福科特小路周边所颁发的一系列建筑奖项,其中包括RIAS颁发的“苏格兰最佳建筑”且被形容为“以现代工艺构筑的复杂建筑”。TheretrofitdevelopisasuccessfulnewquartercombiningrehabilitationofhistoricbuildingsandpublicrealmwithalterationsandinterventionswhichparticipateinthecontinuingorganicarchitecturalevolutionoftheOldTown.Itencouragedstreetactivityandpedestrianmovement,especiallyattherevitalisedRoxburgh’sCourt.Afurther19servicedapartmentswerecreatedintheadjacentAdamBothwellHousewithinthedevelopment.Apartmentsareflourishinginthisarea.Manycompactstudiosandpenthouseapartmentsexperienced87%occupancyratein2014.ThelocalcommunityrewardedtheAdvocateClosewithanumberofarchitecturalawards,includingtheRIASAndrewDoolanawardfor“BestBuildinginScotland”wherethejudgesdescribeditas“urbanweavingatitsmostcomplex”.爱丁堡斯科顿楼ScotstounHouse,Edinburgh背景Background斯科顿楼于1965年被英国奥雅纳工程顾问公司买下,在1966年以低层且单层的亭子类型办公楼的形式建成的。该建筑在围墙厨房花园的尽头处有办公室,同时将花园的另一边的尽头处的小屋和马厩被改造成植物房和守卫室。到2005年,该建筑有很多缺陷,例如太过狭小、通风条件差、只有一间会议室和缺乏必要设施(如员工餐厅)。该建筑无多余的空间放置打印机,还需要附加装备式结构以扩大其库存能力。由于该建筑的结构是混凝土玻璃结构,工作人员在冬日会感觉十分寒冷在夏天会感觉过热。同时建筑的上方带有木镶板隔墙和天花板,建筑内部十分昏暗因此荧光灯需12小时全天开启。英国奥雅纳工程顾问公司在2005年任命haa将建筑改造并扩建成更符合可持续发展需求的建筑。In1965ArupScotlandpurchasedScotstounHousewhichsubsequently(1966)wasbuiltasalow,single-storey,pavilion-likeofficebuilding.Thebuildinghasofficesatoneendofthewalledkitchengardenwhileacottageandstableattheotherendwereconvertedintoaplantroomandacaretaker’shouse.By2005,thespacewascramped,poorlyventilated,hadonlyonemeetingroomwithlimitedfacilitiessuchasastaffkitchen;therewasnotenoughroomforprintingequipmentandaprefabricatedstructurehadbeentackedontothebuildingforarchivesstorage.Intheconcreteandglassstructure,theoccupantswerecoldinwinterandoverheatedin第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-31-summer;withthewindowblindsdownalmostcontinuouslytoprotectitsinhabitantsfromglare,heatorcold,andwithitswood-panelledpartitionsandceilings,thebuildingwasdarkandthefluorescentstriplightswereonfor12hourseveryday.ArupScotlandcommissionedhaain2005anddecidedtoconvertandextendthebuildingwithasustainabledesign.建筑描述,设计和建造BuildingDescription,Design&Construction工程的目标是将原先的建筑改造成能符合现代能源使用标准和能让员工满意的高环境品质的建筑。其中,一个结构极其简单、同时连接已有建筑的南面和正在扩张的围墙花园的小路的设计正在筹划和准备。新扩建的部分建于老建筑的后面且位于西北面,在此处可以利用老花园的墙壁作为其东面的墙,老建筑之间的草地和围墙花园均得以保留。建筑的高度会在1966年的基础上继续增高。一个额外的625平方米的空间就会建造为会议室和休息室。Theobjectivewastothere-usetheexistingbuildinganditsultimateconversiontomeetpresent-daystandardsofenergyuseandenvironmentalqualityforitsoccupants.Acreationofasimpleraddition,connectingtothesoutheastfaceoftheexistingbuildingandextendingwithinthespaceofthewalledgardenwasproposedanddesigned.ThenewextensioncontinuesbeyondtheformerfrontfaceoftheoldbuildingtowardstheNorthWest,atthispointutilisingtheoldgardenwallasitseasternmostside.Thebulkoftherelationshipbetweentheoldbuildinganditsparklandsettingisthereforeretained,asistherelationshipbetweentheoldbuildingandthesettingofthewalledgarden.Theheightissimilartothe1966building.Anadditional625m2ofspacewasalsocreatedtoaccommodatenewmeetingroomsandbreakoutspaces.采光Lighting如上文所述,此工程的明确目标如下:给新老建筑尽可能引进足够多的太阳光照、创造良好的空气质量、制冷和通风管道遍布整栋建筑,同时降低供暖的气体排放和能源花费。除此之外阳光会通过全新建造的天窗照射进室内,超过70个太阳能导光管放置在新建筑的屋顶上,这些导光管可以直接将自苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-32-中英(广东)CCUS中心然光提供给工作区域。当自然光线等级低于400勒克斯时,悬挂式低能耗荧光灯将被启用。Fromthebeginning,theprojecthadspecificaimsofbringingasmuchnaturallightaspossibleintoboththeoldbuildingandthenewextension,creatingexcellentairquality,coolingandventilationthroughpassivemeansthroughoutthewholebuilding,providingalow-carbonsourceofheatingandreducingenergybillsandcarbonemissions.Inadditiontothelightcomingintothebuildingthroughthenewclerestorywindowsaroundthenewcore,over70solartubes(sunpipes)arefittedintothenewrooftobringnaturallightdirectlyintotheworkingareas.Suspendedlow-energyfluorescentlightingistriggeredtocomeonwhennaturallightlevelsfallbelow400lux.材料Material由于建筑的主要结构和外部墙面得以保留,扩建所需要的建筑材料得以减少。扩建利用了原有花园的一面墙,而花园的另一面墙由于部分损毁也被纳入翻新项目内。一部分损毁的建筑材料得以保存并用于填充路基。随后由于低成本效益该计划被废除,同时进行低碳技术的筹划。然而,建筑材料是根据绿色指南评级的要求选择的,老建筑中没有用到的一种新型铝材将会运用在新建筑的扩展中。铅作为一种新材料用于连接蓝色工程砖和老建筑外部边缘的软性材料。Newconstructionmaterialswerereducedasthemainstructureandtheexternalwallsoftheexistingbuildingwerebeingretainedandre-used.Theextensionutilisedoneoftheexistinggardenwalls,andpartofanother,whichwaspartlydemolished,storedandrebuiltaspartoftheredevelopment.Onsitematerialswerestoredandcrushed.Theywerethenusedforgranularfillacrossthesiteandunderroadbases.Despitelaterbeenruledoutasnotbeingcostefficient,low-energytechnologieswereproposed.However,materialswereselectedonthebasisofaGreenGuideArating.Anewcappingmadeofaluminiumtotheoldbuildingismirroredintheextension.Leadwasanewmaterialusedasasoftermaterialtotieinwiththeblueengineeringbrickontheexteriorfringetotheoldbuilding.采暖和通风HeatandVentilation该建筑划分了10个采暖和通风点。植物房中的生物质能锅炉可以对水进行加热,整个建筑是完全自然通风的。原窗户的顶端均安装了新手动把手同时天窗的百叶窗帘会在室内温度超过设置的2摄氏度后自动打开。Thebuildingisseparatedinto10zonesforheatingandfreshaircontrol.Thebiomassboilerintheplantroomheatshotwater.Ventilationisentirelynaturalinthewholebuilding.Newmanualwindinghandlesarefittedatthetopoftheoldwindowsandlouversintheclerestoryaredesignedtoopenautomaticallywhentemperatureexceedsettingsby2degreeCelsius.老建筑中的隔热效果通过利用双层玻璃代替原有的克里托尔单层玻璃窗得以增加。由第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-33-于老建筑天花板上的高度限制,热式质量流量计通过一层5毫米的相变材料(PCM)安装在天花板的上表面缝隙中,当室内温度升高PCM材料会受热熔化并吸收储存热量。该材料会在夜晚温度降低时释放热量,同时回复至固体形态。该材料在此之前从未被使用过,使用之后提供了相当于150毫米混凝都所带来的热量。InsulationhasbeenincreasedintheoldbuildingthroughreplacingalltheoldCrittallsingle-glazedwindowswithlikeforlikedouble-glazedalternatives.Duetoheightrestrictionsabovetheceilingintheoldbuilding,thermalmasshasbeenaddedtothispartofthebuildingthroughtheinstallationontheuppersurfaceofthetongueandgrooveboardingofa5mmlayerofPhaseChangeMaterial(PCM).WhentheroomtemperatureincreasesthePCMmeltsandabsorbsandstoresheat.Itreleasestheheatwhenthetemperaturedropsintheeveningandovernightandthematerialreturnstosolid.Notusedbeforeinanofficesituation,thisprovidesadditionalthermalmassthatispurportedlyequivalentto150mmofconcrete.小屋经过翻修增加了淋浴、干燥棚和带锁储物柜,同时原有的会议室也得以升级改造。全新的生物质能锅炉和生物质成型颗粒燃料储藏点和后备燃气锅炉均放置在原有的植物室中,暖气管道仍然采用二十世纪60年代的管道。合同还额外要求在小屋的附近建造一个新的循环棚。InsulationhasbeenincreasedintheoldbuildingthroughreplacingalltheoldCrittallsingle-glazedwindowswithlikeforlikedouble-glazedalternatives.Duetoheightrestrictionsabovetheceilingintheoldbuilding,thermalmasshasbeenaddedtothispartofthebuildingthroughtheinstallationontheuppersurfaceofthetongueandgrooveboardingofa5mmlayerofPhaseChangeMaterial(PCM).WhentheroomtemperatureincreasesthePCMmeltsandabsorbsandstoresheat.Itreleasestheheatwhenthetemperaturedropsintheeveningandovernightandthematerialreturnstosolid.Notusedbeforeinanofficesituation,thisprovidesadditionalthermalmassthatispurportedlyequivalentto150mmofconcrete.控制系统Controlsystem控制系统监控整座大厦的能源使用情况,其中包括温度、湿度、二氧化碳排放量和光强度等。Thecontrolsystemmonitorstheenergyperformanceoftheentirebuildingincludingitstemperature,humidity,carbondioxideandlightlevelsetc.结论Summary英国奥雅纳工程顾问公司已证实原始模型的准确性并预测全新的采光计划和过去的对比将每年节省60%的用电量,模型同时还预测采暖的成本将会降低30%。Aruphavevalidatedtheaccuracyoftheoriginal苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-34-中英(广东)CCUS中心modelthatpredictedyearlyenergyusageanddemonstratedthatthedaylightingschemeissaving60%oftheelectricalenergyforlightingannuallycomparedwiththepreviousbuilding.Modellingalsopredictsthatheatingcostswillbereducedby30%.该项改造工程不仅符合2008苏格兰技术标准中的能源使用标准而且显著地超越了此标准。改造后的建筑获得了英国建筑研究院环境评估方法(BREEAM)的优秀等级和合同能源管理的A等级,原先的建筑得到极大的改善。Theprojectwassubjecttothe2008ScottishTechnicalstandardsforenergyusage,whichwerenotonlyachievedbutalsosignificantlyexceeded.TherefurbishedbuildingachievedaBREEAMExcellentratingandEPCA-rating,anoutstandingachievementconsideringtherestrictionsimposedbytheoriginalbuilding.生物质能的管理是由英国奥雅纳工程顾问公司自行管理,他们已经花时间优化了其运行管理,例如将燃烧生物质能锅炉在夜晚打开让热水充满缓冲罐为早上的分配做好准备。顾客同时也认同改造后的斯科顿楼是英国奥雅纳工程顾问公司的建筑典范。TheoperationofthebiomassismanagedbyArupthemselves,andtheyhavetakentimetooptimiseitsoperation,turningitonatnightsoastofillupthebuffervesselofhotwaterreadyfordistributioninthemorning.TheclientalsoacknowledgesthatScotstounHousehasre-establisheditsplacewithintheArupoeuvreofqualityarchitecture.爱丁堡克雷米勒中心SpaceCraigmillar,Edinburgh背景Background克雷格米勒小学是在二十世纪30年代建造的,现在位于‘B’等级。随着学校在1999年关闭,其所有者卡斯罗•爱丁瓦在2005年翻新了该建筑,进而提供了1,651平方米的办公区域和33平方米的社区艺术剧院区域,此建筑经历了从小学到多功能办公和社区中心的功能转变。在二十一世纪初,一些翻新工作和内墙的隔热在建筑正面的不同地点进行,原有建筑的建造材料成分无从得知,因此此论文采用了建筑师的假设,此报告对该建筑的评论是基于此报告所用的图示做出的。CraigmillarPrimarySchoolwasbuiltinthe1930's.Now'GradeB'listed,andfollowingtheschool'sclosurein1999,thebuildingwasfullyrefurbishedbyownersCastleRockEdinvarin2005,toprovide1,651m2ofofficeaccommodationand337m2ofcommunityartsandtheatrespaces.Thebuildingunderwentachangeofusefromaprimaryschooltoamixed-useofficeandcommunitycentre,duringearly2000’s,somerefurbishmentworkwasundertakenwiththeadditionofinternalwallinsulationatvariouspointacrossthefrontfacade.Theexactmake-upoftheexistingbuildingelementsisnotknown,architectassumptions第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-35-havebeenusedandcommentshavebeenmadebasedondrawingsusedinthisreport.2012年,爱丁堡龙比亚大学的苏格兰能源中心被要求确定该建筑有多少潜在保温性能提升的可能性。改造主要集中于两个房间,在此称为控制室和检验室。两个房间都在建筑物内占据着相同的地理位置、朝向和空间维度,房间彼此挨着且均位于二楼;每个房间都有一个7.9米乘6.2米的正门和四个1.2米乘1.9米的木窗;同时两室的供暖条件是相同的。分别安置温度记录器在两个房间内确定两者的供暖情况。In2012,theScottishEnergyCentreatEdinburghNapierUniversitywasaskedtoidentifypotentialthermalimprovementsthatcouldbemadetothebuilding.Itfocusedupontworooms,hereafterreferredtoasacontrolroomandatestroom.Bothroomsoccupythesamegenerallocationwithinthebuilding,frontalorientationandroomdimensions.Theroomsarelocatedbesideoneanotheronthefirstfloor.Eachroommeasures7.9mby6.2mwithonemainentranceandfour1.2mby1.9mtimbersashandcasewindows.Tocompensateforthedifferenceinoccupancythecontrolroomwasartificiallyheatedtoasimilarlevelasthatexperiencedinthetestroom.Temperatureloggersweredeployedinbothroomstovalidatetheheatprofileintherooms.建筑描述,设计和建造BuildingDescription,Design&Construction窗户Windows控制室内和建筑正面的窗户均为单面的木制窗户,窗户在控制室改造时被翻新为更坚硬的、低辐射的中空玻璃且带有能打开的uPVC框架的窗户,中空玻璃是在室内组装的-与原有的玻璃之间大约存在100毫米左右的间隔。同时在中空玻璃之间安装了阻挡热辐射的百叶窗。Thewindowsinthecontrolroomaresingleglazed,timbersashandcaseandarerepresentativeofthewindowsallalongthefrontfacade.Thewindowsintheupgradedroomwereimprovedbytheinstallationofatoughened,lowemissivitysecondaryglazingunit,inanopenableuPVCframe.Thesecondaryunitswereinstalledinternally,withanapprox.100mmairgapbetweentheunitsandtheexistingwindows.Aradiantheatbarrierandwindowblindwerealsoinstalled,betweentheglazingunits.墙壁Walls在窗户上方的已有的南墙建筑的材料成分如下:500毫米的预制混凝土过梁、75毫米的不通风空隙、50毫米矿棉绝热制品、12.5毫米的位于50毫米金属框架上的石膏板。在窗户之下的南墙建筑由以下材料成分组成:25毫米的毛坯外部渲染、230毫米的固体砖砌、110毫米的空洞,110毫米的砖块,50mm的不通风空隙、50毫米的带有12.5毫米石膏板的螺柱框架。在翻新前北墙的建筑材料成分包括:25毫米的毛坯外部渲染、90毫米的固体苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-36-中英(广东)CCUS中心砖砌、110毫米的空洞、50毫米的不通风空隙、50毫米的带有12.5毫米石膏板的螺柱框架。在2006年建筑翻新时矿物保温层外加在外墙的内侧。Theexistingmake-upofthesouthwallconstruction,abovethewindowswas:500mmpre-castconcretelintel,75mmunventilatedairgap,50mmmineralwoolinsulation,12.5mmplasterboardon50mmmetalframing.Belowthewindow,thesouthwallconstructionconsistedof:25mmroughcastexternalrender,230mmsolidbrickwork,50mmmineralwoolinsulation,170mmunventilatedairgap,12.5mmplasterboardinternallining.Thenorthwallconstruction,priortoanyupgradesincluded:25mmroughcastexternalrender,90mmsolidbrickwork,110mmcavity,110mmbrick,50mmunventilatedairgap,50mmstudframingwith12.5mmplasterboard.Themineralwoolinsulationwasaddedtointernalfacesoftheexternalwallsduringrefurbishmentin2006.建筑翻新之后,在南墙区域的悬挂式吊板上方的混凝土过梁和已有的矿物保温层直接额外增加了一层75毫米的大麻纤维绝缘层。另外,天花板也安装了100毫米的大麻纤维绝缘层,均在矿物保温层之间的上层部分。窗下的墙面区域同时安装了170毫米的钢丝芯保护层,该保护层安装在矿物棉和石膏板之间。Theexistingmake-upofthesouthwallconstruction,abovethewindowswas:500mmpre-castconcretelintel,75mmunventilatedairgap,50mmmineralwoolinsulation,12.5mmplasterboardon50mmmetalframing.Belowthewindow,thesouthwallconstructionconsistedof:25mmroughcastexternalrender,230mmsolidbrickwork,50mmmineralwoolinsulation,170mmunventilatedairgap,12.5mmplasterboardinternallining.Thenorthwallconstruction,priortoanyupgradesincluded:25mmroughcastexternalrender,90mmsolidbrickwork,110mmcavity,110mmbrick,50mmunventilatedairgap,50mmstudframingwith12.5mmplasterboard.Themineralwoolinsulationwasaddedtointernalfacesoftheexternalwallsduringrefurbishmentin2006.北墙区域的空洞位置安装了钢丝芯保护层,同时天花板也安装了和南墙相同的大麻纤维绝缘层。Thenorthwallareas,hadblownbeadinsulationpumpedintothe110mmcavity,plushempinsulationwaslaidbetweenandabovethejoistsatceilinglevelaswiththesouthwall.测试方法TestingMeasurement2012年9月24日同时在八个地点和两个房间内安装了U值测量设备。测量持续了两周,随后分析结果。测量的方法利用了完整的的Hukseflux热流传感器对案例研究进行细节分析。U-valuemeasurementequipmentwasinstalledineightlocations,acrossthetworoomson24thSeptember2012.Measurementsweretakenfortwoweeks,thentheresultswereanalysed.The第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-37-methodologyused,followedawell-establishedformat,usingHuksefluxheatfluxtransducersasperthedetailsinthefullcasestudy.同时还进行了对房屋结构可见范围内的热量损失温度记录图的测量,该测量可以帮助确认在热绝缘和制冷中是否存在空隙。进行温度记录图测量时需要满足几个特定的条件,其中包括室内和室外的温差及天气条件。Athermographicsurveywasalsoconducted,todisplayvisuallyareasofheatlossthroughthebuildingfabric.Thermographicsurveyscanhelpidentifygapsininsulationorcoldbridging.Therearespecificenvironmentalconditionsthatarerequiredtoconductathermographicsurvey,includinginternal/externaltemperaturedifferencesandweatherconditions.Downloadthecasestudydocumentontherightforfulldetails.在原有的玻璃和后组装的第二块玻璃之间安装了中空温度探针,两侧中的其中一侧有保温层。Temperatureprobeswereinstalledwithinthespacebetweentheexistingandsecondaryglazingunits,twooneithersideoftheheatbarrierblind.性能和效果PerformanceandResultsU值测量结果U-valuemeasurements临时U值原位测量的结果表明,添加热屏蔽二次上光系统使得玻璃的U值得以改善,从5.2降为0.6W/m2K,这些测量结果已和苏格兰能源中心所开展的其他翻新监测项目的测量结果进行对比,结果表明额外增加的热辐射屏障对结果没有显著的影响。InterimresultsfromtheU-valuein-situmeasurementshaveshownthattheadditionofThermalShieldsecondaryglazingsystem苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-38-中英(广东)CCUS中心improvedtheU-valueoftheglazingfrom5.2to0.6W/m2K.ThesefigureswerecomparablewithmeasurementsinotherrefurbishmentmonitoringprojectscarriedoutbyScottishEnergyCentre.Thissuggeststhattheadditionoftheradiantheatbarrierblindhashadnosignificanteffect.窗户之间的空隙中设有温度探针测量热屏障两面的温差。结果显示热屏障的两侧温差增加显著且在下午4-5点时,热屏障两侧的温差达到最高峰。然而,所捕获的热量由于第二层玻璃的热性能原因,可能无法循环回室内。InterimresultsfromtheU-valuein-situmeasurementshaveshownthattheadditionofThermalShieldsecondaryglazingsystemimprovedtheU-valueoftheglazingfrom5.2to0.6W/m2K.ThesefigureswerecomparablewithmeasurementsinotherrefurbishmentmonitoringprojectscarriedoutbyScottishEnergyCentre.Thissuggeststhattheadditionoftheradiantheatbarrierblindhashadnosignificanteffect.为了测量‘控制’和改进建筑物的U值,悬挂式天花板的上方墙面上装有热流垫。测量结果表明,额外增加的大麻纤维绝缘层将U值从0.43W/m²K降低至0.12W/m²K。Heatflowmatswereinstalledonthewallareasabovethesuspendedceilings,tomeasurethe'control'andupgradedU-valuesofthefabric.Themeasurementsindicatedthattheadditionofthehempinsulation,improvedtheU-valuefrom0.43W/m²Kto0.24W/m²K.Theareabelowthewindowwasalsotestedandalsodemonstratedanimprovedthermalperformance,withU-valuesreducingfrom0.36W/m²Kto0.12W/m²K.北墙的U值同样也从1.11W/m²K降低到0.53W/m²K。虽然U值得以显著降低,但最低值并未达到预期值。ThesouthwallU-valuewasalsoreduced,from1.11W/m²Kto0.53W/m²K.Whileasignificantreduction,thisisnotaslowavalueashadbeenexpected.Reasoningforthisisdetailedinthe'lessons'section.翻新墙面的温度记录图也同时显示从悬挂天花板上方和从下方窗户中损失的热量均有所减少。Thermographicsurveysonthecontrolandupgradedwallsalsoshowedareductioninheatlossfromtheareasabovethesuspendedceilingtiles,andbelowthewindows.结论Summary对偏远地区的墙面进行改造绝缘,出现了无法持续性保温隔热的问题。另外,北墙的保温性能没有预期中的效果提升。原因可能为由于短时间监测期所带来的不确定性,外部空气可能已进入空隙。温度记录图进一步确认了热量直接从悬挂式天花板下测的空气泄露渠道中损失,造成该结果的原因可能来自绝缘方面的连续性和研磨性问题。Retrofittinginsulationinisolatedareasofwallpresentedissueswithmaintainingcontinuityofthethermalenvelope.Inaddition,thermalperformanceonthenorthwallwasnotasimprovedashadbeenexpected.Thismaybe第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-39-forseveralreasons,includinguncertaintiesduetotheshortmonitoringperiod,settlingoftheblowninsulationorexternalairinfiltratingtheairgap.Thermographicimagesconfirmedheatlossthroughairleakagepathsdirectlybelowthesuspendedceiling,whichmayresultfromaproblemwithcontinuityandlappingofinsulation.进一步的调查工作包括气密性测试,该测试会继续探索并解决这类问题。为了将不确定性误差降为±10%的水平,将会开展长期的U值测试。总体而言,窗户的升级改造被证明是特别成功的。Furtherinvestigativework,includingairtightnesstestingwillbeconductedtoexploreandresolvetheseissues.AlongerperiodofU-valuetestingwillalsobecarriedout,toreducetheerrorstowithinthe±10%uncertaintylevel.Overall,theupgradestothewindowshavebeenfoundtobeparticularlysuccessful.爱丁堡低碳创新中心EdinburghCentreforCarbonInnovation,Edinburgh背景Background爱丁堡低碳创新中心(ECCI)是创建低碳经济所需的知识、创新和技术的摇篮。ECCI由爱丁堡大学主办、赫瑞瓦特大学及爱丁堡龙比亚大学共同参与。该中心通过支持政府政策的实行,为提高企业创新能力提供专业的技能培训。TheEdinburghCentreforCarbonInnovation(ECCI)isahubfortheknowledge,innovationandskillsrequiredtocreatealowcarboneconomy.HostedbytheUniversityofEdinburgh,inpartnershipwithHeriot-WattUniversityandEdinburghNapierUniversity,theECCIsupportsGovernmentpolicyimplementation,enhancesbusinessenterpriseandinnovationanddeliversprofessionalskillstraining.建造ECCI新大楼的工程从2012年的二月开始。此案例研究主要为将爱丁堡大学的旧高中校址改建为一个拥有创新区域、演讲厅、研讨室、展览馆和社交活动室的建筑。WorkbeganontheconstructionofECCI'snewpremisesinFebruary2012.ThiscasestudycoverstherefurbishmentandremodellingofspaceintheUniversityofEdinburgh’sOldHighSchoolinHighSchoolYardstocreateaninnovationsuite,lecturetheatres,seminarrooms,exhibitionandsocialspace.建筑的改造工程遵从爱丁堡大学关于房地产和建筑的可持续发展策略,该策略包括对社会责任和可持续性发展的承诺,以及高于法律要求所需的环境标准。WorkbeganontheconstructionofECCI'snewpremisesinFebruary2012.ThiscasestudycoverstherefurbishmentandremodellingofspaceintheUniversityofEdinburgh’sOldHighSchoolinHighSchoolYardstocreateaninnovationsuite,lecturetheatres,seminarrooms,exhibitionandsocialspace.该改造工程的目的是通过创建一个低能耗、高能源利用率的建筑来达到满足苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-40-中英(广东)CCUS中心BREEAM关于‘优秀‘和‘杰出’水平的最低要求,ECCI的建立会成为第一个被列入或被评为‘杰出’奖项的建筑。TheobjectivewastocreatealowenergyandhighlyefficientbuildingtargetingaminimumBREEAMratingof‘Excellent’andanaspirationalratingof‘Outstanding’.TheECCIwouldbethefirstlistedorrefurbishedbuildingtobeawarded'Outstanding'ifitisachieved.建筑描述、设计和建造BuildingDescription,Design&Construction构造FabricECCI的改造工程包含对列入B类别建筑旧中学的改造和扩张。在ECCI建筑楼的旁边原先是两个18世纪的建筑,由于18世纪的建筑不复存在,一个在上层有会议/办公区域的全新咖啡馆建筑在此建立起来。同时,校园内课程和教学区域的广泛开放,也加强了附近的庭院间的联系。TheECCIrefurbishmentprojectinvolvedamajoralterationandextensionoftheGradeBlisted,OldHighSchool.Whereapairofhistoric18thcenturybuildingshadbeenlost,nexttotherearECCIbuilding,anewcafébuildinghasbeencreated,withmeeting/officespacesabove.Agenerousopeningwithinthelectureandteachingspacereinforcesanewconnectiontotheadjacentcourtyard.建筑的主要结构和中庭及所有新建造区域连载一起,是一个交叉复合木材框架(CLT)和CLT楼板系统。据说CLT材料减少的二氧化碳排放量是其排放量的4-5倍。结构工程师对该建筑评估后决定先将结构型钢梁从内部移除,但并不排除存在可能再次将其用于支撑建筑内部的可能性。Themainstructure,insertedwithintheatriumandallnewconstructionareas,isaCrossLaminatedTimberframe(CLT)andCLTfloorpanelssystem.CLTissaidtolockinaround4-5timesmorecarbonthanittakestoproduce.TheStructuralEngineerassessedsteelstructuralbeamsremovedfromtheexistingbuilding;manycouldbereusedassupportswithintheconstruction.已有的Cullaloe和Blaxter石雕工艺已经得到了谨慎保守的修复。当地的石材十分耐用及易于修复。新建筑的上层结构主要被青铜涂层(含80%的铜和20%的锡)覆盖,是一种减轻负重的结构。同时这种图层材料也很耐用并且可回收。现有的框格窗得到了保留且根据附加的设计草案窗户得以全部维修,有些区域安装了一层较薄双层玻璃。深层符合木材钉有利于外部墙面的建造,内部区域的划分使用的是木钉。TheexistingCullaloeandBlaxterstoneworkhasbeencarefullyandconservativelyrepaired.The‘base’coursetothenewconstructionareasisalsoconstructedinCullaloestonefromFife.Locallysourcedstoneisdurableandrepairable.Theupperlevelsofthenewconstructionarecoveredinbronzecladding(80%copperand20%第三章案例研究ChapterThreeCaseStudies中英(广东)CCUS中心-41-tin).Thisislightweightreducingdemandonthestructure.Itisadurableandarecyclablematerial.Theexistingsashwindowshavebeenretainedandrepairedwithadditionaldraftproofingandtheinstallationofslimlinedoubleglazedunitsinsomeareas.Deepcompositetimberstudssupporttheexternalwallconstruction.Theinternalpartitionsarealsotimberstud.隔热材料是由较有弹性的木制纤维和内部带密封层的硬质纤维板组成。蒸汽在外墙建造时是打开的,以允许湿气从大楼、墙壁的内部释出到室外。此举不仅对内部环境有所改善,同时也使大楼处于良好的状态。Insulationisacombinationofflexiblewoodfibrebattsandrigidfibreboardwithanairtightlayerinternally.Thewallconstructionisvapouropen,allowingmoisturetomovefrombothinsidethebuilding,andfromwithinthewallconstruction,totheoutside.Thisimprovestheinternalenvironmentandalsothehealthoftheconstruction.室内装饰中的楼梯、天花板和许多墙面装饰的材料均为木材。其他楼层使用油毡(纯天然)和地毯。墙面粉刷采用的是水性漆,水性漆在蒸汽开放的时候具有高透气性能。Internalfinishesusetimberforfloors,ceilingsandmanywalllinings.Otherfloorsuselinoleum(fromnaturalsources)andcarpets.Paintfinishesarewaterbasedandhavehighbreathabilitytoworkinconjunctionwiththevapouropenexternalwallconstruction.通风设备Ventilation该建筑主要采取被动的自然通风策略,空气换热器同时也给一些房间提供有限的冷气,制冷和换气只在人员密集度较高的房间内进行(例如演讲厅)。Theventilationstrategyisprimarilypassivenaturalventilation.Anairsourceheatexchangeralsosupplieslimitedchilledbeamcoolingto苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-42-中英(广东)CCUS中心somerooms.Coolinganddisplacementairareonlyinhighoccupancyrooms(e.g.lecturetheatres).采光Lighting建筑内部和外部的电灯均使用低能耗(包括LEDs)节能灯,并装有区域控制和传感器来防止电能的过度使用。Internalandexternallightingislowenergy(includingLEDs)throughout,withzonedcontrolanduseofsensorstolimitusage.Daylightstudieswerecarriedoutatdesignstagetomaximisenaturallightandreduceareasofsummeroverheating.室内用水Water所有的卫浴设施均采用耗水量较低的设计。原先应计划安装一个雨水收集器,后来在一个十四世纪考古现场发现了一个储油罐,该储油罐可以改装成雨水收集器。建筑周边的植物景观同时用于控制和转移地表水。Allsanitaryappliancesarelowwaterusage.Rainwaterharvestingwasintendedtobeinstalled,until14thCenturyarchaeologydiscoveredonsiteinhibitedthelocationofstoragetanks.Permeablelandscapingandanincreaseofsoftlandscapingarealsousedtocontrolanddivertsurfacewater.CHP区域性的CHP系统用于提供暖气和用电。建筑后面的大楼屋顶的南面装有光伏板(占地面积30平方米)AdistrictCHPsystemisinstalledtoprovideheatingandpower.Photovoltaicpanels(covering30m²)werealsoinstalledonthesouthfacingroofsurfacesoftherearbuilding.第四章模拟结果和融资机制ChapterFourModellingResultsandFinancingMechanisms中英(广东)CCUS中心-43-4.1主要假设4.1KeyAssumption如第三章所述,低碳建筑的选址具有一定的特点。根据邱在2007年的报告显示,此类建筑年能耗量在70到300千瓦时每平方米。此报告研发了一个以爱丁堡低碳创新中心(ECCI)的数据为基础的,为低碳改造技术评估经济效益的模型。在表格4-1和表格4-2中总结了由爱丁堡低碳创新中心相关报告的数据和一些基本假设。其中总成本为610万,合同期为20个月,总面积为4790平方米,经济年限假设为50年,天然气消耗的基线是每年每平方米20千瓦时,电力消耗,为每年每平方米30千瓦时,天然气消耗的基线为127.4千瓦时每年每平方米,电消耗为56千瓦时每年每平方米,碳排放的基线是每年0.01吨(ECCI,2015),爱丁堡2016年当地的租金底线为每平方米100英镑。经过计算2016年的改造成本为每平方米764英镑。根据ECCI报告显示,低碳建筑改造被认为能带来将电力和天然气消耗降低30%等好处。AsillustratedintheChapterThree,thedesignoflowcarbonbuildingsaresitespecific.AccordingtoresearchfromQiu(2007),theenergyconsumptioninthesebuildingare70-300kWh/m2perannum.ThestudydevelopsagenericmodelforassessingtheeconomicvalueofkeepingthelowcarbonretrofitoptionopenbyusingdatafromEdinburghCentreforCarbonInnovation.Basicassumptions(e.g.buildinglife,rentalcost,discountfactorandadditionalcosts)anddatacalculatedfromECCIreportsareshowninTable4-1andTable4-2.ThetotalcostisGBP6.1millionfor20monthsofcontractdurationandthetotalareais4790m2.Theeconomiclifeassumptionis50years.Thebaselinegasconsumptionis127.4kWhthermalperm2peryearandthebaselineelectricityconsumptionis56kWhperm2peryear.Thebaselinecarbonemissionsiscalculationas0.05tCO2peryearusingconversionfactorsgivenbyDEFRA.Carbonemissionreducedto0.04tCO2peryearafterretrofitting.ThebaselinelocalrentalcostatEdinburghisGBP100/m2in2016.TheretrofitcostiscalculatedfrominformationaboveasGBP764/m2annually.第四章模拟结果和融资机制ChapterFourModellingResultsandFinancingMechanisms苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-44-中英(广东)CCUS中心Table4-1经济评估的静态假设Table4-1StaticAssumptionsforEconomicAssessment静态假设StaticAssumptions单位Unit价值建筑BuildingLife年Years50天然气消耗基线BaselineGasConsumption千瓦时/平方米每年kWh/m2peryear127.4低碳建筑的天然气消耗LCBGasConsumption千瓦时/平方米每年kWh/m2peryear98电力消耗基线LCBGasConsumption千瓦时/平方米每年kWh/m2peryear56低碳建筑的电力消耗LCBElectricityConsumption千瓦时/平方米每年kWh/m2peryear43碳排放基线BaselineCarbonEmissions吨二氧化碳/平方米每年tCO2/m2peryear0.01地租基线BaselineRentalCost英镑/平方米每年GBP/m2peryear100改造成本基线BaselineRetrofitCost英镑/平方米GBP/m2764折现率DiscountFactor6%额外建筑运营和维护成本(改造后)AdditionalBuildingO&MCost(retrofit)英镑/平方米每年GBP/m2peryear0经计算低碳建筑的改造成本在2016年为每平方米764英镑,同时学习率为20%(假设每降低20%的成本便可实现两倍的全球低碳建筑可容量)。初始全球低碳建筑可容量假设为120万平方米。初始市场租金(每年每平方米100英镑)假设将拥有3%的增长率,其中回复率为20%和标准差为5%。租金成本由ECCI的6种不同可出租的房间类型80%空间占有率计算而成。我们假设低碳建筑的初始租金比原假设高20%,即每年每平方米145英镑。我们同时假设天然气、电力和碳的价格为当地分别对应的市场价格。ThelowcarbonretrofitcostisGBP764/m2in2016withassumedlearningrateof20%,i.e.assuming20%costreductionperdoublingofglobalcapacityinlowcarbonbuilding.Theinitialgloballowcarbonbuildingcapacityisassumedas1.2millionm2.Theinitialmarketrent(GBP100/m2peryear)isassumedtogrowat3%withameanrevertingrateof20%andastandarddeviationof5%.Therentalcostiscalculatedusing80%occupancyrateofsixdifferenttypesofroomsandfacilitiesinECCI.ThusrentalrevenueiscalculatedasGBP145/m2peryear.Wealsoassumethegas,electricityandcarbonpricesbasedonthelocalmarketenvironment.Table4-2经济评估的随机假设Table4-2StochasticAssumptionsforEconomicAssessment随机假设StochasticAssumptions单位Unit基准值BaseValue学习率LearningRate漂移值Drift均值回复率MeanRevertingRate标准差StandardDeviation低碳建筑的改造成本LCBRetrofitCost英镑/平方米GBP/m276420%全球低碳建筑可容量GlobalLCBCapacity平方米m212000003%5%3%市场地租MarketRent英镑/平方米每年GBP/m2peryear1003%20%5%低碳建筑地租LCBMarketRent英镑/平方米每年GBP/m2peryear1455%20%5%天然气价格GasPrice英镑/兆瓦时GBP/MWh201%50%10%电费ElectricityPrice英镑/兆瓦时GBP/MWh601%50%10%碳价格CarbonPrice英镑/吨二氧化碳GBP/tCO2105%20%20%第四章模拟结果和融资机制ChapterFourModellingResultsandFinancingMechanisms中英(广东)CCUS中心-45-图4-1模拟低碳改造技术的价值(10,000次试验)Figure4-1SimulatedOptionValueforLowCarbonRetrofit(10000trials)4.2结果GBP/tCO2低碳建筑改造方案所带来的估计价值(图4-1)是每平方米410.79英镑。换言之,若一栋新建筑设计成低碳建筑可以在每平方米内增加410.79英镑的经济效益。不同改造方法的估计收益从负193英镑到正950英镑不等。低碳建筑改造将有55%的可能性将带来超过500英镑的收益。Theestimatedoptionvalueoflowcarbonretrofit(Figure4-1)isGBP413.8perm2.Inotherword,anewbuildingifdesignedinlowcarbonretrofitreadiness,couldincreasetheeconomicvaluebyGBP413.8perm2.TheestimatedpresentvalueofoptionpayoffrangesfromnegativeGBP103.5topositiveGBP944.7.Approximately75%chance,lowcarbonbuildingretrofitwillprovideahigherthanGBP500payoff.4.3情景分析Figure4-1SimulatedOptionValueforLowCarbonRetrofit(10000trials)此研究报告测试了几种情景下的技术价值。若地租没有因为受到减少碳排放量和节能因素的影响而升高,改造方案的价值将大幅度减少至每平方米负22.8英镑(表4-3)。若无燃料节能因素的影响,改造价值将下降为每平方米379.02英镑。初始改造的成本假设将影响整个改造方案的价值。当改造的初始资本成本增加至每平方米1000英镑时,改造方案的价值将会下降至每平方米175.09英镑。当改造的初始资本成本增加至每平方米1100英镑时,改造方案的价值将会下降至每平方米75英镑。当改造的初始资本成本增加至每平方米苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-46-中英(广东)CCUS中心1200英镑时,改造方案的价值将为负。Thestudytestsanumberofscenarios.Ifthereisnorentincreasebenefit(i.e.onlydrivenbycarbonandfuelcostsaving),theoptionvalueisdramaticallyreducedtonegativeGBP19.9/m2(Table4-3).Ifthereisnofuelsavingbenefit,theoptionvalueisreducedtoGBP378.92/m2.Theinitialcostassumptionforretrofitinfluencestheoptionvalue,whentheinitialretrofitcapitalcostisincreasedtoGBP1000/m2,theoptionvalueisreducedtoGBP177.44/m2.IftheinitialretrofittingcostincreasetoGBP1100/m2,theoptionvalueisfurtherdecreasedtoGBP77.78/m2.WhentheinitialretrofittingcostexceedsGBP1200/m2,theoptionvaluesrendersanegativefigure.表4-3改造价值情景分析的结果(10,000次试验)单位:每平方米Table4-3OptionValuesofScenarioAnalysis(10,000trials)unit:perm2进行低碳改造后租金无增加NoRentIncreaseafterLCBRetrofitGBP-22.8无燃料、电力和减少碳排放因素影响NoFuel,ElectricityandCarbonSavingBenefitGBP379.02初始改造成本从764英镑增加到1000英镑每平方米IncreasefromGBP764toGBP1000/m2initialretrofitcostGBP175.09初始改造成本从764英镑增加到1100英镑每平方米IncreasefromGBP764toGBP1000/m2initialretrofitcostGBP75初始改造成本从764英镑增加到1200英镑每平方米IncreasefromGBP764toGBP1200/m2initialretrofitcostGBP-24.94.4重要启示4.4KeyImplications以上的分析给未来从事相关领域研究的人员和政策制定人员有以下几点初步的参考意见:Thegenericanalysesprovidethefollowingpreliminaryimplicationsforfuturestudiesandpolicymakers:-爱丁堡进行建筑的低碳改造(在建筑的使用年限内)是具有巨大经济价值的。-ThereissubstantialfinancialvalueofretrofittingabuildinginEdinburghtolowcarbondesigncapturedoverthelifetime-商业建筑改造成低碳设计的经济可行性在爱丁堡是非常高的。-TheeconomicviablechanceofretrofittingacommercialbuildingtolowcarbondesigninEdinburghisveryhigh-目前租金增加所带来的效益是低碳改造的主要驱动力。-TheeconomicviablechanceofretrofittingacommercialbuildingtolowcarbondesigninEdinburghisveryhigh-能授权使新建筑对低碳改造方案持开放态度和避免碳锁定效应的政策的颁布是至关重要的。-Itiscriticaltoenableapolicytomandatenewcommercialbuildingtokeeplowcarbonretrofitoptionsopenandavoidthecarbonlock-ineffect-为商业建筑的低碳设计制定一个标准或模式是有益的。-Itiscriticaltoenableapolicytomandatenewcommercialbuildingtokeeplowcarbonretrofitoptionsopenandavoidthecarbonlock-ineffect第四章模拟结果和融资机制ChapterFourModellingResultsandFinancingMechanisms中英(广东)CCUS中心-47-参考文献ReferencesAbadie,L.,Chamorrow,J.M.,2008.EuropeanCO2pricesandcarboncaptureinvestments.EnergyEconomics30,pp2992-3015.Alberth,S.,2008.Forecastingtechnologycostsviatheexperiencecurve–Mythormagic?TechnologicalForecasting&SocialChange75,pp952-983.BRE(BuildingResearchEnergyConservationSupportUnit)(1995)BritishTelecommaintainsofficerefurbishmentimprovementsaspartofitsenergymanagementprogramme.Availableat:http://www.retrofitscotland.org/media/25848/brecsu-cs278-telephone-house.pdf(Downloaded:20Oct2015)BRE(BuildingResearchEnergyConservationSupportUnit)(2001)Newpracticecasestudy127Nortonparkbuilding,Edinburgh-feedbackofdesignersandclients.Availableat:http://www.retrofitscotland.org/media/22647/npcs-127_brecsu.pdf(Downloaded:20Oct2015)ClimateChangeBill,2009.Availableat:http://www.scottish.parliament.uk/parliamentarybusiness/Bills/16147.aspx(Downloaded:20Oct2015).ClimateChange(Scotland)Act,2009.Availableat:http://www.legislation.gov.uk/asp/2009/12/pdfs/asp_20090012_en.pdf(Downloaded:20Oct2015).DepartmentofEnergy&ClimateChange(DECC),2015.DigestofUnitedKingdomEnergyStatistics2015.Availableat:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/450302/DUKES_2015.pdf(Downloaded:20Oct2015).DepartmentforCommunitiesandLocalGovernment(DCLG),2015.2010to2015governmentpolicy:energyefficiencyinbuildings.Availableat:https://www.gov.uk/government/publications/2010-to-2015-government-policy-energy-efficiency-in-buildings/2010-to-2015-government-policy-energy-efficiency-in-buildings(Downloaded:20Oct2015).Dixon,T.,2014.Commercialpropertyretrofitting.JournalofPropertyInvestment&Finance32(4),pp443-452.EUCommission,2010.Directive2010/31/EUoftheEuropeanParliamentandoftheCouncilof19May2010ontheenergyperformanceofbuildings,OfficialJournaloftheEuropeanUnionL153.Fuss,S.,Szolgayova,J.,2010.Fuelpriceandtechnologicaluncertaintyinarealoptionsmodelforelectricityplanning.AppliedEnergy87,pp2938-2944.Fortin,I.,Fuss,S.,Hlouskova,J.,Khabarov,N.,Obersteiner,M.,Szolgayova,J.,2008.AnintegratedCVaRandrealoptionsapproachtoinvestmentsintheenergysector.TheJournalofEnergyMarkets1(2),pp61-85.苏格兰爱丁堡改造低碳商业建筑价值评估报告AssessingtheValueofCommercialBuildingLow-carbonRetrofitinEdinburghCityinScotland-48-中英(广东)CCUS中心Georgakaki,A.,Gandhi,K.,Kerr,N.,Gouldson,A.,Eames,M.,2013.RegionalscalemodellingonthepotentialofcarbonemissionandcostsavingsfromretrofitoflowcarbonmeasuresinthedomesticsectoroftheCardiffCityRegion.Retrofit2050WorkingPaperNumber2013/1.IEA,2015.Availableat:https://www.iea.org/statistics/statisticssearch/report/?country=WORLD&product=balances&year=2013(Downloaded:20Oct2015).Kumbaroglu,G.,Madlener,R.,Demirel,M.,2005.ARealOptionsEvaluationModelfortheDiffusionProspectsofNewRenewablePowerGenerationTechnologies.CEPEWorkingPaperNo.35.Lee,S.,Shih,L.,2005.EnhancingRenewableandsustainableenergydevelopmentbasedonoptions-basedpolicyevaluationframework:CasestudyofwindenergytechnologyinTaiwan.RenewableandSustainableEnergyReviews15,pp2185-2198.LowCarbonInnovationCoordinationGroup(LCICG)2012.TechnologyInnovationNeedsAssessment(TINA)Non-DomesticBuildingsSummaryReport.Mansfield,J.,2009.Sustainablerefurbishment:policydirectionandsupportintheUK.StructuralSurvey27(2),pp148-161.Marreco,J.M.,Carpio,L.G.T.,2006.FlexibilityvaluationintheBrazilianpowersystem:arealoptionsapproach.EnergyPolicy34(18),pp3749-3756.Markus,A.M.,1979.BuildingConversionandRehabilitation:DesignforChangeinBuildingUse.Newnes-Butterworth,London.McArthur,J.J.andJofeh,C.G.H.,2015.Strategicretrofitinvestmentfromtheportfoliotothebuildingscale:aframeworkforidentificationandevaluationofpotentialretrofits.ProcediaEngineering118,pp:1068-1076.McDonald,A.,Schrattenholzer,L.,2001.Learningratesforenergytechnologies.EnergyPolicy29,pp255-261.Myers,S.C.,1977.Thedeterminantsofcorporateborrowing.JournalofFinancialEconomics5,pp147–175.Perez-Lombard,L.,Qrtiz,J.andPout,C.,2008.Areviewonbuildingsenergyconsumptioninformation.EnergyandBuildings40,394-398.Plantinga,A.J.,1998.Theoptimaltimberrotation:Anoptionvalueapproach.ForestScience44(2),pp192-202.Qiu,B.C.2007.AnnualReportonChinaBuildingEnergyEfficiency.ChinaArchitectureandBuildingPress.P.240.(inChinese)Rothwell,G.A.,2006.Arealoptionsapproachtoevaluatingnewnuclearpowerplants.TheEnergy第四章模拟结果和融资机制ChapterFourModellingResultsandFinancingMechanisms中英(广东)CCUS中心-49-Journal27(1),pp37–53.Rysanek,A.M.andChoudhary,R.,2013.Optimumbuildingenergyretrofitsundertechnicalandeconomicuncertainty.EnergyandBuildings57,pp324-337.Siddiqui,A.S.,Marnay,C.,Wiser,R.H.,2007.RealoptionsvaluationofUSFederalRenewableEnergyResearch,development,demonstration,anddevelopment.EnergyPolicy35(1),pp265–279.SullivanReport,2007.Availableat:http://www.gov.scot/resource/doc/217736/0092637.pdf(Downloaded:20Oct2015).SullivanReport,2013.Availableat:http://www.gov.scot/resource/0043/00437438.pdf(Downloaded:20Oct2015).Szolgayova,J.,Fuss,S.,Obersteiner,M.,2008.AssessingtheeffectsofCO2pricecapsonelectricityinvestments–Arealoptionsanalysis.EnergyPolicy36,pp3974-3981.Tan,B.,Anderson,E.,Parker,G.,2007.ManagingRiskinAlternativeEnergyProductDevelopment.Proceedingsofthe25thInternationalConferenceoftheSystemDynamicsSocietyand50thAnniversaryCelebration,29Jun–2Aug2007,Boston.Availableat:http://www.systemdynamics.org/conferences/2007/proceed/papers/TAN235.pdf(Downloaded:20Oct2015).TheEdinburghCentreforCarbonInnovation(2015)ECCI:TheEdinburghCentreforCarbonInnovation.Availableat:http://www.retrofitscotland.org/media/22645/ecci.pdf(Downloaded:20Oct2015)Yang,M.,Blyth,W.,Bradley,R.,Bunn,D.,Clarke,C.,Wilson,T.,2008.Evaluatingthepowerinvestmentoptionswithuncertaintyinclimatepolicy.EnergyEconomics30,pp1933–1950.Zhu,L.,Fan,Y.,2011.Arealoptions-basedCCSinvestmentevaluationmodel:CasestudyofChina’spowergenerationsector.AppliedEnergy88(12),pp4320-4333.