IMF-结构改革促进绿色增长(英)VIP专享VIP免费

2023
JUN
Restructuring Reforms
for Green Growth
Serhan Cevik and João Tovar Jalles
WP/23/120
© 2023 International Monetary Fund WP/23/120
IMF Working Paper
European Department
Restructuring Reforms for Green Growth
Prepared by Serhan Cevik and João Tovar Jalles1
Authorized for distribution by Bernardin Akitoby
June 2023
IMF Working Papers describe research in progress by the author(s) and are published to elicit comments
and to encourage debate. The views expressed in IMF Working Papers are those of the author(s) and do
not necessarily represent the views of the IMF, its Executive Board, or IMF management.
Abstract
Policymakers across the world are striving to tackle the century-defining challenge of climate
change without undermining potential growth. This paper examines the impact of structural
reforms in the energy sector (electricity and gas) on enviromental outcomes and green growth
indicators in a panel of 25 advanced economies during the period 1970-2020. We obtain striking
results. First, while structural reforms so far failed in reducing greenhouse gas emissions per
capita, there is some evidence for greater effectiveness in lowering emissions per unit of GDP.
Second, although energy reforms are not associated with higher supply of renewable energy as a
share of total energy supply, they appear to stimulate a sustained increase in environmental
inventions and patents per capita over the medium term. We also find strong evidence of
nonlinear effects, with market-friendly energy reforms leading to better environmental outcomes
and green growth in countries with stronger environmental regulations. Looking forward, therefore,
structural reforms should be designed not just for market efficiency but also for green growth.
JEL Classification Numbers: D31; L43; L51
Keywords: Structural reforms; environment; green growth; panel data; local
projection; environmmental policy
Author’s E-Mail Address: scevik@imf.org; joaojalles@gmail.com
1 The authors would like to thank Geoffroy Dolphin, Gianluigi Ferrucci, Clara Galeazzi, Antung Liu, Christine
Richmond, Gregor Schwerhoff, and Johannes Wiegand for helpful comments and suggestions.
I. INTRODUCTION
Climate change is the defining challenge of our time, with significant risks to environmental
sustainability and socioeconomic wellbeing.2 The global mean surface temperature has already
surged more than 1.1 degrees Celsius (°C) compared with the pre-industrial average, and
projections indicate an acceleration in climate change with global temperature rising by as much
as 4°C over the next century. This will increase the risk of weather-related natural disasters and
cause greater damage to the environment, lives, and livelihoods (Stern 2007; IPCC 2007, 2014,
2019; 2021). The 2015 Paris Climate Accord, ratified by 194 countries including the European
Union (EU), seeks to contain global warming below 2°C compared to the preindustrial level
through Nationally Determined Contribution (NDC) commitments to reduce emissions.
According to the latest Emissions Gap Report, however, carbon dioxide (CO2) emissions
continued to increase since the Paris Agreement by more than 3 percent across the world, and
greenhouse gas (GHG) emissions will decline by only 7.5 percent by 2030, whereas keeping
global warming below 1.5°C requires a reduction of 55 percent (UNEP, 2021).
Economic growth tends to lead to higher emissions and environmental degradation, but it is
possible to achieve “green growth” by shifting the energy matrix away from fossil fuels and
increasing efficiency in the distribution and use of energy. These objectives, in turn, require
structural reforms and policies designed to alter behavior throughout the economy. In this paper,
we strive to close an important gap in the literature by investigating how structural reforms in
the energy sector (electricity and gas) can contribute to climate change mitigation, help guard
against threats associated with climate change, and thereby promote green growth defined as
environmentally sustainable economic growth. This is not a clear-cut question to answer since
product market reforms can have conflicting effects simultaneously on energy demand and the
supply and composition of energy sources. Furthermore, the extent of which structural reforms in
the energy sector affects environmental outcomes and the composition of economic growth
depends on the design of structural reforms and the country’s environmental policies and
institutional capacity to successfully implement structural reforms.
In this paper, we use the local projection (LP) method proposed by Jordà (2005) to investigate
how structural reforms in electricity and gas sectors—based on a narrative database of product
market reforms looking at public ownership and market access and structure—influence
alternative measures of environmental performance and green growth indicators in a panel of 25
countries during the period 1970–2020. We also explore the possibility of nonlinear effects of
these electricity and gas sector reforms by taking into account the stringency of initial
environmental policies at the time of a reform. We obtain somewhat mixed, but striking results.
First, while structural reforms so far failed in bringing about a reduction in CO2 and GHG
emissions per capita, there is some evidence for greater effectiveness in lowering GHG emissions
per unit of GDP. Second, although market-oriented electricity and gas sector reforms are not
2 There is a growing literature on economic and financial effects of climate change (Nordhaus, 1991, 1992; Cline,
1992; Dell et al., 2012; Acevedo et al., 2018; Burke and Tanutama, 2019; Kahn et al., 2019; Cevik and Jalles, 2020,
2021, 2022, 2023).
2023JUNRestructuringReformsforGreenGrowthSerhanCevikandJoãoTovarJallesWP/23/120©2023InternationalMonetaryFundWP/23/120IMFWorkingPaperEuropeanDepartmentRestructuringReformsforGreenGrowthPreparedbySerhanCevikandJoãoTovarJalles1AuthorizedfordistributionbyBernardinAkitobyJune2023IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.AbstractPolicymakersacrosstheworldarestrivingtotacklethecentury-definingchallengeofclimatechangewithoutunderminingpotentialgrowth.Thispaperexaminestheimpactofstructuralreformsintheenergysector(electricityandgas)onenviromentaloutcomesandgreengrowthindicatorsinapanelof25advancedeconomiesduringtheperiod1970-2020.Weobtainstrikingresults.First,whilestructuralreformssofarfailedinreducinggreenhousegasemissionspercapita,thereissomeevidenceforgreatereffectivenessinloweringemissionsperunitofGDP.Second,althoughenergyreformsarenotassociatedwithhighersupplyofrenewableenergyasashareoftotalenergysupply,theyappeartostimulateasustainedincreaseinenvironmentalinventionsandpatentspercapitaoverthemediumterm.Wealsofindstrongevidenceofnonlineareffects,withmarket-friendlyenergyreformsleadingtobetterenvironmentaloutcomesandgreengrowthincountrieswithstrongerenvironmentalregulations.Lookingforward,therefore,structuralreformsshouldbedesignednotjustformarketefficiencybutalsoforgreengrowth.JELClassificationNumbers:D31;L43;L51Keywords:Structuralreforms;environment;greengrowth;paneldata;localprojection;environmmentalpolicyAuthor’sE-MailAddress:scevik@imf.org;joaojalles@gmail.com1TheauthorswouldliketothankGeoffroyDolphin,GianluigiFerrucci,ClaraGaleazzi,AntungLiu,ChristineRichmond,GregorSchwerhoff,andJohannesWiegandforhelpfulcommentsandsuggestions.I.INTRODUCTIONClimatechangeisthedefiningchallengeofourtime,withsignificantriskstoenvironmentalsustainabilityandsocioeconomicwellbeing.2Theglobalmeansurfacetemperaturehasalreadysurgedmorethan1.1degreesCelsius(°C)comparedwiththepre-industrialaverage,andprojectionsindicateanaccelerationinclimatechangewithglobaltemperaturerisingbyasmuchas4°Coverthenextcentury.Thiswillincreasetheriskofweather-relatednaturaldisastersandcausegreaterdamagetotheenvironment,lives,andlivelihoods(Stern2007;IPCC2007,2014,2019;2021).The2015ParisClimateAccord,ratifiedby194countriesincludingtheEuropeanUnion(EU),seekstocontainglobalwarmingbelow2°CcomparedtothepreindustriallevelthroughNationallyDeterminedContribution(NDC)commitmentstoreduceemissions.AccordingtothelatestEmissionsGapReport,however,carbondioxide(CO2)emissionscontinuedtoincreasesincetheParisAgreementbymorethan3percentacrosstheworld,andgreenhousegas(GHG)emissionswilldeclinebyonly7.5percentby2030,whereaskeepingglobalwarmingbelow1.5°Crequiresareductionof55percent(UNEP,2021).Economicgrowthtendstoleadtohigheremissionsandenvironmentaldegradation,butitispossibletoachieve“greengrowth”byshiftingtheenergymatrixawayfromfossilfuelsandincreasingefficiencyinthedistributionanduseofenergy.Theseobjectives,inturn,requirestructuralreformsandpoliciesdesignedtoalterbehaviorthroughouttheeconomy.Inthispaper,westrivetocloseanimportantgapintheliteraturebyinvestigatinghowstructuralreformsintheenergysector(electricityandgas)cancontributetoclimatechangemitigation,helpguardagainstthreatsassociatedwithclimatechange,andtherebypromotegreengrowthdefinedasenvironmentallysustainableeconomicgrowth.Thisisnotaclear-cutquestiontoanswersinceproductmarketreformscanhaveconflictingeffectssimultaneouslyonenergydemandandthesupplyandcompositionofenergysources.Furthermore,theextentofwhichstructuralreformsintheenergysectoraffectsenvironmentaloutcomesandthecompositionofeconomicgrowthdependsonthedesignofstructuralreformsandthecountry’senvironmentalpoliciesandinstitutionalcapacitytosuccessfullyimplementstructuralreforms.Inthispaper,weusethelocalprojection(LP)methodproposedbyJordà(2005)toinvestigatehowstructuralreformsinelectricityandgassectors—basedonanarrativedatabaseofproductmarketreformslookingatpublicownershipandmarketaccessandstructure—influencealternativemeasuresofenvironmentalperformanceandgreengrowthindicatorsinapanelof25countriesduringtheperiod1970–2020.Wealsoexplorethepossibilityofnonlineareffectsoftheseelectricityandgassectorreformsbytakingintoaccountthestringencyofinitialenvironmentalpoliciesatthetimeofareform.Weobtainsomewhatmixed,butstrikingresults.First,whilestructuralreformssofarfailedinbringingaboutareductioninCO2andGHGemissionspercapita,thereissomeevidenceforgreatereffectivenessinloweringGHGemissionsperunitofGDP.Second,althoughmarket-orientedelectricityandgassectorreformsarenot2Thereisagrowingliteratureoneconomicandfinancialeffectsofclimatechange(Nordhaus,1991,1992;Cline,1992;Delletal.,2012;Acevedoetal.,2018;BurkeandTanutama,2019;Kahnetal.,2019;CevikandJalles,2020,2021,2022,2023).4associatedwithhighersupplyofrenewableenergyasashareoftotalenergysupply,theyappeartostimulateasustainedincreaseinthenumberofenvironmentalinventionsandpatentspercapitaoverthemediumterm.Furthermore,wefindstrongevidenceofnonlineareffects,withmarket-friendlyelectricityandgasreformsleadingtobetterenvironmentaloutcomesandgreengrowthincountrieswithstrongerenvironmentalregulations.Theseresultshaveseveralimportantimplicationsforthedesignofstructuralreformsandpolicies,whichshouldaimnotjustformarketefficiencybutalsoforgreengrowth.First,decouplingeconomicgrowthfromGHGemissionsispossiblethroughcomprehensivereformsandpoliciesaimedatshiftingtheenergymatrixawayfromfossilfuels.3Second,whiletransitioningenergysupplytolow-carbonsourcesiscritical,achievingenvironmentallysustainablegrowthisalsodependentongreaterefficiencyinthedistributionanduseofenergy.Theremainderofthispaperisorganizedasfollows.SectionIIdescribesthedatausedintheempiricalanalysis.SectionIIIintroducesthesalientfeaturesofoureconometricstrategy.SectionIVpresentsanddiscussestheempiricalresults,includingaseriesofrobustnesschecks.Finally,SectionVoffersconcludingremarkswithpolicyimplications.II.DATAOVERVIEWWeconstructapaneldatasetofannualobservationscovering25countriesovertheperiod1970–2020,drawnfromtheOrganizationforEconomicCo-operationandDevelopment(OECD).Thedependentvariablesarealternativeindicatorsofenvironmentalperformanceandgreengrowth.Thefirstsetlooksatemissionsandenergyintensity,whilethesecondsetfocusesonmeasuresofgreengrowth.4Forenvironmentaloutcomes,weconsiderthreeindicators:(i)CO2emissionsinmetrictonspercapita,(ii)GHGemissionsinmetrictonspercapita,and(iii)GHGemissionsperunitofGDP.5Forgreengrowth,weconsiderthreeindicatorstomeasureenvironmentallysustainableeconomicgrowth:(i)theshareofrenewableenergysupply6,(ii)thenumberofenvironment-relatedinventionspercapita,and(iii)thenumberofpatentsforenvironment-relatedtechnologiespercapita.Themainexplanatoryvariablesofinterestarestructuralreformsintheenergysectorbasedonanarrativedatabaseofmajorpolicychangesinproductmarketregulation.Twosectorsareconsideredoutofsevencovered:electricityandgas,whichrepresenttheenergysector.The3SincetheCOP23in2017,theobjectivehasbeen“tomaintaintheglobalmomentumtodecoupleoutputfromgreenhousegasemissions”(Gough,2017).However,theextenttowhichdecouplingistakingplaceremainsamatterofdispute.Cohenetal.(2018;2022)analyzetherelationshipbetweenrealGDPgrowthandCO2emissionsacross178countriesfrom1960to2018andfindsomeevidenceofdecouplinginrecentyears.IMF(2021)andBlacketal.(2022)providedetailedassessments.4Therearealternativemeasuresof“greengrowth”intheliterature.ThemostcomprehensiveframeworkisdevelopedbytheOECDandcoversasetof12indicatorsincludingenergyuseperunitofGDPandGHGemissionsperunitofGDP(OECD,2017).5ThismeasureofGHGemissionsexcludeslanduse,land-usechangeandforestry.6Notethatbefore2010theshareofrenewableswasverysmall.5originaldatabaseofmajorreformsinproductmarketregulationisputtogetherbyDuvaletal.(2018)andupdatedbyWieseetal.(2023)until2020.Thisdatasetwasbuiltintwosteps.First,foreachofcountryandaforementionedpolicyarea,Duvaletal.(2018)andWieseetal.(2023)recordalllegislativeandregulatoryactionsmentionedinallpastOECDEconomicSurveys—theregularcountrysurveyspublishedbytheOECD—publishedovertheperiod1970-2020,aswellasadditionalcountry-specificsources.7Second,amongallthoseactions,theauthorsidentifymajormeasures(liberalizing/deregulatingandtightening/regulatingtypeofreforms)asthosethatmetatleastoneofthreealternativecriteria:(i)anarrativecriterionbasedonOECDstaff’sjudgementonthesignificanceofthereformatthetimeofadoption8;(ii)whetherthereformwasmentionedagaininsubsequentEconomicSurveys,asopposedtoonlyoncewhenthemeasuredisadopted9;(iii)themagnitudeofthechangeinthecorrespondingOECDindicator,whenavailable.10Whenonlythethirdconditionismet,anextensivesearchthroughotheravailabledomesticandnationalsources,includingthroughtheinternet,isperformedtoidentifythepolicyactionunderpinningthechangeintheindicator.Theapproachconsidersnotonlyreformsbutalso“counter-reforms”—i.e.,policychangesintheoppositedirection(increaseinregulationordecreaseinflexibility).Foreachcountry,ourreformvariableineachareatakesvalue0innon-reformyears,1inreformyears,and-1incounter-reformyears.InAppendixTableA1,wepresentaselectedsetofexamplesofidentifiedreformsintheareasofelectricityandgas.AppendixFigureA1showsthetemporaldynamicsofcountry-specificreformsinelectricityandgas.ItshouldbeacknowledgedthatthecriteriaDuvaletal.(2018)andWieseetal.(2023)appliedtoidentifymajorreforms,astransparentastheyare,arenottheonlypossibleoption—thereisnosingle,objectivewaytodistinguishbetweenmajorandminorreforms.Furthermore,theauthorsdonotdistinguishamongdifferentmajorreforms—allofthemaretreatedequally,eventhoughsomehavelikelybeenmoreimportantthanothersinpractice.Finally,bydesign,thedatasetdoesnotattempttomeasureandcomparepolicysettingsacrosscountries,andassuchisnosubstituteforotherpubliclyavailableindicatorsproducedbyotherinstitutions.7ThelistofcountriesinoursampleincludesAustralia,Austria,Belgium,Canada,CzechRepublic,Denmark,Finland,France,Germany,Greece,Iceland,Ireland,Italy,Japan,Korea,Luxembourg,theNetherlands,NewZealand,Norway,Portugal,theSlovakRepublic,Spain,Sweden,Switzerland,theUnitedKingdom,andtheUnitedStates.8TheOECDEconomicSurveyusesstrongnormativelanguagetodefinetheactionatthetimeistaken,suggestiveofanimportantmeasure(forexample,“majorreform”).Inthisrespect,themethodologyisrelatedtothe“narrativeapproach”usedbyRomerandRomer(1989,2004,2010,and2017)andDevriesetal.(2011)toidentifymonetaryandfiscalshocksandperiodsofhighfinancialdistress.9ThepolicyactionismentionedrepeatedlyacrossdifferenteditionsoftheOECDEconomicSurveyforthecountryconsidered,and/orintheretrospectivesummariesofkeypastreformsthatarefeaturedinsomeeditions,whichisalsoindicativeofamajoraction.10Whenavailable,theexistingOECDindicatoroftheregulatorystanceintheareaconsidereddisplaysaverylargechange(inthe5thpercentileofthedistributionofthecumulativechangeintheindicatoroverthreeyears—toaccommodatepossiblygradualphasing-inofotherwisemajorreforms).TheOECDindicatorsusedforthepurposeofthispaper,aretheindicatorsofproductmarketregulationinthegasandelectricitysectors.6Ourempiricalobjectiveinthispaperistoidentifyandtraceouttheenvironmentalperformanceaftermajorproductmarketreformsintheenergysector,namelyelectricityandgas.ThisdatasethasseveralstrengthscomparedtoindirectmethodsusedinotherpapersthatrelyexclusivelyonchangesinOECDpolicyindicators.Thestructuralreformdatabaseusedinthispaper(i)identifiestheprecisenatureandexacttimingofmajorlegislativeandregulatoryactionsinkeyproductmarketpolicyareas;(ii)detectstheprecisereformsthatunderpinwhatotherwiselookslikeagradualdeclineinOECDpolicyindicatorswithoutanyobviousornoticeablebreak;(iii)capturesreformsinareasforwhichOECDindicatorsexistbutdonotcoverallrelevantpolicydimensions;and(iv)documentsanddescribesthepreciselegislativeandregulatoryactionsthatunderpinobservedlargechangesinOECDindicatorsoveralongperiodoftime.Finally,comparedwithalternativedatasourcesdocumentingpolicychangesinenergymarkets,theapproachtakenbyDuvaletal.(2018)allowsidentifyingaratherlimitedsetofmajorlegislativeandregulatoryreforms,asopposedtojustalonglistofactionsthatinsomecaseswouldbeexpectedtohavelittleornobearingonmacroeconomicoutcomes.Thisisparticularlyusefulforempiricalanalysesthatseekstoidentify,andthenestimate,thedynamiceffectsofreformshocks.Table1presentsstylizedfactsonstructuralreforms(takingthevalue1)intheenergysector—thatis,decreasesinregulationorincreaseinmarketflexibility—andcounter-reforms—thatis,increasesinregulationordecreaseinmarketflexibility.Thelatterarerelativelyrareeventsinproductmarkets(whiletheycanaccountforupto25percentoftotalshocksinthelabormarket).Figure1andFigure2providethenumberanddistributionofreformsidentifiedinthesample,respectively,andillustratetheheterogeneityofreformeffortsacrossproductmarketregulatoryareasandcountries.Thesehavebeenmorefrequentlyimplementedintelecommunicationsandairtransport.Thevastmajorityofproductmarketreformsinoursamplewereimplementedduringthe1990sandthe2000s.11Intermsofgeographicaldistribution,EUcountriestookmoreactionsthannon-EUcountriesonaverage,reflectingthegreaterscopeforactionintheformergroup.Table1.StructuralReformCategories,1970-2020ReformtypeNumberofreformsNumberofcounter-reformsReforms(%oftotal)Counter-reforms(%oftotal)Productmarketreforms235498.31.7OfwhichElectricitysector480100.00.0Gassector490100.00.0Source:Duvaletal.(2018);Wieseetal.(2023);author’scalculations.11Exceptionsarereformsintheareaofrailtransportundertakeninthe1980s,whicharebeyondthefocusofthispaper.Notealsothatitwouldbeverysurprisingifsuchproductmarketreformsatthatperiod(particularlyinthe1990s)wouldreduceemissionsAtthetime,renewableenergywasinitsinfancyandreformswerelikelytargetedatincreasingenergysupplyandreducingprices.7Figure1.NumberofStructuralReformsbyArea,1970-2020Source:Duvaletal.(2018);Wieseetal.(2023).Figure2.NumberofElectricityandGasReformsbycountry,1970-2020Source:Duvaletal.(2018);Wieseetal.(2023)Wearealsointerestedinwhetheracountry’senvironmentalpoliciesatthetimeofintroducingproductmarketreformsintheenergysectoraffectstheimpactofenvironmentaloutcomes.Tothisend,weusethecountry-specificEnvironmentalPolicyStringency(EPS)IndexcreatedbytheOECDanddefinedasthedegreetowhichenvironmentalpoliciesputanexplicitorimplicitpriceonpollutingorenvironmentallyharmfulbehavior(BottaandKozluk,2014).Thesedataarethemostcomprehensiveavailablesourceforpolicymeasurescovering28OECDcountriesand6012345678AustraliaAustriaBelgiumCanadaCzechRepublicDenmarkFinlandFranceGermanyGreeceIcelandIrelandItalyJapanKoreaLuxembourgNetherlandsNewZealandNorwayPortugalSlovakRepublicSpainSwedenSwitzerlandUnitedKingdomUnitedStatesnumberofreformselectricityreformsgasreforms8emergingmarketeconomiesovertheperiod1990–2020.12TheEPSindexallowsustoinvestigatetheimpactofdifferentpolicyinstruments—scaledfrom0(notstringentatall)to6(verystringent)—relativetoanoverallaggregateindexconsistingofbothmarket-basedandnon-market-basedmeasures.Inthiscontext,market-basedmeasuresincludeinstrumentssuchasacarbontax,emissiontradingschemesandfeed-intariffs,whilenon-market-basedindicatorscapturelegislationonemissionlimitsandR&Dsubsidies,amongothers.Therearealsotechnologysupportpoliciesthatincludesthosethatsupportinnovationincleantechnologiesandtheiradoption.Figure3presentsthebreakdownoftheEPSindexbreakdownin2021.Figure3.The2021OECDEnvironmentalPolicyStringencyIndexSource:Kruseetal.(2022).III.ECONOMETRICMETHODOLOGYStructuralreforms—inanyarea—tendtohaveevolvingeffectsoveranextendedperiodoftime.Inthispaper,weestimatetheimpulseresponsefunctions(IRFs)ofenvironmentaloutcomesandmeasuresofgreengrowthtostructuralreformsinelectricityandgassectorsbyapplyingLPmethod.ThisapproachhasbeenadvocatedbyAuerbachandGorodnichenko(2012,2013)andRomerandRomer(2019)asaflexiblealternativetovectorautoregressions(VAR)and/ordistributedlagmodels.13TheLPmethodisalsoflexibletoaccommodateapanelstructureanddoesnotconstraintheshapeofIRFs,therebyallowingtoanalyzedifferenttypesofpolicyshocks(AuerbachandGorodnichenko,2013;JordàandTaylor,2016;RameyandZubairy,2018;RomerandRomer,2019;Bornetal.,2020).Inthispaper,giventhepanelsetting,weadopttheLP12OneconcernmightbethatenvironmentlegislationisadoptedatthesupranationallevelsuchastheEuropeanUnion.Thiswouldbeproblematicforourempiricalanalysisasnationalgovernmentsmaythennotdirectlyresponsibleforthestricterenvironmentalregulation.Despitethispotentialconcern,itisnoteworthythatsubstantialcross-countryvariationexistswithintheEUandenvironmentalpolicymakingtakesplaceatthenationallevel.13Plagborg-MollerandWolf(2021)furtherdiscussthepropertiesoflocalprojections,aswellastherelationshipbetweentheseandVARestimationofimpulseresponses.9methodovercommonlyusedVARmodelsforthefollowingspecificreasons.First,ourestimationentailsalargepaneldatasetwithaconstellationoffixedeffects,whichmakesadirectapplicationofstandardVARmodelsmoredifficult.Second,theLPmethodobviatestheneedtoestimatetheequationsfordependentvariablesotherthanthevariableofinterest,therebysignificantlyeconomizingonthenumberofestimatedparameters.Third,theLPmethodisparticularlysuitedtoestimatingnonlinearities(forexample,howtheeffectofenergyreformshocksdiffersincountrieswithhighorlowEPS),asitsapplicationismuchmorestraightforwardcomparedtonon-linearstructuralVARmodels,suchasMarkov-switchingorthreshold-VARmodels.14Moreover,itallowsforincorporatingvarioustime-varyingfeaturesofsource(recipient)economiesdirectlyandallowfortheirendogenousresponsetoenergyreformshocks.Lastly,theerrorterminthefollowingpanelestimationsislikelytobecorrelatedacrosscountries.ThiscorrelationwouldbedifficulttoaddressinthecontextofVARmodels,butitiseasytohandleintheLPmethodbyeitherclusteringstandarderrorsorusingtheDriscoll-Kraay(1998)standarderrors,whichallowsforarbitrarycorrelationsoftheerrorsacrosscountriesandtime.Accordingly,toaccountforthecumulativeresponsesofelectricityandgassectorreformsoverafive-yearhorizon,weusethefollowingbaselinespecification:𝑦,−𝑦,=𝛼+𝜏+β𝑆𝑅,+𝜃𝑋,+ε,(1)inwhich𝑦denotesaproxyofenvironmentalperformancemeasuredas:(i)CO2emissionsinmetrictonspercapita,(ii)GHGemissionsinmetrictonspercapita,and(iii)GHGemissionsperunitofGDP;andgreengrowthmeasuredas:(i)theshareofrenewableenergysupply,(ii)thenumberofenvironment-relatedinventionspercapita,and(iii)thenumberofpatentsforenvironment-relatedtechnologiespercapita.;thecoefficients𝛼and𝜏arecountryandtimefixedeffects,respectively,accountingforcross-countryheterogeneityandglobalshocks;𝛽denotesthecumulativeresponseofenvironmentaloutcomesineachkyearaftertheimplementationofaproductmarketreform;𝑆𝑅,denotesstructuralreformsinelectricityandgassectorsasdescribedintheprevioussection.Weincludetreatmentlagsinourmodels.Itisanempiricalissuehowlongtheeffectofprogressivityshockspersistsinthedata.𝑋,isavectorofadditionalcontrolvariables.WeuseAkaike’sinformationcriteriontodeterminethelaglength:weemploy2lagsofthestructuralreformshock,2lagsofrealGDPgrowth,inflationandthedependentvariable.Forrobustness,weintroduceadditionalcontrolsfortwolagsofotherdeterminantsofenvironmentalperformanceinsomespecificationsofthemodel–seebelow.WeestimatetheequationusingtheOrdinaryLeastSquares(OLS)method.15WecalculateSpatial14SeeChoietal.(2018)andMiyamotoetal.(2019)fortherecentapplicationoflocalprojectionstotheestimationofnonlinearitiesandinteractioneffectsofshocksusingalargepaneldataset,asitisthecasewithoursample.15Anotheradvantageofthelocalprojectionmethodcomparedtovectorautoregression(orautoregressivedistributedlag)specificationsisthatthecomputationofconfidencebandsdoesnotrequireMonteCarlosimulationsorasymptoticapproximations.Onelimitation,however,isthatconfidencebandsatlongerhorizonstendtobewiderthanthoseestimatedbyVARs.10CorrelationConsistent(SCC)standarderrorsasproposedbyDriscollandKraay(1998).16βdenotesthe(cumulative)responseofthevariableofinteresthyearsaftertheenergyreformshock.Impulseresponsefunctions(IRFs)arethenobtainedbyplottingtheestimatedβfork=0,1,…,5with90(and68)percentconfidencebandscomputedusingthestandarddeviationsassociatedwiththeestimatedcoefficientsβ.Todevelopamoregranularanalysis,wealsoexplorewhetherinitialenvironmentalpolicies,asmeasuredbytheEPSindexatthetimeofthereform,influencetheimpactofstructuralreformsonenvironmentaloutcomesandgreengrowth.17AsdiscussedinAuerbachandGorodnichenko(2012,2013),theLPapproachtoestimatingnon-lineareffectsisequivalenttothesmoothtransitionautoregressive(STAR)modeldevelopedbyGrangerandTeräsvirta(1993).Theadvantageofthisapproachistwofold.First,comparedwithamodelinwhicheachdependentvariablewouldbeinteractedwithameasureoftheEPSindexconvertedintoadummyvariableforhighandlowvaluesaccordingtosomeadhoccriterion,itpermitsadirecttestofwhethertheeffectoftheenergyreformshockvariesacrossadifferentregimes.Second,comparedwithestimatingstructuralVARforeachregime,itallowstheeffectofenergyreformstochangesmoothlybetweenlowandhighlevelsofEPSbyconsideringacontinuumofstatestocomputetheimpulseresponsefunctions,thusmakingtheresponsemorestableandprecise.Accordingly,theaugmentedLPmodeltotestfornon-lineareffectstakesthefollowingform:𝑦,−𝑦,=𝛼+𝜏+𝛽𝐹(𝑧,)𝑆𝑅,+𝛽(1−𝐹(𝑧,))𝑆𝑅,+θ𝑋,+𝜀,(2)with𝐹(𝑧)=()(),𝛾>0inwhich𝑧istheEPSindexthatisnormalizedtohavezeromeanandunitvariance.Theweightsassignedtoeachregimevarybetween0and1accordingtotheweightingfunction𝐹(.),sothat𝐹(𝑧)canbeinterpretedastheprobabilityofbeinginagivenstateoftheeconomy.Thecoefficients𝛽and𝛽capturetheimpactofstructuralreformshocksonenvironmentalperformanceandgreengrowthateachhorizonkincasesoflowEPS(𝐹(𝑧)≈1whenzgoestominusinfinity)andhighEPS(1−𝐹(𝑧)≈1whenzgoestoplusinfinity),respectively.Wechoose𝛾=1.5.18IV.EMPIRICALRESULTSThemainvariableofinterestinthisanalysisisthecumulativechangeinenvironmentaloutcomesandmeasuresofgreengrowthinresponsetostructuralreformsintheenergysectorasdescribedintheprevioussection.InFigure3,wepresenttheresultsofourbaselinespecification16Thisisanonparametrictechniqueassumingtheerrorstructuretobeheteroskedastic,autocorrelateduptosomelag,andpossiblycorrelatedacrosscountries.17ThereareotherstudiesusingsuchaSTARfunctioninthecontextofLP,suchAbiadetal.(2016),FurceriandLi(2017),GuptaandJalles(2022),JallesandKarras(2022).18Ourresultshardlychangewhenusingalternativevaluesoftheparameter𝛾,between1and4.11includingcontrolvariables.Eachchartshowsthecumulativeeffectsinresponsetoanenergy-sectorreformoneachofoursixalternativedependentvariablesinoursampleof25countriesoverafive-yearhorizon,where0indicatestheyearinwhichthestructuralreformoccurs.Theshadedareasindicatethe90percentand68percentconfidencebandsbasedonDriscoll-Kraay(1998)robuststandarderrorsclusteredatthecountrylevel.First,wefocusonmeasuresofenvironmentalperformanceandfindthatstructuralreformsinelectricityandgasmarketsleadtohigherCO2andGHGemissionspercapita,buttheseunconditionalresultsarestatisticallyinsignificantandsurroundedbygreatuncertainty.GHGemissionsperunitofGDP,ontheotherhand,respondstostructuralreformsintheoppositedirection,decliningbelowtheinitialleveloverthefive-yearperiodandshowingsomesignsofdecouplingbetweeneconomicgrowthandemissions.Second,wefocusonindicatorsofgreengrowth—definedasenvironmentallysustainableeconomicgrowth—andfindthatstructuralreformslowerthesupplyofrenewableenergyasashareoftotalenergysupply,butthisnegativeeffectisnotpersistentoverthelongrun.Furthermore,structuralreformsintheenergysectorstimulatesasustainedincreaseinthenumberofenvironmentalinventionsandpatentspercapitabeyondtheinitiallevel.Althoughthisresultseemscontradictorytopreviousstudiesthatfindanegativerelationshipbetweenproductmarketreforms(i.e.,liberalization)intheenergysectorandR&Dspending(Sirin,2011;JamasbandPollitt,2011),wethinkthatouranalysisbasedonthelatestdataandalargersetofcountriescapturesthesurgeofrenewableenergytechnologiesoverthepastdecade.Wedevelopamoregranularanalysisbyfocusingontypesofstructuralreformsinelectricityandgassectorsandobtainsimilarresponsepatternsfor“marketaccessandstructure”reforms(Figure4)and“publicownership”reforms(Figure5).Inthecaseofenergy-sectorprivatization,itshouldbenotedthatreformsleadtohigheremissionsacrossallmeasures,includingGHGemissionsperunitofGDP.InAppendixFiguresA2-A3,wepresenttheIRFsforstructuralreformsinelectricityandgasmarketsseparately,whichareconsistentwiththebaselineresults.Wearealsointerestedinwhetherthestrengthofinitialenvironmentalpoliciesatthetimeofanenergyreforminfluencesitsimpactonenvironmentalperformanceandgreengrowthbyestimatingastate-dependentversionofthemodelthatallowsdynamicresponsestovarywiththeEPSindex.Theseresults,presentedinFigure6,showstrikingdifferencesintheimpactofstructuralreformsonmeasuresofemissionsandgreengrowth.First,incountrieswithstrongerenvironmentalregulationsandpro-climatepolicies,structuralreformsintheenergysectordeliversasignificantandpersistentdeclineinCO2andGHGemissionspercapitaandGHGemissionsperunitofGDPinthefirstyearandoverthelongrun,whereasemissionscontinuetoincreaseincountrieswithlowenvironmentalstandards.Second,electricityandgassectorreformsmakeagreatercontributiontoincreasingtheshareofrenewableenergyandthedevelopmentofenvironmentaltechnologiesincountrieswithhigherEPSindex,whiletheimpactisoppositeinlow-EPScountries.ThisisinlinewiththeworkbyEugster(2021)whofindsthattheestimatedeffectofclimatechangemitigatingpoliciesoninnovationincleanenergytechnologiesispositiveonnet,meaningthatincreasedinnovationincleanandgreytechnologiesisnotoffset12byadecreaseininnovationindirtytechnologies.Weobtainsimilarresultswhenweestimatethestate-dependentmodelfor“marketaccessandstructure”reforms(Figure7)and“publicownership”reforms(Figure8).Inparticular,weobservethatenergy-sectorprivatizationresultsinsignificantlybetterenvironmentaloutcomesandgreengrowthincountrieswithstrongerenvironmentalregulations.Figure3.ImpactofEnergySectorReforms:BaselineModelNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.-1012012345yearGHGpc(%)-1012012345yearCO2pc(%)-1.5-1-.50.51012345yearemissionperunitGDP(%)Impactonfromelectricityandgasreforms-.6-.4-.20.2.4012345yearrenew.En.sup.(%toten.-10-50510012345yearEnv.Inventionspc(%)-5051015012345yearPatentsEnv-rel.tech.(%)Impactonfromelectricityandgasreforms13Figure4.ImpactofEnergyMarketAccessandStructureReforms:BaselineModelNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.-1012012345yearGHGpc(%)-1012012345yearCO2pc(%)-1.5-1-.50.51012345yearemissionperunitGDP(%)Impactonfrommarketaccess&structureenergyreforms-.8-.6-.4-.20.2012345yearrenew.En.sup.(%toten.-15-10-50510012345yearEnv.Inventionspc(%)-5051015012345yearPatentsEnv-rel.tech.(%)Impactonfrommarketaccess&structureenergyreforms14Figure5.ImpactofEnergyPrivatization:BaselineModelNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.Weconductseveralrobustnessexercises.Forreasonsofparsimony,wefocussolelyontwodependentvariables,whichwefindtobethemostrepresentativeofgreengrowth—GHGemissionspercapitaandthenumberofpatentsforenvironment-relatedtechnologiespercapita.0246012345yearGHGpc(%)02468012345yearCO2pc(%)-20246012345yearemissionperunitGDP(%)Impactonfrompublicownershipenergyreforms-1-.50.5012345yearrenew.En.sup.(%toten.-20-1001020012345yearEnv.Inventionspc(%)-100102030012345yearPatentsEnv-rel.tech.(%)Impactonfrompublicownershipenergyreforms15First,weknowthatapossiblebiasfromestimatingequation(1)usingcountry-fixedeffectsisthattheerrortermmayhaveanon-zeroexpectedvalue,duetotheinteractionoffixedeffectsandcountry-specificdevelopments(TeulingsandZubanov,2014).Thiswouldleadtoabiasoftheestimatesthatisafunctionofk.Toaddressthisissue,equation(1)wasre-estimatedbyexcludingcountryfixedeffectsfromtheanalysis.Theseresults,showninAppendixFigureA4,suggestthatthisbiasisnegligible.Second,toestimatethecausalimpactofenergyreformshocksonenvironmentalandgreengrowthoutcomes,itisimportanttocontrolforprevioustrendsinreformdynamics.Inthebaselinespecification,weattempttodothisbycontrollingforuptotwolagsinthedependentvariable.19Tofurthermitigatethisconcern,were-estimateequation(1)byincludingcountry-specifictimetrendsasadditionalcontrolvariables.Theseresults,presentedinAppendixFigureA4,remainqualitativelyunchanged.Third,sinceelectricityandgassectorreformsmaybeimplementedaspartofbroaderpackages,wealsore-estimateourmainregressioncontrollingforreformsinadditionalareas(suchasroadandrailway,unemploymentbenefitsreplacementrate,andEPLforregularcontracts),whicharedrawnfromthesamestructuralreformdataset.Theseresultsalsoremainconsistentwithourbaselinefindings.Fourth,whilethepreviousrobustnesschecksgoalongwaytowardmitigatingendogeneityconcerns,wealsoestimatethemodelbyusingadditionalcontrolvariablesandtheinstrumentalvariable(IV)approach.Theliteraturehasputforwardseveraltheoriestorationalizewhyandwhenreforms(donot)happen.Wefocusononebroadfactorexaminedintheliterature:politicalinstitutions.20Specifically,weusethefollowingsetofpoliticaleconomyvariablesasexternalinstruments,whichwedivideinfourcategories:(i)ideologyofthegoverningparty/ies,usingadiscretevariabletodistinguishbetweenleft,centerandright(3,2and1,respectively)(Parties);(ii)politicalsystem,usingadiscretevariableforparliamentary,assembly-electedandpresidentialformsofgovernments(2,1and0,respectively)(System);(iii)partyfragmentation,usingacontinuousvariableboundedbetween0(nofragmentation)and1(maximumfragmentation)tocapturethenumberofpoliticalpartiesinthelowerhouseofthelegislativeassembly(Fragmentation);(iv)thestrengthofdemocraticinstitutionsasmeasuredbythePolityIVindex,whichisnormalizedbetween0and1(Democ).WeobtainthesefromtheWorldBankDatabaseofPoliticalInstitutionsdatabase.Bymeansofatwo-stageleastsquaresestimator,were-estimateequation(1)usinguptotwolagsofthefourpoliticaleconomyexogenousinstrumentsdescribedabove.21Theseresults,19Similarresultsareobtainedwhenusingalternativelagparametrizations.Resultsforzero,oneandthreelags(notshown)confirmthatpreviousfindingsarenotsensitivetothechoiceofthenumberoflags.20Duval,FurceriandMiethe(2018)providesarecentcontributioninthisarea.21Tocheckthevalidityofourinstrumentsandassessthestrengthofouridentification,werelyontheKleibergen-PaapandHansenstatistics.Theunderidentificationtestteststhattheexcludedinstrumentsare"relevant"(meaningcorrelatedwiththeendogenousregressors).OurobtainedstatisticsgenerallyrejectthenullhypothesisthatthedifferentequationsareunidentifiedaccordingtotheStock-Yogocriticalvalues.Then,theHansenteststatisticsrevealthattheinstrumentsetscontainvalidinstruments(i.e.,uncorrelatedwiththeerrorterm,andthattheexcludedinstrumentsarecorrectlyexcludedfromtheestimatedequation)isnotrejected.16reportedinAppendixFigureA4,arebroadlysimilartoourbaselinefindings,confirmingthatendogeneityisnotaseriousconcerninourcase.Figure6.ImpactofEnergySectorReforms:State-DependentModelNote:estimationofequation2usingEPSaszinF(z).x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.Thebluedottedlinedenotestheunconditionalbaselineresultfromestimatingequation(1).18Figure7.ImpactofMarketAccessandStructureReforms:State-DependentModelNote:estimationofequation2usingEPSaszinF(z).x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.Thebluedottedlinedenotestheunconditionalbaselineresultfromestimatingequation(1).19Figure8.ImpactofPublicOwnershipReforms:State-DependentModelNote:estimationofequation2usingEPSaszinF(z).x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.Thebluedottedlinedenotestheunconditionalbaselineresultfromestimatingequation(1).V.CONCLUSIONAddressingclimatechange—thedefiningchallengeofourtime—requiresglobaleffortstoreduceGHGemissions,whichareprojectedtoincreasebyonly7.5percentby2030comparedtotherequiredreductionof55percentjusttokeepglobalwarmingbelow1.5°C.Therefore,whattheworldneedsisanewdevelopmentmodelthatbetterbalancesincomegrowthandenvironmentalprioritiesbymodernizingtheenergymatrixawayfromfossilfuelsandincreasingefficiencyinthedistributionanduseofenergy.Inturn,theseobjectivesrequirestructuralreformsandpoliciesdesignedtoalterbehaviorthroughouttheeconomy.Tothisend,thispaperclosesanimportantgapintheliteraturebyinvestigatinghowstructuralreformsinelectricityandgassectorscancontributetoclimatechangemitigation,helpguardagainstthreatsassociatedwithclimatechange,andtherebypromotegreengrowthdefinedasenvironmentallysustainableeconomicgrowth.WeusetheLPmethodtoestimatethecumulativeimpactofstructuralreformsintheenergysector—basedonanarrativedatabaseofproductmarketreforms—onalternativemeasuresofenvironmentalperformanceandgreengrowthinapanelof25countriesduringtheperiod1970–2020.Wealsoexplorethepossibilityofnonlineareffectsofstructuralreformsbytakingintoaccountinitialenvironmentalpoliciesatthetimeofanenergyreform.Weobtainsomewhatmixed,butstrikingresults.First,whileelectricityandhassectorreformssofarfailedinbringingaboutareductioninCO2andGHGemissionspercapita,thereissomeevidenceforgreatereffectivenessinloweringGHGemissionsperunitofGDP.Second,althoughelectricityandgassectorreformsarenotassociatedwithhighersupplyofrenewableenergyasashareoftotalenergysupply,theyappeartostimulateasustainedincreaseinthenumberofenvironmentalinventionsandpatentspercapitaoverthemediumterm.Furthermore,wefindstrongevidenceofnonlineareffects,withmarket-orientedelectricityandgassectorreformsleadingtobetterenvironmentaloutcomesandgreengrowthincountrieswithstrongerenvironmentalregulations.Theseresultshaveseveralimportantimplicationsforthedesignofstructuralreformsandpolicies,whichshouldaimnotjustformarketefficiencybutalsoforgreengrowth.First,decouplingeconomicgrowthfromGHGemissionsispossiblethroughcomprehensivereformsandpoliciesaimedatshiftingtheenergymatrixawayfromfossilfuels.Second,whiletransitioningenergysupplytolow-carbonsourcesiscritical,achievingenvironmentallysustainablegrowthisalsodependentongreaterefficiencyinthedistributionanduseofenergy.21REFERENCESAcevedo,S.,M.Mrkaic,N.Novta,E.Pugacheva,andP.Topalova(2020).“TheEffectsofWeatherShocksonEconomicActivity:WhatAretheChannelsofImpact?”JournalofMacroeconomics,Vol.65,pp.103207Auerbach,A.,andY.Gorodnichenko(2012).“MeasuringtheOutputResponsestoFiscalPolicy,”AmericanEconomicJournal–EconomicPolicy,4:1-27.Auerbach,A.,andY.Gorodnichenko(2013).“OutputSpilloversfromFiscalPolicy,”AmericanEconomicReview,Vol.103,pp.141–146.Black,S.,J.Chateau,F.Jaumotte,I.WHParry,G.Schwerhoff,S.DThube,andK.Zhunussova.(2022).“GettingonTracktoNetZero:AcceleratingaGlobalJustTransitioninThisDecade.”StaffClimateNotes2022(010).Born,B.,G.J.Müller,andJ.Pfeifer(2020).“Doesausteritypayoff?”,ReviewofEconomicsandStatistics,Vol.102(2),323-338.Burke,M.,andV.Tanutama(2019).“ClimaticConstraintsonAggregateEconomicOutput,”NBERWorkingPaperNo.25779(Cambridge,MA:NationalBureauofEconomicResearch).Cevik,S.,andJ.Jalles,2020,“FeelingtheHeat:ClimateShocksandCreditRatings,”IMFWorkingPaperNo.20/286(Washington,DC:InternationalMonetaryFund).Cevik,S.,andJ.Jalles(2021).“AnApocalypseForetold:ClimateShocksandSovereignDefaults,”OpenEconomiesReview,Vol.33,pp.89–108.Cevik,S.,andJ.Jalles(2022).“ThisChangesEverything:ClimateShocksandSovereignBonds,”EnergyEconomics,Vol.107,10585.Cevik,S.,andJ.Jalles(2023).“ForWhomtheBellTolls:ClimateChangeandIncomeInequality,”EnergyPolicy,Vol.174,113475.Cline,W.(1992).TheEconomicsofGlobalWarming(NewYork:NewYorkUniversityPress).Dell,M.,B.Jones,andB.Olken(2012).“TemperatureShocksandEconomicGrowth:EvidencefromtheLastHalfCentury,”AmericanEconomicJournal:Macroeconomics,Vol.4,pp.66–95.Driscoll,J.,andA.Kraay(1998).“ConsistentCovarianceMatrixEstimationwithSpatiallyDependentData,”ReviewofEconomicsandStatistics,Vol.80,pp.549–560.Duval,R.,D.Furceri,B.Hu,J.Jalles,andH.Nguyen(2018).“ANarrativeDatabaseofMajorLaborandProductMarketReformsinAdvancedEconomies,”IMFWorkingPaperNo.18/19(Washington,DC:InternationalMonetaryFund).Eugster,J.(2021).“TheImpactofEnvironmentalPolicyonInnovationinCleanTechnologies.”IMFWorkingPapers2021(213).Im,K.,M.Pesaran,andY.Shin(2003).“TestingforUnitRootsinHeterogeneousPanels,”JournalofEconometrics,Vol.115,pp.53–74.IMF(2021).“ReachingNetZeroEmissions.”G20Note(Washington,DC:InternationalMonetaryFund).22Jamasb,T.andPollitt,M.G.(2011)."ElectricitySectorLiberalizationandInnovation:AnAnalysisoftheUK'sPatentingActivities,"ResearchPolicy,Vol.40(2),pp.309-324.Jordà,O.(2005).“EstimationandInferenceofImpulseResponsesbyLocalProjections,”AmericanEconomicReview,Vol.95,pp.161–182.Jordà,O.,andA.Taylor(2016).“EstimationandInferenceofImpulseResponsesbyLocalProjections,”EconomicJournal,Vol.126,pp.219–255.Kahn,M.,K.Mohaddes,R.Ng,M.Pesaran,M.Raissi,andJ-C.Yang(2019)“Long-TermMacroeconomicEffectsofClimateChange:ACross-CountryAnalysis,”IMFWorkingPaperNo.19/215(Washington,DC:InternationalMonetaryFund).OECD(2017).GreenGrowthIndicators2017(Paris:OrganizationforEconomicCo-operationandDevelopment).Nordhaus,W.(1991).“ToSloworNottoSlow:TheEconomicsoftheGreenhouseEffect,”EconomicJournal,Vol.101,pp.920–937.Nordhaus,W.(1992).“AnOptimalTransitionPathforControllingGreenhouseGases,”Science,Vol.258,pp.1315–1319.Ramey,V.,andS.Zubairy(2018).“GovernmentSpendingMultipliersinGoodTimesandinBad:EvidencefromUSHistoricalData,”JournalofPoliticalEconomy,Vol.126,pp.850–901.Romer,C.,andD.Romer(2019).“FiscalSpaceandtheAftermathofFinancialCrises:HowItMattersandWhy,”NBERWorkingPaperNo.25768(Cambridge,MA:NationalBureauofEconomicResearch).Sirin,S.(2011)."EnergyMarketReformsinTurkeyandTheirImpactonInnovationandR&DExpenditures,"RenewableandSustainableEnergyReviews,Vol.15,pp.4579-4585.Teulings,C.N.,andN.Zubanov(2014).“IsEconomicRecoveryaMyth?RobustEstimationofImpulseResponses.”JournalofAppliedEconometrics29(3):497−514.UNEP(2021).TheEmissionsGapReport2021:TheHeatIsOn(Nairobi:UnitedNationsEnvironmentProgram).Wiese,R.,J.Jalles,andJ.deHaan(2023).“StructuralReformsandIncomeDistribution:NewEvidenceforOECDCountries,”REMWorkingPaperNo.0256-2022(Lisbon:ResearchinEconomicandMathematics,UniversityofLisbon).23AppendixTableA1.ExamplesofIdentifiedStructuralReformsinElectricityandGasYearAreaContentNormativelanguageMentioninotherreportsLargechangeinOECDindicatorreform/counter-reformElectricityAustralia1996MarketaccessandstructureTheCouncilofAustralianGovernmentsagreedtohavethenecessarystructuralchangesinplacetocreateacompetitivemarketforbulkelectricityinsouthernandeasternAustraliafrom1July1995.(pg.126,1994)Initsreportof30June1997,theNationalCompetitionCouncilattestedonthebasisoftheStatesandTerritories1996-97annualreportsthat:goodprogresshasbeenmadetowardsimplementingtheNationalElectricityMarketineasternandsouthernAustralia,includingcommitmentsforinterconnectionbybothQueenslandandTasmania…(pg.76,1998)…thiswilloffernewscopeforgreatercompetitionintheelectricitymarketwiththecommencementofcross-bordertrading.(pg.76,1998)pg.68,1995pg.76,1998Yes1Finland2000PublicownershipPrivatizationmandatesarebroadenedbyParliament.Thegovernmentnowhasauthorizationtoreducethegovernmentownershipto50.1percentinAltiaGroupandVapo,to20percentinRautaruukki,to15percentinKemiraGroup,10percentinOutokumpuandzeroinInspecta.(pg.151,2002)Productmarketshavebeenrapidlyliberalized…andthetelecommunicationandelectricitymarketsarenowfullyliberalized.(pg.64,2002)Yes1GasBelgium1996PublicownershipAmongthetransactionsthatoccurredthatyear[1996],theinitialpublicoffer(16.60percentofcapital)oftheBelgiangastreatment,transmissionandstoragemonopolyDistrigazistobementioned.TheBelgiangovernmentlatersolditsremainingshareinthecompany,butretainsonegoldenshare...[seehttp://www.privatizationbarometer.com/atlas.php?id=6&mn=PM]Yesin19951SlovakRepublic2007MarketaccessandstructureTheSlovakRepublicimplementedwide-rangingreformstointroducecompetitioninenergymarkets...Managerialseparationhasbeenputinplaceinboththegasandelectricitytransportnetworks.Legalunbundlingofcompaniesoperatinggasandelectricitynetworkisvirtuallycomplete.(pg.105,2007)…wide-rangingreformstointroducecompetitioninenergymarkets...(pg.105,2007)Yes1Source:Duvaletal.(2018);Wieseetal.(2023).24AppendixFigureA100.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020USAelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020UKelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Austriaelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Belgiumelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Denmarkelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Franceelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Germanyelectricitygas-1.5-1-0.500.511.519701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Italyelectricitygas2500.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Luxembourgelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Netherlandselectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Norwayelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Swedenelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Switzerlandelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Canadaelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Japanelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Finlandelectricitygas2600.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Greeceelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Icelandelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Irelandelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Portugalelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Spainelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Australiaelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020NewZealandelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Koreaelectricitygas2700.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020CzechRepublicelectricitygas00.20.40.60.811.219701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020SlovakRepublicelectricitygas00.10.20.30.40.50.60.70.80.9119701972197419761978198019821984198619881990199219941996199820002002200420062008201020122014201620182020Polandelectricitygas28FigureA2.ImpactofElectricityReforms:BaselineModelNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.-1012012345yearGHGpc(%)-1012012345yearCO2pc(%)-1.5-1-.50.51012345yearemissionperunitGDP(%)Impactonfromelectricityreforms-.6-.4-.20.2.4012345yearrenew.En.sup.(%toten.-20-1001020012345yearEnv.Inventionspc(%)-1001020012345yearPatentsEnv-rel.tech.(%)Impactonfromelectricityreforms29FigureA3.ImpactofElectricityReforms:BaselineModelNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreform,darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.-1-.50.51012345yearGHGpc(%)-1-.50.511.5012345yearCO2pc(%)-1.5-1-.50.51012345yearemissionperunitGDP(%)Impactonfromgasreforms-1-.50.5012345yearrenew.En.sup.(%toten.-20-1001020012345yearEnv.Inventionspc(%)-10-50510012345yearPatentsEnv-rel.tech.(%)Impactonfromgasreforms30FigureA4.ImpactofEnergyReforms:RobustnessExercisesNote:x-axisinyears;t=0istheyearofthestructuralreform;t=1isthefirstyearofimpact.Solidblacklinesdenotetheresponsetoastructuralreformunderdifferentrobustnessorsensitivityexercisesasdescribed;darkgreyareadenotes90percentconfidencebandswhilelightgrayareadenotes68percentconfidencebands,basedonstandarderrorsclusteredatcountrylevel.Solidbluelinesdenotethebaselineresponse.ExcludingcountryfixedeffectsIncludingcountry-specifictimetrendsControllingforadditionalreformareasInstrumentalVariableApproach012345012345yearGHGpc(%)-5051015012345yearPatentsEnv-rel.tech.(%)-1-.50.511.5012345yearGHGpc(%)-505101520012345yearPatentsEnv-rel.tech.(%)-10123012345yearGHGpc(%)-1001020012345yearPatentsEnv-rel.tech.(%)-1-.50.511.5012345yearGHGpc(%)-5051015012345yearPatentsEnv-rel.tech.(%)

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

碳中和
已认证
内容提供者

碳中和

确认删除?
回到顶部
微信客服
  • 管理员微信
QQ客服
  • QQ客服点击这里给我发消息
客服邮箱